Please use this identifier to cite or link to this item: http://ir.nbu.ac.in/handle/123456789/5036
Title: Study of Major Isoflavones in Mungbean Seedlings with Special Emphasis on Its Enhanced Antioxidant Activity After Solid Matrix Priming with Selected Elicitors Including Nano-Chitosan Under Salinity Stress
Other Titles: NBUJPS, NBU Journal of Plant Sciences, Vol.14, (2022), pp. 8-20
Authors: Sen, Sujoy Kumar
Mandal, Palash
Bhandari, Jnan Bikash
Keywords: Mung bean sprouts
Isoflavones
Nano-chitosan
Salinity
Solid matrix priming.
Issue Date: 2022
Publisher: University of North Bengal
Abstract: For a long time, mung bean has been a well-liked crop. It is frequently used as a popular dish in the primarily cereal-based diets of Asian countries for its physiological functionalities, such as antioxidant, antitumor, and antidiabetic activities. Isoflavones present in legume-based foods have high antioxidant potential. These isoflavones are considered beneficial to human health and are linked to a reduced risk of cardiovascular disease, osteoporosis, and the prevention of certain types of cancer in humans, including breast, prostate, and colon cancer, as well as menopausal symptoms. On the other hand, nanotechnology is starting to look like an excellent method to boost food production and make farming less hazardous to the environment. Fascinatingly, the seed nano-priming method demonstrated promising results to mitigate the detrimental effects of different abiotic stress factors including salinity stress on crop plants and has thus, led to higher crop yields. The current study aimed to evaluate the effects of solid matrix priming (SMP) using nano-chitosan in mung bean sprouts under salinity stress related to the production of major mung bean isoflavones, which were detected through high-resolution liquid chromatography-mass spectrometry. When compared to unprimed seedlings exposed to salinity stress conditions, phytochemical quantification showed that SMP with nano-chitosan showed improved antioxidant activities as well as the highest total flavonoids and proline content. Under salinity stress, SMP with nano-chitosan significantly increased the biochemical anti-oxidative properties in germinated mung bean seeds, and also provided salt tolerance. As a familiar healthier choice, and because of the significance of mung bean sprouts for human health and the industry's rapid expansion, nutritional enrichment of this food has emerged as a significant field of study.
URI: http://ir.nbu.ac.in/handle/123456789/5036
ISSN: 0974-6927
Appears in Collections:NBU Journal of Plant Sciences, Vol.14, 2022

Files in This Item:
File Description SizeFormat 
NBUJPS, Vol. 14 (2022)_02.pdfStudy of Major Isoflavones in Mungbean Seedlings with Special Emphasis on Its Enhanced Antioxidant Activity After Solid Matrix Priming with Selected Elicitors Including Nano-Chitosan Under Salinity Stress247.03 kBAdobe PDFThumbnail
View/Open


Items in NBU-IR are protected by copyright, with all rights reserved, unless otherwise indicated.