Department of Physics

Permanent URI for this communityhttps://ir.nbu.ac.in/handle/123456789/4173

Physics is one of those departments with which North Bengal University started its journey in the year 1962. At present there are nine faculty members and ten non-teaching employees in the department. The department has active research groups in the field of (a) Liquid Crystal, (b) Relativity, Cosmology, and Astrophysics, (c) High-energy Heavy-ion Interaction and Cosmic-ray Physics, and (d) Solid-state devices. Several research projects sponsored by the DST, DAE, UGC, and Tea Research Board are running in the department. In the year 2003 the department received a financial support under the FIST programme from the DST, Govt. of India. The department offers both M.Sc. and Ph.D. courses. A semester system is followed in the M.Sc. level, with three different areas of specialization namely, Condensed Matter Physics, Electronics and Nuclear and Particle Physics, out of which a student can choose one. The annual intake capacity in M.Sc. is 40 students. In the Ph.D. programme of the department right now 25 research students are enrolled under the supervision of different faculty members. Almost all faculty members are involved in intra and inter-university national and international collaborations of scientific research. The department houses one IUCAA Resource Centre, a Data Centre for Observational Astronomy, six teaching laboratories, several research laboratories and one departmental library. From time to time the department organizes Seminars, Symposia, Conferences, Schools, Refresher Courses, and Outreach Programs.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    ItemOpen Access
    Spin and valley dependent transport in a biased dice lattice
    (University of North Bengal, 2024-03) Tamang, Lakpa
    We study the spin and valley-dependent transport in a spin-orbit coupled biased dice lattice. We find that the presence of a bias term and the spin-orbit interaction (SOI) give rise to the spin-split energy spectrum. The SOI couples the valley and the spin degrees of freedom, resulting in a spin and valley-resolved Berry curvature. We find a profound variation in the Berry curvature for different spin states around both valleys. The spin and valley Hall conductivities are calculated for various values of the bias term. We find the interplay between the bias term and SOI term leads to a quantum phase transition from a topological insulating phase to a trivial band insulating phase accompanied by the emergence of the valley Hall effect and the suppression of the spin Hall effect.