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Chapter 1 

INTRODUCTION 

Let f be an entire function and M(r) = M(r,_f) = 1~:.11 (z)l be the 

maximum modulus function of f on lzl = r. The function M(r) plays a 
vital role in many situations. By Liouville's theorem it is known that a 
bounded entire function is constant, which implies that for nonconstant j, the 
maximum modulus function M(r) is unbounded. The following theorem is 
due to Cauchy. 

Theorem 1.0.1 {Theorem 1, p.5,{45}}. The maximum of the modulus 
of a function j, which is regular in a closed connected region D, bounded by 
one or more curves C, is attained on the boundary. 

This. theorem implies that when f is an entire function, M(r) is a 
nondecreasing function of r for all values of r. Using the uniform 
continuity off in any closed region and the above theorem , i.e. , the value 
M(r) is attained by f on lzl = r, it follows that M (r) is a continuous 
function of r. Also M(r) is differentiable in adjacent intervals {Theorem 10, 
p.27, [45]}. In view of Hadamard's theorem {Theorem9, p.20,[45]} we know 
that log M(r) is a continuous, convex and ultimately increasing function of 
logr. 

Let f be an entire function and M(r) be its maximum modulus function 
on lzl = r. f is said to be of finite order if there exists a positive number k 
such that log M(r) < rk for all sufficiently large values of r. If there exists 
no such k(> 0), f is called a function of infinite order. Let p = inf{k : k > 
0, log M(r) < rk for all sufficiently large values of r }. 



... ' .,.~ '. . ; ·.·.· .-

2. 

The number p (> 0) is called the order of f. It can be easily verified that 
the order p off has the following alternative definition 

_ 
1
. log log M ( r) 

p- lillSUp l . 
r--'>oo og r 

The number A, defined by A = lim inflogl~gM(r), is called the lower order of r--'>oo ogr 
f. Clearly A < p. If in particular, A = p for an entire function f, it is called 
of regular growth. For example, a polynomial or the function ez is of regular 
growth. 

Extending this notion, Sato [34] defined the generalised order and 
generalised lower order of an entire function as follows : 

Definition 1.0.1 The generalised order p~l and the generalised lower order 

A~l of an entire function f are defined as : 

[Z] 
1
. . log[l] M(r) d , [l] 

1
. . flog[l] M(r) h 

p 1 = 1m sup 
1 

an A 1 = 1m m 
1 

w ere 
r--'>oo og r r--'>oo og r 

log[llx = log (log[l-l] x) for l = 1, 2, 3, ... and log[0lx = x. 

Juneja, Kapoor and Bajpai [20] gave a more generalised concept of 
Definition 1.0.1 which may be given in the following way : 

Definition 1.0.2 The (p, q) th order P! (p, q) and the (p, q) th lower order 
AJ (p, q) of an entire function f are defined respectively as follows : 

. · log[pl M (r) . . log[pl M (r) 
P! (p, q) = hmsup [ l and AJ (p, q) = hm1nf [ l , 

r--'>oo log q r r--'>oo log q r 

where p, q are positive integers with p > q. 

If f is an entire function of positive finite order p, the number T given 
by T = lim suplog~(r) is called the type of f. The quantities p, A and T are 

T----'>00 

extensively used to the study of growth properties of f. It is well- known that 
the order and type of an entire function f is equal to those of its derivative 
f' {Theorem 2.4.1, p. 13, [1]}. 
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Let f be an entire function of finite order p.When more precise specification 
of the rate of growth of f is desired, one can use the proximate order, a 
function p (r) with the following properties {p.64[45]}, 

I. p ( r) is continuous for r > r0 , say, · 
II. p (r) is differentiable in adjacent intervals, 
III. limsupp (r) = p and liminfp (r) > /3, where O< j3 < p, 

T---*00 · T---*00 

IV. lim rp' (r) logr = 0, 
T---*00 

V l. logM(r) _ 1 . 1m sup Pf(r) - • 
T---*00 r 

Using so:me results of Blumenthal, Valiron {pp.64-67, [45]} proved the 
existence of a proximate order for an entire function of finite order. Shah. 
[33] introduced the notion of lower proximate order for an entire function in 
the following way and proved its existence. 

Definition 1.0.3 Let f be an entire function of finite lower order A. The 
function A (r) is called a lower proximate order off if it satisfies the following 

. properties: 
I A (r) is a non-negative continuous function of r for r > ro, say, 
II. A ( r) is differentiable for r > ro except at isolated points at which X ( r - 0) 
and A'(r + 0) exist, 
III. limrA' (r) logr = 0, 

T---?00 

IV. lim A (r) =A and 
T---*00 

·V. l" · flogM(r) 1 . liD lll >.(r) = . 
T---*OO r 

Using the notion of proximate order and lower proximate order it is some 
times possible to make sharper estimation of the number of zeros of an entire 
function f within the circle lzl = r. If n (r) denotes the number of zeros off 
within lzl = r, counted with multiplicities, then the following two inequalities 
hold 
I n (r) < krP(r) for. all sufficiently large values of rand k > 0 {p.68,[45]}, 
II n (r) < kr>..(r) for a sequence of values of r tending to infinity and k > 0 
{[45]}. 

00 

Let f (z) = Eanzn. Then the sequence lao I, la1l r, la2l r2, ... lanl rn tends 
n=O 

to zero for each value of lzl = r. For each value of r there is a term of this 
sequence which is greater· than or equal to the rest of the terms. This term 
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(or more) is called the maximum term for the given value of r and is denoted 
by f.-L ( r, f) , the term of the highest rank is to be taken as the maximum term 
and this rank of the maximum term is denoted by v ( r) . 

It is possible to estimate in terms of proximate order and lower proximate 
order the rank of the maximum term for lzl = r of an entire infinite series 
which is given in the following theorem of Shah [33]. 

00 

Theorem 1.0.2 Iff (z) = L:anzn is of finite order, 
n=O 

I v (r) < kr>.(r) for a sequence of values of r tending to infinity, k > 0, 

II v (r) > ~~;<~l,. for a sequence of values of r tending to infinity, k > 0. 

D. Somasundaram and R. Thamizharasi [41] considered a positive 
continuous function L (r) which increases slowly i.e. L (ar) rv L (r) as r ~ oo 
and for every positive constant a . The collection of all such functions are 
denoted by£. 

They [41] ·introduced the definition of 1-order and 1-type of an entire 
function f denoting respectively by PL and TL as follows: 

For L (r) E £ 
. log log M(r) 

PL = hmsup 1 [ L ( )] 
r-+oo og r r 

and 
. logM(r) 

TL = h~~p[rL(r)]PL' 0 < PL < oo. 

Using the definition of 1-order of an entire function they [41] proposed 
that if fi and h are entire functions of 1-orders PI and p2 respectively and 
if PI < P2 then the 1-orders of !I + h is P2. They [ 41] hinted that the 
proposition fails if PI = P2· 

Another proposition [41] relating PL and TL states the following: 

Theorem 1.0.3 Iff is of positive L-arder PL and finite L-type TL then 

L l. {n(r)exp(-pLlogr)} < T 
= lillSUp epL L 

r-+oo . exp (r log L (r)) -

and 

l _ 1. . f { n ( r) exp (-p L log r) } < T 
- lillln ( L ( )) - PL L, r-+oo exp r r 

where n (r) denotes the number of zeros in izi < r. 
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A. P. Singh [42] proved a theorem to establish a relation between M (r, f) 
and J-l (r, f) . · 

Theorem 1.0.4 { Theorem A,[42]}. For 0 < r < R, 

R 
J-l (r, f) < M (r, f) < R _ rJ-l (R, f)· 

In [42} the following two results are also proved. 

Theorem 1.0.5 {42}. Let f and g be two entire functions. Then for every 
a > 1 and 0 < r < R 

p(r,fog) <a~ 1/1- (Ra~rp(R,g),J). 
In particular taking a= 2 and R = 2r, 

J-l (r, fog) < 2J-L (4J-L (2r, g), f). 

Theorem 1.0.6 [42}. Let f and g be two entire functions with g (0) = 0. 

Let a satisfy 0 <a< 1 and let c (a) = ( 1 ~;)
2

• Also let 0 < 8 < 1 then 

J-l (r, fog) > (1- 8) J-l (c (a) J-l (a8r, g), f). 

If g is any entire function, then for a = 8 = ~ and for all sufficiently large 
values. of r, 

p (r,f o g) > ~/1- G/1- G,g) - lg (O)IJ) . 

Now we state the following theorem due to Clunie [6]. 

Theorem 1.0. 7 . Let f and g be two entire functions with g (0) = 0. Let a 

satisfy 0 <a< 1 and let c (a) = ( 1~;)
2

• Then for r > 0 

M ( r, f o g) > M ( c (a) M ( ar, g) , f) . 

Further if g is any entire function, then for a = .~ and for all sufficiently 
large values of r, 
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Also M (r, fog) < M (M (r, g), f) is an immediate consequence of the 
definition. 

Let f be a meromorphic function in the finite complex plane and let 
n (r, a; f) = n (r, a) which is a non-negative integer for each r, denote the 
number of a~ points of f in lzl < r, counted with proper multiplicities, 
for a complex number 'a', finite or infinite. Obviously n (r, oo) = n (r, f) 
represents the number of poles of f in lzl < r counted with proper 
multiplicities. The definition of the function N (r, a) is as follows: 

r 

N (r, a) = jn (t, a)~ n (O, a) dt + n (0, a) logr 

0 

and N (r, oo) - N (r, f). 
Next let us define 

log+x = logx if x > 1 

___..: 0 if 0 < X < 1. 

The following properties are then obvious; 
( i) log+ X > 0 if X > 0 
(ii) log+ x > logx if x > 0 
(iii) log+ x > log+ y if x > y 

(iv) logx =log+ x -log+~ if x > 0. 
The proximity function m (r, f) off is defined as follows {p.4, [19]} . 

211" 

m (r, f) = 2~ j log+ IJ (rei8
) I dB. 

0 

The term m (r, f) is a sort of average magnitude of log If (z)l on arcs of 
lzl = r where If (z)l is large. 

We write T (r, f) = m (r, f) + N (r, f). The function T (r, f) is called 
Nevanlinna's Characteristic function off {p.4,[19]} and it plays an important 
role in the theory of meromorphic functions as the function M (r, f) plays in 
the theory of entire functions. 

Now we express Poisson-Jensen formula {p.1,[19]} in the form of the 
following theorem : 
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Theorem 1.0.8 . Suppose that f is meromorphic in lzl < R (0 < R < oo) 
and that all (p = 1, 2, ... , M) are the zeros and bv (v = 1, 2, ... , N) are the poles 
off in lzl < R. Then if z = rei8 (0 < r < R) and iff (z) i= 0, oo we have 

211" . 2 2 

log If (z)l = 2~ j log If (Re'¢) I R2- 2Rr~o;(;- </>) + r2d¢ 
0 

M N 
"'l R(z-afl) "'l R(z-bv) 

+ L.....t og R2 - a· z - L.....t og R2 b- . 
fl=l _ fl v=l - vZ 

The theorem holds good also when f has zeros and poles on lzl = R. When 
z = 0, we obtain Jensen's formula 

~ M N 

log If (O)I = 2~ j log If (Re'¢) I d</> + ~)og I~ I - L)og 1~1, 
0 fl=l v=l 

provided that f (0) i= 0, oo. 
If f has a zero of order A or a pole of order -A at z = 0 such that 

f (z) = C>.z>. + ... then Jensen's formula takes the form 

1 !211" . M I I N lb I 
logiC>.!= 21r Joglf(Rei¢)1d¢+ Llog ~- Llog ~ -AlogR. 

0 . - · · · fl=l V=l 

This complicated modification is one of the minor irritations of the 
theory. Generally we shall assume that our function behave in such a way that 
the terms in the Jensen's formula do not become infinite in our use of that 
formula knowing that the exceptional cases can be treated. 

When f has no a-points (i.e. the roots of the equation f = a) at 
z = 0, then from Riemann-Stieltjes integral it follows that 

. - r 

L log 1~1 = jn(~,a) dt, 
O<lavl:s;r 0 

where av's are a-points off in lzl < r. 
Again since N (r, 0) = N (r, y), from Jensen's formula we get 

· log If (0) I . m (R, f) - m ( R, ~) + N (R, f) - N ( R, ~) 
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or,T (R, f)= T (R, ~) +log If (0)1. 

Now we express Nevanlinna's First Fundamental theorem as the 

following form by denoting m (r, a) the function m (r, f~a) for any finite 

complex number a and m (r, oo) = m (r, f). 

Theorem 1.0.9 {p.6,{19}}. Iff is a meromorphic function in lzl < oo 
and 'a' is any 90mplex number, finite or infinite, then 

m (r, a)+ N (r, a) = T (r, f)+ 0 (1). 

This result shows the remarkable symmetry exhibited by a 
meromorphic function in its behaviour relative to different complex 
number 'a', finite or infinite. The sum m (r, a) + N (r, a) for different 
values of 'a' maintains a total, given by the quantity T (r, f) which is 
invariant up to a bounded additive term involving r. 

One part of this invariant sum, the quantity N (r,a) hints how densely 
the roots of the equation f = a are distributed in the average in the disc 
lzl < r. The large the number of" a-points the faster this counting function 
for a-points grows with r. 

The first term m (r, a) which is defined to be the mean value of 

log+ ~~~a~ (or log+ lfl if a= oo) on the circle lzl = r, receives a remarkable_ 
contribution only from those arcs on the circle where the functional values 
differ very little from the given value 'a'. The magnitude of the proximity 
function can thus be considered as -a measure for the mean deviation on the 
circle lzl · r of the functional value f from the value 'a'. 

If the a-points of a meromorphic function are relatively scarce for 
a certain 'a' , this fact finds expression analytically in the relatively slow 
growth of the funct'ion N (r, a) _as r ~ oo. In the extreme case where 'a' is 
a Picard's exceptional value- of the function ( so that f -:/= a in lzl < oo), 
N (r, a) is identically zero. But this fact on 'a'-points finds a compensation: 
the function deviateS in the Iilean slightly from the Value I a1 in question; the 
corresponding proximity function m (r, a) will be relatively large, so that the 
sum m (r, a) +N (r, a) reaches the magnitude T (r, f) , characteristic function 
of the function f. 

If f_is an entire function, N (r, f) = 0 and T (r, f) = m (r, f). For an 
entire fundioh 1 the study of the comparative growth properties ofT (r, f) 
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and log M (r, f) is a popular problem among the researchers. Now we express 
a fundamental inequality relating T (r, f) and log M (r, f). 

Theorem 1.0.10 {p.18,{19}} .Iff is regular for lzl < R then 

· R+r · 
T(r,f) <log+ M(r,f) < R-rT(R,f), 0 < r < R. 

At this stage we introduce the following definition. 

Definition 1.0.4 {p.16,{19}} .Let S be a real and non-negative function 
increasing for r0 < r < oo, r0 > 0. The order k and lower order A of the 
function S (r) are defined as 

k 1
. logS(r) d, 1 .. flogS(r) 

= 1m sup 
1 

an A = 1m 1n 
1 

. 
r-+oo og r r-+oo og r 

Moreover if 0 < k < oo, we set c = limsup 10g~(r) and distinguish the 

following··possibilities: 
(a) S (t) has maximal type if c = +oo; 
(b) S (r) has mean type if 0 < c < +oo; 
(c) S (r) has minimal type if c = 0 and 

. ·. • 00 

r-+oo 

(d) S (r) has convergence class if J~~~dt converges. 
ro 

. From the above theorem the following theorem can be proved easily. 

Theorem 1.0.11 {p.18,{19}} .Iff is an entire function then the order k of 
the function S1 (r) =log+ M (r, f) and S2 (r) = T (r, f) is the same. Further 
if 0 < k < oo, sl (r) and 82 (r) belong to the same classes (a), {b), (c) or 
{d). 

Here we note that 8 1 (r) and S2 (r) have the same lower order. 
A Junction f meromorphic in the plane is said to have order p , 

lower order A and maximal, minimal, mean type or convergence class if the 
function T (r, f) has this property. For entire functions these coincide by the 
above theorem with the corresponding definition in terms of M (r, f) which 
is classical. The type of a meromorphic function f is defined by 

1
. logT(r,f) 

T = 1msup , 
r-+oo rP 

0 < p < 00. 
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As we know that the order of an entire function f and its derivative 
are equal, the same result holds for a meromorphic function also . 

. After revealing the important symmetry property of a meromorphic 
function f, which is expressed in the first fundamental theorem through 
the invariance of the sum m (r, a) + N (r, a), it is natural to attempt for 
a more careful investigation of the relative strength of two terms in the 
sum, of the proximity component m (r, a) and of the counting component 
N (r, a) .Individual results have been obtained in this direction {p.234,[19]} : 

1. Picard's theorem shows that the counting function for a nonconstant 
meromorphic function in the finite complex plane can vanish for at most two 
values of a. 

2.For a meromorphic function of finite non integral order there is atmost 
one Picard's exceptional value. 

3. That the counting function N (r, a) is in general i.e., for the great 
majority of the values of 'a', large in compadson with the proximity function. 

We now state Nevanlinna's Second Fundamental theorem. 

Theorem LO.l2 {p.31,{19}}. Suppose that f is a non-constant 
meroirl.'orphic function in lzl < r. Let a1 , a2 , ... aq where q > 2, be distinct 
finite complex numbers, 8 > 0 and suppose that 

laJL - avl > 8 for 1 < Jl < 1/ < q. 

Then 

. q 

m (r, oo) + L:m (r, av) < 2T (r, f)- N1 (r) + S (r), 
ll=l 

where N 1 (r) is positive and is given by 

N1 (r) = N (r, :,) + 2N(r, f)- N (r, f) 

and S (r) = m (r, ~) + m {r, t,(f! a.)}+ qlog+ 
3
/iq 

. 1 
+log 2 +log If' (O)I, 
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with modifications iff (0) = 0 or oo and/ (0) = 0. 
The quantity S (r) will in general play the role of an unimportant 

error term. The combination of this fact with the above theorem yields the 
second fundamental theorem. 

The following theorem gives an estimation of S (r). 

Theorem 1.0.13 {p.34,{19]}. Suppose that f. is a meromorphic function 
and not constant in lzl < Ro < oo and that S (r) S (r, f) is defined as in 
the above theorem. Then we have 

(i) If Ro = +oo, S (r, f) = 0 {logT (r, f)}+ 0 (logr), as r ~ oo through 
all values iff has finite order and as r ~ oo outside a set E of finite linear 
measure otherwise 

(ii) If 0 < Ro < +oo, S (r, f) = 0 {log+ T (r, f) +log ~1-r} as r ~ Ro 
outside a set E such that J ~~r < oo. 

E 

Further there is a point r outside E for which p < r < p' provided 
that 0 < R- p' < e-2(R- p). 

Consequently we get the following theorem. 

Theorem 1.0.14 {p.41,{19}}. Let f be meromorphic and nonconstant in 

lzl < Ro. Then ~~~;j~ ~ 0 (*) as r ~ Ro with ·the following provisions: 

(a) (*) holds without restrictions if Ro . +oo and f is of finite order in 
the plane. 

(b) lf f has infinite order in the plane, (*) still holds as r ~ oo outside a 
certain exceptional set Eo of finite length. Here Eo depends only on J. 

(c) If R0 < +oo and lim sup . pr·e } = +~, then (*) holds as r ~ R0 
T-fOO log (Ro-r) 

through a suitable sequence rn, which depends oh f only. 
This theorem points out whyS (r) plays the role of an unimportant 

error term. 
Let f be meromorphic and not constant in the plane We shall call an 

error term and denote by S (r, f) any quantity satisfying S (r, f) = o {T (r, f)} 
as r ~ oo possibly outside a set r of finite linear measure. Also yve shall 
denote by a (z), a0 (z), a1 (z) etc. functions meromorphic in the plane and 
satisfying T {r, a (z)} = S (r, f) as r ~ oo. Now we introduce Milloux's 
theorem which is important in studying the properties of the derivatives of 
meromorphic functions. 
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z 
Theorem 1.0.15 {p.55,{19}}. Letz be a positive integer and'¢= "'£avf(v). 

1/=0 

Thenm(r,'J) =S(r,f) andT(r,'¢) < (z+1)T(r,f)+S(r,f). 

Milloux showed that in the second fundamental theorem we can 
replace the counting functions for certain roots of f = a by roots of the 
equation '¢ = b , where '¢ is given as in the above theorem. In this 
connection we state the following theorem. 

Theorem 1.0.16 {p.57,{19}}. Let f be mertrmorphic and nonconstant in 
z 

the plane and'¢ = "'£avf(v) , where z is a positive integer, be nonconstant. 
1/=0 

Then 

T (r, f) < N (r, f) + N (r, ~) + N (r, 7/J ~ 1) -No (r, ~,) + S (r, f) , 

where in No (r, J,) only zeros of r¢' not corresponding to the repeated roots 

of'¢ = 1 are to be considered. 

Here we note that this result reduces to second fundamental theorem 
if'¢ = f and q = 3. 

Now we set 

J (a)= J (a; f)= liminfm t ;l 
r~oo T r, 

. N (r, a) 
= 1- hmsupT( f), 

r~oo r, 

where N (r, a; f) = N (r, a) is the counting function for distinct a-points, 

e ( ) = e ( . f) = 1. . fN (r, a)- N (r, a) 
a a, 1~~ T(r,f) . 

Evidently, given c (> 0) , we have for sufficiently large values 



of r, 

N(r,a)- N(r,a) > {B (a)- c}T(r,f), 

N ( r, a) < { 1 - 8 (a) + c} T ( r, f) and hence 

N(r,a) < {1- b"(a)- e (a)+ 2c}T(r,f) so that 

e (a) > c) (a)+ e (a). 

13 

The quantity 8 (a) is called the deficiency of the value 'a' and B (a) is 
called the index of multiplicity. Evidently 8 (a) is positive only if there are 
relatively few roots of the equation f =a, while B (a) is positive if there are 
relatively many multiple roots. 

Let us now state a fundamental theorem called Nevanlinna's theorem 
on deficient values. 

Theorem 1.0.17 {p.43,{19}}. Let f be a non constant meromorphic 
function defined on the plane. Then the set of values 'a' for which 8 (a) > 0 
is countable and we have, on summing over all such values 'a', 

:L {8 (a)+ e (a)}< :Le(a) < 2. 
a a 

The magnitude of the deficiency 8 (a) lies in the closed unit interval 
[0, 1) and it gives us a very accurate measure for the relative density of the 
points where the function f assumes the value· (a' in question. The larger 
the deficiency is, the more rare are latter points.The deficiency reaches its 
maximum value 1 when the latter have been ve·ry sparsely distributed, as for 
example, in the extreme case where the value 'a' is a Picard exceptional value 
i.e., a complex number which is not assumed by the function f. We shall call 
every value of vanishing deficiency 8 (a) , a normal value in contrast to the 
deficient values for which 8 (a) is positive. 

It is known from Picard's theorem that a meromorphic function can 
have atmost two Picard exceptional values. This theorem follows easily from 
Nevanlinna's theorem on deficient values because as we have stated before 
that fot a Picard exceptional value 'a', 8 (a) = 1. 

T. h t"t A ( • f) - 1 l" . f. N(r,a) - l" m(r,a) . e quan 1 y u a, - - ~~~ T(r,J) - 1m sup T(r,f) g1ves 
. r~oo 

another measure of deficiency and is called the Valiron deficiency. Clearly 
0 < b"(a;f) < ~(a;f) < 1. 
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Apart from Chapter 1 the thesis consists of eight chapters. 
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• In Chapter 2 we compare the relative Valiron defect with the relative 
Nevanlinna defect of a meromorphic function of finite order. The results 
of this chapter have been published in Journal of Mathematics, see 
[8]. 

• In Chapter 3 we compare the relative Valiron defect with the 
relative Nevanlinna defect of differential polynomials generated by a 
meromorphic function . The results of this chapter have been 
published in International Journal of Contemporary 
Mathematical Sciences, see [10]. 

• In Chapter 4 we consider several meromorphic functions having 
common roots and find some relations involving their relative proximate 
defects. The results of this chapter _ have been published in 
International Journal of Pure and Applied Mathematics, see 
[13]. 

• In Chapter 5 we wish to introduce an alternative definition of zero 
order ( zero lower order ) of a meromorphic function f and 
establish the equivalence of this definition with the classical one. In this 

. chapter we also study the comparative growth properties of composite 
entire and meromorphic functions considering left factor or right factor . 
to be of order zero. The results of this chapter have been published in 
International Mathematical Forum, see [15] and International 
Journal of Mathematical Analysis, see [16]. 

• In Chapter 6 we study the comparative growth properties of 
composite entire functions on the basis of relative order, relative L-arder 
and relative 1*-order where L = L(r) is a slowly changing function. The 
results of this chapter have been published in International Journal 
of Pure and Applied Mathematics, see [12]. 

• In Chapter 7 we discuss about the comparative growth of composite 
entire or meromorphic functions and differential polynomials generated 
by one of the factors . Also we study the relationship between the 
L- (p, q) th order of a transcendental meromorphic function and that 
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of a special type of linear differential polynomial viz. the wronskian 
generated by it ( a transcendental meromorphic function ) where p, q are 
positive integers and p > q. Further we intend to establish a few theorems 
related to a result of W. Bergweiler [4] , I.Lahiri and D. K. Sharma [25]. 
The results of this chapter have been published in Wesleyan Journal · 
of Research, see [14] and in International Journal of Pure and 
Applied Mathematics, see [9] ,[11]. 

• In Chapter 8 we intend to establish some results relating to the growth 
properties of composite entire and meromorphic functions on the basis 
of (p, q) th order ( (p, q) th lower order ) improving some earlier results 
where p, q are positive integers and p > q . . 

From Chapter 2 onwards when we write Theorem a.b.c (or Corollary 
a.b.c etc.) where a, b and c are positive integers, we mean the c-th theorem 
(or c-th corollary etc.) of the b-th section in the a-th chapter. Also by 
equation number ( a.b) we mean the b-th equation in the a-th chapter 
for positive integers a and b. Individual chapters have been presented in 
such a manner that they are almost independent of the other chapters. The 
references to books and journals have been classified as bibliography and are 
given at the end of the thesis. 

The author of the thesis is thankful to the authors of various papers and 
books which have been consulted during the preparation of the entire thesis. 
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