Metal free C- H Functionalization: a unique tool for library synthesis of functionalized 4- pyrimidiones

DOI

Access Status

Thumbnail Image

Type

Thesis

Date

2023

Journal Title

Journal Editor

Journal ISSN

Volume Title

Publisher

University of North Bengal

Statistics

Total views and downloads
Views
1
Downloads
34

Citation

Roy, S. (2023). Metal free C- H Functionalization: a unique tool for library synthesis of functionalized 4- pyrimidiones [Doctoral thesis, University of North Bengal]. https://ir.nbu.ac.in/handle/123456789/5561

Editor

Abstract

The Present Thesis entitled as “Metal free C- H Functionalization: a unique tool for library synthesis of functionalized 4-pyrimidiones” has made some efforts to synthesize the diverse 4 pyrimidones with varied functional groups via different approaches and their applications in medicinal and pharmacological domains. Based on different direction and contents of the work; the thesis has been divided into four chapters. Chapter I: describes an introduction to present work, the “A brief review on C-H functionalization/activation and a literature study regarding the synthesis of 4Hpyrido[ 1,2-a]pyrimidin-4-one derivatives” Summarizes a brief review on pyrimidines and it was further subdivided into following points: 1) Origin, background theory, importance and current status of C-H Functionalization. 2) Use of C-H functionalization techniques in selective functionalization of heterocycles. 3) Importance of 4-pyrimidiones and current literature status 4) Different approaches of its synthesis and further derivatization Chapter II: describes “Microwave-assisted straight forward synthesis of 2-substituted alicyclic fused pyrimidone” We have divulged here a metal free- and MW assisted route to tetrahydro-4H-pyrido[1,2- a]pyrimidin-4-one and dihydropyrrolo[1,2-a]pyrimidin-4(6H)-one has been demonstrated by the reaction of aminoacrylates with lactams in presence of phosphorous pentachloride. This transformation comprises of the sequential formation of three new bonds to produce pyrimidone derivatives under mild reaction conditions and this strategy is well compatible for both electron deficient and electron rich amino-acrylates. This method is amenable for gram scale reaction.

Description

Citation

Accession No

311808

Call No

TH 546.3:R888m

Book Title

Edition

Volume

ISBN No

Volume Number

Issue Number

ISSN No

eISSN No

Pages

xx, 141p.

Pages

Endorsement

Review

Supplemented By

Referenced By