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INTRODUCTION :

A pencil of radiation traversing a medium will be weakened
by its interaction with matter. If the specific intensity Iv
therefore becomes Iv+ dIv after traversing a thickness ds in
the direction of its propagation, then

dIv = —kvp Iv ds (1.1)
where p is the density of the material. The quantity kv
introduced in this manner defines the mass absarptiaﬁ
coefficient for radiation of frequency rv. Now, it should not
be assumed that this reduction in intensity, which a pencil
of radiation experiences while passing through matter, is
necessarily lost to the radiation field. For it can very
well happen that the energy lost from the incident pencil
may all reappear in other directions as scattered radiation.
In general, I may however expect that only a part of the
energy lost from an incident pencil will reappear as
scattered radiation in other directions and that the
remaining part will have been °truly ‘absorbéd in the sense
that it represents the transformation of radiation into
other forms of energy (Ar. even of radiation of other
frequencies). I shall therefore have to distinguish ﬁetween
true absorption and scattering. Considering first the case
of scattering, I say that a material is charecterised by a

mass scatitering coefricient kv if from a pencil of radiation
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incident on an element of mass of cross—section do and
height ds, energy is scattered from it at the rate
K;p ds X Iv Cos® v o dw (1.2)
in all directions. Since the mass aof the element is ‘
dm = p Cos® do ds (1.3)
I can also write
Kv Iv din dv dw (1.4)
It is now evident that to formulate quantitatively the

concept of scattering we aust specify in addition the

angular distribution of the scattered radiation (1.4).

I shall therefore introduce a phase functicn P(cosf) such
that
K I P(Cos9) 2 dm & do (1.5)
v v 4t

gives the .rate at which energy is being scattered into an
element of solid angle dw’ and in a direction inclined of an
angle 6 to the direction of incidence of a pedcil of
‘radiation on an element of mass dm ..Accnrdingly thé “rate
of loss of energy from the incident pencil due to

scattering in all directions is

[4

- . o
K, I, dm dv co I P(CosB) — 3 (1.6)

¢

this agrees with (1.4) if J P(Co=9 ) _%n"_ =1 (1.7)

i.e. if the phase function is normalised to unity .
In the general case when both scattering and true absorption

are present, I shall still write for the scattered energy
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the same expression (1.3). But in this case the total loss
of energy from the incident pencil must be less than (1.5),

accordingly

J P(Cos9 ) —g‘n*’— =6 <1 {1.8)

Thus the general case differs from the case of pure
scattering only by the fact that the phase function is not
normaliced to unity.

It is evident from ocur definitions that W, represents the
fraction of the radiation lost from an incident pencil due
to scattering, while (1 - wo) represents the remaining frac-—
tion which has geen transformed into other forms of energy.
I shall refer to w  as the albedc for -single scattering.
A radiation fTield is said to be isotropic at a point, if the
radiation is independent of direction at that point. And if
the intensity is the same at all points and in all
directions the radiation field is said to be homogeneous
"and isotropic. Moreover , when w, =1, I shall say that 1
have a conservative case of perfect scattering. when w0, = 1

I shall say that 1 ‘ have a non conservative case of

scattering .

Next to the isotropic scattering greatest interest is
attached to Rayleigh’'s scattering which is an example of

conservative anisotropic scattering.
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1.1 Introduction to scattering problems
1.11 Coherent and Non—Coherent Scattering.

When the radiation is emitted in the frequency in which it
was absorbed the atom is said to scatter coherently. On
the other hand, when frequency of the emitted radiation
differs from that of the absorbed radiation 1 call it the
case of non—coherent scattering. Non—coherent scattering is
sometimes used to mean that the scattering involves not only
a change in frequency but alsc a qomplete redistribution in
frequency i.e. scattering in which the frequency of
re—emission is in correlation with the frequency absorbed.
From practical point of view, strictly coberent scattering
does not exist in astrophysics (vide, Edmonds [1958]). I
designate the scattering as Coherent ~and _Non—coherent
according to our theoretical consideration of the problea
when an atom absorbs energy of certain frequency, v, the
probability that the energy will be re—emitted in the same
frequency will be maximuﬁ if

(i) the atom is at rest .

(ii) the atom is in the lowest gquantum state

{iii) in a weak radiation field.
Departure from any of the above three conditions will cause

non—coherent scattering .




Chapter—1 ' 5

1.12 Coherent Scattering Problems.

Chandrasekhar [1960] applied the method of discretes
ordinate to solve the transfer equation for coherent
scattering in stellar atmosphere with Planck’s function as a
linear function of optical depth, viz.,

Bv(T) = bo + biT, (1.9)
The equation of transfer for coherent scattering has also
been solved by Eddington’'s method {(where N, the ratio of
line to the continuum absorption coefficient, is constant)
and Stromgren method (when n, s has small but arbitrary
variation with optical depth (vide, Woolley and Stibbs,
1953). Dasgupta [1977]1 applied the method of Laplace tran-—
sform and Wiener—Hopf technique to find an exact solution
of the transfer equation for coherent scattering in stellar
atmosphere with Planck’'s function as a sum of elementary

functions
t2]

B,(T) = b +b7T + Z=zb’E" () " (1.10)
by use of a new representation of the H—-function obtained by
Dasgupta [1977]. Extensive study has been made on coherent

scattering by various authors thereafter and before.
1.13 Noncoherent Scattering Problems.

In stars having high temperature and high energy density,

the induced transition—probabilities at lower frequencies
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increase sufficiently. The ground state or the lower state
in case of a sub ordinate line then possesses a finite width
and the frequency of the absorbed and the emitted radiation
differ from each other introducing a noncoberency in the
formation of absorption lines. Though in a single scattering
there is a change in frequency giving rise to either a loss
or a gain in energy of the atom, in a number of scattering
ihe total loss of energy balances with the total gain in
energy. In the case of intérlocking without redistribution,
if radiation in one line flows from centre to the wings then
then in another line it flows from wings back to the centre.
The doppler broadening introduces, another important type of
non—coherent scattering. If a moving atom absorbs radiation
from one direction and emits it in another, the frequencies
of the absorbed and emitted radiation will differ even
if the process is ;oherent in the atom’'s rest frame. Another
type of non—coherent scattering is that due to pressure
broadening which is the simplest and at the same time most
important case in siellar atmosphere. Let an electron, due
to absorption of energy, jumps to a higher level where there
is a perturbing atom or ion. Now if the perturbing atom goes
away before the electron suffers downward transition, the
atom may absorb some amount of energy from the electron and
the electron will consequently emit radiation of frequency
guite different from that of the absorption. This type of

scattering gives rise to the process known as Stark Effect,
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e.g. Hydron lines in stellar atmospbere are broadened- by
Stark Effect. Impact broadening becamés important when the
velocity of the perturbation is large. 1In case of lines
widened by‘ impact broadening the scattering is partly
coherent and partly non—coherent. Domke and Staude (1973)
considered the formation of a Zeeman—multiplets by
noncoherent scattering and true absorption in a  M-E
atmospheref'The solution of the line formation problem is
obtained (vide, Domke and Staude, 1973) for an exponential

form of the Planckian source function.

1.14 Interlocking Problems.

Interlocking of multiplets is another type of non-coherent
scattering. When the lower state possesses a common uppér
state by absorption from any of the lower sub-state, the
re—emission will be controlled by the transition probability
of the various lines regardless fTrom a certain
sub-state of the lower state in a certain frequency
b has a non—zero .prébability of returning to another lowér
sub—-state emitting in a frequency different from » giving
rise to non—-coherent scattering. Similar case will
arise when the number of upper sub—states will posséss a
common lower state. This type Df‘non—coherency has a special
name interlocking " of lines without redistribution

Woclley and Stibbs [1953] considered the prablem of
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interlocking without redistribution in details and gave
an appropriate soiution applying " Eddington's method.
Busbridge and Stibbs [1953] applied the principle of
invariance to solve the same problem and cal:ulateq three
hypothetical line profiles for doublets. However Busbridge
and Stibbs [1953] did not attempt calculation of the Tine
profiles for triplets because they feared " any such
attempt would have involved considerable 'lanur.
Karanjai [19é8a] profitably applied his apﬁroximate fdrm for
the H-function [1968b] to minimize to a great extent the
labour'of such computatioﬁs; Dasgupta and Karanjaiv £1972]
applied Sobolev’'s probabiiisti: method to solve the fransfer

equation for the case of interlocking without

redistribution.

Anpther exact soclution of the equation of frapsfer
has been given by Dasgupta [1936]1 by his modified
form Df Wiener-Hopf technigue. Karanjai and Barman: @ [1981]
applied the extension of the method of discrete 6rdinate to
find an exact sclution of the problem of line formation by
interlocking in the M-E model. Karanjai and Karanjai [1985]
used the method of Laplace transform and Wiener—Hopf
technique to solve the equation_éf interlocked lineg taking
the. Planck function as -a nonlinear function of optical
depth. Karanjai [1982] has calculated Mg b line contours

with the help of the solution obtained by Dasgupta and
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Karanjai [1972} and showed that his calculated lines have
a good agreement with the observation. Dasqupta [1978]

obtained an exact soclution of the transfer equation for

non—coherent scattering arising from interlocking of
principal Iines without redistribution of the H-function
obtained by Dasgupta L1977]. While solving the

transfer equation Dasgupta considered the Planck’s function
to be linear in 7 (Optical depth) (equation (1.9)).
Karanjai and Karanjai [1985] considered two non—-linear form
of Planck function Viz;
= = -m
(a)AQJT) B(t) tgfﬂe (1.11)

in an exponential atmosphere (vide, Degl ‘'Innoccenti, 197%)

where f3, b0 and b‘ are pqsitive constants.

(b) Bv(T) = Q(t) = bo+ b1'r+ Ez (t)s (1.12)
in an atmosphere considered by Busbridge [1933]. Roymondal,
Biswas and Karanjai [1988] solved the equation of téansfer
for non—coherent scattering by Fh method. Recenfly,Basak and
Karanjai [1995] solved the transfer equation for interlaocked

~multiplets in anisotropically scattered atmosphere.

1.15. Anisotropic Scattering Problems.

The equation of transfer for plane parallel Rayleigh’'s
scattering phase function-can be put in the form

+1

I . 3
le d:T:f-J).=I(T:[J)'."—I-g[ (3—H2)J It ' ' +

-1
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+ 41

+ (3ui- 1) j v uf ' 2 du ] (1.13)

-1
According to Chandrasekhar {19601 the solution of the
equation of transfer (1.13) for Rayleigh scattering can be

put in the form

[+ 4 x
3 _ - |
Jr) =43 [I (3E, Es)lt-'z" J(t)dt +I (3E, Eﬁ)I"Tlx
[o] o]
X k(t) dt ] , ’ (1.14)
o
, _ 3 =
and k{(t) = T [ [ (oE8 Es)lt-rj J{t) dt +
(o]
[+ ¢
+J (3, - Ea)lt-fl x k(t) dt] S (1.15)
o .
+4
‘where J(t) = (1/2) I (T 4 )cu (1.16)
-1
+1
k(t) = (1/2)j' I0r o) dy : (1.17)
[+ 4
) _ dx >y : '
E_(y) —I ~ e (1.18)

Equation (1.14) and (1.15) represents a pair of integral

equations for J and K. The linear integral equation which
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replace the equation of transfer (1.13) become increasingly
of higher order. According to Ray}eigh phase function

Plu,@ 3 1 @) = (3(4)[ 1+ P ®e (1 - %31 -t P cos® X

X @ —¢ ) + 2 (1 - - p ) Pcose -9 )] (1.19)

the scattering function can be expressed in the form

2 12
S 50 31, »P,, ) =—g[ S (uany ) = dup (1 - @B R - BTR
(OF ] _ 2 _ 2
x 8 (y.uo)cosw&o - ¢) + (1 —u (1 uo)_x
x 8% (o, deos2(4, - @] (1.20)

{ vide, Chandrasekhar, 1960 ). The law of darkening for the
problem with a constant net flux and for Rayleigh phase

function has been expressed in the form (vide,

Chandrasekhar, 1960)

) 1
2
= 2 3 .2 ' S — M . _ ’
I(O,u) -TF{H +n H(H)‘[ M H( )[-ﬁ—_"_—?— + u C]C‘Ll }
o
(1.21)
Consequently the axi§1}y symmetric problem . in

semi—infinite plane parallel atmosphere with a constant net
flux in the total intensity ( Il+ Ir ) is one which is
physically significant. The. transfer of radiétion in the
atmosphere o©of early type stars with surfacg temperature

exceeding 15,000 °k is predominantly controlled by the




Chapter—1 ‘ _ 12

scattering by free electrons.

Chandrasekhar [1960] discussed the equations of Radiative
transfer for an electron scattering atmosphere and gave
the solution of the equation by discrete Drdinate.méthod
(Chandrasekhar, 1960). Sweigert [1970] solved the iqtegral
equation of Radiative transfer numerically for both
conservative and nan— conservative cases in " which
scattering is governéd by the Rayleigb phase funciion..The
polarisation produced by -Rayleigh~ scatterinél was

neglected. Solution were tabulated over a wide range of

optical depths and for varying amounts of  absorption
measured by the albedo for single scattering. These
numerical results may prove useful in the

interpretation of planetaky reflectiveness, particularly " in
the ultraviolet where the importance of Rayleigh
scattering increases appreciab{y due to the x™* dependence
of the scattering cross—sections. Sweigert £1970]
presented numerical solution to the integral equation .for
bath finite and infinite atmosphere according to the
Rayleigh phase function with absorption. Abhyankar and Fymat
[1970a] discussed the imperfect Rayleigh scattering in a
semi-infinite atmosphere. The extinction of radiation in a
coherent scattering gaseous medium is caused partly by true

absorption, which result in a loss of incident photons from
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the radiation field and partly by scattering , which simply
modifies the paths of the_photons without actually removing
them from the field . In other words, the medium exhibits
imperfect scattering. The reflectiﬁn matrix
¢(p,¢,;uo,¢o) for a semi—-infinite plane parallel stratified
homogeneous atmosphere, scattering in accordance with the
conservative Rayleigh phase matrix was obtéingd_ by
Chandrasekhar [19601. The corresponding solution for
a non-éonservative Rayleigh atmosphere in which the albedo
for single scattering QQ is constant, but diffefent from
unity, are presented for some- representative values of Q.

They showed that the reduction in value of the albedo
increases the absolute degree of polarization and brings
the Babinetvand Brrewster neutral boints closer to the Sung
-the points even coalesce with tﬁe Sun for vary small albedo
values. Abhyankér and Fymat [1970b] discussed the theory of
radiative transfer in inhomogeneous atmospheres. Here in»the
case where the phase matrix corresponding to azimuth indepe-
ndent term of the radiation field scattered by an inhomoge-—

necus plane-parallel atmosphetre, is sebarable in the form

PO (uLpt ) = Mu). M (M) (1.22)

(Where the sign + stands for simple transaction) is simplif-
ied matrix equation of the problem are treated by the pertu-

rbation method of Fymat and Abhyankar. In this connection
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they have studied the regions-of canvergence in the case of
a Rayleigh scattering. The regions of convergence in the
case of Rayleigh scattering law are delimited when the
Eolufion for conservative Rayleigh scattering is taken as
the refereﬁce. it has been <shown that the region of
convergence for Rayleigh scattering is slightly smaller
than that of convergent for all optical depth when the
maximum value of Q is less than about 0.9453 ; for higher
values of N there is apparently no convergence for large

optical depths.

Fuzhong Weng {19921 applied a malti~-layer discrete
ordinate method for vector Radiative transfer in a
vertically inhomogeneous, emitted and scattering atmosphere.
In that work , the up welling radiance from the
vector radiance transfer model, established is compared with
Chandrasekhar‘s analytical solutions for a conservative

Rayleigh Scattering atmosphere.

While the solution for conservative Rayleigh scattering”is
known in all details of intensity and state aof polarizétion
for a wide range of optical thickness, the corresponding
solution for non—conservative Rayleigh scattering , often
dealt in planetary atmosphere , are not available. The

perturbation method, developed by Fymat and Abhyankar [1970a
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,1970b] and its present extension eﬁable to derive such

solution for homogensous atmosphere with albedo for single

scattering different  from’ unity. Fymat and Abhyankar
[1970c] also discussed the theory of radiative
transfer of partially polarised radiation through - an

inhomogenecus semi—infinite atmosphere. They solved it by
the application of matrix perturbation method by introducing
a matrix N-function to a semi-infinite atmospheres ;ﬁ the
form of a Newmann series. The region of convergence of this
series solution is delimited for Rayleigh law of scattering.
An iteration scheme for computing the solution was discussed
and as an illustration, sample computations were presented
in which the N—functions for homogeneocus Rayleigh
non—conservative atmosphere with albedo for single
scattering Q = 0.23 and 0.75 were derived ~for the No—

function for a reference homogeneous atmosphere with Q°=0.5.

Fymat and Abhyankar [1970a,1970b] linearized the nonlinear
singular integral equations for the radiative transfer » in
inhomaogeneous plane—parallel atmosphere of arbitrary
stratification by using a perturbation technique ( vide ,
Fymat and Abhyankar,1270a) hhich has also been applied (vide
s Fymat and Abhyankar,1970b) successfully to a semi-infinite
plane parallel atmosphere. Fymat and Abhyankar (19270b)

also dealt with diffuse reflection by a semi-infinite

non—conservative Raleigh atmosphere. Pomraning [1970] consi-—

ahn o, T

116343
29 APR 1997
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—qered the claésical problem of computing-the albedo from a
half-space and showed that one can derive an appropriate
variational principle for this problem and that the
.variational estimates of 'tﬁe albedo based upon asymﬁtaéic

trial functions are remarkably accurate . Further , it is

shown that the albedo is insensitive for the descriptions

namely

(1) An isotropic phase function averaged over ‘polarizatibn
(2) The Rayleigh phase function avéraged aver polarigatian.
{3) Rayleigh scattering properly accounting by the Rayleigh

scattering law averaged over polarization, tﬁé equa;ion-

of transfer is {(Chandrasekhar, 1760)

+ 41 >
.‘?_I_%z__;“_’ + I(zu) = (c/2) [I I(z,u' ddu' +
+1 -1 -
+ (1/2) P2 (u)f Pz ') I(z,.u' ) du’ ] ‘ (1.23)
-1
where Pz(u) = (3u%- 1)/2 T (1.28)

z being the spatial co-ordinate measured in optical distance

s Ms the cosine of the angle between the photon flighf

direction and an inward normal intensity and cA the

ratio of the scattering coefficient to the collision

coefficient. Pomraning suggested that in a certain work on .

radiative transfer the complexities introducing by
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accounting for polarization effects and the anisotropy of
the Rayleigh phase function can be avoided. It may be
sufficient depending upon the accuracy required to assume an

isotropic phase function averaged over polarization.

Casti, Kagiwada and Kalaba [1970] discussed about external
radiation fields for isotropically scattering finite atmosp-
heres bounded by a Lambert law Reflection. Casti, Kadiﬁéda
and Kalaba [1070] provided Tormulae for obtaininé'tthe
diffusely transmitted and reflected radiation fields for a
planetary isotropically scattering atmosphere of finite
thickness in terms of the solgtion to the problem with no

planetary surface .

From numerical result they showed that these reflected and
transmitted fluxes are essentially the same whether

isotropic or Rayleigh scattering laws are assumed.

Kagiwada and Kalaba [1971] derived all the basic equations
of the Cauchy system mathematically from the basic integral
equation for the source function ¥ for the atmospheres

bounded by Lambert’'s law Reflector.

The problem of the determination of radiation fields in

finite ,conservative, isotropically scattering media bounded
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by a Lambert’s law Reflector, has been reduced by Kalaba

(1970) to a Cauchy system involving guxiliary functions of

merely one angular argument.

Fuell , Casti , Kalaba, and Ueno [19701] discussed' exact
solution of a family of ﬁatrix integral equations for
multiple scattered, partially polarised radiation. In the
theory of multiple scattering of partially polarized
radiation, a key role is played by the integral equation ,

x

Ilt,x,2) = 1 o (X-t)/2 +~I K(] t-y ])J { yexsz )dy : (1.23)
° ‘

0 t< x = %.0o0s 0= z= 1 - (1.26)

where J and K stand for n X n square matrices; I is the unit

n X n matrix, and the matrix kernel k can be represented

in the form
1

K(r) =I e 7% wiz )dz T, r>o (1.27)
o

where W is a square n X n matrix. It is shown that this

family of matrix intebrals can be transformed intoc a . Cauchy
problem. The Cauchy system solves the integral equation for

the matrix J. The theaory is for general phase Tunction.

Hulst and Grossman [1968] discussed multiple light

scattering in planetary atmosphere. The diffuse reflection
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and transmission by plane , homogeneous atmospheres
consisting of particles with an anisotropic scattering

was discussed for various phase functions.

It has been shown that ' "the doubling method” can be
purformed most conveniently with great accuracy from very
‘thin to very ;hick layers. The accﬁracy Dbtained -with
various integration schemes in depth and in angle was

discussed in some detail .

Kagiwada and Kalaba [1967] estimated the local anisbtropic
scattering function on the basis of multiple scattering

properties for the general phase function -

. The
phase function is expanded in a series of Légéﬁdrg
polynomials  i. e., |

m
plcos o ) = mzo c, P, ( Cosa) © (1.28)

and the coefficients are determined so as to best explain

"diffuse reflection measurements .

Busbridge [19460] discussed the anisotropic scattering

with general phase function :
N
Plas’ ) = 4 % o, P () P () (1.29)
V=0
where -1 pu=<1 -1y <1 _ {1.30)

Busbridge [1960] discussed the solution of the homogeneous
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equation given by

Jwaw) = A { It ) } (1.31)

which are atmost O(r) as T ———x , for conservative and

non—conservative cases.

The solution for "The auxiliary equation ° given by
(=80, {3tew o} = p @, w (1.32)
exp(-'r/;.lo) where 0<u° <1, -1 u=<1 {1.33)

has also been discussed (vidé, Busbridge, 19460) iﬁ terﬁs of
H—function. Finally,the law of diffuse reflection haslbeen

worked out .

Horak and Chandrasekhar [1970] considered the the problém in
radiative transfer, parallel light of flux K density nFs is
incident on a plane—parallel, semi—infinite atmosphere which
scatters 1light in accordance with the phase function -
p{cos & ) = w, +-w‘P1(cos a) +-wzF;(cos 8) ‘ (}.34)
where o < 1 and Wy (the albedo), W, s 0, are constants and
P‘ and F; are Legendre polynomials. They bhave found out
the exact and the details of the solution for the
emergent radiation field by using the invariance principle

method.
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The diffuse reflection of light by a semi—infinite
atmosphere scattering with phase function
1 +w1p’ (cos &) +szz (cos ©) (1.35)

has been delt by Horak and Janowsek [19&35].

Orchard {[1967] obtained tﬁe‘reflection and transmission of
light by thick atmosphere of pure scattering with the same
phase function. To obtain these Orchard (19247) applied,éxact’
radiative transfer theory to the caée of a parallel light
incident from an arbitrary direction on the non-absorbing

plane parallel atmosphere of large optical thickness. '

Busbridge and Orchard (19681 applied’  the same fbeory to
find reflection and transmission of 1light by thick

atmospheres of pure scattering with a phase function

N .
1 +2 © P (cosy) (1.36)

hE1
Kolesov and Socbolev [1969] and Kolesov and Smaoktii
{19721 applied the general theory o* anisotraopic

scattering developed by Sobolev to solve  the p?oﬁlem
of diffuse reflection and transmission of  light by a
semi-infinite atmosphere with a three and four term

scattering indicatrix.
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Kolesov [1971] discussed about H-function for some
scattering indicatrices with different values of the

asymmetry factor.

The asymptotic solution for the phase function (1 + w cés&)
has been found out by Piotrowski [1955; 1956} usihg the
method of discrete ordinates as developed by‘ Chandrgéekhar
[19601. At the same time, Piotrowski has found 'aut:"the
asymptotic value of the transmittance in the case Df the

phase function

w P (cos &) {(1.37)
n n g

n=0

but bhe was unable to obtain the limit of )this, as the
ngrm of the partition  used for tﬁe Gauss quadratgre
tended to zero. Usugi and Irvine [1970a] computed
reflection function for conservative isotropic scatéering
by the method of successive scattering . By the same
- method, Usugi and Irvine [1970bj derived basic formulaé for
the computation of line profiles and:equivalent widtﬁ of an
absorption line. Usugi and Irvine [1968] showed that 1 -Fhe

absorﬁtinn spectra can be computed in a model planétafy

atmosphere using the Newmann series solutions.

Uesegi, Irvine and Kawata [1971] showed that the diffuée
reflection may be computed for arbitrary single scattering

albedo if the reflection functions in the conservative case

are known.
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Mullikin [1264a] studied the transfer of radiation in
homogeneous plgne parallel atmosphere of finite and semi-
infinite thickness for three different -types qf phase
functions and computed the X- , Y- eguations by add;tional
linear constraints so that a unique pair of functions is
specified by the requirement of analyticity in a half
plane and transforemed the linear singular equat;bns and

linear constraints into suitable form for numerical

computations.

For the semi-infinite atmosphere, Fredholm equations are

soclved exactly {vide, Mullikin, 1964a) - to " give a
determination of the H-function in terms of - simple
quadratures. '

Burniston and Siewert {[1970] discussed a matrix vefsion
of the classical Riemann—Hilbert problem defined on an open
cpntuur. Finally as an illustratian linear integral equation
for Chandrasekhar's function Hl(“) and Hr(u) are established
in a form enumarable to solution by numerical itefafion.
Bond and éiewert [1970] have computed the first twenty two

moments of Chandrasekhar’'s function Hl(u) and Hr(y) related

to the scattering of poiarized light.

Carlstedt and Mullikin [19646] obtained equations needed to.
determine the X- and Y- functions firstly studied by

Busbridge. Carlstedt and Mullikin [1966] also obtained
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asymptotic formulae for thick atmospheres uniformly valid
for various Charé:teristic funétions. All these'equations
are also applicable to Rayléigh phase functions. ‘Domke
£1971, 19721 solved radiative transfer equation
with conservative Rayleigh scattering for boﬁh finite and
semi—infinite atmosphere, based on Bobolev's method for

arbitrary distribution of primary sourses.

Mullikin [19&66a] has studied extensively and analytically
and numerically the cqmplete'Rayleigh scattered field Qithin
a homogeneous plane—parallel atmosphere. The soiut;un-to
this problem at any optical depth has been expressed in
terms of scalar funﬁtion for which there already exists an
efficient and accurate computer programme. Véribus

asymptotic formulae of a relatively simple form have been

obtained from this solution.

Steady state multiple scattering problems for hoﬁpganenus
plane parallel atmospheres have been extensively s£udied
[(Mullikin, 19646b] by means of the principle of invariaﬁce“af
Ambertsumian and Chandrasekhar. The purpose of that waé-to
report on the results obtained = from a fruitful

combination of the linear and nonlinear theories. This

analysis is applied to Rayleigh pnlafization scattering .

A study is made of the existence and uniqueness problems
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fMullikin, 1964b} for Chandrasekhar ¥ and ¢1 equations for
radiative transfer in homogeneous atmosphere’'s ' with

anisotropic scattering .

Mullikin [i963] reported on some recent mathematical stﬁdies
concerning the uniqueness of solutions‘to Chandrasekhar's
mathematical formulation of principlé of invariandel;n the
theory of Radiative Transfer . The »uniqueness question for

his wT and ¢T equations has been studied.

Siewert and Burniston [19721  showed that a sclution to
the system of singular integral equations and-the'linear
constraint which define mathematically the H-matrix relevant
to the scattering of polarizated light can exist and are un-
ique. Finally, Siewert and Burniston {1972) gave an explicit
énalytical result for the appropriate canonical matrix for
conservative Rayleigh 5catteriﬁg. Hulst (1970) reducéd the
.problems of radiative transfer-with a general anisqtrupic
phase functions completely to H-functions and twohseté'of-
polynomials known as the .Kuééer. polynomials aAd the

Busbridge polynomials.

Hulst [1969 ] discussed some problems of anisotropic
scattering in planetary atmospheres. Here the similarity

rules to compare atmospheres with anisotropic and isotropic

scattering were reviewed .
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With the aid of the invariant imbedding technique, Bellman ,
Kagiwada, Kalaba and Ueno [1967] derived a complete set of
integro—-differential equations for the dissipation functions

of an inhomogeneous finite slab with anisotropic scattering.

Siewert [19468] presented é new ‘appgoach to déve}ope
Chandrasekhar’'s scattering matrix for a semi—iﬁfiﬁite
Rayleigh scattering atmosphere which can be used  to
determine the emergent angular distribution for any of the

standard half space problems.

Siéwert and Fralay [1947] solved the conservati?e Rayleigh
scattering problem in a semi-infinite atmosphere by the
application of the singular eigen function exbanéion
technique. Bond and Siewert {19711 have studied  the
non—conservative equation of transfer for a combination of

Rayleigh and isotropic scatter scattering.

Wallance [1972] presented " a discussion on R;yleigh
and Raman scattering by pure H& in a planetary atmoéphe?e.
Kuzmina {[1970a, 1970b] discussed Milne’'s problem'-for
polarized radiation scattered according to conservative and

non—conservative Rayleigh’'s law.

Soholev [1969a]l investigated on diffuse reflection and
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transmission of light by an atmosphere with anisotropic
scattering. Sobolev [196%9b, 1970] also discussed on
anisotropic light scattering in an atmosphere of finite

optical thickness.

Kolesov and Scbolev [1969] discussed on some asymptotic
formulae in the theory of anisotropic light scatiering.
Grinin [1971] discussed on the theory of non—-stationary
radiation transfer for anisotropic scattering by  the
application of the modified Sobolev's prnbébility
method. Pomraning (196%9) formulated the modified Eddingtbn's
approximation proposed earlier fér isotropic scattering for

a general scattering law.

Stokes and De Marcus [1971] used variational principle for
calculating line profiles of inhomogeneous planetary

atmosphere.,

Sekera and Ashburn [1953] , and  Sekera  and Blauch
[1954] gave tables relating to Rayleigh scattering af. light
in the atmosphere. The extensive numericél results based. on
Chandrasekhar’'s analysis have been obtained for Rayleigh
atmospheres with optical thickness ranging up to i (vide,

Sekera, 1956, 19467 and vide, Sekera and Viezee, 1941).



Chapter—1 - . 28

Case and Zweifel [1967] treated isotropic scattering and
some simple example of anisotropic transfer s based on "the
work of Mika and others . Formulations for general
anisotropic scattering were presented by McCormik  and
Kuscer [1966] and in practical form by Shultis and  Kaper
[1969]1 and in full detail by Kaper, Shultis and . Veninga

[1970].

Chandrasekhar [1960] has considered the problem of radiative A
transfer with general anisotropic scattering in the Miine—
Eddington model to obtain the exact form of emergent
1ntensity from the bounding face and nth approximate
intensity at any optical depth by discreté Drdinafés
procedure assuming Planck’s function to be linear in . the
optical depth. Das [1973] Dbtaiﬁed an exact solution of this
problem using the Laplace transform and wieneF—éopf
technique.

Das [1978,1980] has solved various problems of radiative
transfer in finite and semi-infinite atmosphere using a
method involving Laplace transform and linear singular

operators.

Sobolev [1956] déalt with the one dimensional problem of
time—dependent diffuse reflection and transmission :by a

probabilistic method.
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Diffuse reflection of time—dependent pafallél rays by a
semi—-infinite atmosphere was treated by Ueno [1962] onithe
basis of the. principle of invafiance. Bellman et al [1962]
obtained an integral equation governing diffuse reflection
aof time depéndent parallel rays.from the lawer boundary'of

a finite inhomogeneous atmosphere .

In recent years Karanjai and Talukdar (199i; 1992), Karanjai
and Biswas {1992, 1993} and Roy Choudhury and Karanjai
{1995a, 1995b) solved radiative transfer problems in
anisotropically ;cattering_ media by spherical harmonic
method using different approximate forms for the intensity.
Ueno [1965] also thained this equation by.prébabilistic
method. Matsumoto. [1967a) derived functional equations in
the internal radiation field due to time-dependent inéidgnt
rédiation allqwihg .for the time depéndence :given
by Dirac'§ 5—fuhction and HeéViside'unit step function
Matsumoto [1967b] also derived a complete set - of funcﬁional
equétions for the scatteringa (Sf??;ﬁd transmissioé (T)
functions which govern the laws of diffuseA reflection and
transmission of time—dependent parallel réys by a finite ;
inhombgeneous,plane parallel, nbn—emitting and isotrop#cally
scattering atmosphere with incident radiation governed by

Dirac’'s S—function and Heaviside's unit step-function. A

formulation of time-deﬁendent H—functién was accomplished by
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means of the Laplace transform in the time—-domain. Numerical
evaluation of the H-function based on numerical inversion of
the Laplace transform presented by Bellman et.al [19&6] was

made.

Recently Karanjai and Biswas [1988] derived the time-
dependent X— and Y-functions for homogeneous, plane pafallel
non—-emitting and isotropic atmosphere of finite opfiéal
thickness using the “integral equation methad
developed by Rybicki [1971]. Biswas and Karanjai £1990a]
have derived the time—dependent H—, Xf and Y- functioﬁs -in
a bhomogeneous atmosphere scattering ‘anisotropi:ally ?with
Dirac's &é—function and heaviéide unit step—function type
time—dependent incidence. Biswas and- Karanjai tlé?Ob]
have also derived the solution of diffuse reflection and
transmission problem for homogeneous isotropic étmosphare
of finite optical depth. The problem of the time—indepgndent
scattering and transmission of radiation in plane paréliel
atmosphere of two layers was treated first by Van de Hulst
{19631, ( vide, Tsujita, 19468 ). Hawking [19&;1 _aealt
with the problem ‘analytically starting with Milne‘s
integral equation. Gutshabad {19571 formulated the pfoblem
as solutions of simultaneous integral equations. So far as
hbis equations are’ solvable s the scattering‘ and

transmission functions required are given exactly for two
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layers of different albedo and different large optical

thickness.

In the theory of radiative transfer fof homogeneous .plane
parallel stratified fini£é atmosphere the X; and
Y- functions of Chéndrasekhar [1960%, play a central
role. These equations satisfy a system of cqub;ed
non—linear integral equations. Busbridge [1960]u has
demonstrated the existence of the solutions of these
coupled nonlinear integral equations in terms of>' a
particular solution aof an auxiliary equation. -Busbridge
[19601] has obtained two coupled linear "inéegral

equations for X{(z) and Y(z) which defined the meromorphic

extensions to the complex domain |Z| of the real valued
solution of the coupled non—linet integral
equations for X- and Y- functions = are

the soclutions of the coupled 1linear integral equafions.
ﬁullikin [1964c] has proved that all spolutions of coupled
nonlinear integral equations are solutions of the cbupied
linear integral equation put there exists a Qnique
solution of the coup}ed linear integral equations with some
linear constraints. Finally Muliikin {19648c) has nbia#ﬁed
the Fredholm equations of X— and Y- functions which aré éasy
for iterative computations. Das [1979] has obtained a. pair
of the Fredholm equations with Wiener-Hopf technique from

the coupled linear integral equations with coupled 1linear
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constraints. The tranqurt equation for the intensi?y_pf
radiation in a semi—infinite atmospheres with no in:ident
radiation and scattering according to the planetary bhése
function (1l + x cos ®) has been considered. This equation
has been solved by Chandrasekhar [1960]1 using  his

principle of invariance to get the emergent radiation.

The singular eigen function approach of Case [1960] is:élso
applied to get the intensity of radiation at any opiical
‘depth. Boffi [1970]1 has also applied the two sided nLapla'c':e
transform to get the emergent intensity and the intehsity
at any optical depth. Das [1979] solved exactly the equat;éh
of transfer for scattering a&lbedo o < i using Laplace
transform and the Wiener-Hopf technique and also deauced
the intensity at any optical depth by inversion.
In the study of the time—-dependent radiative trahsfer
problem in finite homogeneous plane—parallel atmosphere,
it is convenient to_introdﬁce X— and Y- functions [1960].
These functions = satisfy nonflinear coupled intégral
equations . Due to their iméortant, role in solving
transport problems , it is’ advantagénué' to simp}ify
the equations satisfied by them. Lahoze [1989] di& :this
andobtained exact lineér and decoupled integral equaiions

satisfies by the time—independent X— and Y— functions .
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1.2 SUMMARY OF WORK DONE.

The present thesis is concerned with the solution of some
scattering  problems of Radiative Transfer. The work
preseﬁted in chapter 2 is concerned mainly with the solution
of scattering problems by tﬁe method based on " Labléée
Transform and Wiener—-Hopf technique " and " Principl? .of

Invariance *

The transport equation for the intensity of radiation in a
éemi—infinite atmosphere with no incident radiation and
scattering according to the planetary phase funétion
w{l + x cos®) has been solved exactly by a method based on
the use of Glaplace tranafurm  and Wiener-Hopf technique.
in section 2.2. The exact solution of the transfer equ;tién
with three—term scattering indicatrix in an exponebfiél
atmosphere is obtained by the same method in section '2:3.
The matrix transfufm equation for a scatﬁering thch
scatters radiation in accordance with {he phase matrix
obtained. from a combination of Rayleigh and isotropic
scattering in a semi—infinite atmosphere has been solved
in section 2.5' by the same method . The bagic matrix
equation is subject to the Laplace transform. to
ebtain an integral equation for the emergent intepsity

matrix. On application of the Wiener-Hopf technique this



Chapter-1 . ' .34

matrix integral equation gives the emergent intensity ma;rix
in terms of a singuiar H-matrix and an.unknown matrix.; The
unknown matrix has been obtained by equating the asymptotic

solution of the boundary condition at infinity.

The equation of trénsfer for a semi—-infinite plane> paréllel
atmosphere with no incident radiation and for the scatigring
according to the conservative anisbtropic phase fudction
has been solved by the method of " Principle of Invariance "

and using the law of diffuse reflection in ;nction,.2,4.
In section 2.5 the noﬁlinear integral equations for X-
and Y—functions " (vide 4 Chandrasekhar, lébO) . for
anisotropically séattering‘ atmosphere haé . :7bgen
derived. Theaanisotfppy is represented by means of a ﬁhase
function which can be expresséd in - terms of fini;géﬁfaer

Legendre Polynomials.

The principle of invariance ‘is applied to derive the

functional equations for time—dependent diffuse reflection

and transmission Tfunction. Next 1 consider the time
dependent diffuse reflection and transmission of plane
parallel rays by a slab consisting of two homogeneocus

anisotropically scattering layers, whose scattering and

transmission functions are known
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In chapter 3 the equation af transfer has been solved by
different metﬁods Viz., | |

(i) Eddington‘s Method (Sec-3.2).

{ii) Laplace transform and Wiener-Hopt? technique (Be:—3;3).
(iii) Busbridge’s Method (8ec-3.4).

(iv) Discrete Ordinates (Sec;3.5).

in an isotropic coherently scattering atmosphere ° ;with

exponential Planck function (equation (1.1i1)).

In chapter 4 the equation of transfer for interlocked
multiplets, has been solved by the discrete ordinate mefhpd
and by the method used by Busbridge and Stibbs [1954] Qsing
Planck function as an exponential fTunction of optical dépfh
in sections 4.2 and 4.3 respectively. Four approximate forms
of H—-tfunction (vide, Karanjai and Sen, 1970, 1971) has '5een
used to calculate the residual intensities for doublets and
triplets in section 4.4. and the concerned results has. beén

shown in both tablesvand figures.

In chapter 5 the one sided Laplace transform together with
the theory of linear singular ﬁperators has been applied to
solve fhe transbort equation which arises in the problem of
a finite atmosphere having ground reflection according to
Lambert’s Law taking the Planck’s function as an exponential

function of optical depth (Sec-5.2).
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The time—dependent X- and Y- functions ( Biswas :and
Karanjai, 1990) which gives rise to a pair of the Fredholﬁ
equations with the appiication of the Wiener—-Hopf techniqﬁé
has been obtained in section 5.3. Thesé Fredholm equatibng
define time—-dependent X—functions in terms of time—dependent
Y—functions and vice-versa. These representations are uniﬁué
with respect to the &oupled linear constraints defined by
Mullikin (1944a). An exact linearized and decoupled integ}al
equation satisfied by Time-Dependent X— and Y— function lhag
been obtained using the method used by Léhoz_ {1989) ' in

section 5.4.
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