CONTENTS

KEY WORDS	i
LIST OF FIGURES AND TABLES	ii
ABSTRACT	vi

CHAPTER 1

•	INTRO	DUCTION	1
1.1	Intro	duction to scattering problems	4
	1.11	Coherent and noncoherent scattering	4
	1.12	Coherent scattering problems	5
	1.13	Noncoherent scattering problems	5
	1.14	Interlocking problems	7
	1.15	Anisotropic scattering problems	9
1.2	Summa	ry of the work done	33
	Refer	ences	37

CHAPTER 2

SOLUTION OF RADIATIVE TRANSFER PROBLEMS IN AN ATMOSPHERE SCATTERING ANISOTROPICALLY

2.1	Introduction		45
2.2	Exact	solution of the equation of transfer with	
	planet	ary phase function	51
	2.21	Basic equation and its solution	51
	2.22	Intensity at any optical depth	55
	2.23	Determination of constants A and B	61
2.3	An exa	act solution of the equation of transfer	
	with t	hree-term scattering indicatrix in an	
	expone	ential atmosphere	63
	2.31	Basic equation and boundary conditions	63
	2.32	Solution for emergent intensity	65

2.4	Soluti	on of the equation of transfer for	
	conser	vative anisotropically scattering phase	
	functi	.on ·	72
	2.41	Formulation of the problem	72
	2.42	Solution of the equation of transfer	73
	2.43	Application	82
	2.44	Conclusion	83
2.5	Soluti	on of a radiative transfer problem with a	
	combin	ed Rayleigh and isotropic phase matrix	84
	2.51	Basic matrix transfer equation and	
		boundary conditions	84
	2.52	Solution for emergent intensity matrix	85
	2.53	Conclusions	87
2.6	Time-I	Dependent scattering and transmission	
	functi	ion in an anisotropic two-layered	
	atmosp	phere	90
	2.61	Formulation of the problem	9 0
	2.62	Principle of invariance	93
	2.63	Integral equations for the scattering	
		and transmission function	95
	2.64	The reduction of the integral equations	102
	2.65	Legendre expansion of the phase function	
		and the principle of invariance	107
	2.66	Auxiliary functions and their functional	
		relations	110
	Refere	ences	119
	CHAPTE	R 3	

SOLUTION OF RADIATIVE TRANSFER PROBLEMS IN AN ATMOSPHERE SCATTERING COHERENTLY

3.1 INTRODUCTION

122

3.2	transf	proximate solution of the equation of er for coherent isotropic scattering in	
	an exp Edding	onential atmosphere by the method used by ton	123
	3.21	Equation of transfer	123
	3.22	Solution of the equation	125
	3.23	Residual intensity	127
3.3	for c	ct solution of the equation of transfer oherent scattering in an exponential here by the method of Laplace transform	
		ener-Hopf technique.	128
	3.31	Equation of transfer	128
	3.32	Solution for emergent intensity	129
3.4		on of the eqation of transfer for nt scattering in an exponential	
	atmosp	here by Busbridge's method	132
	3.41	Equation of transfer	132
	3.42	Solution for emergent intensity	134
3.5		on of the equation of transfer for nt scattering in an exponential	
	atmosp	here by the method of discrete ordinates	137
	3.51	Equation of transfer	137
	3.52	Solution for emergent intensity	137
	3.53	The elimination of the constants and	
		expression of the law of diffuse	
		reflection in closed form	139
	3.54	Conclusion	144
	Refere	nces	146

CHAPTER 4

SOLUTION OF RADIATIVE TRANSFER PROBLEMS IN AN ATMOSPHERE SCATTERING NONCOHERENTLY

4.1	INTRODUCTION	147
4.2	Solution of the equation of transfer for	
	interlocked multiplets by the method of	
	discrete ordinates with the planck function	
	as a nonlinear function of optical depth	152
	4.21 The equation of transfer	152
	4.22 Solution	153
	4.23 The elimination of the constants and	
	the expression of the law of diffuse	
	reflection in closed form	158
	4.24 Conclusion	164
4.3	Solution of the equation of transfer for	
	interlocked multiplets with planck function	
	as a nonlinear function of optical depth	165
	4.31 Equation of transfer	165
	4.32 Scattering function	167
	4.33 H-function	168
	4.34 Emergent Intensity	168
4.4	On calculation of interlocked multiplets lines	
	in M-E model	171
	4.41 The equation of transfer	171
	4.42 Calculation for a doublet	175
	4.43 Calculation for a triplet	179
	References	209

CHAPTER 5

SOLUTION OF RADIATIVE TRANSFER PROBLEMS IN A FINITE ATMOSPHERE

5.1 INTRODUCTION

211

5.2 Exact solution of the equation of transfer in a finite atmosphere by the method of Laplace

	transform and linear singular operator	214
	5.21 Basic equation and boundary conditions	214
	5.22 Integral equations for surface	
	quantities	215
	5.23 Linear singular integral equations	218
	5.24 Theory of linear singular operators	220
	5.25 Solution for surface quantities	224
5.3	The Time-Dependent X- and Y- functions	226
	5.31 Basic equation	226
	5.32 Fredholm equation	231
5.4	An exact linearization and decoupling of the	
	integral equation satisfied by Time-Dependent	
	X- and Y- functions	235
	5.41 Analysis	235
	References	240
	Appendix I	241
	Appendix II	242
	Appendix III	244

•

•

. •