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Preface 

This thesis is an attempt to .study va~ s scattering 

problems of Radiative Transfer. Sclut~n of scattering 

problems have been obtained both ex-~Y for the angular 

dis~ribu~iOn of ~he emergen~~e,;,;i~y and apprcxima~ely fer 

practical purpose. Numerical calculations have also been 

made for a few casesF~he methods applied for the exact _.., 
. ..-· 

solutions are "Laphice...:.Transform· and Wiener-liopf technique" 

, " Laplace T~ans~orm and Linear singular operators ." and 

"Principle of lflvariance II The methods used for the 

approximate solut·ions are Discrete Ordinate mathod and 

Eddington's approximations. The problems of scattering 

isotropically, anisotropically, coherently and 

noncoherently, both in finite and ~emi~infinite atmospheres, 

have been discussed. The problems with Rayleigh•s scattering 

phase function, Combination of Rayleigh and Isotropically 

scattering phase function and Planetar-y phase function has 

been dealt and in most of the cases the planckian source 

function has been taken as an exponential function of 

optical depth. 

Application of Wiener-Hopf technique to the Time Dependent X

and Y- functions has been dealt. An exact linearization and 

decoupling of the 

Time-Dependent X- and 

integral equation 

Y- functions has 

satisfied 

been made. 

by 

The 

principle of invariance is applied to derive the functional 

equations for Time-Dependent diffuse reflection and 
transmission function. 

This thesis contains five chapters with computed results 

presented in the respective chapters. 
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ABSTRACT 

The Laplace transform method in combination with the 

Wiener-Hopf technique for the exact solution of the 

Radiative Transfer problem has received much less attention 

in the history of the transport theory. But the method is 

undoubtedly an interesting alternative to the other existing 

method for exact solution of the Radiative Transfer 

problems. Section 2.2, 2.3 and 2.5 of Chapter 2 is devotetl 

to study scattering problems in an atmosphere scattering 

anisotropically by the method of Laplace transform in 

combination with the Wiener-Hopf technique. The work in 

section 2.2 has been published in Earth, Moon and Planet 

Vol. 59, pp. 1-10, 1992. The work in section 2.3 has been 

published in Astrophys. Space Sci .. Vol. 1.79, pp.89-96, 1991. 

The work in section 2.5 has been published in Lecture Notes 

in Mathematical Sciences , " Proceedings of the National 

Seminar on Mathematical Modeling " Vol. 2, pp.70-78, 1994. 

One of the most important achievement in the field. of 

stationary transport theory is the introduction of H-,X- and 

Y- functions for problems of semi-infinite and finite media. 

Time - Dependent X- and Y- functions are discussed 

in section 2.6. In section 2.4 and 2.6 of Chapter 2 

exact solutions has been obtained by the method of Principle 

of Invariance. The work in section 2.6 has been published in 

Astrophys. Space Sci. Vol. 189, pp. 95-117, 1992. 

In Chapter 3 , the equation of transfer has been solved 

exactly using "Laplace transform and Wiener-Hopf technique" 

(sec-3.3) and modified Principle of Invariance (sec-3 .. 4) and 

approximately by the method of Discrete Ordinates 

(sec-3.5) and Eddington·s 

isotropic coherently 

approximations (sec-3.2) in 

scattering atmosphere with 

an 

an 



vii 

exponential form of Planckian source function. The work in 

sec-3.2 , sec-3.3, sec-3.4 and sec-3.5 has been published in 

Astrophys. Space Sci. Vol 178, pp. 299-302, 1991., Vol. 189, 

pp. 119-122, 1992., Vol. 192, pp. 127-132, 1992 and Vol.192, 

pp. 209-217, 1992 respectively. 

In Chapter 4 , in section 4.2 and 4.3 the equation of 

transfer for interlocked multiplets which is a noncoherent 

scattering has been solved approximately by the method of 

Discrete Ordinates and exactly by the method of modified 

Principle of Invariance using Planckian source function as 

an exponential function of optical depth. In the subsequent 

sections in this chapter the residual intensities for 

doublets and triplets has been calculated using some 

approximate forms of H-function and the.results are shown in 

both tables and figures. The work in sec-4.2 and sec-4.3 has 

been published in Astrophys •. Space, Sci. Vol. 178, pp. 

107-117, 1991 and Vol 184, pp. 57-63, 1991 respectfully. 

In section 5.2 of Chapter 5 the one sided Laplacw transform 

together the theory of Linear singular operators has been 

applied to solve the transport equation which arises ~n the 

problem of a finite atmosphere with the Planck"s function as 

an exponential function of optical depth. In section 5.3 of 

the same chapter , Laplace transform technique is applied to 

Time-Dependent X- and Y- functions which play a centr~l _role 

in Radiative Transfer problems, to obtain Fredholm equation. 

An exact linearized and decoupled integral equation 

satisfied by Time-Dependent X- and Y- functions has been 

obtained in section 5.4. The work in sec-5.2 , sec~5-3 

and sec-5.4 has been published in Astrophys. Space Sci. 

Vol. 181, pp. 267-275, 1991., Vol. 196, pp. 223-339,1992 and 

Vol.203, pp. 135-138, 1993 respectively. 

A few relations assumed during the solutions have been 

obtained and discussed in Appendix I, II and III. 
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INTRODUCTION 



INTRODUCTION : 

A pencil of radiation traversing a medium will be weakened 

by its interaction with matter. If the specific intensity I v 

therefore becomes I + di after traversing a thickness ds in 
v v 

the direction of its propagation, then 

dl = -k p I ds v v v 
(1.1) 

where p is the denmity of t~e material. The quantity k 
v 

introduced in this manner defines the mass absorption 

coefficient for radiation of frequency v. Now, it should not 

be assumed that this reduction in intensity, which a pencil 

of radiation experiences while passing through matter, is 

necessarily lost to the radiation field. For it can very 

well happen that the energy lost from the incident pencil 

may all reappear in other directions as scattered radiation. 

In general, I may however expect that only a part of the 

energy lost from an incident pencil will reappear as 

scattered radiation in other directions •nd that the 

remaining part will have been 'truly ·absorbed in the sense 

that it represents the transformation of radia~ion into 

other forms of energy (or even of radiation of other 

frequencies). I shall therefore have to distinguish between 

true absorption and scattering. Considering first the case 

of scattering, I say that a material is characterised by a 

mass scattering coefficient k if from a pencil of radiation v 



Chapter-1 2 

incident on an element of mass of cross-section db and 

height ds, energy is.scattered from it at the rate 

K p ds X I Co~ dv cb ci:l> v v 
(1.2) 

in all directions. Since the mass of the element is 

dm = p Cos& da ds (1.3) 

I can also write 

K I dm dv dw v v 
(1.4) 

It is now evident that. t9 formulate quantitatively the 

concept of scattering we must specify in addition the 

angular distribution of the scattered radiation (1.4). 

I shall therefore introduce a phase runction P(co59) such 

that 

K 
v 

(1.5) 

gives the rate at which energy is being scattered into an 

element of solid angle dw' and in a direction inclined of an 

angle 8 to the direction of incidence of a pencil of 

radiation on an element of mass dm • Accordingly the rate 

of loss of energy from the incident pencil due to 

scattering_ in all directions is 

K I dm dv w I P(Cose > d.>' 
v v 4n ; (1.6) 

this with (1.4) if I P(Co!:G) d.>' 1 agrees 
4n: 

= (1.7) 

i.e. if the phase function is normalised to unity • 

In tha general case when both scattering and true absorption 

are present, I shall still write for the scattered energy 



-~ 

~-

Chapter-1 3 

the same expression (1.5). But in this case the total loss 

of energy from the incident pencil must be less than (1.5), 

accordingly 

J P(Co93) =w ::S1 
0 

(1.8) 

Thus the general case differs from the case of pure 

scattering only by the fact that the phase function is not 

normalised to unity. 

It is evident from our definitions that w represents the 
0 

fraction of the radiation lost from an incident pencil due 

to scattering, while (1 - w ) represents the remaining frac
o 

tion which has been transformed into other forms of energy. 

I shall refer tow as the albedo for single scattering. 
0 

A radiation field is said to be isotropic at a point, if the 

radiation is independent of direction at that point. And if 

the intensity is the same at all points and in all 

directions the radiation field is said to be homogeneous 

and isotropic. Moreover , when w = ·1, I 
0 

shall say that I 

have a conservative case of perfect scattering. when w ;II! 1 
0 

I shall say that I have a non conservative ca~e of 

scattering • 

Next to the isotropic scattering greatest interest is 

attached to Rayleigh's scattering which is an example of 

conservative anisotropic scattering. 
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1.1 Introduction to scattering problems 

1.11 Coherent and Non-Coherent Scattering. 

When the radiation is emitted in the frequency in which it 

was absorbed the atom is said to scatter coherently. On 

the other hand, when frequency of the emitted radiation 

differs from that of the absorbed radiation I call it the 

case of non-coherent scattering. Non-coherent scattering is 

sometimes used to mean that the scattering involves not only 

a change in frequency but also'a complete redistribution in 

frequency i.e. scattering in which the frequency of 

re-emission is in correlation with the frequency absorbed. 

From practical point of v~~w, strictly coherent scattering 

does not exist in astrophysics (vide, Edmonds [1955]). I 

designate the scattering as Coherent . and Non-coherent 

according to our theoretical consideration of the problttm 

when an atom absorbs energy of certain frequency,·v, the 

probability that the energy will be re-emitted in the same 

frequency will be maximum if 

(i) the atom is at rest • 

(ii) the atom is in the lowest q~antum state 

(iii) in a weak radiation field. 

Departure from any of the above three conditions will cause 

non-coherent scattering . 
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1.12 Coherent Scattering Problems. 

Chandrasekhar [1960] applied the method of discretes 

ordinate to solve the transfer equation for coherent 

scattering in stellar atmosphere with Planck"s function as a 

linear function of optical depth, viz., 

B (T) = b + b T. v 0 :l 
(1.9) 

The equation of transfer for coherent scattering has also 

been solved by Eddington·s method (where n , the v 
ratio of 

line to the continuum absorption coefficient, is constant) 

and Stromgren method (when n , has 
v 

small but arbitrary 

variation with optical depth (vide, Woolley and Stibbs, 

1953). Dasgupta [1977] applied the method of Laplace tran-

sform and Wiener-Hopf technique to find an exact solution 

of the transfer equation for coherent scattering in stellar 

atmosphere with Planck·s function as a sum of elementary 

functions 
n 

B ( T) = b ·+ · b T + ~ b, E (T ) 
v o t ~ r r r=z 

(1.10) 

by use of a new representation of the H-function obtained by 

Dasgupta [1977]. Extensive study has been made on coherent 

scattering by various authors thereafter and before. 

1.13 Noncoherent Scattering Problems. 

In stars having high temperature and high energy density, 

the induced transition-probabilities at lower frequencies 
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increase sufficiently. The ground state or the lower state 

in case of a sub ordinate line th~n possesses a finite width 

and the frequency of the absorbed and the emitted radiation 

differ from each other introducing a noncoherency in the 

formation of absorption lines. Though. in a single scattering 

there is a change in frequency giVing rise to either a loss 

or a gain in energy of the atom, in a number of scattering 

the total loss of energy balances with the total gain in 

energy. In the case of interlocking without redistribution, 

if radiation in one line flows from centre to the wings then 

then in another line it flows from wings back to the centre. 

The doppler broadening introduces, another important type of 

non-coherent scattering. If a moving atom absorbs radiation 

from one direction and emits it in another, the frequencies 

of the absorbed and emitted radiation will differ even 

if the process is coherent in the atom's rest frame. Another 

type of non-coherent scattering is that due to pressure 

broadening which is the simplest and at the same time most 

important case in stellar atmosphere. Let an electron, due 

to absorption of energy, jumps to a higher level where there 

is a perturbing atom or ion. Now if the perturbing atom goes 

away before the electron suffers downward transition, the 

atom may absorb some amount of energy from the electron and 

the electron will consequently emit radiation of frequency 

quite different from that of the absorption. This type of 

scattering gives rise to the process known as Stark Effect, 
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e.g. Hydron lines in stell~r atmosphere are broadened by 

Stark Effect. Impact broadening becomes important when the 

velocity of the perturbation is large. In case of lines 

widened by impact broadening the scattering is partly 

coherent and partly non-coherent. Domke and Staude (1973) 

considered the formation of a Zeeman-multiplets by 

noncoherent scattering and true absorption in a · H-E 

atmosphere. The solution of the line formation problem is 

obtained (vide, Domke and Staude, 1973) for an exponential 

form of the Planckian source function. 

1.14 Interlocking Problems. 

Interlo~king of multiplets is another type of non-coherent 

scattering. When the lower state possesses a common upper 

state by absorption from any of the lower sub-state, the 

re-emission will be controlled by the transition probability 

of the various lines regardless from a certain 

sub-state of the lower state in a certain frequency 

v has a non-zero probability of returning to another lower 

sub-state emitting in a frequency different from ~~ giving 

rise to non-coherent scattering. Similar case will 

arise when the number of upper sub-states will possess a 

common lower state. This type of non-coher_ency has a special 

name interlocking of lines without redistribution • 

Woolley and Stibbs (1953] considered the problem of 
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interlocking without redistribution in details and gave 

an appropriate solution applying Eddington's method. 

Busbridge and Stibbs [1953] applied the principle of 

invariance to solve the same problem and calculated three 

hypothetical line profiles for doublets. However Busbridge 

and Stibbs [1953] did not attempt calculation of the line 

profiles for triplets because they. feared ·any such 

attempt would have involved considerable labour. 

Karanjai [1968a] profitably applied his approximate f9rm for 

the ·H-function [1968b] to minimize to a great extent the 

labour of such computations. Dasgupta and Karanjai [1972] 

applied Sobolev's probabilistic method to solve the transfer 

equat~on for the case of interlocking without 

redistribution. 

Another e>:act 

has been given 

solution of 

by Dasgupta 

the eq.uation of transfer 

[1956] by his modified 

form of Wiener-Hopf technique. Karanjai and Barman: [1981] 

applied the extension of the method of discrete ordinate to 

find an exact solution of the problem of line formation by 

interlocking in the M-E model. Karanjai and Karanjai [1985] 

used the method of Laplace transform and Wiener-Hopf 

technique to solve the equation of interlocked lines taking 

the.Planck function as· a nonlinear function of optical 

depth. Karanjai [1982] has calculated Mg b line contours 

with the help of the solution obtained by Dasgupta and 
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Karanjai [1972] an~ showed that his calculated lines have 

a good agreement with the observation. Dasgupta [1978) 

obtained an exact solution of the transfer equation for 

non-coherent scattering arising from int~;~rlocking of 

principal lines. without redistribution-of the H-function 

obtained by Dasgupta [1977]. While solving the 

tr~nsfer equation Dasgupta considered the Planck"s function 

to be linear in~ (Optical depth) (equation (1.9)). 

Karanjai and Karanjai [1985) considered two non-linear form 

of Planck function Viz; 

(a) B (T) = B( t) = b + b e-(h 
v 0 1 

(1.11) 

in an exponential atmosphere (vide, Degl 'Innocenti, 1979) 

where ~. b and b are positive constants. 
0 1 . 

(b) B ( T) = B ( t) = b + b T + E (T ) ; 
v 0 1 z (1.12) 

in an atmosphere considered by Busbridge [1955]. Roymondal, 

Biswas and Karanjai [1988] solved the equation of transfer 

for non-coherent scattering by F method. Recently,Bas~k and 
1"1 

Karanjai [1995] solved the transfer equation for interlocked 

multiplets in anisotropically scattered atmosphere. 

1.15. Anisotropic Scattering Problems. 

The equation of transfer for plane parallel Raylmigh's 

scattering phase function-can be put in the form 

+1 

= I (T ,J.J) ~· 1~ [ (3 - J.lz )I I (T ,J.J' )4J' 

-1 

+ 
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+1 

z + (3tJ' - 1) J z 
I (T ,1-J' )IJ' qu' ] (1.13) 

-1 

According to Chandrasekhar [19b0] the solution of the 

equation of transfer (1.13) for Rayleigh sc~ttering can be 

put in the form 

ex 

J(T) = 1~ [I (3E1 - E3 )ll-TI J(t)dt +I 
0 0 

X k(t) dt ] 

ex 

(3E 
3 

and k(T) = 1~ [ J (3E9 - E 5 ) ll-Tj J(t) dt + 

·where 

0 

(3E 
5 

+1 

J(t) = (1/2) J !(T,JJ)4J 

-1 

k(t) = (1/2) {'. I(T ,JJ.)JJ2 4J 

-1 

ex 
dx 

n 
X 

e '"~<Y 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

. ( 1.18) 

Equation (1.14) and (1.15) represents a pair of integral 

equations for J and K. The linear integral equation which 
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replace the equation of transfer (1.13) become increasingly 

of higher order. According to Rayleigh phase function 

p(J.l,¢ ; J.l' ,¢') = (3/4) 1 + fJ J.l' + (1- p )(1- J.l' )cos X [ 
z 2 2 2 2 

(1.19) 

the scattering function can be expressed in the form 

3[ (0) ) LLt ( 1 2 )1/2 ( 1 _ 11 2 )1/2 
S (J.l ,¢ ;f,J o ,¢ o ) = S S (J.l ,J.l o - -.,....J.I o - J.l ,... o X 

x s' 1 > <J.l. J.l >cos <rt> - 4> > + < 1 - 1-1
2 

> < 1 
0 0 

x s' 2 > (J.l ,J.l ) cos2 (¢ - ¢ >] 
0 0 

(1.20) 

( vide, Chandrasekhar, 1960 ). The law of darkening for the 

problem with a constant net flux and for Rayleigh phase 

function has been expressed in the form (vide, 

Chandrasekhar, 1960) 

I( 0 ,jJ ) ~ ~ F~ + 1~ H (jJ ) I 
0 

1 

p' 2 H(J.l' >[ ~ ~ ~: 2 + J.l' 

(1.21) 

Consequently the symmetric problem . in 

semi-infinite plane parallel atmosphere with a constant net 

flux in the total intensity ( Il + Ir ) is one which is 

physically significant. The transfer of radiation in the 

atmosphere of early type stars with surface temperature 

exceeding 15,000 °K is predominantly controlled by the 
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scattering by free electrons.· 

Chandrasekhar [1960] discussed the equations of Radiative 

transfer for an electron scattering atmosphere and gave 

the solution of the equation by discrete ordinate method 

(Chandrasekhar, 1960). Sweigert [1970) solved the integral 

equation of Radiative transfer numerically for both 

conservative and non- conservative cases in which 

scattering is governed by the Rayleigh phase function. The 

polarisation produced by Rayleigh· scattering was 

neglected. Solution were tabulated over a wide range of 

optical depths and for varying amounts of absorption 

measured by the albedo for single scattering. These 

numerical results may prove useful in the 

interpretation of planetary reflectiveness, particularly ·· in 

the ultra~iolet where the importance of .Rayleigh 

scattering increases appreciab~y due to the dependence 

of the scattering cross-sections. Sweigert [1970] 

presented numerical solution to the integral equation for 

both finite and infinite atmosphere according to the 

Rayleigh phase function with absorption. Abhyankar and Fymat 

[1970a] discussed the imperfect Rayleigh scattering in a 

semi-infinite atmosphere. The extinction of radiation in a 

coherent scattering gaseous medium is caused partly by true 

absorption, which result in a loss of incident photons from 
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the radiation field and partly by scattering , which simply 

modifies the paths of the photons without actually removing 

them from the field • In other words, the medium exhibits 

imperfect scattering. The reflection matrix 

¢(~,¢,;~0 ,¢0 ) for a semi-infinite plane parallel stratified 

homogeneous atmosphere, scattering in accordance with th~ 

conservative Rayleigh phase matrix was obtainecl by 

Chandrasekhar [1960] •. The corresponding solution 

a non-conservative Rayl~igh atmosphere in which the aibedo 

for single scattering 0 is constant, but different from 

unity, are presented for some representative values of 0. 

They showed that the reduction in value of the albedo 

increases the absolute degree of polarization a~d brings 

the Babinet and Brewster neutral points closer to the Sun; 

-the points even coalesce with the Sun for vary small albedo 

values. Abhyan.kin- and Fymat [1970b) discussed the theory of 

radiative transfer in inhomogeneous atmospheres. Here in the 

case where the phase matrix corresponding to azimuth indepe-

ndent term of the radiation field scattered by an inhomoge-

neous plane-parallel atmosphere, is separable in ~he form 

(0) ~ 
p (~ ,~' ) = M (J.J ) • M (M ) (1.22) 

(Where the sign + stands for simple transaction) is simplif-

ied matrix equation of the problem are treated by the pertu-

rbation method of Fymat and Abhyankar. In this connection 
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they have studied the regions of convergence in the case of 

a Rayleigh scattering. The r~gions of convergence in the 

case of Rayleigh scattering law are delimited when the 

solution for conservative Rayleigh scattering is taken as 

the reference. It has been shown that the region of 

convergence for Rayleigh scattering is slightly smaller 

than that of convergent for all optical depth when the 

maximum value of n is less than about 0.945 ; for hi~her 

values of n there is apparently no convergence for large 

optical depths. 

Fuzhong Weng [1992] applied a multi-layer discrete 

ordinate method for vector Radiative transfer in a 

vertically inhomogeneous, emitted and scattering atmosphere. 

In that ~Jork , the up welling radiance from the 

vector radiance transfer model, established is compared with 

Chandrasekhar"s analytical solutions for a conservative 

Rayleigh Scattering atmosphere. 

While the solution for conservative Rayleigh scattering is 

known in all details of intensity and state of polarization 

for a wide range of optical thickness, the corresponding 

solution for non-conservative Rayleigh scattering , often 

dealt in planetary atmosphere , are not available. The 

perturbation method, developed by Fymat and Abhyankar [1970a 
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, 1970b] and its present e>;tension enable to derive such 

solution for homogeneous atmosphere with albedo for single 

scattering different from · unity. Fymat and Abhyankar 

[1970c] also discussed the theory of rad1ative 

transfer of partially polarised radiation through an 

inhomogeneous semi-infinite atmosphere~ They solved it by 

the application of matrix perturbation method by introducing 

a matrix N-function to a semi-infinite atmospheres in the 

form of a Newmann series. The region of convergence of this 

series solution is delimited for Rayleigh law of scattering. 

An iteration scheme for computing the solution was discussed 

and as an illustration, sample computations were presented 

in which the N-functions for homogeneous Rayleigh 

non-conservative atmosphere with albedo for single 

scattering 0 = 0.25 and 0.75 were derived for the N -
0 

function for a reference homogeneous atmosphere with n =0.5. 
0 

Fymat and Abhyankar [1970a,1970b] linearized the nonlinear 

singular integral equations for the radiative transfer in 

inhomogeneous plane-parallel atmosphere of arbitrary 

stratification by using a perturbation technique ( vide , 

Fymat and Abhyankar,1970a) which has also been applied· (vide 

, Fymat and Abhyankar,1970b) successfully to a semi-infinite 

plane parallel atmosphere. Fymat and Abhyankar (1970b) 

also dealt with diffuse reflection by a semi-infinite 

non-conse,rvative Ral.eigh atmosphere. Pomraning [1970] consi-

116349 
2 9 APR 1g97 
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-dered the classical problem of computing the albedo from a 

half-space and showed that one can derive an appropriate 

variational principle for this problem and that the 

variational estimates of the albedo based upon asympto~ic 

trial functions are remarkably accurate • Further , it is 

shown that the albedo is insensitive for the descriptions 

namely 

(1) An isotropic phase function averaged over polarization 

(2) The ~ayleigh phase function averaged over polarization. 

(3) Rayleigh sc~ttering properly accounting by the Rayleigh 

scattering law averaged over polarization, the equat:ion 

of transfer is (Chandrasekhar, 1960) 

+1 

J.l 
a I < z ,1-1 > + l(Z,J.I) = (c/2) [ I I ( z ,J..I' )qu' + iJz 

-1 
+~ 

+ (1/2) p (J..I) I p (J.I, ) I ( z ,J..I' ) ctu' ] 2 2 
(1.23) 

-1 

where (1.24) 

z being the spatial co-ordinate measured in optical distance 

, J.l, the cosine of the angle between the photon flight 

direction and an inward normal intensity and c the 

ratio of the scattering coefficient to the collision 

coefficient. Pomraning suggested that in a certain work on . 

radiative transfer the complexities introducing by 
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accounting for polarization effects and the anisotropy of 

the Rayleigh phase function can be avoided. It may be 

sufficient depending upon the accuracy required to assume an 

isotropic phase function averaged over polarization. 

Casti, Kagiwada and Kalaba [1970] discussed about external 

radiation fields for isotropically scattering finite atmosp-

heres bounded by a Lambert law Reflection. Casti, Kaoiwada 

and Kalaba [1070] provided formulae for obtaining· ·the 

diffusely-transmitted and reflected radiation fields for a 

planetary isotropically scattering atmosphere of f in·i te 

thickness in terms of the solution to the problem with no 

planetary surface • 

From numerical result they showed that these reflected and 

transmitted fluxes are essentially the same whether 

isotropic or Rayleigh scattering laws are assumed. 

Kagiwada and Kalaba [1971] derived all the basic ~quaticns 

of the Cauchy system mathematically from the basic integral 

equation for the source function ~ for the atmospheres 

bounded by Lambert's law Reflector. 

The problem of the determination of radiation fields in 

finite ,conservative, isotropically scattering media bounded 

_.,. 
.-' 
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by a Lambert•s law Reflector, has been reduced by Kalaba 

(1970) to a Cauchy system involving ~uxiliary functions of 

merely one angular argument. 

Buell , Casti , Kalaba, and Ueno [1970] di!5cussed exact 

solution of a family of matrix integral equations for 

multiple scattered, partially polarised radiation. In the 

theory of multiple scattering of partially polarized 

radiation, a key role is played by the integral equation , 

)C 

J(t,x,z) =I e-<x-t>/z + J K(l t-y I)J ( y,x,z )dy (1 .• 25) 

0 

' 
(1.26) 

where J and K stand for n X n square matrices; I is the unit 

n X n matrix, and the matrix kernel k can be represented 

in the form 
1 

K(r) =I e -r/z' W(z' )dz' 

0 

, r>O (1 .• 27) 

where W is a square n X n matrix. It is shown that this 

family of matrix integrals can be transformed into a Cauchy 

problem. The Cauchy system solves the integral equation for 

the matrix J. The theory is for general phase function. 

Hulst and Grossman [1968] discussed multiple light 

scattering in planetary atmosphere. The diffuse reflection 
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and transmission by plane , homogeneous atmospheres 

consisting of particles with an anisotropic scattering 

was discussed for various phase functions. 

It has been shown that · "the doubling method" can be 

purformed most conveniently with great accuracy from very 

thin to very thick layers. The accuracy obtained ·with 

various integration schemes in depth and in angle was 

discussed in some detail • 

Kagiwada and Kalaba [1967] estimated the local anisotropic: 

scattering function on the basis of multiple scattering 

properties for the general function· The 

phase function is expanded in a series of Legendr~ 

polynomials i. e., 
m 

c p 
m m 

( Cos cit) (1.28) 

and the coefficients are determined so as to best explain 

diffuse reflection measurements • 

Busbridge [1960] discussed the anisotropic scattering 

with general phase function : 

N 

p (J.J ,J.J ' ) = "' c.u 'vfo v 
(1.29) 

where -1 ~ J.J ~ 1 , -1 ~ J.J 1 ~ 1 (1.30) 

Busbridge [1960) discussed the solution of the homogeneous 
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equation given by 

J (T ,J.I ) r.:;: J\T 'J.l { J ( t ,J.I' ) } (1.31) 

which are atmost 0(-r) as -r----oc , for conservative and 

non-conservative cases. 

The solution for 'The auxiliary equation · given by 

exp(--r/J.J ) where 
0 

O{f..l <1 , 
0 

p (J.l ' "1-10 ) 

-J.S J.l :S 1 

(1.32) 

(1.33) 

has also been discussed (vide, Busbridge, 1960) in terms of 

H-function. Finally,the law of diffuse reflection has been 

worked out • 

Horak and Chandrasekhar (1970] considered the the problem in 

radiative transfer, parallel light of flux 0 density nF 0 is 
0 

incident on a plane-parallel, semi-infinite atmosphere which 

scatters light in accordance with the phase function 

p(cos & ) = !» + !» p (cos & ) + !» p (cos & ) 
0 1 1 2 2 

(.1.34) 

where w :S 1 and w (the a 1 bedo) , ~» , w are constants and 
0 0 1 2 

P and P are Legendre polynomials. They have 
1 2 

found out 

the exact and the details of the solution for the 

emergent radiation field by using the invariance principle 

method. 
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The diffuse reflection of light by a semi-infinite 

atmosphere scattering with phase function 

1 + <-> p (cos f) ) + <-> p (cos f) ) 
~ ~ . z 2 

(1.35) 

has been delt by Horak and Janowsek [1965]. 

Orchard [1967] obtained the reflection and transmission of 

light by thick atmosphere of pure scattering with the s~me 

phase function. To obtain these Orchard (1967) applied exact 

radiative transfer theory to the case of a parallel light 

incident from an arbitrary direction on the non-absorbing 

plane parallel atmosphere of large optical thickness. 

Busbridge and Orchard [1968] applied· the same theory to 

find reflection and transmission of light by · thick 

atmospheres of pure scattering with a phase function 

1 P (cos&) 
n 

(1.36) 

Kolesov and Sobolev [1969] and Kolesov and SIOoktii 

[1972] applied the general theory of aniso~ropic 

scattering developed by Sobolev to solve· the problem 

of diffuse reflection and transmission of light by a 

semi-infinite atmosphere with a three and four term 

scattering indicatrixo 
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Kolesov [1971] discussed about H-fum:tion for some 

scattering indicatrices with different values of the 

asymmetry factor. 

The asymptotic solution for the phase function (1 + ~ cos&) 

has been found out by Piotrowski [1955, 1956] using the 

method of discrete ordinates as developed by Chandr~sekhar 

[1960]. At the same time, Piotrowski has found ·aut the 

asymptotic value of the transmittance in the case of the 

phase function 
.N 

l <.~>n pn (cos{;)). 
n=O 

(1.37) 

but he was unable to obtain the limit of this, as the 

norm of the partition used for the Gauss quadrature 

tended to zero. Usugi and 'Irvine [1970a] computed 

reflection function for conservative isotropic scatter'ing 

by the method of successive scattering By t;.he same 

method, Usugi and Irvine t1970b] derived basic formulae for 

the computation of line profiles and equivalent width of an 

absorption line. Usugi and Irvine [1968] showed that the 

absorption spectra can be computed in a model planetary 

atmosphere using the Newmann series solutions. 

Uesegi, Irvine and Kawata [1971] showed that the diffuse 

reflection may be computed for arbitrary single scattering 

albedo if the reflection functions in the conservative case 

are known. 
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Mullikin [1964a] studied the transfer of .radiation in 

homogeneous plane parallel atmosphere of finite and semi-

infinite thickness for three different types of phase 

functions and computed the X- , Y- equations by additional 

linear constraints so that a unique pair of functions is 

specified by the requirement of analyticity in a half 

plane and transforemed the linear singular equations and 

linear constraints into suitable form for numerical 

computations. 

For the semi-infinite atmosphere, Fredholm equations are 

solved exactly 

determination 

quadratures. 

of 

(vide, 

the 

Mullikin, 1964a) to give a 

H-function in terms of simple 

Burniston and Siewert [1970] discussed a matrix version 

of the classical Riemann-Hilbert problem defined on an open 

contour. Finally as an illustration linear integral equation 

for Chandrasekhar's function Hl. <1-1> and H,.(J.J) are established 

in a form enumarable to solution by numerical iteration. 

Bond and Siewert [1970] have computed the first twenty. two 

moments of Chandrasekhar· s function Hl. (J.J) and Hr (#J) .related 

to the scattering of polarized light. 

Carlstedt and Mullikin [1966] obtained equations needed to. 

determine the X- and Y- functions firstly studied by 

Busbridge. Carlstadt and Mullikin (1966] also obtained 
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asymptotic formulae fer thick atmcsph~res uniformly valid 

fer various Characteristic functions. All these equations 

are also applicable to Rayleigh phase functions. Domke 

[1971, 1972] solved radiative transfer equation 

with conservative Rayleigh scattering for beth finite and 

semi-infinite atmosphere, based on Sobolev's method for 

arbitrary distribution of primary sourses. 

Mullikin [1966a] has studied extensively and analyt~cally 

and numerically the complete Rayleigh scattered field within 

a homogeneous plane-parallel atmosphere. The solution to 

this problem at any optical depth has been expressed in 

terms of scalar function for which there already exists an 

efficient and accurate computer programme. Various 

asymptotic formulae of a relatively simple form have been 

obtained from this solution. 

Steady state multiple scattering problems for hom9geneous 

plane parallel atmospheres have been extensively studied 

(Mullikin, 1966bJ by means of the principle of invarianc:e··af 

Ambertsumian and Chandrasekhar. The purpose of tha~ was to 

report on the results obtained from a fruitful 

combination of the 

analysis is applied 

linear and nonlinear theories. This 

to Rayleigh polarization scattering • 

A study is made of the existence and uniqueness problems 
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-...J·. [Mull.ikin, 1964b] for Chandrasekhar Y.'t_ and ~l equations for 

radiative transfer in homogeneous atmosphere·s with 

anisotropic scattering • 

Mullikin [1963] reported on some recent mathematical studies 

concerning the uniqueness of solutions to Chandrasekhar·s 

mathematical formulation of principle of invariance in the 

theory of Radiative Transfer. The ·uniqueness question for 

his m m -Y.'t and q..l equations has been studied. 

Siewert and_ Burniston [1972] _ showed that a solution to 

the system of singular integral equations and the linear 

constraint which define mathematically the H-matrix relevant 

., to the scattering of polarizated light can exist and are un-

ique. Finally, Siewert and Burniston (1972) gave an explicit 

analytical result for the appropriate canonical matrix for 

conservati-ve Rayleigh scattering. Hulst (1970) reduced the 

proplems of radiative transfer with a general anisotropic 

phase functions complet~ly to H-functions and two sets·of 

polynomials known as the Ku5cer polynomials and the 

Busbridge polynomials. 

Hulst [1969 ] discussed some problems of anisotropic 

scattering in planetary atmospheres. Here the similarity 

rules to compare atmospheres with anisotropic and isotropic 

scattering were reviewed • 
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With the aid of the invariant imbedding technique, Be.liman , 

Kagiwada, Kalaba and Ueno [1967] derived a complete set of 

integra-differential equations for the dissipation functions 

of an inhomogeneous finite slab with anisotropic scattering. 

Siewert [1968] presented a new ~pproach to dev~lope 

Chandrasekhar's scattering matrix ·for a semi-infinite 

Rayleigh scattering atmosphere which can be used to 

determine the emergent angular distribution for any of the 

standard half space problems. 

Siewert and Fralay [1967] solved the conservative R~yl~igh 

scattering problem in a semi-infinite atmosphere by the 

application of the singular eigen function expansion 

technique. Bond and Siewert [1971] have studied the 

non-conservative equation of transfer for a combination of 

Rayleigh and isotropic scatter scattering. 

Wallance [1972] presented · · a discussion on Rayl~igh 

and Raman scattering by pure H in a planetary atmosphere. 
2 

Kuzmina [1970a, 1970b] discussed Milne's problem ·for 

polarized radiation . scattered according to conservative and 

non-conservative Rayleigh's law. 

Sobolev [1969a] investigated on diffuse reflection and 
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transmission of light by an atmosphere with anisotropic 

scattering. Sobolev [1969b, 1970] also discus~ted on 

anisotropic light ·scattering in an atmosphere of finite 

optical thickness. 

Kolesov and Sobolev (1969] discussed on some asy~pt~tic 

formulae in the theory of anisotropic light scattering. 

Grinin (19711 discussed on the theory of non-stat'ionary 

radiation transfer for anisotropic scattering by the 

application of the modified Sobolev·s probability 

method. Pomraning (1969) formulated the modified Eddington·s 

approximation proposed earlier for isotropic scattering for 

a general scattering law. 

Stokes and De Marcus [1971) used variational principle tor 

calculating line profiles of inhomogeneous planetary 

atmosphere •. 

Sekera and Ashburn [1953] , and Sekera and .Blauch 

[1954] gave tables relating to Rayleigh scattering of light 

in the atmosphere. The extensive numerical results based on 

Chandrasekhar·s analysis have been obtained for Rayleigh 

atmospheres with optical thickness ranging up to 1 (vide, 

Sekera, 1956, 1967 and vide, Sekera and Viezee, 1961). 
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Case and Zweifel [1967] treated isotropic scattering and 

some simple example of anisotropic transfer , based on ·the 

work of Mika and others Formulations for general 

anisotropic scattering were presented by McCormik and 

Kuscer [1966] and in practical form by Shultis and Kaper 

[1969] and in full detail by Kaper, Shultis and . Veninga 

[1970]. 

Chandrasekhar [1960) has considered the problem of radiative 

transfer with general anisotropic scattering in the Milne-

Eddington model to obtain the exact form of emergent 

intensity from the bounding face and nth approximate 

intensity at any optical depth by discrete ordinates 

procedure assuming Planck's function to be linear in.the 

optical depth. Das [1973] obtained an exact solution of this 

problem using the Laplace transform and Wiene·r-Hopf 

technique. 

Das [1978,1980] has solved various problems of radiat;ive 

transfer in finite and semi-infinite atmosphere using a 

method involving Laplace transform and linear singular 

operators. 

Sobolev [1956] dealt with the one dimensional problem of 

time-dependent diffuse reflection and transmission . by a 

probabilistic method. 
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Diffuse reflection of time-dependent pa.rallel rays by a 

semi-infinite atmosphere was treated by Ueno [1962] on the 

basis of the principle of invariance. Bellman et al [1962J 

obtained an integral equation governing diffuse reflection 

of time dependent parallel rays from the lower boundary of 

a finite inhomogeneous atmosphere • 

In recent years Karanjai and Talukdar (1991, 1992), Kara~jai 

and Biswas (1992, 1993) and Roy Choudhury and Karanjai 

(1995a, 1995b) solved radiative transfer problems in 

anisotropically scattering media by spherical harmonic 

method using different approximate forms for the intensity. 

Ueno [1965] also obtained t~is equation by probabilistic 

method. Matsumoto. (1967a] derived functional equations in 

the internal radfation field due to time-dependent incident 

radiation .allowing . for the time dependence given 

by Dirac's 6-function and Heaviside unit step function 
I 

Matsumoto [1967bJ also derived a complete set of functional 

equations for the scattering (S):·~nd transmission (T) 

functions which govern the laws of diffuse reflection and 

·transmission of time-dependent parallel rays by a finite , 

inhomogeneous,plane parallel, non-emitting and isotropically 

scattering atmosphere with incident radiation governed by 

Dirac's 6-function and Heaviside's unit step-function.· A 
/ 

formulation of time-dependent H-function was accomplished by 
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means of the Laplace transform in the time-domain. Numerical 

evaluation of the H-function based on numerical inversion of 

the Laplace transform presented by Bellman et.al [1966] was 

made. 

Recently l<aranjai and Biswas [1988] derived the time-

dependent x- and Y-functions for homogeneous, plane parallel 

non-emitting and isotropic atmosphere of finite optical 

thickness using the i.ntegral equation method 

developed by Rybicki [1971]. Biswas and Karanjai [1~90a] 

have derived the time-dependent·H-, X- and Y- functions in 

a homogeneous atmosphere scattering anisotropic;ally : with 

Dirac· s 6-function and heavi?ide unit step-:function. type 

time-dependent incidence. Biswas and· Karanjai [19_9()b] 

have also derived the solution of diffuse reflection and 

transmission problem for hqmogeneous isotropic atmosph~re 

of finite optical depth. The problem of the time-independent 

scattering and transmission of radiation in plane parallel 

atmosphere of two layers was treated first by Van de.Hulst 

[1963], ( vide, Tsujita, 1968 ). Hawking [196~] dealt 

with the problem analytically starting with Milne·s 

integral equation. Gutshabad [1957] formulated the problem 

as solutions of simultaneous integral equations. So far as 

his equations are' solvable 
' 

the scattering and 

transmission functions required are given exactly for two 
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layers of different albedo and different large optical 

thickness. 

In the theory of radiative transfer for homogeneous plane 

parallel stratified finite atmosphere the X- and 

Y- functions of Chandrasekhar [1960], play a central 

role. These equations satisfy a system of coupled 

non-linear integral equations. Busbridge [1960] .has 

demonstrated the existence of the solutions of 

coupled nonlinear integral equations in terms 

.these 

of · a 

particular solution of an auxiliary equation. Busbridge 

[1960] has obtained two coupled linear integral 

equations for X(z) and Y(z) which defined the meromorphic 

extensions to the complex domain I Zl of the real valued 

solution of the coupled non-liner integral 

equations for X- and Y- functions are 

the solutions of the coupled linear integral equations. 

Mullikin [1964c] has proved that all solutions of coupled 

nonlinear i~tegral equations are solutions of the coupled 

linear integral equation but there exists a unique 

solution of the coupled linear integral equations with some 

linear constraints. Finally Mullikin (1964c) has obtained 

the Fredholm equations of X- and Y- functions which are easy 

for iterative computations. Das [1979] has obtained a pair 

of the Fredholm equations with Wiener-Hopf technique from 

the coupled linear integral equations with coupled linear 
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constraints. The transport "equation for the intensity _of 

radiation in a semi-infinite atmospheres with no incident 
.. 

radiation and scattering according to the planetary phase 

function w(l + x cos ~) has been considered. This equation 

has been solved by Chandrasekhar [~960] using his 

principle of invariance to get the emergent radiation. 

The singular eigen function approach of Case [1960] is:al&o 

applied to get the intensity of radiation at any optical 

depth. Boffi [1970] has also applied the two sided Laplace 

transform to get the emergent intensity and the intens~_ty 

at any optical depth. Das [1979J solved exactly the eqY~ti.on 

of transfer for scattering albedo w < 1 using Laplace 

transform and the Wiener-Hopf technique and also deduced 

the intensity at any optical depth by inversion. 

In the study of the time-dependent radiative transfer 

problem in finite homogeneous plane-parallel atmosphere. 

it is convenient to introduce X- and Y- functions [1960]. 

These functions satisfy non-linear coupled integral 

equations Due to their important. role in solving 

transport problems , it is advantageous to sim13li:fy 

the equations satisfied by them. Lahoze [1989] did · this 

andobtained exac:t linear and decoupled integral equations 

satisfies by the time-independent X- and Y- functions ~ 
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1.2 SUMMARY OF WORK DONE. 

The present thesis is concerned with the solution of some 

scattering problems of Radiative Transfer. The work 

presented in chapter 2 is concerned mainly with the_ solution 

of scattering problems by the method based on " Laplace 

Transform and Wiener-Hopf technique " and " Principl~ .. of 

Invariance " 

The transport equation for the intensity of radiation in a 

semi-infinite atmosphere with no incident radiation and 

scattering according to the planetary phase function 

w(l + x cos&) has been solved exactly by a method based ·an 

the use of laplace transform and Wiener-Hopf techniq~~· 

in section 2.2. The exact solution of the transfer equation 

with three-term scattering indicatrix in an exponential 

atmosphere is obtained by the same method in section · 2~3. 

The matrix transform equation for a ~cattering which 

scatters radiation in accordance with the phase matrix 

obtained from a combination of Rayleigh and isotropic 

scattering in a semi-infinite atmosphere has been solved 

in section 2.5 by the same method • The basic matrix 

equation is subject to the Laplace transform to 

obtain an integral equation for the emergent intensity 

matrix. On application of the Wiener-Hopf technique this 
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matrix integral equation give~ the emergent·intensity matrix 

in terms of a singular H~matrix and an unknown matrix •. The 

unknown matrix has been obtaine~ by equating tt'le asympto~ic: 

solution of the boundary condition at infinity. 

The equation of transfer for.a semi-infinite plane parallel 

atmosphere with no incident radiation and for the s~attering 

according to the conservative anisotropic: phase function 

has been solved by the method of " Principle -of Invariaru:e •• 

and using the law of diffuse refle~tion in section 2.4. 

In section 2.6 the nonlinear integral ec:Juations for X-

and Y-fun~tions 

anisotropically 

(vide , 
scattering· 

cn.andrasekhar, 

atmospher~ 

1960) 

has 

for 

···been 

derived. The.anisotropy is represented by means of a phase 

fun~tion which ~an be express~d in · terms of finite~order 

Legendre Polynomials. 

Th~ principle of invariance is applied to derive the 

functional equations for time-dependi;i!nt diffuse reflection 

and transmission function. Next I consider the tima 

dependent diffuse reflection 

parallel rays· by a slab 

anisotropically scattering 

and transmission of plane 

consisting of two homogeneous 

layers, whose scattering and 

transmission functions are known 
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In chapter 3 the equation of transfer has been solved-by 

different methods Viz., 

(i) Eddington's Method (Sec-3.2). 

(ii) Laplace transform and Wiener-Hopf technique (Sec-3..3). 

(iii) Busbridge•s Method (Sec-3.4). 

(iv) Discrete Ordinates (Sec-3.5). 

in an isotropic coherent I y scatter.ing atmosphere .with 

exponential Planck function (equation (1.11)). 

In chapter 4 the equation of transfer for interlocked 

multiplets, has been solved by the discrete ordinate meth~d 

and by the method used by Busbridge and Stibbs [1954] using 

Planck function as an exponential function of optical d~pth 

in sections 4.2 and 4.3 respectively. Four approximate for~s 

of H-function (vide, Karanjai and Sen, 1970, 1971) has been 

used to calculate the residual intensities for doublets and 

triplets in section 4.4. and the concerned results has- heen 

shown in both tables and figures. 

In chapter 5 the one sided Laplace transform together with 

the theory of linear singular operators has been applied to 

solve the transport equation which arises in the problem of 

a finite atmosphere having ground reflection according. to 

Lambert's Law taking the Planck's function as an exponential 

function of optical depth (Sec-5.2). 
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The time-dependent X- and Y- functions ( Biswas and 

Karanjai, 1990) which gives rise to a pair of the Fredholm 

equations with the application of the Wiener-Hopf tech,nique 

has been obtained in section 5.3. These Fredholm equations 

define time-dependent X-functions in terms of time-dependent 

¥-functions and vice-versa. These repr~sentations arm unique 

with respect to the coupled 1 inear constraints defioned by 

Mullikin (19b4a). An exact linearized and decoupled integral 

equation satisfied by Time-Dependent X- and Y- function .has 

been obtained using the method used by Lahoz (1989) ·in 

section 5.4. 
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CHAPTER- 2 

SOLUTION OF RADIATIVE TRANS.FER 
PROBLEMS IN AN. ATMOSPHERE 
SCATTERING ANISOTROPICALLY 



2.1. INTRODUCTION • 

The transpo~t equation for the intensity of radiation in a 

semi-infinite atmosphere with no incident radiation and 

scattering according to the phase function w(1 + x cos&) has 

been solved by Chandrasekhar (1960] using his principl~ of 

invariance to get emergent radiation. The singular eigen 

function approach of case (1960] is also applied to get the 

• ·intensity of radiation at any optical depth. Boffi [1970] 

has also_applied the two sided Laplace Transform to get the 

emergent intensity and the intensity at any optical depth. 

In the present work , the above problem has been solved 

exactly by a method based on the use of laplace transform 

and Wiener-Hopf technique.( Section 2.2)• 

Chandrasekhar [1960] has considered the problem of radiative 

transfer with general anisotropic scattering in the 

Milne-Eddington model to obtain the exact form of intensity 

from the bounding face and nth approximate intensity at any 

optical depth. Das [1979a] obtained an exact solution: of 

this problem using the same method as applied in section 

2.2. Wilson and Sen [1964] solved the same problem by a 

modified S.H.M •• In the present work, the exact solution 

·for emergent intensity from the boundary surface is 

obtained using exponential form of . Planck function 

(equation 1.11)~ in Section. 2.3. by the same method as in 
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Section 2.2. 

In the case of axially symmetric about the normal to the 

plane of stratification , where the intensity and source 

function are .azimuth independent the equation of transfer in 

the standard form for a plane-parallel atmosphere with a 

constant net flux can be written (vide, Chandrasekhar, 1960) 

as 

+1 

= I (T ,J.l ) - ( 1/2) f 
-1 

( 0 > 
p (J.l ,J.I' ) I (T ,J.I' ) ct.J' (2.1) 

where l(T,J.l) stands for specific intensity at an optical 

depth T, and J.l = cos& , & being the inclination to the 

I d:.>' outward normal , and w = · p(~os & ) 4n , being the 

for single scatter~ng and 

21T 

p<O> (J.I,J.l') = (1/A-r)J p(J.I,¢; J-1 1 ,¢' )I(T,/-1' )q_,' 

0 

albedo 

(2~2) 

p(J.I,¢; 1-1' ,¢')being the phase fu~ctiqn for the angle between 

the directions (& ,¢) and (&' ,¢' ) • In the equation ·:of 

transfer (equation (2.1)) the normal optical thickness T is 

measured from the boundary surface inwards. 

Based on the invariance principle method which Chandrasekhar 

[1960] and Kourganoff [1963] have discussed extensively, 

Horak and Chandrasekhar [1961] have solved the equation of 
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transfer for a semi-infinite plane parallel atmosphere with 

a phase function 

p(cos) = w + w p (cos&) + (.1) p (coS!&) 
1 1 2 2 

(w S 1.) (2.3) 

where w ( the albedo ) w , and w are constants and P and 
1 2 .t 

P are Legendre polynomials. 
2 

The invariance principle method has also been appli&d. by 

Chandrasekhar [1960] to find the angular distribution of 

emergent radiation in a semi-infinite atmosphere wi~h no 

incident radiation and for scattering according to 

(i) the isotropic non-conservative case 

( Vide, Chandrasekhar , 1960, P.· 344 ) and 

(ii) phase function w(1 + x cos&) (Vide, Chandrasekhar, 

1960) 

Karanjai and Baraman [1974] solved the same problem for 

Rayleigh scattering pha·se function. 

Ih the present work , the same problem for the scattering 

accdrding td th$ phase. functidn 

P (cos& ) = 1 + w p (co~ ) + w
2 

p
2 

(cos& ) 
1 1 

(2.4) 

has been solved by the method of " Principle of Invariance " 

and using the law of diffuse reflection (Section 2.4) 

Chandrasekhar [1960] has considered the problem of the basic 

non-.:C:onservative matrix equation of radiative transfer for 

diffuse reflection for a combination of Rayleigh and 

-~ isotropic scattering in a semi-infinite atmosphere. Schnatz 
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and Siewert [1970] have obtained the exact solution of the 

basic transport equations for non-conservative Rayleigh 

phase matrix by the eigen function approach of Case [1960). 

Bond and Siewert [1971) have obtained a rigorous general 

solution of a non-conservative matrix equation of transfer , 

which appears for consideration· of polarization by the eigan 

function approach of Case ~1960]. Das [1979bJ solved 'the 

basic integra-differential equation for Radiative transfer 

in diffuse reflection in a combination of Rayleigh and 

isotropic scattering for a semi-infin~te atmosphere e~a~tly 

for the emergent intensity matrix by the method as in 

section 2.2. 

In the present work , the matrix transform equation for a 

scattering which scatters radiation in accordance ~ith the 

phase matrix obtained from a combination of Rayleigh and 

isotropic.scattering in a semi-infinite atmosphere has been 

solved (Sec 2.5) by the sam~ method as in sec.2.2. The basic 

matrix equation is subject to the Laplace transform to 

obtain an integral equation for the emergent intensity 

matrix. On application of the Wiener-Hopf technique this 

matrix integral equation gives the emergent intensi~y matrix 

in terms of a singular H-matrix and an unknown matrix. The 

unknown matrix has been obtained by equating the asymptotic 

solution of the boundary condition at infinity. 
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Sobolev [1976] dealt with the one dimensional problem of 

time-dependent diffuse reflection and transmission by the 

probabilistic: method. Diffuse reflection of 

time-dependent parallel rays by a semi-infinite atmosphere 

was treated by Ueno [1962] on the basis of the principle of 

invarianc:e. Bellman et al (1962] obta~ned an integral 

equation governing diffuse reflection of time dependent 

parallel rays from the lower boundary of a finite 

inhomogeneous atmosphere • Ueno [1965] also obtained this 

equation by probabilist!~ . method. Matsumoto [1967aJ 

derived functional equa-tions in the integral radiation 

allowing for the time dependence given l:;»y Dirac·s 

6-function and Heaviside unit step-function. Matsumoto 

[1967b] also derived a complete set of functional equat-ions 

for the scattering (S) and transmission (T) functions 

which govern the laws of diffuse reflection and 

transmission of time-dependent parallel rays by a finite 
' 

inhomogeneous., plane parallel, non emitting, and 

isotropic scattering atmosphere where the dependence of 

the time of the incident radiation is given by Dirac·s 

6-function and Heaviside•s . unit step-function A 

formulation of time-dependent H-function was 

accomplished by means of the Laplace transform in the 

time-domain~ Numerical evaluation of the H-function based 

on numerical inversion of the Laplace transform presented 
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by Bellman et.al [1966] was made. 

Recently Karanjai and Biswas [1988] derived the time

dependent X- and Y-functions for homogeneous, plane parallel 

non-emitting and isotropic atmosphere of finite optical 

thickness using the integral equation method 

developed by Rybicki [1971]. Biswas and Karanjai [1990a] 

have derived the time-dependent H-, X- and Y- functions in a 

homogeneous atmosphere scattering anisotropically with 

Dirac·s 6-function and heaviside unit step-function type 

time-dependent incidence. Biswas and Karanjai [1990b] 

have also derived the solution of diffuse reflection and 

transmission problem for homogeneous isotropic atmosphere 

of finite optical depth. 

In section (2.6) I derived the nonlinear integral 

equations for X- and Y-functions (vide, Chandrasekhar,· 1960) 

for anisotropically scattering atmosphere. The anisotropy is 

represented by means of a phase function which can be 

expressed in terms of finite-order Legendre Polyn~mi.als • 

The principle of invariance is applied to derive the functi-

onal equations for time-dependent diffuse reflection and 

transmission function. Next I consider the time dependent 

diffuse reflection and transmission of plane parallel rays 
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by a slab consisting of two homogeneous anisotropically 

scattering layers, whose scattering and transmission 

functions are known. The problem of the time-independent 

scattering and transmission of radiation in plane-parallel 

atmosphere of two layers was treated first by Van de Hulst 

(1963; vide, Tsujita, 1968 ). Hawking [1961) dealt with 

the problem analyt:.i,.cally starting with Milne·s integral 

equation. Gutshabash [1957) formulated the prob~em· as 

solutions of simultaneous integral equations. So far as _,his 

equations are solvable, the scattering and transmission 

functions required are given exactly for two layers of 

different albedos and large optical thickness. In. the 

present work , the same problem has been extended' (vide, 

Tsujita, 1968 ) for the time-dependent transfer of radiation 

(section 2.6). 

2.2 Exact Solution of the Equation of Trariafar with 

~ Planetary Phase Function. 

2.21. Basic'Equation and its Solution. 

The equation of transfer appropriate to the problem 

( vide, Chandrasekhar, 1960 ) is 

+1 
J:.l d I:;. ,p ) = I (T ,IJ ) - ; w f I (T ,IJ' ) ( 1 + X#-11-1' ) 4J' , (2.5) 

-1 

where the symbols have their usual meaning. 
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I shall have the following boundary conditions 

I (0,-J.l) = O, O< J.1 <1 ; (2.6) 

I (T ,J.l ) ----+ Lo eX p ( kT ) 1 + X ( 1 ,..... Cl> ) (J.l / k ) 
1-kJ.J , 

as T (2.7) 

where Lo is a constant and k is the positive root, less 

than 1, of the transcendental equation. 

w 1 = 2k 
+ x(1 -w) 

k2 

Let us define 

f*(s) = sJ 
oc 

exp(- sr)f(T)dT 
0 

Let .us set 

, Rl s > 0 (2.9) 

where m = 0,1. (2~~0) 

which gives 

and 

r*<s> 
0 * I ( s ,J.l' ) 41' 

* 1 +1 * It ( s ) = "2 f I ( s ,J.l' )J.l' q_,' , 
-1 

Equation (2.5) with equation (2.10) takes the form 

d I (T f.J ) 
J.l d ' = I ("T ,J.l ) - w I (T ) - w XI-I I (T ) 

T 0 1 

(2.11) 

(2.12) 

(2.13) 

Now, subjecting equation (2.13) to the Laplace transform as 

define in equation (2.9), I have, using the boundary 

conditions, 

(J.l s - 1 ) I* ( s ,J,J ) = J.1 s I ( 0 ,J.l ) - C&> I* ( s ) - w >9-l 1* ( s ) 
0 1 

(2.14) 
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Equation (2.14) gives (on putting s = 1/~) 

* * I ( 0 ,~ ) = w I ( 1 /~ ) + w X1-J I ( 1 /~ ) 
0 . 1 

(2.15) 

Equation (2.15) with ~ = 1/s, s is complex, takes the form 

* -1 1(0,1/s) = wl (s) + wxs 
0 

I*< s) 
1 

I apply the operator 
+1 

.!J 2. 
, 

-1 

on both sides of equation (2.14) to get 

1 

I: ( s) - ( 1 - w ) s -s I: ( s) = ~ J · ~ I ( 0 ,~ ) d/.1 
0 

I apply the operator 

·where 

and 

1 +1 

-zf 
-1 

~s- 1 

a(1/s) == 1 + wt (1/s) + wxt (1/s)I*·<s> 
0 1 . 1 

1 1 
a(1/s) ==-

2 
J J..lS I(O ~)cfJJ 

~s - 1 ' 
0 

trn(1/s) = ~J 
+1 

-s 
m = 0,1 

(2.16) 

·(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

* * Eliminating I
0
(s), I

1
(s) among equations (2.16), (2.18) and 

(2.20) and setting s = 1/z,. I have 

1 

T(z)I(O,z) = c; J ,_, ~-!_ 
2

(1 + J..lX(1- w>z] I(O,J..l) cfJJ, 
0 

where 

2 2 T(z) = 1 + wx(1- w)z + w[1 + x(1- w)z ]t
0

(z), 

. (2.23) 

(2.24) 
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where 
+:l 

t <z> =~f 0 2 
-:l 

j.J - z 
--2. 

' 
(2.25) 

Following Chandrasekhar [1960] and considering equation 

(2.8), I 
-t 

see that T(z) has a pair of roots at z = ± k and 

T(z) = 1 
H( z )H( -z)' 

c 
z e (-1,1) , (2.26) 

where H(z) is Chandrasekhar·s H-function for planetary 

scattering. Equation (2.23) with equation (2.26) takes the 

form 

1 I(O,z) 
H(z) 

= H ( -z) ~ f ___,_1.1 __ [ 1 + 1.1 x ( 1 - w ) z] I ( 0 ,j.J ) dj.J, 
2 j.J z 

(2.27) 
0 

Equation (2.27) can be written as 

where 

I(O,z) 
H(z) 

= H(-z)w G(z); (2.28) 

1 

G(z) =_!_J ': [1 + j.JX(1- w)z]I(O,~J)dj.J. 
2 0 1-1 z 

Let us seek solution I(~,z) of equation (2.27) .· by 

Wiener-Hopf technique on the assumption that I(O,z) is 

regular for Rl z>O and bqunded at the origin. equation 

(2.28) with the above assumption on ICO,z) gives_ the 

following properties of G(z); ~(z) is regular on (O,l)c 
' 

bounded at the origin and a constant as z oc • Equation 

(2.28) then gives 

(1 kz)I(O,z) 
H(z) = w(1 - kz)H(-z)G(z), (2.30) 

where H(-z),·H(z), 1/H(z) has the following properties; H(z) 

is regular for z e (-1,0)~ uniformly bounded at the origin 
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has a simple pole at z = -(1/k)~ k(1 ; k is real on the 

negativg real axis and bounded at infinity and tends to 

H + H 
0 -1 

-; --2 
z + H z + ••• when z 

-2 
oc • 

Hence, 1/H(z) is regular for z in (-1-0)c and bounded at the 

origin. Similarly, H(-z) is regular for z e (O,l)c,uniformly 

bounded at the origin, has a simple pole at z = 1/k, k<1; k 

is real , en the positive sida'of the real axis and bounded 

at infinity and tends to 

H 
0 

H 
-1 

H z"""'2 
-2 

Following properties of H( z), 

when z---+ oc 

1/H(z), H(-z) (vide, 

Busbridge, 1960) the left hand.side of equation ·(2.30)· is 

regular for R1 z>O, bounded at the. origin and the right 

hand side of c equation (2.30)· is regular for z e (0,1) : and 

bounded at the origin and tends to a polynomial say A +. Bz, 

as z oc • Hence by a modified form of Liouville·s 

theorem 

(1- kz)l(O,z) c 
= A + Bz, when z e (-1,0) (2.31) H(z) 

and 

A + Bz = w(1 - kz)H(-z)G(z), when c 
ze (0,1). 

Equation (2.31) gives the emergent radia~ion as 

I(O,z) = (A + Bz)H(z) 
1 - kz ' 

(2.32) 

. (2.33) 

where the constants A and B are two arbitrary constants to 

be determined later on. 

~~ 2.22. Intensity at any Optical Depth 
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~ The radiation intensity at an optical depth T is given by 

the inversion integral as 

c+i.6 
I (T ,1-J) = ( 1/21 i) 1 im 

6 --+IX 
J * exp(sr) I (s,~o~ )ds, c>O 

c-i.6 

Equation (2.14) with equation (2.16) takes the form 

1* ( s· ,1-J ) Is = ¢ ( s ,J...I ) I ( s --:- 111-1 ) , : 

where 

¢(s,, .. l) = I(O,f...l)- 1(0,1/s) + <a>(s 1/s) 
s 

But 

* lim (1-J- 1/~o~)I (s,~o~> exp(sr)/s--+ 0 
s --+t IJ.J 

I* (s). 
0 

(2.34) 

(2.36) 

Hence the integral of equations (2.34) is regular tor 

c s e ('""OIC,-1) and has simple pol~ at s = ±k ,- k < 1. 

Hence by Cauchy·s residue theorem' equation (2.34) gives 

I (T ,J,.J ) = R 
p 

+ lim (i/2ti. >f I*<s,J..J )esT ds/s, 
R --+IX r 

(2.38) 

where Rp is the sum of the residues of the poles at s = ±k 

and r = r u CD u v u EF u r 
1 2 

~ r
1

and r
2 

are arcs of the circle of radius R having centre 

at s = 0 (clockwise) and v is an arc of a small circle of 

radius r having centre at s = -1 (anticlockwise) and· ·co 

and EF are the lower edge and upper edge of the singular 

line (-R, -1) (Figure 2.1). Hence, following Kourgan.cff 

(1960) I have 
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* . . I ( s ,J.J )exp( sr )dsls---..0, when R---+ (2.39) 

and 

fv I* (s,J.J )exp(sr )dsls---..0, when r----.0. . (2.40) 

Hence in the limit of R-----+ oc, r--.0, equation (2.38) with 

equation (2.39) and (2.40) becomes 

* sT I(T ,J.,l) = R + (112ni)J I (S,/-1 )e dsls + 
p CD 

+ (112ni>J 
EF 

* ST I (s,J.J)e dsls. 

Here on CD and EF, 

s = -v, 

and on CD, 

H(11s) = 

and on EF 

H(11s) = 

v ~ 1 

X(1/v) + i.nY(llv) 
H(11v )Z(llv) 

X ( 11v ) - i. n Y ( 11v ) 
H ( 1 lv ) Z ( 1 lv ) 

(2.41) 

(~.42) 

(2.43) 

where X ( 1 /v ) = 1 + cu X ( 1 - cu )v- 2 
- cu ( 1 + X ( 1 - W )v- 2

] X 

X ( 1/2-r ) log ( : + ! ) 

V ( 1 I v ) = ( cui 2 ) 
-1 

v 

2 2.2 
Z ( 1 lv ) = ( X ( 1 lv ) + n Y ( 1 lv , 1-1 ) ) 

(2.44) 

(2.45) 

(2.46) 
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Therefore on CD 

and on EF 

where 

X + 

¢ ( s ,J,.l ) = V ( 1 /v ) - i. 1T W ( 1 /v ,J,.l ) 

¢ ( S ,J,.l ) = V ( 1 /v ,J.l ) + i. 1T W ( 1 /v ,J.l ) 

[ 
( B - v A ) Y ( 1 /v ) ] 

V ( 1 /v ,J.J ) =I ( O ,J.l ) - ( v + k ) H ( 1 I k ) Z ( 1 /v ) X 

v + 1/J.J ] _ __,______ + 

1 + X ( 1 - w ) /v 
2 

(" + 1/J.l ) w Cll /2 
~ 

1 + X ( 1 - W ) /v 
2 

~( 1/v ,J,.l ) [ 
(B - vA)Y(1/v) ] 

= ~( v--:-+--;-k"t") ..-:H~(...,l-':/.-::k-;)---::Z:"l(r-::1;-/-7"v"""')o:- X 

'58 

(2.47) 

(2.48) 

,(2.49) 

[ 
v + 1/J.J 2 ] 

X 1 + 
1 

(2~50) 
+ x( 1 - W) /v 

Now, equation (2.39) with equatipn$ (2 .. 35), (2.41), '(2~47) 

and (2 .. 48) gives 

\X 

I (T ,J.l) = Rp - 1 I (V(l/v,J.l),.... i.rrW(l/v,J.l)} e-vTdv + 
2ni. v + 1/J.l 

Henc:e 

where 

.t 

\X 

+ 
1 I V( 1/v ,J.l) + i.rrW(1/V,J.l) e -vT dv. 

2ni. v + 1/J.l 
1 

when J.l > o, equation (2.51) give 

. I (T ,J.I ) = Rp + I 
0 

-vT 
W(1/v,JJ)e dv/(v + 1/JJ), 

J.l < o, I shall assume 

(2.51) 

.<2~52) 

that 
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/-axis 

B!c + io) 

Real axis 

6 

Ale- i6) 

s-plane 

Fig. 2.0. The s-plane 

-~ 
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( V ( 1/v ,JJ ) 
-vT ± \. n W ( 1/v ,J.l ) ) e satisfies 1-t) lder condition on 

(1,~) and I have by Plemelj•s formula (vide, Muskhelishvili, 

1946) 

V(1/v,JJ) ± \.nW(l/v,J.l) -vTd 
1 .. 

= ± 2 ( v ( "'1J .,JJ ) ± v + 1/JJ e v 

()( 

+ _1 PJ 
2rr\. 

V(1/V,JJ) ± \.nW(1/v,#J) -vTd ( 2 • 53 ) 
v + 1/JJ e v, 

1 

where P denotes the Cauchy principal value of the integral. 

Hence equation (2.51) with equation (2.53) for~ < 0 gives 

1 

where 

-vT 
W( 1/v,J.I )e 

v + liJ.I 
dv, (2.54) 

(2.55) 

is the residue of the integral in equation 

(2.37) at s = ± k, and Rk is given by 

* sT lim ·cs -k )I (s,JJ)e Is, 
s --.Jc 

H (1/s)(As + B)s 
= lim -------------- [1 + x (1 - w)/s]e8

T 
s --+ )c ( s 2 + X ( 1 - W ) } ( 1 - 51-J ) 

H(l/k)(Ak + B)k 
= ------------- [1 + >: (1 - w)/k ]e

8
T 

2 
(k + x(l- w)](1 - 1-".j.~) 

Similarly, R-k is given by 

R-k = lim 
s --+C-k> 

* sT ( s + k ) I ( s ,p ) e Is 

(2.56) 
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= lim 
(s + k)H(l/s)(As + B)s aT __ .:.__ __ ~-=---~...;..._------- ( 1 +>: ( 1-w) Is ]e 

s _..c-k> (s k ) {5
2 + X ( 1 - W) } ( 1-5/-1) 

-kT 
( B - Ak ) k [ 1 - X ( 1 - wl k ) J a . ··· 

= --------------------------------------2k{k 2 + x(l + w)}( 1 - s~) 
lim (s + k)/T(l/s) (2.57) 

(B - Ak)[1 - x(l - w)k} -kT e 

= ----------------2 2{k + x(l- w)}(l + k~) 

s --H-Jc) 

-1 
[dT(1/s)/ds]

9
=-k 

2.23. Determination of constants A and B. 

When z --... 0, from equation (2.32) I get 

1 

A = (w/ 2) J I (O,~)d~. 
0 

From equation (2.58) and equation (2.32) 

simplification 

1 

(2.58) 

·(2.58) 

I get after 

A(1-;J 
0 

1 
H(,u)d,u ] = w2Bk [- oco· + J 
1 - k,u 

H(p)d,u ] = 
1 m, - k,u (2.59) 

0 

where m = constant • 
0 

H(z) has a simple pole at z ~ -(1/k) where 

where 

1 
1/H(z) = 1 -·zH(z) J 

0 

lp(J..J) 
w 2 

2 [1 + x(l - w),u ] 

(2.60) 

(2.61) 
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Equation (2.60) has a zero at z = - (1/k) and so 

1 + .!_ Ji V' (J-J ) H (J-J ) cfJ.i = 0 
k J-J - 1/k 

0 

62 

(2.62) 

In equation (2.62) putting the ·value· of VJ(J-J) and simplifying 

and using equation (2.59) I· get 

A= 2mN / ( x ( 1 - w ) ) 
. kQ k - c ' B = 

2mN (2.63) 
G(k + c) ' 

where 

N = k2 + X ( 1 - W ) , Q=2-woc 
0 ' 

c = ~ ( 1 - w) oc
1 

Q 

then 

A + E9.J 
2mN 

{ ( 1 + -=-) +(x(1 -w) - c) } = QR k k 
(2.64) 

Putting 

1/k I get kA + B 2mtl 
J-J = - GkR (2.65) 

where 

R = { X ( 
1 k- W ) - c} ( k + c ) ·( 2. 66) 

If I use equations (2.65) and (2.66) I get from equation 

(2.33) 

(kA + B)k 
[( 1 + :) + {-x-(1-k-. -_w_> X I ( 0 ,p ) = 

X 
H(J-J ) (2.67) 

when T-oo. From equations (2.54), (2.55) and (2.56) 'I . get 

H(1/k)(Ak + B)k 
I (T ,J-J )--. [1 + x (1 - w )/k]eJcT. (2.68) 

[ k2 + X ( 1 . - W ) ] ( 1 - lq.J ) 

Hence equation (2.68) with equation (2.7) gives 
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(Ak + B)k L 
0 = , 

k2 + x(1 - (I)) H(1/k) 
(2.69) 

L c x(1 - (I)) 

{1 + J..l[ I (0,J..l) 0 + = . - c]} H(J..l) ' (2.70) 
H(1/k) k k 1 - "-P 

which is the expression obta~~ed by Chandrasekhar [i960]. 

2.3. An Exact Solution of the Equation of Transfer with 

Three-Term Scattering Indicatrix in An Exponential 

Atmosphere • 

2.31. Basic Equation and Boundary Conditions. 

The equation of transfer in a stellar atmosphere can be 

written (vide, Chandrasekhar 1960; Das, 1979c) as 

+1 dl (X ,J,.l ) v 
J,.l--~:--

pdx 
= (k. v 

+ tY )I ( X ,J..l ) - ( 1/2 )q . ( 1 - & ) f P (J..l ,p' ) v v v v 
-1 

(k + & IY ) B (T) 
v v v v 

(2.71) 

where 

P(J..l,J..l') = ~ W~Pt (J..l)Pt (J..l') 
~=0 

(2~.72) 

is the phase function for non-conservative scatteri~g with a 

three-term indicatrix ; I (X,J..l) , the specific intensity v . in 

the direction arc COSJ..l at a depth x ; k , v the absorption 

coefficient ; arc cosJ..l is being measured from outward drawn 

normal to the face >: = 0; et , the scattering coefficient ;p v 

, the density of the atmosphere ; B (T) , Planck's function 
v 
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; T, the local tempe~ature at a depth x ; &v , the collision 

constant and v, the frequency. 1 define the optical depth 

t in terms of the scattering and absorption coefficient and v 

the optical depth T in terms of the absorption coefficienta v 

IX 

t = I (k + v v 
X 

T v 

with dt = v 

dT = v 

Cl )p dx 
v 

IX 

= f k vp dx 

X 

-(k v + Cl ) v 

-k p dx v 

' 

' 

p dx 
' 

(2.73) 

(2.74) 

(2.75) 

(2.76) 

If I follow Degl'Innocenti [.1979] and karanjai and Karanjai 

[1985] I can take 
-OlT 

B (T ) = 8< 0 >+ a< 1 >e v (2.77) 
v v v v 

where B~ 1 >and ~are three positivs constants. 

Hence 
' 

equation (2.77) with .equatic;ns (2.75) and (2.76) 

becomes 

(2.78) 
-(h 

B ( t ) = b + be v 
v v 0 1 

where b = a< 0 > ; b = a< 1 > and n = a k I ( k + o- ) ( 2. 79) 
0 v 1 v ,~ v v v . 

In this model I shall assume that 

-1 
T) = (k + 0' ) v . v v 

is constant with optical depth. Equation (2.71) 

equations (2.73) and (2.78) becomes 

(2.80) 

with 
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+l 

f..ldl(t,J .. d/dt = I(t,f.l) - (1-c
0

/w
0 

)B(t) - (1/2)J X 

-i 

X (c + c J...JJ...J' 
0 1 

(2.81) 

where c c and c are given by 
0, 1 ' 2 

c lw = c lw = c /(..U = o ( 1 - & ) ( k + o ) 
0 0 1 1 2 2 

:(2.82) 

and for convenience , I have omitted the subs~ript v • 

For the solution of equation (2.81) I have the boundary 

conditions 

I (0, - J...J' ) 0 = v ' 0 :S J...J' :S 1 (2.83) 

and I ( t,p' ) - t /f..l' >O as t >oc . (2.84) e v 

2.32. Solution for Emergent Intensity 1 

The Laplace transform of F(t) is denoted by F*(s), where 

F*(s) is defined by 

F (s) = * sJ. exp(-st)F(t)dt, Re s>O ; . (2.85) 

0 

and I set 
+1 

Im(t) = (1/2) J * I ( s,p )ct,.J, 
m . 

m = 1, 1, 2. . (2.86) 

-1 

which implies that 

I!(s) = (1/2) J m 
J...J * I (s,p )dJ...J, 

m . m = 1, 1, 2, (2.87) 

-1 

Equation {2.81) with equation (2.86) takes the form 

di(t,p) = I(t,f..l)- (c I (t) + c f..ll (t) + _!_c (~2 

dt 0 0 1 1 4 2 
1) X 
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X (31 (t) - I (t))] - (1 - c lw )B(t) (2.88) 
2 0 0 0 

Now subjecting equation (2.88) to the Laplace transform as 

defined in equation (2.85) I have 
" 

using the boundary 

conditions, 

(J..I s - 1) I* ( s ,J..I ) = J.l si ( 0 ,J.l ) - ( 1 c lw ) a* ( s > - < c 1* < s > + 
0 0 0 0 

* 1 2 + c 1 J.l I 1 ( s ) + 4 c 2 ( '3/-1 

Equation (2.89) gives 

I 1
(s))) 

0 

+ _!_ c ( ~ •2 
- 1 ) + 

4 2 "+' 

(2.89) 

(2.90) 

Equation (2.90) with J.l = s- 1 
, s is complex , takes the form 

I(O,s- 1
) = (c - (1/4)c (3s- 2 * -s * , 1))! (s) + c s I (s) + 

0 t s . 0 z 

3 -z * * + 4 c
2 

(3s - 1)1
2 

(s) + (1 - c
0

/w
0

) B (s) 

1 

I shall apply the operator ( 1/2} r .... J.ldf.J 

0 

op both sides of equation (2.89) to get 

s 

-(1 - C' ) 
0 

-1 
s I* ( s) + I* ( s) = ( i /2) J J..1 I ( 0 ,J.l ) df.J 

0 1 

and 

- (1 - c /w )s- 1 B1 (s) 
0 0 

1 

0 

(2.91) 

(2.92) 

(2.93) 

1 -1 * * J 2 - ( 1 - ""3 c 
1 

) s I 
1 

( s) + I
2 

( s) = ( 1 I 2) J..1 I ( 0 ,J-1 ) dJ-1 ; ( 2. 94) 

0 

I shall also apply the operator 
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+1 

(1/2) J diJ I <1-1 s - 1 ) (2.95) 

-s. 

on both sides of equation (2.90) to get 

as(- 1 ) - (1 c /w >B*(s)t (s-
1

) == [1 + c t (s-
1

) -
0 0' 0 '00 

where 

and 

1 -1 
-
4
·c(3t(s) 

2 2 

3 - .l + -
4 

c [3t (s ) z z 

1 

-1 :,, .• 
t (s· )]l · (s), 

0 ' ' ' 2 

a ( s- 1 ) = ( 1/2 ) J 1-1 s (iJ s - 1 ) -
1 

I ( 0 ,iJ ) 4J 

0 

+1 

t_,~_s- 1 ) = (~/2) J (J.JS - 1)-
1 

l-Im qu. 

-1 

, m = 0,1,2. 

If I follow the usual procedure tor elimination 

* * I (s), and I (s) among equations (2.93), (2.94), 
.t z 

(.2.96) 

(2.97) 

(2.98) 

of I* ( s), 
0 

(2.96) and 

(2.97), after some calculations setti~g 
-1 s = z , I have 

1 

T(z)l(O,z) (1/2) J x(x 
-1 L(x,z)l(O,x)dx = - z) + 

0 

+ (1 - c /w ) a*<z- 1 > 
0 0 

(2.99) 

1 

where T(z) 
2 z -1 

~(X)(Z ·-X ) dX 

0 

(2.101) 

.· 
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L(x,z) 3 2 2 3 = A - 4 c x + (B + C + 4 c
2 

)xz 

+ C:x 2 2 
z 

s*<z- 1 > = b + b /(1 + ~z) = (d + d z)/(1 + ~z)' 
0 1 0 1 

where 
: 

d = b + b , d = b(j 
0 0 1 1 0 

A 1 B-= (1 c ) 3 
= c + -c , c -c: 

0 4 2 1 0 4 2 

where I shall assume ~hat 

and 

Y'(:x) = i (A + B:x 2 + Cx
4

) > 0 

1 

Y' 
0 

= J YJ( :x )- dx < 1/2 

0 

y = k(k + 0') < 1 , 

b8 

(2.102) 

(2.103) 

- (2.104) 

- (2.105) 

(2.10b) 

(2.107) 

(2~108) 

(2.109) but for 

a* ( z- 1 > -1 c is analytic in (- y , o) ~ bounded at the ~rigin 

and O< y <1. According to Busbridge [19b0], the equation tor 

T(z) possesses the following properties : T(z) is analytic 

in z for (-1,1) 0 
, bounded at the origin , has a pair of 

zeros at z = ± K ( K > -1) , K i~ real and can be express.ed .. as 

T(~) = ( H(z) H<~z)]- 1 (2.110) 

where H(z) and H(-z) have the following propertiet;i : ·- H(z) 

·is analytic for z & (-1_, 0) 0 , bounded at the origin, t\as_ a 

pole at z = -K, H(-z) is analytic for c z & (0, 1) , bounded 

at the origin, has a pole.at z = K. 
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If I follow Busbridge [1960], Oas [1979d] and Dasgupta 

[1977] I have for ~ < 1/2 
0 

, 

or 

where 

1 

H(z) = 1 + zH(z)J 

0 

-1 
~(x)H(x)(x + z) dx 

H(z) = (A + H z)/(z + K) - M(z), 
0 0 

1 

M(z) = J P(x) dx/(x + z) 

0 

P(>:) = 4>(x)/H(x) 

4>(x) = n- 1 Y (x)/[T2 (x) + Y
2 

(x)] 
0 0 0 

1 

T
0 

(x) = 1 - 2x
2 J (~(t)-:- ~(X) )l_(x

2 
- t

2
) -

0 

- ~(X) X log ( ( 1 +.)I') I ( 1 - X)) , 

p 
-1 

Y (x) = nx~(x) 
0 

A = (1 +P )K 
0 . -1 

1 

J -1 P(x) dx = X 

0 

Ho = (1 - 2~ )-.t/2 
0 

, 

, 

Equation (2.99) with equation (2.110) takes the form 

I(O,z)/H(z) 
* -1 = H(-z)G(z) + (1 - C lw )H(-z)B (z ) 

0 0 

where 

G(z) = (1/2) J 
0 

-1 x(x - z) L(x,z)I(O,x)dx , 

(2.111) 

(2.112) 

(2.113) 

(2.114) 

(2.115) 

(2.116) 

(2.117) 

(2.118) 

(2.119) 

(2.120) 

(2.121) 

(2.122) 
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I shall assume that 

I(O,z) is regular for Re z>O (2.12'3) 

bounded at the origin. Equation (2.122) with the above 

assumption on l(O,z) gives the f~llowing properties of G(z): 

G(z) is regular on (0,1)c , bounded at the origin 0(~) when 

z 0( • 

Equation (2.121) with equation (2.103) and (2.122) gives 

I(O,z)/H(~) = H(-z)[(1/2)J x(x- ~)- 1 L(x,z)l(O,x)dx:+·· 
0 

+ ( 1 - c lw ) ( d + d .. z) I ( 1 + ~ z >] 
0 0 0 .. 

(2:_.124) 

Equation (2.124) can be put in the form 
1 

1(0,~)/H(z) = H(-z)[(112)J 

0 

-1 x(x - z) L(x,z)I(O,x)d~ +. 

+ (1- c
0

1w
0 

)(d
0

1z + d
1 

)l(z-
1 + ~>] (2.125) 

Therefore, the left-hand side of equation (2.125) is regular 

for Re z>O and bounded at the origin and the right-hand side 

of equation (2.125) is regul~r for z on (O,l)c and bounded 

at the origin and tends to a linear polynomial in z , say 

(x + x z) when z oc. Hence-, by a modified form of 
0 1 

Liouville"s theorem I have 

and 
1 

(112)J x(x 

0 

-1 z) L(x,z)I(O,x)dx + 

+ (1 c lw ) ( d + d z ) I ( 1 + n z ) = 
0 0 0 1 i" 

(2.1~6) 



Chapter-2 

; [X + X Z ]/H(-z) 
0 1 

Equation (2.126) will give emergent intensity 

bounding face if x and x are determined. If I 
0 1 

in equation (2.127), I have 

(1/2)J 
0 

L(x,O)l(O,x)dx + d (1 - c lw ) = x 
0 0 0 0 

Equation (2.128) with equation (2.126) gives 

1 

where y1 = (1/2) J L(x,O)H(x)dx ..,.. 1 

0 

1 

Yz = (1/2)J xL(x,O)H(x)dx 

0 

z = (1 .... c /e» )d 
1 o o· o 

71 

(2.127) 

from the 

set z =· 0 

(2.128) 

(2~129) 

(2.;.130) 

(2.1'31) 

(2.1'32) 

As T(z) has a zero at z = K , equation (2.129) gives 

(l/2)J 

0 

+ (1 - c lw ) (d 
0 0 0 

+ -~~ K)/~-~:,_~_~K.>] 
(2.126)':;:gives 
·, -:-.~:,~;:it·.: ' Equation (2.133) with equation 

where· 

X y +X y :·+ Z ~ 0 , 
0 3 1 ". z . 

1 

y
3 

= (l/2)J x(x 

0 

K)- 1 L(x,K)H(x)dx 

= 0 (:~;.133) 

(2.134) 

.. 

(2.135) 
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.t 

- (l/2)J 

0 

x 2 (x - K}- 1 ((x,K)H(x)dx 

z = ( 1 - c lw ) ( d + d K ) I ( 1 + f3 K ) 
2 0 0 0 .t 

Equations (2~129) and (2.137) gives 

>C = (yzz2 - z
1
y..,)/(y

1
v.., y3y2) 

,0 

X = (z.t Ya - ys z2 )/(y.t Y.., y3 y2) .t 

where ( y.t y" -yy)od 0 
8 2 

Hence, equation (2.126) with equation (2.138) and 

72 

(2.136) 

(2'.137) 

(2~1'38). 

(2.139) 

(2.140) 

(2.139) 

gives the emergent intensity from the bounding face of· the 

atmosphere. 

2.4. Solution of the equation of transfer for c:onserv.Ativa 

anisotropic scattering phase function. 

2.41. Formulation of the Problem • 

In accordance with the scattering phase function 

p(cos&) = = 1 + w P (cos&) 
i 1 . . 

+ (I.) P (cos&), 
. ' .2 2 . 

(2.1'41) 

the phase function p(IJ ,t/> ;J.L' ,tj>' ) for the ·angle between· the 
-~~ .. ·~·~\~};/;:~.:-:· . ·.. : . 

directions specified by (&,tj>) and '(f)_~,-'f.t:k',) can be written as 
., .. ·.- -.. · . . 

p(J.J,tf>;JJ' ,tj>') = 1 + w J.IJ.I' + (1/4) w ·(~2 .- 1)(~' 2 :_·1) .+ 
.t 2· 

2 .t/2 2 .t/2] + 3W J.JJ.l' (1 -J.J ) (1- J.l' ) · cos(¢- ¢•) + 
2 

+ (3/2)w (1- J.1 2 
)

1
,.,

2 (1- J.J' 2 
)

1
/

2 cos 2(t/> - ¢') 
2 . 

(2.142) 

Hence p<o> (p,p•) = 1- C1/4)w (~ .. ,Z - 1) + w J..IJ.l' + 
2 i. 

+ (3/4)w (~2 
- l)J.1'

2 

2 
(2.143) 
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The equation of transfer (equati-on (2.1)) then becomes 

+i 
dl(T,/-1) 

dr 
= I(T,J.J)- (1/2)J I(T,/-1' )41' 

-s 

+ (w /2) (31-12
- 1·) X 

2 

+1 

X f l(T,/-1' )qu' 

+i 

(w
1

/2)/-lf 1-1' 1(-r,J.J' )qu' + 
-1 

+1 

+ (3w2/8)(3J.? -l>J , 2 
1-1 I (T ,/-1' )Q.J' 

-1 

(2.144) 

This is the equation of ·transfer for the scati;ering 

according to the phase function (2.141), in a Semi-1nfinita 

plane-parallel atmosphere. I shall now find the solution to 

equation (2.144). 

2.42. Solution of the Equation of Transfer. 

The Equation of transfer appropriate to this pro~lems, 

according tq the phase function considered here (equation 

(2.143)), given by equation (2.144) 

can be written in the form 

di (T ,/-1. ) 
I-Ii. dr " = I(T ,/-li.) - (1/2)1: aj I(T '1-'J) + 

+ (w /2)(~2 . - 1 )f a. I (T ,J.J. ) - (c.> /2)/-1. "\' a./-1. I (T ,/-1. ) 
2 \. J J 2 \.£ J J J 

J 

- (3W
2 

/8) (~2 
i.- 1 )l aj1-1~ I (-r ,/-1. ) 

J J 
(2.145) 

The required ~elutions of equation (2.1) satisfy the 
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boundary conditions 

(1) I(O, -/.J) = 0 

(2) 

I seek a solution of equation (2.145) of the form 

-kT 
I (T ,/-1. ) = g (J..l. ) e 

" " 
( i. = ±t , ±z , ±n ) 

74 

(2.146) 

(2.147) 

(2.·148) 

where )c is a constant (unspecified for the present). and 

g(/-li. ) is a function of 1-1 only • 

Substituting for I (T ,1-J,) for equation (2.148) into 'equation 
. " 

(2.145) I find that 

= (1/2)l a,g(J.J.) -
J J J 

-(w2 /B)(~~ ~ l)l ajg(J.Jj) + (w
1
/2) J.li.l ajpjg(pj)+ 

J J 

+ (3;1>
2 

/8) (~/.J~ - 1) l :a j/-1~9(/-1 j) 
J 

(2.149) 

Equation (~.149) implies that g(JJ.) must be expressible in 
" 

the form 

g (JJ, ) = 
1. 

z 
CA.J.J. + f3J.J. + r 

" " (2.i50) 
t· + /-l. k 

. " 
From equations (2.149) and (2.150) 

+ 131-l. + r = (1/2)~ a.g(/-1.) " f l J 

(W /B) (~.l - 1 )'\' a ,g(#J.) + (W /2)/.J. ~ aJ.JJJ,g(/-IJ.) + 
Z L f J J. 1 Lf 

+ 1) '\'a. f-l
2
J. g(JJ.) f J J 

(2.151) 
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\... 

After some simplification 

D~'z /8) [ ( 

4 
2 

+ ,G/-1 +w tY.j-l. + 'V 

- 1-l~) l • 2 2 
,GJ-1. 

J 
CI.J-1 . + + y = a 

\. \. 
::<.~' 

J 1 J 
2 

·~ 2 

2 
IY.j-l . + (~J-1 . + y 

2 
/-1. + ~-:.:p. 

l. 

+ ( .i:J.w /3w )/-1. 
1 2 1. 

Since 
m 

a. J-1 . 
J J 

1 +f...J.k 
J 

J J 

1 +J.l.k 
.l 

2 

et-/-1--'j'---_+_,G_J..i--:....j _·l_·· _Y_ 1-l j ] 

1 + /..l.k 
J 

( m = 0,1,.2,. 

(vide, Chandrasekhar, 1960, Chapter III, 

Equation (2.152) then reduces to 

+ 
J 

4n ) 

equation 

J 

+ 1-l k 
J 

(2.152) 

(2.153) 

( 18) ) • 

4 + w 
2 

(etD + (5D t- yO ) -
2 1 0 

(et D + (5 D + y D } + ( 4:.0 /3.0 } (et D + (5 D + y D J-1. + 
4- 3 2 .1 2 3 2 1 1. 

+ ( 3(CtD + (5D + yD ) - (etD + (~D 
4 3 2 2 1 

+ y D >)1-1~ 
0 1. 

(2.154) 

Therefore,. 

(8/2w ) Ct = 3(CtD + (5D + yD ) - (CtD + (5D + yD ) 
2 4 3 2 2 1 0 

(8/2w ){5 = (4w 1-::!w ) (CtD + (5D + yD ) 
2 1 2 3 2 .1 

4 + w 
2 

( 8/ :::-w }y = -=---
2 3.0 

2 

(et D + (5 D + y D ) -
2 .1 0 

- (CtD + (5D + yD ) 
4 3 2 

(2.155) 

(2.156) 

(2.157) 

+ 
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Equations (2.155), (2.156) and (2.1~7) represents a sys.tem of 

homogeneous linear equations for a and ~ • The determinant 

of this system must vanish ,therefore, 

3D -D -(8/3w ) 
... 2 2 

(4w /3..> )0 
1 2 a 

4+w 

3D - D 3D - D 
3 :l 2 0 

(4w /3..> )D -(8/3..> ) (4w /3» )D 
:l 2 2 2 :l 2 ,:l 

4+w 4+w . 

= 0 

D - D 
2 ... 

~...--2- D -D ~.----2-D -D -(8/~ ) 
~ 1 a ::i.> o 2 z 

z 

2 2 

(2.158) 

These D's satisfy the relations (vide, Chandrasekhar ~ 1960 

Chapter III , equations·(21) and (22)) 

D. 
2 J 

and 

In particular , 

= -kD = 
2 

1 

ks 

2) ; 

(D - 2) 
0 

1 
=-

k.2 

D 
Zj 

2) 

(o . 
2J - 2 2j 

= k.D - :l 2j 

- 2) -

2 i) (2.159) 

(2.160) 

(2.161) 

Therefore, from equation (2.158) I can find g(IJi. >. 
'· 

following the same procedure as shown by' Barman and Karanjai 

;(1974) in the form 

4 +w 

Lo[ 
2 2 

] ~ - /..li. 

g (/.J. ) 
2 where L is (2.16~) = a 

\. 1 + J..l, k 0 
\. constant in terms of and k w 

2 
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Therefore, from Equation (2.148) 

Omitting i's I get 

I (T ,J..i ) 

4 + w 

Lo [·. ~z 2 
1·+,U~k 

4 + w 
2 

:&.>. 
2 

1 + 1-l k 

-kT e 

-kT 
e 

Therefore the solution can be written as 

4 + w 
2 

3w 
2 

1 ± 1:" 
+kT e 

77 

(2.163) 

(2 .. 164) 

(2.165) 

Inserting the expression for g(J..l. ) ,from equation (2.162) in 
'1. 

equation (2.149) and simplifying (i.e., omitting i.'s) l get 

+ 1 
2k (2.166) 

which gives the characteristic.equaticn, the soluti~ns· Qf 
. ' . '' ... ~.! 

which for various w ·s are given in Table I. 
2 

therefore, a solutiqn of equation (2.148) 

satisfies the boundary conditiqn 

I(O,j..J) =·0 

for no incident radiation and ~hich b~haves as 

4 + w 
2 2 

[ 

_.....,3w::;---- - 1-l ] 
Lo --r---:----2 -.--- e -kT 

1 + 1-l k 
I (T ,J..l ) --~ as T - oc 

I . seek, 

which 

.. (·2.167) 

(.2.168) 

i 
' 
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TABLE 2.1 

The Characteristic Roots k 

(1,)2 k 

0.0000 0.0000000 

0.0125 9.682602E-02 

0.0250 0.1369389 

0.0500 0.193697 

0.-1000 0.2741478 

0.1500 0.3362519 

0.2000 0.389154 

0.2500 0.4365286 

0.3000 0.4804349 

0.3500 0.5223672 

0.4000 0.563804 

0.4500 0.6069927 

0.5000 0.6587551 

0.5100 0.6729191 

0.5150 0.6817015 

0.5200 0.6936500 

0.5220 0.7017839 

0.5225 0.7057352 

L
0 

being some some assigned constant. This does not sati~fy 

the condition (2.167). I shall-therefore let 

4 +w 

I (T ,#J ) = 
L0 [ 

2 

- p• ] 3w 
-kr * 2 (2.169) 1 + #J k 

e + I (T ,#J ) 

represents the solution of the problem. Note that * I (T •~-' ) 

(0 ~~-~ ~ 1) must result from the ref 1 ec.tion of * I (T , f.J ) 
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(0· s J.l s 1) by the semi-infinite atmosphere belowT • Thus, 

I (T ,#J ) = L 
0 

3W 

[ 
4 + w 

2 

1 + J.l. 

X 

k 
- ~· ] ~2 ' -k.T + J s' o> (J.l ,#J' ) X e -w 

0 

1 *(T ,J.l' )dJ.l' (2.170), 

where-~ 2 s' 0 ) is i;tie azimuth-independent term in the 

scattering function (Vide, Chandrasekhar, 1960, Chapte~ :VI, 

equation (5)). 

At T = 0 (from equation (2.169)) 

* I (T ' t-1'.) 

4 + w z 
~2 

1 + J.l' k 

- ~· 2 ] -kT e (2.171) 

by condition (2.167). Therefore , from equations (2.170) and 

(2.171) I find that 

Lol4 
+w 2 2 
~ 

-J.l 

~2J ' s' o > < , ) 
I (O,J..I) = 2 

-' J..l ,J..I 
1 +J.l k fl.t 1 - J.l' k 

0 

-~··)I X ( 4: (4)2 

2 

X 

(~.172) 

But (Vide, Chandrasekhar, 1960, Chapter VI, equation t11)) 

s'o> <J.J,J-J' > = J-JJ-J' 
J..l + 1-l' 

where 

H (J.l ) H (J..J' ) 

C( 
2 

c = 
C( 

1 

[ 
-4-=-+_w_.;::_2 

~ 
2 

(2.173) 

(2.174) 
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a and a are the moments of 
j, 2 

defined by the 

Characteristic function. 

Y' (p) = ::· ( ~. "'.' - ,.,•] (2.175) 

- Moreover H(~) .is the unique solution· of 
j, 

(4 + tl) ) - 3:..> 1-1'2 
2 2 

H(IJ' >41' (2.~76) 

1-l + 1-l' 

which is bounded in the interval (0 S 1-1 S 1). 

Therefore, from equat~on (2.172) it follows that 
s 

= Lo{ ( 4 + w2 ) - ~21-l' 2 ~2 
I ( 0 ,~ ) - """"Er 

/-1 + 1-1' J 
1-1' 

H (J.I ) o 'i""(J.I-:--+-:--J.I-:,-=-.)..-:(:-:1:----=-..-4-'---:-, -:-) X 

[ 
4 + w 

+ J.IJ..I'] 
2 

- C(J.I + 1-1' ) X X 
3:..> . 2 

4+w 

( - 1-1' 2) B ( 1-1' ) dl-l'l X 
2 

(2.177) :3:.> 
'2 

Expressing /-1, I (J.I + 1-1' )(J.I - lq.J' ) in partial fractions 

rearranging the terms , I obtain 

I (O,JJ) = i >lqJ ( ( 4 ~2 "'• - 1-1' •] 

j, 

- ::• B (p ) J) -1::--1--:lq.J--:''-

4 + w 
2 

- c (J.J + /-1' ) + J.IJ.J'] X 

and 



Chapter-2 81 

X (2.178) 

After some algebra , the second part in the braces { } 

of equation (2 .. 178) can be written as 
1 

3W 

JJ f ] 2 H (IJ ) 1.1 X a- 1 - ~--~-~· 1.1 + ,.,. 

4 + w 4 + w· 
+ 1.11.1'] ( - 1.1' 2 ) H(J.I' [ ~z z - c (J.I + ,.,. ) z 

)~' X = 
~-

2 

{H~ l [ 4 :., "'• - qJ] 
H (J.I ) 

[ 1.1 
4 + w 

~J} c + 2 
= H(-1/k) k 3W 

2 

{H~l[ 
4 + w - qJ] 4 +w 

+ ~·l} z 2 (2 .. 179) 3W. 3W 
2 2 

Where H(-1/k) is deduced from equation (2.176). 

Thus , I obtain 

(2.180) 

This is the required solution for the conservative 

anisotropic phase function considered here (equation 

(2 .. 141)) .. 

The constant L in equation (2.180) can be determined by the 
0 

condition (Vide, Chandrasekhar, 1960) .. 
1 

F = 2I I(O,J.I)J.IdJ.I 
0 

(2.181) 
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2.43. Applications. 

The solution of the equation of transfer for the phase 

function considered here (equat;i.on (2.141)) can be applied 

to find the laws of darkening. With the aid of Equation 

(2.180), the laws of darkening i.e. I(O,~)/I(0,1) for the 

phase function ( equation (2.141)) can be written as 

H(f..l) 

[( 
4 + w 

) c l 2 ~ -
I (O,p) 1 + 14-l ~ 

-q..~ + k = (2.182) 
I(0,1) H(1) 

[( 
.4 + (&) 

) 1 c ] 2 

1 + k ~ 
- c + k 

2 

I calculated the laws of darkening for the phase function 

considered here from the relations (2.182) for (&) = .5 
2 

and the results are given in Table II, where the value of 

c and H(l) are taken from Chandrasekhar (1960),. and .the 

value of k is taken from table I. 



Chapter-2 83 

Table 2.2. Laws of darkening for the phase function 

for t.) = .5 
2 

J.l 

o.oo 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0 .. 70 

0.80 

0.90 

1.00 

P(JJ,JJ')= 1 +w P (cos&)-+w P(cos&) 
1 1 2 2 

c = .71139, k = .6587551, H(1) - 3.01973 

By Deb & Karanjai By Karanjai & Barman 

I(O,J,J )/!(0,1) I(O,p )/1(0,1) 

0.3868091 0.34524 

0.4782439 0.43394 .. 

0.5483665 0.50504 
.. 

0.6122809. 0.57159 

0.6726329 0 .. 63575 

0.7:S05679 0.69808 
0 

0.7867261 0.75996 

0.8415158 0.82077 -
0.8951063 0.88096 

0 .. 9479748 0.94067 

1.0000000 1.00000 

2.44. Conclusion. 

Though the results obtained here is in agreement with that 

of Chandrasekhar (1960) and Karanjai and Barman (1979) ·.only 

upto one decimal point but here I can calculate the law$ of 

darkening for the phase function from the relations (2.182) 

for various values of w
2

:S • ~2~5. Also as /.J 1 , : . the 

results are in good agreement with that of Chandrasekhar 

(1960) and Karanjai and-Barman (1979). 

I 
I' 
I 
I 
I 
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2.5 Solution of a Radiative transfer preble~ with a 

combined Rayleigh and isotropic phase matrix. 

2.51. Basic Matrix Transfer Equation and Boundary 

Conditions : 

The basic integro-differential equation for infinity matrix 

l(T,~) can be written in the form 

+1 

dl (T '~) 1 I I 
J.J dT = I (T ,J.l ) - 2 (A) - 1 K (J.l ,p ) I (T ~ ) 4J 

where T is the optical thickness of the:o atmosphere , IJ. is 

the direction parc:lmeter, I (T ,~) is a (2x1) . matrix , w 

(O< w <1) is the albedo for single scatt~ring. According to 

Burniston and Siewert [1970] , K( J.l,J.l ) , a (2x2) matrix , 
can be written as 

where Q(~) , a (2x2) matrix , can be defined by 

3(c+2)1/2 [qJ2 4<1 - c) 

c + 2 ~ (c + 2 ) 
3 0 

(2.184) 

(2.185) 

QT(J.J) is the transpose of G(~), and cis a parameter 

(O< c <1). A solution of equation (2.183) is requir~d with 

the following boundary conditions 



Chapter-2 85 

1(0,-J..l)=O, (2.186) 

and I ( T,J-J)--) --k[ k ] e Tlk G(J-J) 
2 0 k - J-J 

as T > oc (2.187) 

where k is a positive root greater than one and real of the 

equation T(z) = det D(z) (2.188) 

+£ 

where D(z) = E + z f_
1 

lf(J..l) J..l ~ z (2.189)· 

V' (J..l) is a (2x1) matrix and V' (J..l) is defined by 

(-2.190) 

and E is a unit matrix ,D(z) is a (2x2) matrix and L~ is a 

spe~ified (2xl) matrix • 

2.52. Solution for Emergent Intensity MatriM • 

The Laplace transform of the intensity matrix is defined by 
oc 

I 

x* (s,J-J) = s J 
0 

-sr 
e 

Let us set I (T) , a 
u 

+1 

I ( T) (1/2) J = u 
-1 

+i 

I (s) = (1/2) I u 
-i 

subject the Laplace 

l(T,J..l) dJ..l " 
Re s>O (2.191) 

(2x1) matrix as 

T 
Q ( J..l' ) I ( T, J..l' ) dJ..l' <.2.192) 

QT(J..l')I*(s, 1-l' ) dJ..l' (2.193) 

transform as defined in equation 
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(2 .. 191) to equation (2.,183) t_o get ( using equations 

(2.186), (2.192), (2.193) ) 

(J.I s - 1 ) I* ( s i1J..1 ) = J.1 s I ( 0 ,J.l ) - w Q ( J.1 ) I : ( s) 

The solution for the emergent intensity matrix arrived from 

equation (2 .. 194) 

I ( 0 ,J.I ) =w a (J.J > z* c 1 Jp > 
u 

Equation (2 .. 195) gives for J.l = 1/s , s is complex 

. - * 
I(0,1/s) = w Q(1/s)Iu (s) 

I now apply the (2x2) matrix operator 

+1 

(1/2)J-·· 

-1 

QT (J.I ) df.J 
(J.I s - 1) 

, -

to equation (2 .. 194) to get 0(1/s)I:(s) = a(1/s) 

.(2-.195) 

(2.196) 

(2.197) 

(2 .. 198) 

where 0(1/s) is a (2x2) matrix and ~(1/s) is (2x1) matrix 

defined by 

and 

0(1/s) = 

a(1/s) = (1/2)J 

0 

- +1 

E + J (~~,:~) 
. - t 

' 
(2.199) 

~ . 
T 

J.1 sQ (J.I ) I ( 0 , f..l ) d J.l 
(J.I s ~ 1) - (2-:200) 

respectively where ~(J.I) is given by equation (2.190), _is a 

(2x2) unit matrix Eliminating I *<s> u - be tween . _ eq4ations 

(2 .. 196) and (2 .. 198) I get a matri>: integral equation _as 
O(z) I(O,z) = w Q(z) a(z) , where s = 1/z 

Following Bond and Siewert [1971] , I have 

T(z) = det O(z) = -8
1cT (z)T (z) + 

1 2 

(2 .. 201) 

. I 

I 
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and 

+ [ ( 1 - c) + ~ c ( 1 -· w) z
2

] T
0 

( z) 

T (z) = (-1)n + 3(1 - z
2 )T (z) 

n o 

n == 1 or 2 

T ( z) 
0 

= 1 + 

+1 

( 1/2)wzJ 

-1 
1.1 - z ' 

87 

(2.202) 

(.2.20'3) 

(2.204) 

where T(z) is analytic in the complex plane cut from -1 to 

+1 along the real axis with two zeros at z == ±k , k is real 

(k > 1). I consider the (2x2) H-matrix equation (vide, 

Abhyankar and Fymat, 1970) as 
1 

H ( z ) = E + zH ( z ) J HT (J.l )~ (J.J ) di.J/ (J.J +z ) 

0 

where ~(J.J) is given by equation (2.190) ·• 

(2._205) 

I shall assume that the (2x2) H(z) matrix is analytic in 

the complex plane cut from -1 ~o 0 ,-~ounded at the o~igin , 

has a pole at z = -k , k is real (k > 1 ) and ~imila~ly_ the 

H(-z) matrix is analytic in the complex plane cut from 0 to 

1 , bounded at the origin , has a pole at z = k , k is real 

-1 , (k > 1). Hence , H (z), the inverse of the H-matrix , is 

analytic in the complex plane cut from -1 to 0 and bounded 

at the origin. If the (2x2) H-matrix is a symmetric matrix 

,it can be proved that 

' 
z & (-1, 1)c (2.206) 

Now Equation (2.201) together with Equation (2.206) takes 
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the form 

H- 1 
( z ) tf 1 

( z ) I ( 0 , z ) (. k z ) = w ( k z ) H ( -z ) a ( z ) ( ~. 207 ) 
k k 

where the left hand side of equation (2.207) is regular for 

Re z > 0, bounded at the origin and the right hand side of 

equation (2.207) is analytic in (0,1)c , bounded at .the 

origin and tends to a constant matrix (2x1) say A , when 

z----+ subject to the assumption that I (O,z) is 

analytic for Re z>O and bounded at the origin. Hence, by a 

modified form of Liouville's theorem, equation (2.207) gives 

the emergent intensity matrix I(O,z) as 

I(O,z) = [ k k z )G(z)H(z)A (2.208) 

I now determine the matrix A. The inversion integral ,gi.ves 

the intensity matrix I (T ,J.l) as 

0'+ l v 0 

I (T ,J.l ) = ( 1/21' i) 1 im I 
V-+<X 

ST 
I (s,J.l )e ds/s , 

0'-lv 

where * I ( s, J.l) can be obtai.ned as 

I * ( s ,J.l ) Is = [ I ( 0 ,J.l ) 

>< Q (J.l ) I ( 0 ,J,J ) ] I ( s - 1/J..l ) 

I*(s,J,J)/s ==[ l(O,J.J)/(s- 1/2)- G(iJ) X 

X H(1/s)A/(s- 1/k)iJ(s-1/iJ)] 

0' >O ' (2.209) 

(2.210) 

(2.211) 
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The integral of equation· (2.209) is analytic for s in 

(-a: , -1 )c, has poles at s, = ± 1/k , k is real k < 1 , where 

s = 1/~ is not a pole as. 

l·im (s - 111-1 )I*(s, j.l )esr js ----+ 
5---+1/1-1 

0 (2.212) 

The contribution of pole at s =. 1/k will give the asymptptic 

solution of equation (2.183) as 

. I (T '~) [k ·~] 
when T oc 

slk 
Q(~ )H(k)e A 

(2.213) 

Equation (2.187) with equation (2.213) gives the matrix A as 

A = (1/2) [w H- 1 (k)]L
0 

(2.214) 

Equation (2.208) with equation (2.214) gives the emergent 

intensity in the form 

I ( 0, z ) = ( 1/2 )w L 
0 

H- 1 
( k ) ~H z ) Q ( z ) [ -:-k_k_z ] (;2.215) 

2.53. Conclusions. 

Here I allow the values c (0< c <1) and w (0< w <1) to 

study the general mixture of Rayleigh and isotropic 

scattering. 

a. When w = 1 and c (O< c <1) the basic matrix transport 

equation yields a conservative model for a mixture of 

Rayleigh and· isotropic scattering • 

b. when w (0< w <1) and c = 1, we obtain the general 

RayleiQh s~att~ring problem • 

c. When c = 1 and w = 1 , the problem yields Chandrasekhar·s 
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[1960] Rayleigh scattering model and G(~) reduces to 

Sekera·s [1963] form for factorising the Rayleigh 

scattering phase matrix (vide, Das, 1979e). 

d. In this problem there exists some possibilities for 

future de,velopment such as determination of the H-matrix 

expression and the values of the 0( z) matrix·· on both 

sides of the cut etc. 

e. There exists some possibilities to determine a 

characteristic function which is an even function having 

polynomial expression but has a transcendental form. 

2.6. Time-Dependent Scattering and Transm~ssion Function in 

an Anisotropic Two-Layered Atmosphere. 

2.61. Formulation of the problem • 

In an anisotropically-scattering .medium, the intensity. of 

radiation I (T ,~ ,rf>, t) at any time t, any optical depth T , in 

the direction cos- 1 ~, satisfies the equations of transfer 

1 iJ I (T ,~ ,r/> ' t) iJ I (T ,~ ,rf> , t) ; . 
+ ,., + I (T ,/-1 ~t~> Ill t ) = 

c iJt ih 

= J (T ~ J.1 111 r/> 111 t ) 111 

in which the source function J(r,,.,,tj>,t) is given by 

+t 2n 

I (T .~ ,q, 't) = !nJ J p (~ ,q, jJ.l • ,q,. ) I (T ,J-1 • ,¢ . , t) '*"' . d/> • 
-t 0 

(2.216) 

(2.217) 
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where P(T,~,~,t); the general phase function and c 

represents the velocity of light. In the above, ~ and ~ 

represent,respectively,the cosine of the zenith distance and 

the azimuthal angle. I decompose the intensity of radiation 

field into two components for two directions,viz.,intensity 

directed towards the lower surface of the atmosphere 

+ (I (T,~,~,t)) and intensity directed towards the upper 

surface of the atmosphere (I-(T,~,~,t)). 

I consider the initial boundary conditions 

I (T,~,~,O) = 0. (2.218) 

+ * I ( 0 ,~ ,~ , t ) = I. (~ ,~ , t ) 
\.TIC 

(2.219) 

- * I ( T ,~ ,~ , t ) = I. (~ ,~ , t ) . 
t _ \.nc . 

(2.220) 

Equation (2v219) and (2.220) asserts that th~ lower and the 

upper surface are illuminated. However, I shall restrict 

ourselves for the time being to the case of illumination on 

the upper surface (T = 0) by means of an instan~aneously 

collimated beam of light at time t = 0. The other su~face 

will be free from any incident radiation. I now distinguish 

betw.een the reduced incident intensity which is incident on 

boundary surface and penetrates to the depth T without 

s·uffering any collision and diffuse radiation which arises 

due to different processes (vide, Chandrasekhar, 1960). For 

the total radiation field, I have 

+ + . 
I (T ,~ ,~,t) = Id (T ,~ ,~,t) + 
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+ I\. n c ( J-1 ,¢ • t --
CJ-1 

(2.221) 

I- (T ,J-1 ,cf> , t) = I~ (T ,J-1 ,¢ , t) + 

+ I~ (1-1 ,¢ , t 
'LY'IC 

(2.222) 

where the subscript 'd · represent diffuse fields. If I 

substitute these e>:pression for I+ (T ,J-1 ,cf>, t) and I- (T ,J-1 ,cf>, t) 

in equation (2.216) I get two separate equations .of 

transfer for two components 

(T ,J.J ,f/:1 , t) = J (T ,J.J ,rp , t) , 

( 
-j_ a+...!!...+ 1) 

c at a.. I~ (T ,J-1 ,cf> , t ) = J (T ,J-1 ,cf> , t) ' 

where 
+ 1 21T 

J (T ,p ,_cf> , t) = ~ I I I d (T ,p • ,cf> • , t) X 

-1 0 

1 21T 

X p (p ,¢ ;J.J • ,cf> • )J-1 • d1> • + ~ I I p (p ,¢ ;J-1 • ,¢ . ) X 

0 0 

T T 

X Ii.nc ~- .¢>·. t--) exp(- -) q.J· dl>' 
CJ-1 J-1 

1 21T 

X I J 
0 0 

T - T 

I: nc ~ · ,cf> • , t-
1 J exp (-
c J.1 

T - T 
1 

(2.223) 

(2.224) 

l X 

(2.225) 
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Let us now put in equation {2.225) 

I. {J-1 ,¢ , t ) = Fc5 ( t )6 {J-1 - 1-1
0 

)6 (¢ - ¢
0 

) , 
\.nc 

(2.226) 

• I. (J-1,¢,t) = 0; 
1. nc 

(2.227) 

where F is a constant. 

Hence, I get 

+t 27l 

J (T .J.l ,¢ , t) = ~ J J I d (T ,J-1 • ,¢> • , t) p (J-1 ,¢ ;J-1 • ,¢ . ) 4l . dt/:> • + 

-1 0 

+ ! FP(~J,¢;J..10 ,¢0 )e>;p(- :
0 

)6(t- ~O). (2.229) 

The new set of boundary conditions are given by 

I+ (T,J..I,rp,t) = o, 
d 

I~ (·r,J.1,¢,t) = 0. 

This simplification of boundary conditions 

(2,.229) 

(2.230) 

are the 

characteristic of such formulation. Let us now define the 

scattering and transmission function (vide, Mat,sumoto,1967a) 

as 

S (T ,J-1 ,¢ ;1-1 ,¢ , t) ::: Id- ( 0 ,J-l ,¢, t) , 
0 0 

I (T ,J-l ,¢ ;J.I
0 

,¢
0

, t) 

2.62. Principle of Invariance. 

(T ,f..l ,rp, t). 

(2.231) 

(2.232) 

I shall now derive the functional equations for these two 

functions. The four principles of invariance (vide,Matsumoto 

,1969) for this problem take the following forms: (A) The 

intensity I~ (T,J..1,¢,t) in the upward direction at time t and 

at depth T is given by 
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l 1 2Tl 

+ 
1 

4nJ..l I dtJ J 5(T 
1 

-r ;J..l ,r/>;J..l' ,¢' ,t-t• )I~ X 

0 0 0 

X (T ,J..l • ,¢> • , t • ) dj..l • d:p • (2.233) 

(B) The intensity I~(T,p,¢,t) in the downward direction at 

time t and at a. depth T is given by 

1 

dt' X 

0 

1 27r 

X I J 5 (T ;p ,¢> ;p • ,¢> • , t -t. ) I~ (T ,p • ,¢> • ' t. ) q., . d:p • (2.234) 

0 0 

(C) The diffuse reflection of the incident radiation by the 

entire atmosphere is given by 

Fp-
1 

5 (T 
1 

w ;¢ ;J.J
0 

, ¢
0 

, t) = Fp-
1 

(T ;p ,¢> ,p • ,¢ · , t) + 

l 

+ Id (T ,p ,¢, t- ~ ) e>:p(- ~ ) + ~J..l I dt • X 

0 

1 27r 

. X J J T (T ;J..l ,rp ;p • ,¢ • , t-t' ) I~ (T ,J-l • ,¢ • , t • ) dJ-l • d/> • 
0 0 

(2.235) 

(D) The diffuse transmission of incident radiation by the 

entire atmosphere is given by 

-1 -1 ( T FJ-l T (T ;}J ,¢ ;J.J ¢ , t ) = FJ.J T T -r ;J.J ,¢ ;p ,¢ , t---o 0 1 . 0 0 qJ 
0 

) X 
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1 
+ 

4rci-J 

t. 1 27l 

I dt~J I 
0 0 0 

T 
1 T ) 

c JJ' 

T (T --r ;JJ ,¢ ,i-J r:J> , t-t. ) X 
1 0 0 

95 

+ 

(2.236) 

A derivation of these four equations is based on classical 

intuitive physical arguments (vide, Ambartsumian, 1943; 

Chandrasekhar, 1960 ; Presendorfer, 1958). Although these 

equations do not provide a complete knowledge of radiation 

intensity at any depth (or neutron distribution in a given 

medium) but only the reflected and transmitted intensities, 

it has some real advantages for numerical computations. 

2.63. Integral Equations for the ScatterinQ and 

Transmission Function. 

I differentiate equation (2.233) with respect toT and take 

the limit as T --+ 0 

d I~ (T ,i-J ,¢ ' t ) 
lim 

T --+0 dr 

X S (T ,i-J ,¢ ;JJ ,¢ t ) 
1 0 0' 

iJ 
= - FJJ- 1 [ ( CIJ ) - 1 -

0 iJ t 

1 
+--

4rci-J 

27l 

s (T 1 ;JJ ,¢ ;J.J I ,¢ I , t-t. ) X 
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+ 

X [ -
d_I d __ <·_r_,_J.J_·_,_¢_' _? t_._· _> ] 

dJ-1' d¢' 
dr T=O 

(2.237) 

From equation (2.223}, I get by use of equations (2.229), 

(2.230} 

where 

lim 
T --+0 

d I~ (T ,J-1 • ,¢ . , t. J ( 0 ,J..l ' ,¢ . , t' ) 
= ' 

(2.238) 

1 1 21l F 

J ( 0 ,J.l • ,¢ . , t ) = -. I I - s (T 1 ,J..I .. ,¢ .. , t ) 4-J .. dl> .. + 
4rr J.1 " 

0 0 

+ 
4
1 F6 ( t . ) P (J.I ,¢ ;J-1 ,¢ ) • 

0 0 
(2.239) 

In deriving equation (2.239) I have used the expression for 

equation (2.224) now yields, 

use of equations (2.229) , (2.230) and (2.231). 

lim 
T --+0 

= 
J ( 0 ,J..l ,¢ 't) 

+ 

after 

(2.240) 

If I substitute equations (2.238) and (2.240) in equation 

(2.233), after cancellation and r~arrangements of terms, I 

get 

iJ S (T ;J,.l ,cp ,J-1 ,cp , t ) 
1 0 0 

iTr 
+ ·1) X 

1. 
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X s (T ;J..L ,¢> ,J..l ,¢> , t) = p (J..l ,¢ ;J.J ,¢> ) 6 ( t) + 
~ 0 0 0 0 

~ 21t 

+ ~ I I P (J..l ,¢> ;}.J " ,¢ II ) S (T s ;J..L" ,¢ " ;J.Jo ,rp o t) 

0 0 

+ 

~ 

+ 4: I 
0 

21t I P(tJ. ,¢>"-J..lo ,¢o) 

0 

t. ~ 21t 1 21t 

dJ.1: d¢' + 
J.1 

I dt'I I J I S(T~;J.J,¢;J.J~,¢~,t-t') X 
0 0 0 0 0 . 

Ml I • Ml I II 
X p ( _, . A. • • , II A. II ) s (T ., II ,1, II ., A. t) _""'t-'_ rtA.. •_""'r' __ rtA.. II 

,... ''+' ,,... ''+' ~ ,,... ''+' ,,... 0 ''+' 0 ' J.1 '""t' J-1 11 '""t' 

97 

(2.241) 

Equation (2.241) is the required functional equation of the 

time-dependent S-function. Again, if I differentiate 

equations (2.234), (2.235), and (2.236) with respect to T 

and taking the limit as T --+ T and T --+ 0, 
~ 

respectively, 

and following the same procedure I get 

1 aT(T ;J.1 ,¢> ;j..l ,¢> , t ( 
~ 0 0 + J.l-~ 1 + 

aT 
~ 

s zrr 

+ !a I I p ( 1-l ,¢ ; 1-1 II ,¢ II ) 

0 0 

c 

T 

) P(tJ ,¢ ;t-Jo ,rpo) + 
CJ.lo 

T (T •I I II A. II .I I A. t) 
,1 ,,... ,'+' ,,... 0 ,'+' 0 

dJ.l" 
17" + 
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1 
+ 4n 

.t zn I J s (T .t ,J..l ,¢ ;J..l • ,¢. 't-t. ) 
0 0 

T 

CJ..lo 
T .t ) X 

J..lo 

1 
1 .t 21f .t 21f 

I dt'J I I I 
0 . 0 0 0 0 

X s ( .J..l A.. • II • A. • t t . ) T (T .J..l II .#.. II .J..l ,#.. t . ) X 
T .t ' , ..... ,,_. ,..... ' - .t ' .:<'f' ' 0 ''f' 0 ' 

X p (J..l • ,¢ . ; 1-J II ,¢ II ) ~ : d4> • ~ :: dt/> II , 

8S(T ;f,.J,¢>;J..l ,¢ ,t) 
1 0 0 

a • 1 

l 1 21f 

T 
1 

CJ..l 

X 

(2.242) 

X 
1 I dt'J I T(T •11

11 
,#.,II II A.. t-t') 4n 1 ,,.. ''+' ,,.. o ''+' o ' p (J..l ,¢ ; 1-J II ,¢ II ) X 

0 0 0 

l 1 21f T c:IJ..lll . 

X 6 ( t. - ;J ~ d4> II + : I d t. I I 
0 0 0 

T (T ;J..l ,¢ ;f,.J ' ,¢>' , t-t' ) X 
1 

1 21f 1 21f 

X I . I I I 
0 0 0 0 

dJ..l' 
p (J..l • ,A.. ' •, -I I A,. ) ,-1,#, • 

'f' ,..0 ''f' 0 . --._,. 
J..l' 

1 l 

+--Jdt'x 
l&r2 

0 

T (T ., A.. ., • A.. • t-t. ) T (T ., II A.. II ., A.. t. ) X 
.t ,,.. ''+' ,,.. ''+' ' .t ,,.. ''f' ,,.. 0 ,'f' 0 ,. 

X p (J..l • ,¢ . ; 1-J II ,¢ II ) ~ :. d4> • ~ :: dt/> II ' (2.243) 
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o T (T 
1 

;1-1 ,c/> ,J...l 
0 

,¢
1 

. , t ) 

iJT 
1 

·1 
+--

~-'o 

1 0 

(--; ~ + 1) T (T ,J...l ,¢ ;J...l ,¢' , t) = 
1 0 0 

1 2Tl T 

X J J . p ( 1-l ,¢ ;J...l .. ,¢ .. ) s ( T 1 ;J...l II ,¢ .. ,J...l 0 ,¢ 0 , t- . c: ) X 

0 0 

dj..l" 1 
1 21t J J T (T 

1 
;f-/ ,i-J ' ,¢ ' , t) P ( 1-l ,¢; X d/>" + 1-lo ,¢ o ) X 

1-lll 4Tr 
0 0 

df..t' 1 
1 1 2Tl 1 2Tt 

I dt·I I I I T (T 1 ;f-1 ,r/> ;f-1 • , t-t. ) X d1>. + X 
1-l H::vtz 

0 0 0 0 0 

X S(T ·J...l 11 ¢" •1-l .¢ .,t) X 1'' 'o·o· 
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X P(_,,· ,.~.. .• ,, .... J..") $: r~.J..' $" rf-J.." 
r- ' 'f' , ,..- • 'f' 1-l '-¥' 1-l II '-¥' (2.244) 

Equation (2.241), (2.242), (2.243), and (2.244) are the 

required functional equations for 'Sand ·~ functions. Let 

us now introduce the Laplace transform with respect to the 

time-variable which enables us to eliminate (at least 

formally) the tim~variable, 

oS(T ;!-l,¢;1-l ,¢ ,s) 
1 0 0 

dr 
1 

1 1 s 

+(-+-)(1+-) 
1-l 1-l 0 c 

5 (T ;p ,¢; ;J.J ,¢ , S ) = 
1 0 0 
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1 
j. zrr 

= p (J.J ,¢ ; f-1 0 ,¢ 0 ) + 4n I I p (J.J ,¢ ;J.J II ,¢ II ) X 

0 0 
rfJ J II 

X S (T •11 II A, 11 • II A. 5) '"'I"" riA. II + 
1 ,,.. ''#" ' ,..o ''t-"o ' 7 ,_,., 

1 zrr 
1 

+ 4n I I S(T •J.J ¢.,I ¢' s) P(-11 I,¢ I; f-lo ,rpo) d~ :dp I + 1,,,,..,' ,.- ,.. 

+ 
1 

0 0 

1 zn 1 zrr 

J I I I s (T ;J.J ,¢ ,J.J • ,¢ I , s) S (T ;J.J 11 ,¢ 11 ;p
0 

,¢
0 

, s) x 
. 1 j. 

0 0 0 0 

X p ( f-1 ' ,if> ' ;J.J II ,¢ .. ) dJ.I I 

J-11 

d,ull 

. d,u It rf,#. • rfA. .. ,_,., 7' '"¥' 
(2.245) 

-1 
T'(T ;J.J ,r? ;J,J ,rp , S) J.J 

1 0 0 
= 

1 
1 zrr 

+ I J T (T . •J.J II ¢II .J.J A. s) X -- 1 ' , , 0 ''#" 0 ' 
4n 

0 0 

1 T T S 

X p ( f-J ,¢ ; f-J .. ,if> II ) d¢ 11 + 4rr exp(- - 1
-) exp(- -1

-) X 

+ 

J-Ill f-lo Cf-lo 

t 21r 

X I J S(T 1 ;J.J ,¢ ,J.J I,¢ I ,s) P(p ,J.J.; - J.Jo ,¢o) 

0 0 

1 
1 zrr 1 zn I I I I s (T 1 ;J.J ,¢ ;J.J ' ,¢ I ' s ) p (J..I I ,¢ . ; 

0 0 0 0 

c¥1>. + 

J.J .. ,if> II ) X 
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+ 

dJ.i ' dJ.i II 

X T (T .1 ;J,.l .. ,¢ II ;J,.l 0¢0 s) - d4> • -- dp .. ' 
J..l J..lll 

T S 

X exp(- 1 

c 

X 

1 1 

(- + -)) 
J..l J..lo 

di-JII 

P (J.l ,¢ ' ~ II ,¢ II ' ) - . d4> II + 
J.lll 

i 2Tf 

(2.246) 

1 

) ) X + 

) X 

c:IJ.l' 
X I I I (T ;/-l ,¢ ,J.l ' ,¢ , s) P (J.l ' ,¢ ' ; -~ ,rp ) -- d:/> ' + 

.1 0 0 . 

1 

o ·o 

.1 2Tf :1 2Tf 

I I I J 
0 0 0 0 

. J.l 

T (T ;J.J ,r/> ;1-1 • ,r/> • 's) p (J.l • ,¢ . ; ~ .. ,¢II ) X 
:1 

X T (T '"/-1 11 r/> ... , I A. s) 
1 '. ' ,,...o ''t'o' dp. ' (2.247) 

/-l II. 

8T(T ;/-l,r/>,/-1 ,r/> ,s) 
1 0 0 

1 
+ -

J.lo 

s 
c ) T (T t ;/-l ,r/> ;J.lo ,r/> o 's) = 



Chapter-2 102 

1 21t 
1 

exp(- : 1 
) exp(- ::

5

) I J P(~,¢;~"¢") X 

0 0 

+ 

dJ..i" 
X s (T ., II A. II ~ ¢ s) -- d:p II + 

1 ,,.. ''#" ' 0 ' 0 , 
~II 

1 21t 1" 21t 

1 1 21t 

4n I I 
0 0 

1 
ap' + 

X I I . J J T (T 1 ;~ .rJ> ~~ • ,¢ ' , 5) p ( 1-1 ' ,¢ ' ,~ •• ,¢ II ) X 

0 0 0 0 

qu" 
X s ( T ., II A. II ., A. s) 

1 ,,.. ''#' ,,.. 0 ''#' 0 , dP. -- ap". 
~II 

2.64. The Reduction of the Integral Equations. 

I have 

N N 

p (~ ,¢ ;~ . ,¢ . ) = l ( 2 -6 o , m ) [ l m 

"\ 
m=o l=m 

X cos m(¢' - ¢). 

If I follow Chandrasekhar (1960), I obtain 
N 

S(T ;~ ,¢ ;~ ,¢ , s) (T ;~ ,~ ; s) cosm (rj> - rJ>) = l s< m> 
1 0 0 1 0 . 0 

m=O 

N 

T ( T ;~ ,rj> ;~ ,¢ , s ) 
1 0 0 =2 T<m> (T ;~ ,~ ,s) cosm(¢ - rJ>) 

1 0 0 

m=o 

(2.248) 

(2.249) 

. (2.250) 

(2.251) 
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If I substitute these e>:pansions of S and T in Equations 

(2.245)-(2.248) and after some rearrangements I get 

1 1 s. 

(- + -) ( 1 + - ) s' m > 
J..l J-10 c: 

(T ;J.J ,J-1 ; 5) + 
1 0 

g< m > (T 1 ;J.J ;J-10 ; 5) 

ih 
1 

= (2 - 6 o,m 

N (-1 } t+m 

l (-1 )m+ tw7 [ P;_' (J.J} + -----
2(2 - 6 } 

X 

m=O o,m 

dJ-1' (-1 )l+m 

,s) ~ (J.J' ) ---::;-] [ r=T; (J-1) + -----
,.. 2(2 - 6 ) o,m 

1 cfi.J" 

= 

X 

X J ~ (J.J") S<m> (T ;J.J" ,J-1 , ,s) -- , (2.252} 

0 

N 

1 0 J..l" 

~- T' m> ( ) v T ;J.J ,J.J ,s 
1 0 

ih 
1 

= ( 2 - 0 o. m ) l w7 [ pn (J-1 ) + ----
t 

X 
2(2 - 6 ) 

l=m o,m 

...m C#.l' ] ,s) I"" (J.J) -- X 
l J..l I . 

= 
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+ 

X [ 

+ 

1 
s dj.J" 

J T<m> (T •j.J II II 5) pn (j.J" ) 
1 ' ,,...0 ' l ] , (2.253) 

2(2 6 ) 0 o,m 

oS(T ;J.J ,J.l , s) 
1 0 

X ~ (J.l) 

N 

= (2 - 6 ) ' 
o,m tftm 

+ i 
exp ( -T~ ( 1 + ~) ) 

2(2 - 6 . 
J.l c o.m 

1 

X J T<m> (T ;J.J ,j.J 1 
, S) ~ (IJ, ) c:IIJ' ]x 1 7 

0 

~ (J..lo ) ~>:p[-
T 

(1+ ~)] 1 1 + 2(2 -6 ) 
1-10 O,m 

1 

xJ T (T ;J.J" ,/-1 's) --,-<m> cfJ..I" ] 
1 0 1-1 

, 
0 

X 

) X 

X 

~T< m> (T ) 
Q ;1-1 ·1-1 , s 

1 0 

N 

(2.254) 

= 

T 

= ( 2 - c5 
0

, m l w~ [ ~ (J.l) exp[- ~ ( 1 + ~ ) ) + 
l =m J.lo 

1 

1 I T<m> (T •u•u s).J=Pl(u') .t ,,... ,,...0 , l ,... 2(2 - 6 ) 
o •. m 

0 

[ 

(-1 ) l+m 

X ~ (J..l
0

) + X 
2(2 - c5 ) 

O,m 
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X 

1 J F'; (J.J , ) 

0 

< m> 9 (T •11" II S) 1 ,,... ,,..0 ' 

qu" 
] (2.255) 

J..l" 

If I now let 

and 

m 
VJ (T ;J.J , S) 

l .1 
--p; (J.J)+ 

T 
1 

xJ 
0 

(-1 )l+m 1 

2(2 - 6 )J 
o,m o 

dp' 
(2.256) 

p; (J.Jo > + 2 ( ~ - 6 ) X 
o,m 

(2.257) 

then,in view of principle of reciprocity (vide,Chandrasekhar 

,1960) I can rewri.te equations (2.252)-(2.255) in the form 

1 1 s 
(- +-) ( 1 + -) 

J.J J.J 0 c 

< m> o T (T ;J.J •J.l , s) 
<m> .1 0· 

S (T ;J.J ,J.J ; S) + ----------
1 0 

= 

N 

= ( 2 _ 6 ) ~ ( _ 1 )m+ 1 Wm m ( ) m ( ) 
O,m L. l li't T .1 ;J.J ' 5 V'l T 1 ;J.JO ,s ' (2.258) 

l=m 

iJT 
1 

= 
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N 

= (2 - 6 o,m 
) l m m m 

JJ.J 5) (2.259) £1.\ lJl \. (T 
1 

;J.J , 5 )¢ \. (T 1 0 

\.:::rn 

and 

aT<m> (T ;f.J ,f.J , 5) 
N 

.1 . 0 
(2 -6 ) l (-1 )m+1 m = ~\. X o.m en-

1 

N 

l=m 

~T' m> (.... ) 
v • 1 ;J.J ,J.J 0 " s 

a ,. 
' 

~ m m m 
= (2 - 6

0
,m) £ ~\. ¢\. (T 

1
_;1-l ,.s) Y'l (T 

1 
;J,.l

0 
,.s) -

l=m 

Now by use of equations (2.258) and (2.260) I get 

s' m) ( ) 
T 1 ;J,.l •1-lo ; s == 

N 

(2.260) 

= 

(2.26i.) 

= ( 2 - 6 ) ~ ( -1 ) \. -t m ur\. [ )Jim (T ., I s) )~Jm (1" ., J 5) -
o,m £ .,-\. 1,,.., .,..\. 1"-o' 

l=m 

m m 
¢>l (·T il-l ,s) ¢\. (T ;1-1 s) ] ; 

1 1 0 
(2.262) 

and by use of equation (2.259) and (2.261) 

(~ 
1-1 

N 

Cm> ~ 
T (T 

1 
;1-1 ,/-1

0 
, s) = ( 2 - 6 

0 
• m ) f. X 

l=m 
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(2.263) 

Equations (2.262) and (2~263) are the two fundamental 

'•~:-
equations of our problem. 

. ,, .. ,2.65. Legendre Expansion of the phase function and the 

principle of invariance. 

Let us now consider that the atmosphere consists of two 

different. layers. Den6ting the quantities in the upper layer 

by subscript 'l'and the quantities in the lower by subscript 

'2' and if I use equations (2.262) and (2.263) I have 

s<m> 
1 

and 

N 

(T. ;J.J ,J.J 0 ; s ) 
J.JJ.Jo 

(2 -6 = ) 2 (-1)\.+m 

( m> 
w. \. \. , 
---X 

\. + o,m 
/.l J.Jo l=m 

m m . 
X lf' l (T i. ;J.J , 5) lf' l (T. ;J,J , S) -

\. 0 

m m 
- r/>l (T. ;J_J , S) r/>l (T. ;J.J , S) 

\. \. 0 

< m> 
T. (T . ;J.J ,J...l ; s) = 

\. \. 0 

J.JJ.Jo 
N 

( 2 -oo,m) 2 
l.=m 

( _ 1 )l-t-m 

2 ( 2 - 6 .)J 
. o,m o 

,.. Q 

(2.264) 

< m> 
w .. l 
--"..;..·--·x 

(2.266) 

1 ¢~ (T i. ;J,J ,s) = Pf (J.J) exp ( --
1
-) + 

J.J 
2(2 - 6 ) X 

.. o,m 
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where 

¢1' 
(T i.. ;1-1 ,,_,~ ,s)p; (1-1' ) -- , 

1-1' 

Q = 1 + s and \. = 1,2. -c 

108 

(2.267) 

(2.268) 

If I use the above representations and again if I use 

Equations (2.250) and (2.251) I can write the scattering 

and transmission function in each_ layer .as 

N 

= ~ s< m > (T. ;1-1 ,,_, , s) cosm (¢ - ¢ ) ; l L ~ o o 
(2.269) 

m=o 

N 

T ( A.. A.. ) ~ T< m > ( ) cosm (A.. · - A.. ) 
L T \. ;1-1 '¥' ;1-10 ''i"o ,s = l i. T i. ;1-1 '1-lo ,s ¥'0 ¥' · 

m=O 

(i. = 1,2). (2.270) 

In what follows I inquire into how represent the scattering 

and transmission functions in the whole atmosphere. If I 

follow Tsujita, I introduce diffuse r~diation intensiti~s 

I 1 (T i. ;1-1 ,¢ ;J..l 
0 

,¢ 
0 

, s) and I
2 

(-r \. ,,_, ,¢ ;1-1
0 

,4> 
0 

; s) which leave the 

upper and lower layers in the direction (1-1,¢) with respect 

to the boundary between the two layers, where (1-1
0

,¢
0

) 

denotes the direction of the incident radiation at the upper 

surface T = .0. I (T. ;J..l ,¢ ;1-1 ,¢ ,s) and 
1 ~ . 0 0 

must satisfy the conditions 

1
1 

(T i. ;1-1 ,¢ ;J.J
0 

,¢
0 

,s) = 0 

I 2 ( T L ;1-1 ,¢' ;1-1 o ,¢' 0 ' s ) = 0 

for O< 1-1 <1 (2.271) 

for -1< J..l <O (2.272) 

Then from the principle of invariance (A) (B) I have 
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after the laplace transform with respect to time variable 
Qr 

l (m) ( ) Fi-t s<m> ( ) ( 1 ) + T ;f.l ,f.l , s = f.l T ;f.l ,f.l , s exp - -- _ 
2 1 o 2 2 o f.l

0 
. 

1 

+ 2(2 - ~ )f.l I s~m) (T 2 ;f.l ,J.J' ,s) X 
o,m 

0 

) rf, •' rf.+.l , ,j.J 0 , s .....,... "'¥' (2.273) 

1 
( T ;J.J ,j.J , S ) + 

1 0 
X 

2(2 - 6 )f.l o ,m 

1 

(T ., ,, ,s) I (T ·J.J' f.l s) cfJ.J' dj>' X I S
1

<m> <m> 
1,,...,,... 2 1'· 'o' (2.274) 

0 

From (C)-(D), 

-.1 
Ff.l . s (T ;J.J ,cp ;f.l ,cp ' s ) + 

1 1 0 0 

1 2n 

+ I2 (T 1 ;J.~,</>;,.0 ,.p0 ,s)exp(- T:</>) + ,;,,. I I X 

0 0 

X T (T ., ,~.,. .,. ,~.,. s) I (T •11' ,~.,.. •11 ,~.,. ·s) r~ .. • r~.+.• 
1 1 ,,... ''f' ,,... 0 ''f' ' . 2 1 ,,.. ''f' ,,... 0 ''f' 0 , .....,... "'¥' 

and 

(2.275) 

-1 -1 
Ff.l T (T ;/-1 ,cp ;/-1 ,r/> ' s) ::::; F/-1 T (T ;j.J ,r/> iJ.l ,rp ' s) X 

0 0 0 2 2 0 0 

T Q 

exp ( - /-1: ) ( 
_ T/-12 G ) 1 (T ;1-1 ,rp ;1-1 ,rp , s) e>: p + 

1 1 0 0 

1 2n 

+ ~~-~ I I T (T •II ,I.. •II' ,I.. I • s) X 
2 2 ,,.. ''f' ,,.. 0 ''f' 0 ' 

0 0 

X I (T •J.J' r/>' •J.l cp • s) cfJ.J' dj>' 
1 t'' 'o'o' (2.276) 

where T , T and T are the optical thickness of the whole 
0 1 , 2 

atmosphere,the upper and the lower layer, 
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respectively. Furthermore,! assume that I (T ,J.l ,¢ ,J.l' ,¢' , s) 
1 1 

can be expanded in the form 
N 

I (T ·J.l ¢·"' ¢' s):::: ~ I"~m> (T~ ;J.I,J-1
0
' ,s) cosm(¢'- ¢>, 

" 1 ' ' ,,...o ' o ' L .. 
m=o 

(l = 1,2) (2.277) 

If I substitute this exp.ansion in equations (2.274) and 

(2.273) and taking account of equations (2.269) and (2.270) 

and allowing for 
27l J cos m (¢"- ¢> ) cosn (¢' -r:p" ) d:/>" = 

0 

= 6 
m ,n 

rr cos m (¢' - ¢ ) ( m ~ 0,. n ~ 0) = 2J 

(m = n = 0) 

I obtain 

T<m> ( ) 
T ;J.I ,J.l ,. S + 

1 2 0 

1 

+ l f s1<m> <m> -=2...,(,....,2=---_----,6..----:)-J.l- ( T 2 ;J..I ,J.l, ' s ) I 2 . (T 1 ;J..I, ,J.l 0 ' s ) '*'· 
o ,m 

0 

I < m> (T ) ;J.I ,J.l ' s = 2 1 0 
n - 1 5< m> (T 

J.l 2 1 

1 

+ -=-::-=----,1..-----:--- I s2' m) 
2( 2 - 6 )J.l 

o ,m 
0 

(2.278) 

(2.279) 

2.66. Auxiliary Funct~ons and their Functional Relations. 

Let us now consider some auxiliary functions in term of 

which I (T ;J.I ,¢ ;J.I ,¢ , s) and I (T ,J.l ,¢ ;J.I ,¢ ; s) are formed. 
1 1 0 0 2 1 0 0 

If I assume that they depend on only one argument, I seek 
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functional relations satisfied by them and then solve the 

system of equations. For convenience, I put 
N 

J.lo 
I< m> ('T ;J.I ,J.I , s) = F ---

1 1 0 
~ w<m> 
L t. t. 

(2.281) 

J.l - J.lo 

N 

I< m> (T ;J.I 'J.Io 's) = F 
J.lo 

l < m> a<m> 
(f.-I,J.Io's) w 

2 1 2' t. t 
f.-1 +J.I L=m 0 

(2.282). 

If I insert equations (2.281),(2.282),(2.264),and (2.265) 

into equations (2.279) ahd (2.280) and rearrange them 

appropriately, I have 
N N 

A<m> ( ) = 
t. J..l 'J..lo ,s ( 2-¢ ) ~ 

o,m L 

< m> 
w. t. 

L ' A.<m> ( ) 
'~-'t. T .1 ,J.I ,s X 

L=m t.=m 
Q 

m 
X lpt (T ;J..I , S) 

1 0 

m m 
lp t (T .1 ;J..I , S) cp t (T .1 ;J,.I O , S) + 

N 

+ ;{{ 

< m> w. l (-l)L+m L,t 

Q 

m m 
[ lp .1 (T .1 ,1-J , S) lp 1. (T .1 ,f.-1' , S) -

0 L=m 

N 

- ¢; (T 
1 

,f.-1 ,s) ¢; (T 
1 

,1-J·,_. s) ]} [ l w~~~ B~m> (J.I'_ ,J,.I
0 

,s)] x 

t.=m 

J.l 

J.l - J.l, 
N 

J..l' + J.l 
0 

~ <m> 
L w2. l B~ m > (f.-1 ,J.I o ' S ) = (2 - 6 ) 

o,m 
t=m 

X (lp ~ (T 
2 

,J,J , 5 ) ¥' ~ 

(2.283) 

N <m> w l (-l)t+m 2,l 

Q 
X 

L=m 

(T ,J.I , S) ) X 
2 0 
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N 
f.J 

< m> 
w. 1. 

\.. 

112 

X 

[ l < m> <m> ] [ 
f-lo ] X w At (f.J,J.Jo,s) . + d#-1' • (2.284) 

Ll 
l=m J.J + J.J' J.J, - J.J 

0 

I rewrite equation (67) as 
N N C m> 

w. l em> A<m> 
(J.J ,J.J 0 ' s ) l \. • l < m> 

wl. t = r/>l (T ~ ,J.J ,s) X 
l Q 

l=m l=m 

1 

x [ ( 2 - 6 
0

, m ) lj.l~ (T 
1 

,J.J
0 

, s) + 
2 

J.Jo I ¢.~ 
0 

N 

l <m> a< m> ( , 
,f,Jo 's) 

~· ] l =m W2 • l 
N < m> l J.J w. 

X 2 \. . ( m> 
(T ,J.J,s) X - "Pl J.J, + J.J 

Q 
~ 

0 
l=m 

1 

X [ ( 2 - 6 O • m ) ¢~ (T 
1 

,J.J O , S ) + 
2 

I ~~ 

X 

N 

'\' w<m> 
L z,t l:o::m -

B<m> ("' " s·) . 
l ,.. ,,..0 ' 

JJ' + J..l 
0 

~·] + 
J..l 

2 

0 

N < m> 
t w. t l ( -1) +m \. • 

Q 
l=m 

1 m m m m 

[ I 
"Pt (T 1 ,J.J ,s) ~t (T 1 ,J..J' ,s) - ¢t (T 1 ,J..l ,s) ¢l (T 1 ,JJ' ;s) ] 

J..1 + J..l' X 

0 

X 
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N 

X [ l (2.285) 

l=m 

11 I take account of equations (2.264), we write the third 

term of the right-hand side of the above equation as 

1 

1 I s<m> --:2;::,-,-( 2::;,-----6~--:-) 1 
o ,m 

0 
N 

X [ 
~ w<m> 
L 2,t 

e' m) ( • ) ...,... 

] 

rJ ••• 

l 1..1 ,J-1 0 ' s -;:;' 
l=m 

Then I put 

Olm (J-Io 's) = ( 2 - 6 ) lpml ('T 'l..lo 's) + 
i.l o,m 1 

N 

~ w<m> 
tfm 2

' l. 
(-r ,J-1' ,s) 

1 

B<m> ("' ) 
l ,.. '/-lo,s 

J-1, + J-1 
0 

m m 
et (J-1

0 
, s) = ( 2 - 6 ¢L (-r 

1 
,J-1

0 
, s) + 

2,l o,m 

N 

~ <m> 
l fm w2' l 

(T 1..1' ,s) 1 , 

B< m> ( , ) 
t J-1 'J-Io,s 

J..l' + J..l 
0 

(2.286) 

X 

2 

(2.287) 

2 
l..lo X 

41' • (2.288) 

If I make use of equations (2.286),(2.287),(3.288) and 

rewrite equation (2.285) once more, I have 

A( m > ( ) m ( ,., c m > ( m 
L J-1 'J-Io ,s = 011, t J-lo ,s) y.·t -r 1 ,J-1 ,s) - 012 ,l (J..lo ,s) x 
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<m> 1 
X V'l (T S. ,J.l ,s.) +· 2(2 - 6 ) 

o ,m 

< m> 

( 
wt 't 

< m> w 
1' t 

rfJ I, 
( , ) a<m> ( , ) ...,... 
T1,J,.l,J..l ' 5 t J.l 'J..lo' 5 7 
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(2.289) 

On the other hand, by rewriting equation (2.284), I have 
H 

~ w<m> 
L. 2.t 

B<m> ( ) 
l J.l 'J.lo ' 5 = 

c m> w 
2' 1. ( -1 )1. + m l,lc m > ) 

T (T ,J.l ,s ·X 
2 

l=m l=m 

[ (2-6 ) m 
s) exp ( 

- T.i Q) ~-'o 
X "~'t (T 2 'J.lo ' + 

o,m 
2 J..lo 

N 

s. }: w<m> A<m> ( , 
'~-'o 's) 

l=m 1,t t IJ ] X I <m> (T ,p' , S) cfiJ' '~~'s. 2 1-1' - J.l 
0 

0 

< m> w 
2' 1. (-1)t+m ¢t<m> (T2,J.l,S) [ (2 -c5 )¢m(T J.l· 

o,m t 2'o' 
l=m 

T Q 

X exp( --
1
-) 

J.Jo 

+ 

l <m> A<m> ( , ) 
w t f-1 ,f-10 's 

(T ,,, s) X 
2 !,... ' 

X 

-

s) X 

l=m s.,l 
X . , 

J.l - J.l 
0 

41' ] + 2(25 
1 

- c5 ) X 
o ,m · 

Then I 

N 

(T ,J.J,J.J' ,s) 
2 [ 2 < m> w 

s..t 
a<m> ( 11 ' _, s)] q.,• 

1 ,.. ,.,... 0 , J.l' 

l=m 
"t. <m>( ) <m> wr1 e ot J.J ,s and a 

3,L o 4,L 
(J.J , s) as 

0 

(2.290) 
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+ 

s 
~-'o J <m> 

V's 
2 

0 
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l '·' < m > A' m > ( , ) 
""' t t 1-' '~-'o ' s s' 

( , ) l=m 
T 2 ,J-1 11 S -----J.I-.-1 ---J.,J-----

0 

c!J.,J' (2.291) 

< m> 
a l (J..l Ills) = 

•• 0 

T G . 

( 
s )• . exp -- · + 

~-'o . 

N 

s l w<m> A< m> ( , ,J.,Jo ,s) 
~-'o J ¢:m> 

1 , L l J.l 

+ (T ,J-1 1 
, S) 

l=m 4-1' 
2 

2 1-', - 1-' 
0 

0 

If I make use of equations (2.291) and (2.292) and 

equation (2.290) once more, I have 

<m> 1 
X (J-10 'S) ¢1 (T 2 ,1-f 'S) + 2 ( 2 - 6 ) 

0 ,m 
1 

< m> -a x 
• 'l c m> w 

( 
1. l ) 
c m> w 

Qx 

2. t 

X I s' m> ( , 2 T 2 ,J.,J ,1-f 
) qu' 

,s) 1\m (1-f' '~-'o ,s) 7 
0 

From equations (2.289) and (2~293) l:·. get 

(2.292) 

rewrite 

(2.293) 

A<m> 
(1-' •~-'o • s) 

m Cm> m 
l = Glls.L (J.Io '.s~ rpl (T~ ,J.l,s) - Q2 • 1. (1-JO II B) )( 

w<m>: 
em> 

(T ,J-1 , S) + Qcm> 
(J.Jo 's) 1 ( 2, 1. l G )( V'l 2 (2 -6 ) <m>· 

)( 
1 g. l 

o ,m w l 
1. s 

x J s:m> (T 1 ,1-' ,J..l' ,s) q,<m> (T ,J-1' ,s) - c m> (J-1 ,s) 1 
0( 

2(2 - 6 ) )( 
l 2 • , l 0 

0 
o ,m 

c m> 1 

( 
w 

) aJ 41' X 
2, l s<m> (T ,1-' ,1-f 0 , s ) ,p<m> (T ,J.l' ,s) + ( m> 1 s l 2 7 w 

S.l 0 

s 1 

+ 1 J s<m> (T ,1-' ,J..l' ,s) J s<m> (T ,J-1 ,1-'" ' s ) 4 (2 - 6 ) 1 1 2 1 
o ,m 

0 0 

A<m> X (~J" J..l s) 
dj..l" ttL' (2.294) 

1 
, 0 , J..l" 7 , 

and 



i. 

X I s<m> (T ,j.J ,J,J' 
2 2 

0 
< m )~ 

w 

c m> w 
( 

1. l 
c m> w 
2,l 

) Q X 

) A.< m > ( , ) 41' m ( ) 
,s 'f't -r1,J.J ,s 7-cx2.l J.Jo,s x 
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1 
X 2(2 - 6 ) (

. i. • l 
< m> 

w 2. l 

c m> 
(-r.~ ,J.J ;1-4' ,s) V'l (-r 1 ,J.J'~ ,s) x 

o ,m 

dj.J' m 
(J.Jo,s) 

c m> 
(T , J.J' , S) 

m 
(J.J ,s) x X 7 01. 

a. l V'l -ex 
4. l 2 0 

1 

q,<m> 
('l" 2 • J.J' ,s) + 1 I s' m> ( , ,s) X 4(2 - 6 ) ,. ,J,J ,j.J X 

t 2 2 
o ,m 

0 

X 

..~,,, ,...,, 
(-r .,, ,,, s) B<m> (""" s)...,.... ...,.... 

1 ,,_ ,,_ ' l ,.- ,,....0 , /J 11 7 .. (2.295) 

Again from equations (2.294) and (2.295), if I. use 

equations (2.289) and (2.293) I get 

A<m> ( ) <m> 
L 

J.J ,1-4
0 

, s = ex 
1 , l 

X ~<m> 
2. l 

~~-~ , s) + 

s<m> 
l 

X (3<m> 
3, l 

(J.J,s) 

(J.J ,J.Jo 's) = 

( 2) 

1 w 

2(2 - 6 ) 
o,m 

( 
.2. l 

< m> w 

2 

< m> -ex 
'4. l 

1 
(2 -6 

1 • l 

( ) l')<m> 
J.Jo 's , .. 4, l 

( 2) 

( 
w 

1. l 
) < m> o,m w 

2, L 

< m> -a 
2, l 

< m> 
01. 

3. l 

(J.l ,s) 

) Q Ol.<m> 
1 • l 

< m> 
(J.J,s) 

< m> 
(J.Jo , s) 

< m> 
(j.J,S) +a < m> 

X r s. L 
-a 

2. l r2.t a, l 

< m> -a 
'4. l 

(J.-l,s), 

(J.J ·, S) X . 
o. . 

(2.296) 

'(J.Jo ,_s) X 

(J.Jo ,s) X 

(2.297) 
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1 
B< m> ( ) ,~,.m 1-1 's = .,.,, 
1, '1. • 

(T ,/-1 , S) 
:i 4(2 

X 

(J..,i' 's) ' 
0 

1 
em> ·+ = ~<m> (J.J,S) (T ,J,J,s) lf''l. 2. \. 1 4(2 6 )2. 

o,m 

1 

)( I s<m> (T 
1 

;J,J ,J,J' , S) 
c m> (J.l' 41' 

rz,l ,s)-
' '1. J.l' 

0 

1 

~<m> (J.l ,s) I s' m> (T ;J,J ,J,J' ' s ) 
c m> 

(J.l' ,s) 41' = rs.t 7 9. l l 1 
0 

1 

~em> (J.J,S) = J s<m> (T 
1 

;J.J ,J-1 1 
, S) 

< m> (J.l' ,s) 41' 
•• t '1. r •. t 7 

0 

1 

< m> (J.l,s) I s<m> c m> (J.l' ,s) 41' 
r1.t = (T ;J.J ,J-1 1 S) ~ 

2 2 ' 1. l 7 
0 

1 

c m> 
(J.l ,s) I s<m> (T 

2 
;J,J ,J.I' , S) ~<m> (J-1' ,s) 41' 

r2.t 
= 

2 2,\. 7 

)( 

0 

1 
< m> 

Ys,t 
< m> 

(J-1 's) = lf'\. <• 2 ,J-1, s) + -------
4(2 - 6 )2 

. 1 
.o ,m 

I 5< m> (T ;J.J ,J-1' , S) (3( m> 
2 2 9,l ' 

0 
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(2.298) 

X 

(2.299) 

' 
(2.300) 

' 
(2,301) 

' 
(2.302) 

. (2.303) 

X 

(2.304) 
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< m> 
r •. t 

1 

X I 
0 

1 
(J.J ,s) = ¢~ m> (T 

2 
,J.J ,s) + -------

4(2 6 )2 

S < m > ( , ) {3' m > 
T "'" -" S 2 2,.,...,.,...' •.l 

o,m 

'*-'' (J.l' ,s)7 
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X 

(2.305) 

If I combine equation (2.298) with equation (2.302), 

equation (2.299) with equation (2.303), equation (2.300) 

with equation (2.304), and equation (2.301) with equation . . ~ 

(2.305), I can det~rmine 
< m> 

~. l (JJ,S) 
\ . and 

(t=1,2,3,4) numerically. From equations (2.287), 

(2.291), (2.292)' (2.296), anq (2.297) 

< m> r. t (J.l ,s) 
\. . 
(2.288)' 

< m> 
ri.,l(J.Jo,s), 

can be calculated and then 

from equations (2.281) and (2.282), and 

C m> 
I (T ,J.l,J..l ,s) 

2 2 0 
are determined .Thus I . obtained 

S (T ,.J.J ,¢ ,J.l ,¢ , s) and T (T ,J.l ,¢ ;J.J ,¢ , s) 
0 0 0 0 0 0 

from e~u~tions 

(2.275) and (2.276). 
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CHAPTER- 3 

SOLUTION OF RADIATIVE TRANSFER 
PROBLEMS IN AN- ATMOSPHERE 

SCATTER.ING. COHERENTLY 

I 

I 
i 
I 
I 

I 
-1 

- I 



~· 

3.1. Introduction. 

Chandrasekhar [1960] applied the method of discrete 

ordinates to solve the transfer equation for coherent 

scattering in stellar atmosphere with planck's function as a 

linear function of optical depth (equation (1.9)). 

The equation of transfer for coherent scattering has also 

been solved by Eddington·s method (when nv' the ratio of 

line to the continuum absorption coefficient , is constant) 

and by Stremgren·s method (when~ has small but arbitrary 
v 

variation with optical ·depth, (vide, Woolley and Stibbs, 

1953)). Dasgupta [1977a] applied the method of Laplace 

transform and Wi.ener-Hopf technique to find an exact 

solution of transfe~ equation for coherent scattering in 

stellar atmosphere. with Planck·s. function as a sum of 

elementary functions (equation (1.10) by use of a new 

representation of the H-function obtained by Dasgupta 

[1977b]. 

In the present work, the equation of t·ransfer has been 

solved by different methods Vi.z., 

(i) Eddington·s Method (Sec-3.2). 

(ii) Laplace transform and Wiener-Hopf technique (Sec-3.3). 

(iii) Busbri.dge·s Method (Sec-3.4). 
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(iv) Discrete Ordinates (Sec-3.5). 

in an isotropic coherently scattering atmosphere with 

exponential Planck function (equation (1.11)). 

3.2. An approximate solution of the equation of transfer for 

coherent isotropic scattering by the method used by 

~ Eddington. 

3.21. Equation of Transfer. 

The equation of transfer for coherent scattering can be 

written (vide, Woolley and Stibbs, 1953 ) in the form 

Cos& d I (-& ) /pdx = - ( k + 1 ) I (& ) + 
v v v 

+ (1 - & )I J + (k + & 1 ) B (T) vv 1J v (3.1) 

To find an approximate solution of equation (3.1) we proceed 

as follows : let 

Hv = (1/4n) J I (& ) cos& d.> 
v 

(3.2) 

(3.3) 

:-

I 

I 
I 
I 
! 
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' (3.4) 

in which the integration is made over all directions. 

By multiplying equation (3.1) by (dW/4IT) and (dw cos&/4rr) 

and integrating I obtain 

dH /pdx = -(k +&I )(J 
v v v 

dK /pdx = -(k + 1 )H 
v v v 

B ) 
v 

(3.5) 

(3.6) 

where B (T) = B • If I measure the optical depth in the 
v v 

continuous spectrum outside the line so that dr = -kp dx and 

set 1 /k = ~ , then (3.5) and (3.6) becomes v v 

dH /d~ = (1 + &~ )(J - B ) 
·v v v v 

(3.7) 

dK /d~ = (1 + ~ )H v v v 
(3.8) 

If , moreover ,I ·assume that ~ 
v 

is independent of ~ , the 

equation can be readily integrated. Introducing Eddington's 

approximation 

K = (l/3)J v v (3.9) 

Equations (3.7) and (3.8) can be combined to give 

(3.10) 

where 

2 
~ = 3 ( 1 + &~ ) ( 1 + 'I') ) 

v v 
(3.11) 
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Equation (3.10) is to be solved subject to the boundary 

conditions : 

(A) J = 2H v v at 

(B) the requirement that· 

not increase e>:ponentially as -r 

3.22. Solution of the Equation. 

T = 0 

(J 
v 

oc. 

and 

B ) 
v 

shall 

Using the exponential form of the planck function~ (equation 

(1.11)) .the equation (3.10) can be written in the form 

(3.12) 

which is a second order differential equation 

If I solve equation (3.12) and use the boundary condition 

(B) I get 

J = b + b e-(h" + b 
v 0 i 2 

(3.13) 

where b is a constant to be determined from the boundary 
2 

condition (A) , where ~ iJI. '1v • 

From equation (3~13) I get 
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( dJ I d7: ) · = - [ b {1 + b a + b
1 

(3
3 

I ( a. 2 
- (3

2 
) ] v 1"=0 1 2"V "V 

From equations (3.8) and (3.9) I find that 

Hence , 

= 

b = 
2 

+ 71. ) ( b + b ) + ~ {1b + ( 1 
v 0 i ~ i 

1+7) v 

Finally , I get 

b1(32 ] 
+n +~)--

''v 3· ~ _ (32 

126 

(3.14) 

(3.15) 

(3.16) 

Now , J (the average intensity) enables us to find the 
v 

intensi.ty within the absorption line at any optical depth 

and in any direction by solving the fundamental equation of 

the line formation , 

cos9 d I /dr = ( ~ + TJ ) I (~) - ( 1 - & )TJ J -
v v v v v 
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- (1 + &TJ )B v v 

127 

(3.18) 

J and b being known function of T. The solution for I (~) 
v v v 

can be written down immediately since equation (3.18) is a 

linear differential equation with constant coefficients. 

3.23. Residual Intensity 

The residual intensity in the mean contours is given (vide, 

Woolley and Stibbs, 1953) by ·, 

r = (H /H) 
0 

, 
v v 'T = (3.19) 

where· the omission of the suffix v means outside the line. 

By virtu of the boundary condition J = 2H v v 

have 

r = (J /J) 
V V T = 0 ' 

Also, outside _the line 

TJ = 0 and q = ~3, v v 

equation (3.17) with T = 0, gives 

1 + Y'J + v 
2 
3~ 

at -r = 0 we 

(3.21) 

(3.22) 
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Hence , by equations (3.20), (3.21) and (3.22) I have 

2 2 2 2 2 

r = 
1J 

3 ~ (~ - ~ )bo + 3 '\.. (~ - ~ )b1 

-------------------------------------- X 
2 -f3 ({3

2
- 3)b 

0 
+6((3 --13 )b 

1 

(3.23) 

3.3. An Exact Solution of the Equation of Transfer for 

Coherent Scattering in an Exponential Atmosphere by 

the method of Laplace Transform and WienE!r-Hopf 

technique. 

3.31. Equation of transfer. 

The equation of transfer considered here is of the form 

dl (T ,/-1) 
v = I (T ,1J ) - (1.) J (T ) - ( 1 - <..> ) B ( T) 

1J 1J v 
(3.24) 

where B (T) is given by the equation (1.11) of Chapter 1, 
v 

where 0 ( ( 1 - & ) I ( 1 + n ) = (I) <1 
·v ''v 

1 /k = n , v ''v 0 <·& < 1 ; v 

(3 .. 25) 

(3 .. 26) 

1 , k being the line and continuous absorption coefficient; 
v 

T , the optical depth in the total absorption coeffient ; & v 

, the coil ision constant ; and I (T ,J.l) is the intensity in 
v 
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the frequency in the direction 
-.t 

J (T) , cos p, v 

average intensity 
+1 

J (T ) 
v = (1/2) I I (T ,p ) 

v ct.J , 
-.1 

For the solution of equation (3.24) I have the 

conditions 

I (0, f.J) = 0 , 0 5 /-l 5 1 v 

and I V (T :.cJ..l) 
e-T //-l >O as T >oc 

3.32. Solution for Emergent Intensity. 

The Laplace transform of F(T) is denoted by F*cs) 

F *<s) is defined by 

()( 

F*<s> = s J exp(- sr > F(T) c1r , 

0 

·Rl. s>O 
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is the 

(3.27) 

boundary 

{3.28) 

{3.29) 

, where 

(3.30) 

The formal solution of equation (3.24) (vide, Dasgupta, 

1977a) is 

I (O,p) = w J* (1/p) + (1 - w) a* (1/J.l) 
v v . v 

(3.31) 

The Laplace transformation of equation (3.24) with necessary 

rearrangement (vide, Dasgupta, 1977a) yields 

T(z) I (O,z) = w G (z) + (1 - w) a*(1/z) 
v v v 

.(3.32} 
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where T ( z ) = 1 - ( • . .:-/ :2 ) z 1 og ( ( z + 1 ) I ( z -- 1 ) J 

and G ( z) 
1.:' 

= (1/2) 

:1 

I 
>:I (0,>:) dx 

p 
---------...... :z 

0 

T(~) has its roots ±k , real for O< w ~1 

ld>l) ---><X as w 

According to tiasgupta [1974] I have 

> 1 

H(z) + H / z + • • • as z ---> <.X 
- 1 

where H - (.l- w)-1/2 
0 

and 
1 

H = - ( wH
2 
/2) .f >:H ( x) dx 

-1 0 

0 

By the well-known relation (vi~e, Busbridge, 1960) 

1/T(z) = 1-f(z}.H(-z) on 

I rewrite equation (3.32) as 

I ( 0 , z ) i 1-1 { z ) = H ( - ;;: ) [ (•-' (3 ( 2: ) + ( .l - ,:.._, ) B * ( .t / z >] 
,_, !) p 

J30 

(3.34) 

(3.35) 

{3.36) 

(3.37) 

(3.38) 

(3.39) 

If I use the Laplace transformation of equation (1.11) by 

equation {3.30) I 

For s = - 1 z 

have 

:~ 
B (s) = b + sb /(s + ~) 

1> 0 1 
(3.40) 

a* (1/z) = b + b /(1 + (~:;:) = (d + d z)/(1 + (-{z) (say)(3.41) 
v 0 1 0 1 
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where d = b (3 
~ 0 

and 
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d = b + b 
0 0 ~ 

(3.42) 

If I insert equation (3.41) in equation (3.39) I have 

(3.43) 

which can be written as 

lv(O,z)/H(z) = H(-z)[ c.>Gv(z) + 

+ (1.- c.>) ( d
0

/z+ d~ )/(1/z + ~)] (3.44) 

Now as z---> <X , G (z) 
~ v ----->0(1./z), since I seek a 

solution I (O,z) regular for Re z >O and continuous on 
v 

(O,l.]c and since H(z) is regular on (-1~0]c 1(-1-.], -k. is a 

.simple pole of.H(z), 1./H(z) being regular on [-l.,O]c. 

I see that the left-hand side of equation (3.44) is regular 

at least for Re z >O except perhaps at <X, and the right-hand 

side of equation (3.44) is regular at on (O,l.]c except at a:, 

both sides being bounded at the origin. The right-hand side 

of equation (3.44) is 

where 

c 
0 

as z -----><X 

C = H ( 1 - w ) d /(3 
0 0 ~ 

(3.45) 

(3.46) 
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Hence , by :a <modified Lioville·s theorem both sides of 

equation (3_~A4) can be equated to C , so that the left-hand 
0 

side of ~quation (3.44) is C 
0 

as z ---- > 0(" the right 

hand side of (3.44) is C as z 
0 

------> oc • Equation 

(3.44) can be put in the form 

I(O,z)/H(z) = C
0 

= H
0 

(1 -(A)) dj_/3 (3.47) 

If I use the relationship d = b (3 in (3.47) I get when z 
1 0 

Since I have 

I(O,z) = H(z) (1 -(A)) H b 
0 0 

H = ( 1 - w) -1/2 
0 

Hence , ·from equation (3.49) I get 

I(O,z) = H(z) (1- w)1
/

2 b 
0 

(3.48> 

(3.49) 

(3.50) 

Which is the same as deducted by Karanjai and Karanjai 

[1985]. 

3.4. · Solution of the Equation of Transfer for Coherent 

Scattering in an Exponential Atmosphere by Busbridge•s 

Method. 

3.41. Equation of Transfer. 

With the usual notation of transfer for the Milne-Eddington 

Model can be written ( vide, Busbridge, 1953; Chandrasekhar , 

1960 ) as 
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dl 
v 

J.l pdz == (k 
v 

+ 0 )I 
v v 

(1/2)o 
)..) 

+1 

I 
-1 

I q_,• - K B (T) v . )..) )..) 

where z is the depth below the surface ; 
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(3.51) 

the 

continuous absorption coefficient ; and u is the line 
v 

scattering coefficient • I assume that k and u are 
v v 

independent of depth and I write 

Pv 
nv = T v 

Then T = A t v 

2 

t = J p(kv + av) dz , 

0 

, 

z 

T = J pkv dz , 

0 

1 
A = v 1 +n v 

and B (T) = b v 0 

= 

+ b 
~ 

(3.52) 

(3 .. 53) 

k 
v 

k. +p v v 
(3.54) 

-f3A t v e (3.55) 

where B (T) is the Planck's t·unction. Substituting into v 

equation (3.51), I get 

dl 
v 

~-~~ 

+1 

= I (t,J.l) v - ( 1/2 )( 1 - A ) X 
v 

xJ I (t,J.l•) dJ.l'- A (b + b v v 0 1 

-~A t 
e v ) 

-t 

(3.56) 

Equation (3.56) has to be solved subject to the boundary 
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conditions 

and 

I (0, 1-1' ) = 0 v . , 

- t. ./f-1' I ( t,p• ) e ---- >O as t ----> a: v 

3.42. Solution for Emergent Intensity. 
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(3.57) 

(3.58) 

For convenience I suppress the subscript v to the various 

quantities and consider a particular solution of equation 

(3.56} , which does not satisfy equation (3.57) in the form 

(vide, Busbridge , 1953) 

where 

T = 
1 

I(T ,f-1) = b 
0 

1 
1 - 'ZA./3 

+ 

( 1 -X) log 1 + X/3 
1 - X/3 

(3.59) 

(3.60) 

as readily verified by substitution • I therefore write 

(vide, Busbridge, 1953) 

I (T ,f-1 ) = b + 
0 

T b 
1 1 

-{3Xt. 
e * + I (t,p) (3.61) 

t Then I (t,IJ) satisfied the integro-dit·<i-.:~rential equation 

* dl (t,p) 

dt 

+1 

= It(t,f-1) - (1/2) (1 -X >J r*(t,f-1• )dp' 

-1 

together with the boundary conditions 

(3.62) 
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and 

t 
I (T , """1-4' ) = -b 

0 

T b 
t 1 

1 - f3'AI-l 
(0 :$; 1-l''S. 1) 

as t----> oc 
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(3.63} 

(3.64) 

I 
t require ~he emergent intensity I (O,p}. This is the sum 

of r*<O,p), where r*<t,p) is the solution of equation (3.62) 
1 1 

subject to boundary condition 

.C (O,p' ) = 0 
1 . 

, ( 0 < ~-~· < 1 ) (3.65) 

and I (0,11) which is the diffusely reflected intensity .z 

corresponding to the incident intensity given by equation 

(3.63). It can be shown (See Appendix I) that unless 

(which is not so) , 

t 
I ( t,p) = 0 

1 

Hence 

t 
I .. (0,/-l) 

where (vide, Chandrasekhar, 1960) 

S(p ,p' ) = ( 1 - X ) 
J.J + 1-l' 

H (J.J ) H (J.J' } 

and H(p) is the solution of 

A. = 0 
v 

(3.66) 

(3.68) 

(3.69) 
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From equation (3.67) and (3.68) I have 

1 .t [ T b 
I (O,J.i) = -z<1 -A. )H(J.l >f

0 

~'Ap~ ~ 1 

1 
l. .., H( ) f H(J.l' )J.l' , = - 2 ( 1 - ,.. ) 1-l bo 1-l + 1-l' 41 

0 

1 T b 1 H(p' ) 
= -z< 1 - A )H(J.l ) ~A 

1 f p + p' 41' + 
0 

T b .t 

+ _!(1 -A )H(p) _1_.t f 
2 ff'A. 

0 

H'"' ) 
(p + p' ) (i;'A./-1' - 1) qu' -

~(1 -A )H(J.l )b
0
f

1 

[ l. -
. 0 

/-1 ] H(u' )rl"' /-1 + 1-l' ,.. ....,.. (3.70) 

After·some rearrangement and with equation 

gives 

where 

T b 
1 1 

~ ( 1 - A) b H(p) b a 2 0 0 0 

0 

Following Chandrasekhar (1960] 

(3.69) , this 

+ (H(J.l)- l.) b-
0 

(3.71) 

(3.72) 
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. 1 
1 --(1 -A.) 01 =X~/2 

2 0 

I have from equations (3.61) and (3.71) 

I(O,.p) = 
H(p) T b 

~ ~ 

1 + (fA.p 
1 + H(p) A. ~/2 b 

"""'H:-:(-_..,.1-::/~='A.:.---.-) o 

which represents our solution. 
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(3.73) 

(3.74) 

3.5. Solution of the Equation of Transfer for Coherent 

Scattering in an Exponential Atmosphere by the Method 

of Discrete Ordinates. 

3.51~ Equation of transfer. 

The equation of transfer considered here is of the same form 

as in section 3.4. Following the same proeedure as in 

section 3.4.1. 11 equation (3.56) has to be solved using 

discrete ordinate method subject to the boundary conditions 

(3.57) and (3.58) 

3.52. Solution for Emergent Intensity. 

For convenience I suppress the subscript v to the various 

-I 

' 
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quantities, assume a = ffA and in the n-th approximation v v 
., 

I replace equation (3.62) by the system of 2n 

equations 

di* 
I-Ii dtt_ I*- (1/2)(1 -A.) }:a.I~, i 

i J J J 

where the 1-1. • s (i = ± 1 
l. 

+ . - 2 • 

= ±1 ,±2, •• ±n 

± n) and J.l . 
-l. 

linear 

(3.75) 

- #-1. ) 
l. 

are the.zeros of the Legendre polynomial P (J.i), a~ s ( j ~ 
2n J 

± 1, ± n and a . = o.. ) are corresponding Gaussian 
-J J 

weights. However , it is to be noted that there is no term 

with j = 0. For simplicity , in equation (3.75) I write 

It 
i 

for It (t,J.J. ) 
i. l. 

(3.76) 

The system of equations (3.75) admits of integral of the 

forin. 

t -kt 
I = g; e 

i. ~ 
(i = ± 1 • ± 

where the g."s and k are constants. 
l. 

± n) (3.77) 

Now if I insert this form for I~ in equation (3.75) I have 
1. 

Therefore· 

gi. ( 1 + pi. k ) = ; ( 1 - A ) l a J g j 
J 

= (l _ A) constant 
9 t 1 +J.J.k 

l. 

(3.78) 

(3.79) 

If I insert for gi from equation (3.79) back into equation 

(3.78) I obtain the characteristic equation in the form 
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1 +J..I.k 
J 
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(3.80) 

If I remember that a. = a and 1-1 = - 1-1 I can rewrite the 
J -j -j j 

characteristic equation in the form 

n 

1 = (1 -X) jtt 1 

a. 
J {3.81) 

2 L2 
- 1-1 "' j • 

This is the characteristic equation which gives the values 

of k. If X >O ~ the characteristic equation (3.81) gives 

distinct non-zero roots which occur in pairs as ±k (1.2 •.• n) 
r 

Therefore, equation (3.75) admits the 

integrals of the form 

z* 
i. 

= (l _A) constant 
1 ± /-1. k 

1. r 

±Jc t. 
r 

e 

2n independent 

(3.82) 

According to Chandrasekhar [1960] , the solutions (3.77) 

satisfying our requirements that the solutions bounded by 

-Jc t. 
r 

I~ = ( 1 - X) b1 ! ~r: /-1. k 
r=t 1. r 

together· with the boundary condition 

= 
b T 

1 

1-ot/-1. 
-\. 

b 
0 

at 

(3.83) 

t = 0 (3.84) 

3.53. The Elimination of the Constant and Expression of the 

Law of Diffuse Reflection in Closed Form. 
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The boundary condition and at the emergent intensity can be 

expressed in the form 

S(J.l. ) = 0 
\. 

and 

where 

S(p) = ! 
r=.t 

L 

1-k~-~ 
T 

.< i. = 1,2. 

+ 

T/(1 -X) 
1 + CXJ.l 

T/(1 -X)+ 
1 - O.J.l 

Next I observe that the function 

n 

n) 

b 
0 

(1 -X )b 
1 

( 1 - CXJ.l ) "TT ( 1 - k J.l ) S(J.J ) 
T 

r=.t 

(3.85) 

(3.86) 

(3.87) 

(3.00) 

is a polynomial of degree n + 1 in J.l which vanishes for.~ -

J.l., \. = 1,z •..•. n 
l. 

There must accordingly exist a 

relation of the form 

n 

c 1 - CI.J.I > TT c 1 k J.l ) s (l.t) 0( (J.l 
r 

(3.89) 
r=.t 

where C is a constant. The constant of proportionality can 

be found by comparing the coefficients of the highest 

power of J.l (Viz., J.ln+.l)_ Thus from equation (3.89) I have 

S(p ) = 

where 

b (1 
1 

+ 1 

X ) b 
0 

k 
2 

•• k .a 
n 

P(J.I) (J.J - C) 
R{J.I)(l ap) 111 (3.90) 
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n 

P(/-1) = TT (J.I -~-~.) , 
I. 

i. = t. 2. • . . n (3.91) 

and 
n 

R(~-t) = TT (1-kiJ) 
r 

, r = 1,2 .• n (3.92) 
r=t 

Moreover, combining equations (3.90) and (3.91) I obtain 

b p( 1/k )( 1/k - C) 
r r 

L 
r 

= ( _1 )n ---:-::1;---~-. ,, .... 
b ( 1 - A ) ''t • • • • • '"'n 

0 
a R (1/k )(1 - cx/k ) 

r r r 

where R (X) 
r = TT 

h ;t. r 

(1 - k x) 
r 

and a iJ! k 
r 

(3.93) 

(3.94) 

(3.95) 

The roots of the characteristic equation (3.80) can be 

written in the form 

k. k •••••• k p ~ ··--·······J.J 1 2 n 1 2 n 
= At/2 

Now by use of equation (3.96) equation (3.90) becomes 

S(JJ) = 

where 

H(J..l) = 1 

b aX. 
1

/
2 

H( ) '" - C) 
- 0 -:1-1 ""' 
{1- X.) b (1- CXJ.I) 

1 

n 

TT (J.I +I-Ii. > 
i=t 

n 

TT (1 + kp) 
r 

r=t 

(3.96) 

(3.97) 

(3.98) 

and _the. characteristic root6 are evaluated from Equation 

(3.87) 

If I put ~ ~ 0 in equations (3.87) and (3.97) I have 
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n 

l L + 
r 

1 
r=f. 

I can next evaluate 
n 

T 
+ 

-X 

b 
0 

(1 -A )b 
i 

= 
b A 1 /

2 Cot 
0 

( 1 -X )b 
1 
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(3.99) 

2 L from equation (3.93) • Then 

n 

r=1 

where 

,. 
r=f. 

L = (-1 )n + 1 
r 

n 

f{x). = 

r=1 

b 
0 

( 1 - A }b 
f. 

k 
1 

k ... 
2 

P(1/k )(1/k - C) 
r r 

R ( 1./k )( 1 - ct I k ) 
r r r 

k cd(O),. 
n 

(3.100) 

(3.101) 

Now f(x) defined in this manner is a polynomial of degree 

(n - 1) in x which takes the values 

P(1/k 1(1/k C) 
I" r (3.102) 
(~ - a/k ) ,. 

for X = 1/k ( r = 1, 2, ••••• , n) (3.103) 
r 

In other words ,. 

( 1 - ax] f (X ) - p (X) ( X - C) = 0 (3.104) 

Therefore, I must accord~ngly have a relation of the form 

(1- ocx)f(x)- P(x)(x- C)= R(x)(Ax +B); (3.105) 

where A and B are"certain constants to be determined. The 

constant A follows from the comparison of the coefficients 
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of xn+ s .. Thus 

A = 
(-1)TI+f. 

k k .•• k 
f. 2 T'l 

Next, if I put x = -f. . a 1n equation (3.109) I have 

i.e., 

(-1)n 
B = ak k •.. k 

f. 2 T'l 

+ 
(C - 1/a )P( 1/a) 

R(a- f. ) 

+(-l)n#J ,IJ .. • J..I H(-1/a) (C- 1/a) 
1 2 T'l 
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(3.106) 

(3.107) 

(3.108) 

Now by use of the relations (3.106), (3.107), and (3 .. 109) I 

get 

f(O) = -CP(O)+ BR(O) 
T'l . 

= -c < -1 > J.l J..I 
1 2 

.... ·J..l + 

(-1)T'I 
+ ak k ... k 

f. 2 T'l 

T'l 

n -1 
+( -1} 1.1 ,IJ , •• J..1 H( -1/a:) (C- a: ) 

1 2 T'l 
(3.109) 

From the equation (3.101) using equation (3.109) I have 

n· 

.r=.f. 

b ),_ f./2 Q:x 
0 

b 
0 L = 

r (1 -A )b 
f. 

(1 -A )b 

b a:A f./2 H( -1/a ) ( l/o: - C) 
0 

+ --------~~~~~--------(1 -A)b 
1 

f. 

+ 

(3.110) 

By use of equation (3.110) in equation (3.104) I get 

1 
Tb 

c = + f. (3.111) 
()( . b CllA f./ 2 H( -1/a:) 

0 

If moreover,. we combine equation (3.110) !II the diffusely 

reflected intensity I*(O,J.l) in equation (3.86) takes the 

form 
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• I (0,1-1) = 
b001A

1 /~H(JJ )[JJ +C) 

1 + Cft/-1 

Tb 
0 

1 + t:X/-1 
b 

0 

This is the required solution in closed form. If I 

equation (3 .. 61.) at t = 0 and equation (3 .. 112) I have 

b W.. 1
/

2 H( )[J.l + C) 
0 1-' 

1 + CX/-1 
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(3 .. 112) 

combine 

(3 .. 113) 

which is the required solution of equation (3.56) in the nth 

appo:ximation by the discrete ordinate method • 

On puttin~ C from equation (3 .. 111) I get the solution in 

the form 

. I (O.f-1) 
b TH(JJ) 

- b A 1 /
2 H (J.i ) + ~·1---,---

o ·1 + ap 

1 

HF-1/a) 
(3.1.14) 

Chandrasekhar's .(1.960) solution for I(O,p) in the case of 

coherent scattering is given by ( for B (T) = b + b T.) 
v 0 1 

3.54. Conciusion. 

+ ( l. .12) b A ( 1 - X ) H (p )a 
1 1 

where an =I 
0 

1 

n 
H (JJ )J.I '*-' 

(3.1.1.5) 

(3 .. 116) 

If I compare equations (3.114) and (3.115) I see that by 

putting b = 0 I have the same solution for both the cases. 
1 

,, 

' . : 
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Moreover for. large values of {1 (i.e. ,{1---+ IX), since a = ~A, 

the solutions (3.114) ta~es the form 

I (O,p) = b
0 

A t/Z H(IJ) (3.117) 

i.e. B (T) then behaves li~e a constant or independent ofT. 
v 

This fact can also be explained from the point of view that 

.. 
-(IT 

B (T) = b + b e 
v 0 1 

'· 

'· 

'· 

'· 

b as 
0 

(X 
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SOLUTION QF RADIATIVE TRANSFER 
PROBLEMS IN AN ATMOSPHERE 
·scATTERING NONCOHERENTLY 
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4.1. Introduction. 

When there is no redistribution in frequencies the line is 

said to be formed by coherent scattering. Eddington noticed 

another departure from the simple case , which he called 

interlocking of lines (without redistribution). 

If two or more lines in a spectrum have a common upper state 

, the atom can be excited to that state by absorption in 

either line but the re-imission will take place according to 

the transmission probability regardless of the path by which 

the excitation was made. 

The equations of formation of the lines are not independent 

but contain cross terms. The equation for the intensity in a 

particular frequency ·of a spectral line might then, in 

general , contain an infinite set of terms involving the 

intensities of the other frequencies in the same line , as 

well as term involving the intensities in a finite number of 

other lines in the same spectrum. 

Fortunately, these difficulties do not arise in some 

important cases , namely principal lines in spectra, in 

which the ground state is sharp. The reason for this is that 

the distribution of energy levels within a state depends on 
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the life of the state. 

The fundamental equation for the formation of a line , under 

any circumstances is given by equation 

Cos& 
di (~) 

).) 

pdx = (k 
v 

+ 1 ) I (~) 
v v 

In the case of coherent scattering I had 

+ (1 - e) 1 J ).) v 

which I can replace by more ge~eral expression 

(4.1) 

(4.2) 

when p(v ,v' ) = 1 for v' = v and is ·zero for all other v, I 

recover the case of coherent formation. Otherwise p(v ,v' ) 

must have non-zero values for all frequencies v' which are 

connected with the frequencies v , either by interlocking or 

by redistribution. 

Interlocking without redistribution : 

(a) Lines with common upper state • 

After coherent scattering , the next simplest case is that 

of interlocking of principal lines , for then p(v,v') takes 

a small number only of non-zero values. Examples of this are 

th . . 1 1 . f AI 2 S -- 2 P e pr1nc1pa 1nes, o , 
1/2 3/2 

at A. 3,962A , and 

2 S - 2 P at X. 3,944A, in which 2 P is the ground state 
1/2 1/2 1/2 
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and 2 P metastable: 
9/2 

and the principal triplet of 

M s 5 _ap g, 
1 2 

at 

at 8 9 
X 5,184A, S -- P at A 5,173A 

. 1 1 

A 5,167A. In this case and 

' and 

are 

9 metastable , and P is linked by an inter combination line 
1 

to the ground state 1 S 
0 

I 
p 
an I 

p 
111 

Mg 

8 
p 

a 
a 
p 

0 

Fig.4.0. Interlocked principal lines of Al and Mg. 

Taking the Planck function to be linear in optical depth 

Woolley and Stibbs [1953] have obtained a solution by means 

of Eddington·s approximation and calculated the residual 

intensities and the total absorption in the emergent flux 

for doublet and triplet lines. Busbridge and Stibbs [1954] 

applied the principle of invariance governing the law of 

diffuse reflection with a slight modification to solve 
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exactly the equation of transfer in the M-E Model. 

Dasgupta and Karanjai [1972] applied Sobolev·s Probabilistic 

me~hod to solve the transfer equation for the case of 

interlocking without redistribution. Dasgupta [1978] 

obtained an e>:act solution of the transfer equation for 

non-coherent scattering arising from interlocking without 

redistribution by Laplace transform and the Wiener-Hopf 

technique using a new representation of the H-function 

obtained by Dasgupta (1977]. Dasgupta considered the planck 

function to be linear in T (optical depth) (equation (1.9)) • 

. Karanjai and Barman [~981] solved the same problem using 

discrete ordinate method taking Planck function as linear 

in T. 

Karanjai and Karanjai [~985] solved the equation of transfer 

for interlocked multiplets with the Planck function as a 

non-linear function of optical depth following the method 

used by Dasgupta [1978]. They considered two non-linear 

forms of Planck function Viz;, 

a) an exponential atmosphere ,(vide, Delg•lnnocenti, 1979) 

(equation (1.11)), 

b) an atmosphere (vide, Busbridge ,1955 ) in which 

B ( T) = B ( t) = b + b T + E (T ) ; 
v 0 1 2 

(4.3) 
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In the present work, the same problem, .has been solved by 

· the discrete ordinate method and by the method used by 

Busbridge and Stibbs [1954] using Planck function as an 

exponential function of optical depth in section 4.2. and 

4.3. respectively. 

Busbridge and Stibbs (1954) applied the principle of 

invariance govening the law of diffuse reflection with a 

slight modification to solve the same problem. · The 

expression for emergent intensity ·thus obtained involves 

Chandrasekhar·s H-function within and outside the integral 

sign. They were afraid that the computional labour in the 

calculation of H-function would be great and so avoided the 

calculation. of residual intensities for triplets and higher 

multiplets. 

Karanjai (196Ba) used his approximate form of H-function 

(i96Bb) in the calculation of residual intensities from the 

expression obtained by Busbridge and Stibbs (1954) for a 

doublet and triplet. 

In the prsent work, other various .approximate forms of 

H-function (vide, Karanjai and Sen, 1970, 1971) have been 

used to calculate the residual intensities for doublets and 

triplets (Sec-4.4). 
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4m2. Solution of the equation of transfer for interlocked 

multiplets by the method of discrete ordinates with the 

planck function as a nonlinear function of optical 

depth. 

4.21. The Equation of Transfer. 

Woolley and Stibbs [1953] made certain assumptions ,Viz (i) 

that the lines are so close together that variations of the 

_continuous absqrption coefficient k and of the Planck 

funct~on B (T) with wavelength may be neglected • This also v 

means that the lower states are nearly equal in excitation 

potential and that they have the same classical damping 

constant. Then the values of ( the 

ratios of the line absorption coefficients to k )are 

proportional to the transition probabilities for spontaneous· 

emission from the upper state to the respective lower states 

,ryk are independent of depth ; 

(iii) that the -coefficient e 
' 

which is independent of 

both frequency and depth • 

The equation of transfer considered here is of the 

form (vide, Woolley and Stibbs, 1953) 

J.-ldl (T ,J-1) 
r = ( 1 + ry ) I (T ,J-1 ) 

r r 
( 1 + &ry ) B ( T) 

r V 

lc +~ 

- (1/2)(1 - £. )o. I ryp I I 
r p 

(T ,J-.1' ) d,u' ' (r = 1,2, k) (4.4) 

p= :1. -:1. 

where 



·~ 
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a = ~ 1 c ~ + n + ••• + n > 
r r i 2 r ' 

(4.5) 

and a +a + 
i z + Qk = 1 (4.6) 

In equation (4.4) the subscript r denotes the quantity 

corresponding to the line of frequency v • 
r 

The equation 

(4.4) have to be solved subject to the boundary conditions 

( O< J.1 • <1) ·' (4.7) 

~ogether with a condition limiting I (T ,p) for large-.. • I 
r 

shall assume that I (T .,J-1 ) is at most 1 inear in T for 1 arge r . 

.. 

4.22. Solution. 

If I consider the planck function ,i.e., the thermal source 

function to be exponential (equation (1.11) (vide, 

Degl"Innocenti , 1979) then following Stibbs [1953] and 

Busbridge [1953] I have 

I (T ,!J) = b 
r o + 

b T 

[ 

i r 

1 + f3J-It: 
r 

] e-(h + * I (T ' IJ) 
r 

(4.8) 

represents the solution of equation (4.4). where T can be 
r 

expressed as 

k 

)+01 '\'T[__!_(1-&)X 
r f. p ~ 

p=i 

I 
v I 

i 
I 
1-
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1 + T/ + ~ ] X log 
_____ £ ___ 

(4.9) 
1 + T/ - ~ 

p 

and t;r 
1 

(4.10) = 
1 + TJ 

r 

This consists of two parts. The first part consists of ·the 

solution for a bounded atmosphere as T tends to infinity. 

The second part viz., I*(T,~), represents the ~eparture of 
r 

the asymptotic solution from the value I (T,p) as I 
r 

approach the boundary. 

Now inserting I (T,~) from equation (4.8) in equation (4.4) 
r 

and taking 

I have.the equation 

* di (T ,~) 
r 

dr 

w -
r 

(1 - & ) T/r 

1 + TJ 
r 

* = I (T ,p) 
w 

r 

2 r 

together with the boundary conditions 

(4.11) 

X 

(4.12) 
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* I (0,- p' ) = 
r 

and 

b-
0 

155 

b T 
~ r (4.13) 

1 - /3( ~-~· 
r 

as T ---> Ci( (4.14) 

Further I*<• ,IJ) should be at most linear in T as T --> oc 
r 

For convenience , equation (4.12) is written in the form 

* di (T ,IJ) 
< r > = I* 

< r > 

(4.15) 

together with the boundary cond'itions 

• b T 
,. ~ r 

I ( 0 - 1-1' ) - - b - --,-~-:;;----.-
r ' 0 1 - ~ 1-1' 

r 

(4.16) 

and I *< ) e- T lp --> 0 . T ,p 
r. 

as T ---> 0( (4.17) 

Equation (4.15) can be replaced by the system of 2n linear 

equations 

di* 
I* 

(o) 
1 [x t;r 

<r>i r 

IJCr>i. = 2 dr < r > i l 
)c 

p=1 l)p 

k 

X I nP [aj I* ] (4.18) ( p) j 
p=1 j 
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where ( i = ± 1 ,± 2, •••• ,± n ) 

where the J..l . • s ( i = 1 ,. ••••• , n and J..l • = - J..l • ) are 
<r>\. <r>-\. <r>l. 

the zeros of the Legendre polynomials 

dependent on the lines of interlocking and 

which 

a. s (j 
J 

are 

= ± 

1 ,. ••••••• ,. ± n and a -j = a.) 
J 

are corresponding Gaussian 

weights. However,. it is to be noted that there is no term 

with j = 0 • For simplicity, I write 

* t I .for I (T,.J..l .) 
<r>\. · <r> <r>\. 

(4.19) 

in equation (4.18) 

The system of equations admits of integrals of the form 

r* 
<r>i.. 

-KT 
e ( i = ± .1, •••• 

where the g . ·s and K are constants. 
<rl\. 

± n) (4.20) 

Now inserting this form for 1* in equation (4.18) I have 
< r > i 

(>) 1 (1 + ( J..l K] r 
g<r>i. =y 

2 k 
X 

r < r > i 
p=~nP 

X rt.np 4 ajg<p>j ] (4.21) 

Constant (4.22) 
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Inserting for from equation (4.22) back into 

equation (4.21} I are left with 

I (4.23) 
1 -

j 

This is the characteristic equation which gives the values 

of K 
< r > 

If~< 1 ,( r = 1,2,3, ••• n ), the characteristic 
r 

equation (4.23) gives distinct non-zero roots which occur in 

pairs as 
± ·~ < r )(l( 

( ot = 1,2, •• ,n ) • Therefore , 

(4.18) admits the 2n independent integrals of the 

form 

According to 

Constant + K T < r > oc e =CA> 
r 1 + ( K 

- r-/.1 < r > i c r > ot 

Chandrasekhar [1960] , the 

equation 

(4.24) 

solutions 

(4.20) satisfying our requirements of the boundedness of the 

solutions are 
-K T 

I* = 6) b 
<r>i r 1 'n £ 0<=1 

L 
c r > 0< 

e c r > ot 

1 + ( K 
r Cr>Ot 1-lcr>i 

(4.25) 

.i 
l 
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together with the boundary condition 

b T 

= b ~ --~-1-=-r~-------
0 1 ( r(1 J.l < r) - \. 

at T = 0 (4.26) 

4.23. The elimination of the constants and the expression 

of the law of diffuse reflection in closed form. 

The boundary conditions and the emergent intensity can be 

expressed in the form 

s r(IJ<t->i.) = 0 ~ ( 

and 

r* [ (0,1-1) b s (f.l) =(,\) 

< r > r 1 r 

where 
n L 

L <r>OI. sr (J.i ) =_ --=---=--~--1 -( K f..l 
r fr>OC 

.Ot= 1._ 

i = 1~2, n ) 

T /~ b 
r t' 0 -

~ b 
r 1 

1 + ( 1'11-l 
r 

T /~ b 
+ -.--r----r--__ _ 

1 - ( 1'11-l 
r 

+-0-
~ b 

r 1 

Ne:>:t I observe that the function 

n . 

( 1 - ( rfjf..l ) fT ( 1 - ( I< f..l ) S (J.J ) 
r <r>ot r 

(4.27) 

l (4.28) 

(4.29) 

(4.30) 

is a polynomial of degree (n+1) in 1-1 which vanishes for J.l = 

#-1 •• (i = 1,2, 
I. 

of the form 

n). There must accordingly exist a relation-

n 

( 1 - ( rf3f..l ) IT ( 1 - ( r K< r > 01. f..l ) X 
01=1 

' ' 
1 I 

l 

I l 
I 
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X S (J.f) •• (J..l 
r 

where C is a constant. 
r 

159 

(4.31) 

The constant of proportionality can be fo.und by comparing 

n+.t 
the coefficient of the highest power· of J..l ( namely J.l ) So 

I have , from equation (4.31) 

( f3 
S t .. ) = (-1)n+j. __ r_ r V ( K X 

r'-~-' bw '>:r\:r}j.··· r <r>n 
1 r 

X 
P <1-l>(J.l -c > 

r r (4.32) 
R (J..l )( 1 - /3( 1-1 ) 

< r > :r 

where C is a constant and P (1-J) and R (1-J) can be defined in 
r :r :r 

a manner similar to Chandrasekhar's [1960] formulae 

n 

p (J..l) 
r = n 

i.=.t 

( i = 1,2, ••• n) (4.33) 

and (1 -( K J..l) 
r <r>OI 

(01 = 1 ,. 2, .•• n) (4.34) 

Moreover, combining equations (4.32) and (4.33) 

L 
< r > 01 

b 
= (-l)n o 

bw 
.t :r 

p [ ( 11{ I( ] 
( K • .( K ( f3 r r <r>OI 

r < r > t. r < r > n r R [ 1 1( K ] 
<r>O( r <r>O( 

X 
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1 c ] K r-
< r > 01 

~ c:,. ] 
K <r->OI(r 

(4.35) 

where 

R (>:) 
< r > 01 =n 

r~oc 

[ 1-( K x] 
r ( r) r (4.36) 

and (4.37) 

The roots of the characteristic equation (4.23) can "be 

written in the form 

{ K .•. { K p J.J •• • J.J 
r <r>~ r <r>n <r>~ <r>2 <r>n 

(4.38) 

where 

and N - \ k T} 
£ r=~ r 

(4.39) 

Now by use of (4.38),. the equati.on (4.32) becomes 

s (j.l) = 
r 

b
0
(r (1 - M/N) 1/2 {3H~' (~) ( p - Cr) 

(a) b (1-~( J.l) ' 
r 1 r 

(4.40) 

where 

n 

1 TT (p + 1-l ) 
( I' ) i. 

i.=~ H (J.I) = 
r n 

(4.41) 

TT (1 +( K J.J) 
r <r>OI 

01=1 

and the characteristic roots are evaluated from equation 
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(4.;23). Putting = 0 in 

expression of H (J.l ) I have 
r 

equation (4.29) and 

~n L 
£ 01= 1 < r >a 

b T b 
+ _6»o_b_ + _6»_r_ = wo b ( /~Cr [ 1 - M/N] 1/2 

r 1 r r 1 

161 

in the 

I can next evaluate ~ n L from equation ( 4. 35) • Then £ 01= 1 < r > 01 

b 
L = (-l)n+1 - o X 

<r>OI b<.> 
1 r 

X f( K ••• -( K ( ~ • 'f ( 0} ,) t r Cr>1 r <r>n r . r 
(4.42) 

where 

'f ( x) 
r 

n P (1/ ( K ) ( 1/( K C ) =I r . r <r>Ot r'cr>OI- r 

R (11( K ) ( 1 - ~ /K ) 
Ot= 1 < r > 01 r < r > a < r > 01 

X 

X R ( >:) 
< r > 0t 

(4.43) 

Now since 'f (x), defined in this manner , is a polynomial of 
·r 

degree (n- 1) in x, which takes the'value 

. [ 1 P ( 1/( K ) ( .,, 
r r <r>Ot r, 

· r <r>OI (4.44) 

K( ) ( r 0t r 
) 

for x = 1/( I( 
r <r>OI' 

( 01 = 1,2, n) • In other words 

(1- ( ~x)f (X) - P (x)(x 
r r r 

c ) = 0 
r 

(4.45) 
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Therefore, I must accordingly have a relation of the form 

(1- ( (1>:)f (>:)-(>:-C) P (>:) = R (>:) (A>:+ B), 
r r r r r r r 

(4.46) 

where A and B are constants to be determined from the 
r r 

condition that the coefficients xn+t and xn must vanish on 

the right-hand side. Thus I have 

A 
r 

(-1)n+~ 
= ~~----~--~~~~----( K ••••• ( K 

r <r>1 r Cr>n 
(4.47) 

Next, putting x = 1/( (1 in 
r 

equation (4.46). (Vide, 

Chandrasekhar, 1960); I have 

B 
r 

(-1)n = ~~~=-~------~~~~~---( (1.( k · ..... ( K 
+ (-1)n#J 

<r>.t 
.. • • • #J . X 

Cr>n 
r r <r>1 r (r>n 

( C--1) 
r (3( 

r 

(4.48) 

Now using the rei ations ( 4.48), ( 4. 47) and ( 4. 46) for >: = 0 

I have, n 
., (0) = - (- 1) c #J . . • . #J + 

r r Cr>~ <r>n 

+ + ( (3.( K .• ( K 
r r <r>1 r <r>n 

n + (-1) 1-1 
c r > 1 1-l<r>n H (- ~) (c - _!_ ) 

r (3( r (3( 
r r 

(4.49) 

From equations (4.43) and (4.49) it follows that 

l n 
L = 

01= 1 c r > 01 

b 
-

0--[c ( 1- M/N)
1

/
2

( (3 - 1 + 
w b r r 

r 1 

I 
I 
I 

. I 
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( /3 ( 1 - M/N)
1
/Z H (- _!__) (c - -1

- ) 
r r /3( •T f3( 

r r 

(4.50) 

S b t ·t t· the value f l n u s 1 u 1ng o 
01=1 

L 
< r >a 

frOID equation (4.50) 

in equation (4.42) I have 

T b 
1 r 1 

c - + ---------------------------------
1' - ( r~ 

. (4.51) 
b ( (1 - M/N) 1

/
2 

H (- 1/~( } 
0 r r r 

~ and if I combine equation (4.40) , the diffusely reflected 

.·~ 

intensity t 
I (O,J-1) 

r 

• • I (O,J-1) = 
r 

in (4.28) takes the form 

bo( r/'1 ( 1 - M/N)1/Z Hr (f..l) ( J..l + Cr) 

1 + (3( rll 

T b 
r 1 

1 + (3( J..l - bo 
r 

This is the required solution in closed form • 

(4.52) 

If I combine equations (4.8) at T = 0 and (4.52), I 

have, 

b t; {3(1 M/N)1
/Z H (J.J) (J..l + c ) 

I (0,1-J) 
o r r r (4.53) = 

r 1 + (3( /-1 
r 

This is the required solution, in the n-th approximation 

by the discrete ordinate method. 

If I put C from equation (4.51), I get the solution in 
r 

the form 
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I (O,J-.1) = b ( 1 
r o 

M/N)1 ,.....
2 H (J..l) + 

r 

b T 
t r 

H (J.d 
r (4.54} 

+ ~----~~--~ H (- 1/( (3) 
r r 

4.24. Conclusion. 

Chandrasekhar·s [1960] equation for I (O,p) in case of· r 

coherent scattering is given by (vide, 
Karanjai and 

Barman, 1981), 

I (O,J-.1) = b( (1- M/N) 1
/

2 pH (p) + b (1- M/N)
1

/

2 

H {J.l) + 
r 1 r r o r 

1 (4 .. 55} 
t: K r (r>OC 

If I compare equations (4.54) and (4.55) I see that if I 

put b = 0 I have the same solution for both the cases. 
1 

Moreover, for large values of ~' i.e., ~-> oc. The 

solution (4.54) takes the form 

I ( o ,iJ ) = b ( 1 
r o 

t1/N) 1
/

2 H (iJ ) , 
r 

(4.56) 

I, 

' ·; 
I 
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i.e., B (T) then behaves like a constant or independent of T 
!..> 

• This fact can also be explained from the point of view 

·that 

B (T) = b + b e -{h 
v 0 1 ' 

__ ._. > b 
0 

as {3:----'"· ---) IX . (4.57) 

4.3. Solution of the equation of transfer for interlocked 

multiplets with planck function as a nonlinear function 

of optical depth. 

4.31. Equation of Transfer. 

I have considered here the same equation as in section 

4.2.1. with the same boundary conditions. Here I write the 

formal solution as 

I (T ,i-J) = b 
r o 

b.t Tr -(h * 
+ 1 + ( f3f-J e + .I r (T ,i-J ) , ( r = 1 , 2 •• k ) , ( 4. 58) 

r 

where T can be expressed as 
r 

T 
r 

and 

Then 

(A.,.I(,.) + 01 
r 

1 1+(/3 
:q-~ ( 1 ~ ) log 1 _ ( P (3 ] 

p 

(4.59) 

A. = ( 1 + en ) I ( 1 + 7} ) , 
r r r 

and ( = 1 I ( 1 + 7} ) ( 4. 60) 
r r 

* I (T,.J.l) satisfies the equation 
r 

:t· 
d I . (T ,J.l ) 

r 
J.J'--m~- ( 1 + I] r ) I l ( T ,.J.l ) - ( 1 - & )01 r \ k ( 1 I 2 ) 7} X 

r L p= 1 p 
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+1 

X J l:(T,p') dp' 

-:l 

(r = 1,2, 

together with the boundary condition 

b T 
I*<o,- .,, ) = 1 

r 
r ,.. ( (3 p'- 1 

r 

b 
0 

k ) 

166 

(4.61) 

(4.62) 

(0< p' S1 , r = 1,2, •• k) 

Moreover, I (T ,p ) must be at most 1 in ear in T as T----> ex • 
r 

Now I have the problem of a scattering atmosphere 

(exponential) subject to external radiation whose intensity 

is given by equation (4.62). We want to find the emergent 

intensity * I (0, 1-1) 
r 

of frequency v • This 
r 

will be the 

intensity of the diffusely reflected radiation and can be 

calculated when the appropriate scattering function is 

known. 

In the present problem the scattering function splits up 

into k 2 functions S (1-'·P') 
rs 

( r = 1 , 2,. •• k ; s:= 1 , 2 , • • k ) but 

it is convenient to reunite them temporarily in the function 

where v is any one of v ,. v , . . . . . . . vk . 
.f. 2 

P(v ,v• ) =a 
v 

'\' k 
L p=1 

6 (v 
p 

- v• ) (4.63) 
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6 denoting Dirac· s 6-function ,and 

(4.64) 

Then the law of diffuse reflection for the atmosphere can be 

written as ( vide, Stibbs, 1953; Busbridge, 1953), 

ref 1 I Ir. (0,1-1) = 4L P(v ,v• ) dv'X 

1 

X J · S(v.,v' ; 

0 

0 

The equivalent form in terms of the 

1 

1ref (O ) 1 l k I s <1-1 ,p' = ot --r ,#-1 r 41 p=f rp 

0 

4.32. Scattering Function. 

(O,f.L' )41' , 

functions s 
rs 

(#-1 ,#-1' 

) Ii.nc (0 • 
p ,1-J ) q..,• 

(4.65) 

) is 

(4.66). 

If I follow Busbridge and Stibbs [1954) I have the 

scattering function from frequency v 
s 

and direction 

into frequency v and direction 1-1, in the form 
r 

H(( 1-1 )H((' 1.1' ) , 
r r 

where 

H (( 1-1 ) = 1 + ( 1 I 2 )( r 1-1 H ((' r 1-1 ) ~ ·1c ot ( 1 
r L p= f p 

>.. ) X 
p 

1-1' 

(4.67) 
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1 

xJ 
H(( 1-1' ) 41' 

r (4.68) 

0 

4.33. H-function. 

Following Busbridge and Stibbs (1954) , equation (4.68) can 

be written as 

A. ) X 
p 

(4.69) 

4.34. Emergent Intensity. 

From equations (4.60)~{4.62) and (4~66) I have 

'ot lc 1 

= __!.. \ J· s (t.t .J.l' ) =4-' L rp 
p=t 0 

b T 
1 p 

~-~·- 1 
(4.70) 

If I substitute from equation (4.67) I get 
1 

* I (O,fJ) = 
r 

( 1/2)ot H(( p )~ k ( ( 1 - A >J -=-'-1-1_' --=- X 
r p 1.. p= 1 r p ( 1-1 + ( p' 

r r 
0 

b T 
X (( ~~-~·1-P1_ ~)X H((P/-1' )ct-J' 
. p 

= ( 1/2)01 b H(( 1-1) X 
r 1 r 

i 
I 
I 

- I 
I 
> 
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1 
1-1' H (( 1-1' )4J' 

~ )c ( ( 1 - A } T I __ _..::P _____ _ 

l p= 1 r P P (( 1-l + ( 1-1' ) (( ~~-~· _ 1) 
o r p P 

1 
1-1' H(( 1-1' )¢1' 

- ( 1/2)ot b H(( 1-1) ~ k ( ( 1 - A >J P 
r o p l p= 1 r p (( + ( /-1' ) 

(4.71) 

o rF p 

If I use the relations 

1 = 
1) (( 1-l + ( J..l' ) 

p p 

= ({ {3: + 1) [t {3~ - 1 - ( J..l 
1 

+ ( J..l'] 
(4.72) 

p . P r P 

I get from equation (4.71) 

* . I (0,1-J) = 
p 

1 
1-l' 

( 1/2 )ot b H (( J..l ) ~ k ( ( 1 - A ) T J -----
r 1 r l p=1 r · p p 

(( ~~-~· + 1) o r 

1 

- ( 1/2 )ot b H (( /-1 ) ~ k ( ( 1- A. ) 
r 0 r l p=1 r p 

X If. 1-l' H(( PJ..l. )ct.J' = 
(( 1-l + ( 1-l' ) 

o r p 

= ( 1/2)ot b H(( J..l) ~ k ( ( 1 - A )T f ~ ) X 
r 1 r £ p= 1 r p p lt: ~1-l + 1 

r 

f. 
1-l' H(( 1-l' )4J' 

X J P - ( 1/2 )ot b H (( /-1 ) ' Jc ( ( 1 - A ) T X 
(( f3J..l' _ 1) r f. r £ p= 1 r p p 

0 p 

X 
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X 
~. 1-1' H (( /-1' ) 41' 

I <t; /-1 +p t; ~-~· ) 
o r p 

(1/2)01 b H(t; J-1) X 
r o r 

x~Jc ·t; (1-A. > L p=~ r p 

.t /-1' H(t; 1-l' ) q_,• 

J (t; 1-l : t; 1-l' ) 
o r p 

From equation (4.58) 

I (0-sJ-1) = b + 
r o 

b T 
:1 r .t + I (O,p) 

r 1 + ( ~1-l 
r 

If I use equations (4.69) , (4.72) , (4.73) I get 

k .:1/2 
b T 
~ r ) 

1 + t; fil-l 
r 

{ 
p=:l 

+ ~-k 01 (1-A.) 
L p=:t P P 

1 t; J.l' H Ct; p' ) q_,• 

J p p 

(t; /-1 + t; p' ) 
r P 0 

Tfl 
+ ( 1/2)01 b H(t; 1-1 ) ~ k t; ( 1 - A ) f P ) X 

r 1 r L p= ~ r p l(' fil-l + 1 
r 

.t p' H(t; 1-l' >ct.L' 

X I Ct; fil-l~ - 1) 
0 p 

- (1/2)01 b H(t; J-l) X 
r .:1 r 

· T 
1 

p' H(( p' )qu' 
X ~ k t; ( 1 - X ) (,_ np JJ P £ p = :l r p ll..~r ,= ".1-l;....__+--,-1 (( /-1 + t; /-1, ) 

o r p 

170 

(4.73) 

(4.74) 

I 

·' 
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- (1/2)01 b H(( J.l) \ Jc ( (1- A ) 
r 0 r £ p=t r p 

and thus 

I (O,IJ) = 
r 

b H(( 1-1) 
o r 

1 
1-t' H(( 1-1' ·)4f'} 

X (1- A ) I p + b 
p (( J.l + ( J.l' } 1 

o r p 

k 

1 
J.l' H(( J.l' )4f' 

J (( J.l +p ( J.l' ) 
o r p 

(Ot ( 
p p 

r T H(( /-1) { 

( 1 + ( r ~/-1 ) r 
p=1 

+ ( 1/2) \ (Ot ( T £ p P r J
1 

1-1' H (( J.l' ) 41' 
- 01 ( T ) ( 1- A ) P 

r r p · p 

p=t 
(( /-1 + ( /-1' ) 

o r p 

H(( /-1) k 1 1-1' H(( f-1' )qu' 
+ ( 1/2) b ... {J 

.t r 
r ~ 

1 + ( f3J.l 
z rT ( 1 'H )j - ). r p ( 4 -7 6) 

p p (( f3J.J' - 1) r 
p=t' 0 p 

which is the final form of the emergent intensity in the rth 

line. 

4.4. On Calculation~·of Interlocked Hul tiplets Lines In H-E 

Model. 

4.41. The Equation of Transfer. 

The equation of transfer for the rth line of multiplets in 

171 

(4.75) 
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the case of interlocking without redistribution is 

J.l di (T ,}-1} 
r . 

= ( 1 + lJ ) I (T ,}-1 ) - ( 1 + &a ) (a + br ) 
r r · r 

+t 

- (1 - & }cc ~ _!..'f'J J I (T ,J-1' ) c(u' rL. 2 p p 
(4.77) 

-t 

where r = 1,2!!' k (4.78) 

and 0( = 'f'J I (T} + lJ + l1k> r r 1 2 
(4.79) 

so that a +a + ak = 1 
1 2 

(4.~0) 

and the ratio of line to the continuum absorption 

coefficient for the rth line is independent of depth but is 

a function of frequency The coefficient of thermal 

emission , & , is independent of both frequency and depth. 

The expression for emergent int.ensi ty in the rth line 

obtained by Busbridge and Stibbs [1954] by solving equation 

(4.77) is 

t 

01 A ) t/2 + _ 
p p 

1 k 
+ -

2 
~ (a n -a n ) ( 1 L. p p r r 

- p=t 

J.J' H(n 1-J' ) 

AP >J P $'} + 
n 1J + n 1-1' 

0 r p 

k 1 

+ -
2
1 tn n H(n J.l) t ( 1 - A ) 

r r r L. p 
p=t J J.l' H(n J.l' )d#J' p , 

0 

(4.81) 
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1 + &TJ 
X 

r and 1 (4.82) where = n = 
r 1 +TJ_ r 1 +TJ 

r r 

The H-function for the rth line , H(n ~), is the solution of 
r 

the integral equation 

1 
k k 

= ( ~ 0t A. ) ~/2 + .!_ ~ Ol (1~ ) X 
L P P 2 L P P 

p=~ p=~ 
H(n ~) 

r 

X 

~ 
~· H(n J.J• ) 

I n l.l +P n 1-1• 
o r p 

(4.83) 

Following Chandrasekhar (1960] ,Busbridge and Stibbs (1954) 

approximated H(n p), the H-function for the first line in 
~ 

the multiplet, as 

H ( n ~ ) = H ( 1-ot A. -ot A. -k , 1-1 ) 
1 1 1 2 2 1 

(4.84) 

where, k = ( 1/2 )a ( 1 - A. ) ( 1 - n /n ) 
1 .2. 2 12 

(4.85) 

H(n JJ) and H(n j.J) were calculated from H(n JJ) using the 
2 9 1 

relation 

H(n 1-1) = H(n .(n In )~) 
r 1 r 1 

r == 2,3 (4.86) 

I have used four approximate forms of the H-function 

Form ( 1) : H(cu ,1-/ ) = 1 + ill-' + q.,2 + Q.Js (4.87) 

(vide, .Karanjai and Sen, 1971, eqn.(2.1)) where a, b, c, are 
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the functions of albedo w 

Form (2) : H(w,p) = 1 + (ap + f:¥.1 2 
)/(A + 4J) · (4.88) 

(vide, Karanjai and Sen, 1970) whera a and b are the 

functions of w and 

A = (1 - w) ~/ 2 
(4~89) 

Form (3) : H(w,p) = 1 + (4.90) 

(vide, Karanjai and· Sen, 1971} where a, b, c, are the 

functions of w and A is given by the equation (4.87) 

+ bp2 + 3 

Form (4) . H(w ,p) = 1 + at-1 CJ1 (4.91) . 
1 + KM 

(vide, Karanjai and Sen 1971 eqn.3.1) where a, b, c are the 

functions of w and K is a root of the transcendental 

equation 

(w/2K) log [ ( 1+K) I ( 1-1()] = 1 (4.92) ......... '\. 

The cases considered here are 

I. Y1 = 1, "t1 = .5,& = 0 A = n = 1/2, A = n = 2/3 
~ 2 , ~ ~ 2 2 

II. Y1 = 2, "t1 = 1, & = O,A = n = 1/3, A = n = 1/2 
1 2 ~ ~ 2 2 

III. Y1 = 4, "t1 = 2, & = O,A = n = 1/5, A = n = 1/3 
~ 2 ~ 1 2 2 (4.93) 

IV. Y1 = 6, Y1 = 3, & = O,A = n = 1/7, A = n = 1/A 
1 2 1 1 2 2 

v. Y1 = a, 
"t12 = 4, & = O,A = n = 1/9, A = n = 1/5 

1 1 ~ 2 2 

VI. Y1 = 10 ,n = 5, & = 0 A = n = 1/11 ,X. = n = 1/6 
1 2 , ~ 1 2 2 

:'f Out of the six cases considered here , three cases (case 
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I,III,VI ) are identical with the cases considered by 

Busbridge and Stibbs [1954). 

4.42. Calculation for a Doublet. 

Form (1): 

After Single iteration , the expression for H(~,~) in the 

form (1) is obtained as 

1 
2 

2 3 
iJI.l Y ~ - q.L )log ( (~ + H(w ,~) 

= 1 . - ~(.,) [ ( 1 

+ b/2 + c/3 + - lJl - q.~./2 + q.~.2 ] + a 

for a doublet k = 2 

= 2:1 , 
I ~~rite <o>=!.-a>.. -oc>.. 

~ ~ 2 2 

' a 2 

k 
1 

= 1/3 

1) /f.l)) + 

(4.94) 

(4 .. 95) 

(4.96) 

so that ~ is now a function of the parameters oc. and l). (i = 

1,2). I then calculate H(n ~) 
1 

1. 1. 

with the help 

of equation (4.84) and .<4.85) and tabulate it in Table 4.1. 

Values for H(n ~) calculated from relation (4.86) are also 
2 

given in the same table. 

In calculating the residual intensities from equation (4.81), 

the H-function within the integral sign have been replaced 

by the right hand side of equation (4.88) and the values of 

H-function outside the integral sign have been taken from 

I 
I 
I 

.I 
I 

·I 
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Table 4.1. Values of r (IJ) and r (J.t) were calculated for 
J. 2 

Cases I to VI for a region of the spectrum where b = (3/2)a 

The results are also given in Table 4.1 and are shown by the 

curves of Fig.4.1.a.( for case I,II and III ) and Fig.4.1.b. 

( for case IV,V and VI ), in which the residual intensities 

are plotted as functions of 1-1 • Since in the wings of the 

lines , T1 is proportional to (t;A )-
2

, where llA. is the 

distance from the line centre,the cases I-VI of (4.93) ~ead, 

respectfully to cross-sections of the line profiles at 

increasing distances from the centres of the lines. This 

representation of the results is similar to that adopted by 

Houtgast [1942] where cross-sections curves for 

multiplets in the solar spectrum are given. 

Form 2: 

After single .iteration , the expression for H(w,,_,) is 

obtained ·as 

1 = 1 -
2(~-A) 

[ (2/.J - A + i3f..l - Q.Jz )log ( (p + H (w ,,_, ) 

+ l.) 11-1 ) ) - ( a/2 bA/4 )A log((A+2)/A) ] - (Q.Jw/4) (4.97) 

Similarl.Y as in form (1) I have calculated the 

residual intensities and H-function for doublets and given 

in table 4.2. 
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In calculating the residual intensities from equation (4.81) 

~the H-function within the integral sign have been replaced 

by the right hand side of equation (4.88) and the values of 

H-function outside the integral sign have been taken from 

Table 4.2. The results are also given in Table 4.2 and are 

shown by curves of Fig.4.2.a. ( for case I,II and III ) and 

Fig.4.2.b. (for case IV,V and VI). 

Form 3: 

After single iteration , the expression for H(~,p) is 

obtained as 

1 ·1-Jc.) [ 41 H(£~> ,p) = 1 - 2(2p -=. A) ( 

+ 1)/p)) - (a/2 - bA/4 + 

-A+~ -I::J,lz +q~s )log((p + 

cA2 /B )A log((A + 2)/A)] -

- (p~/2)[ b/2 + c/4 (1 - ~ - A)] (4.98) 

Similarly as in form (1) we have calculated the 

residual intensities and H~function for doublets and given 

in table 4.3. 

In calculating the residual intensities from equation (4.81) 

,the H-function within the integral sign have been replaced 

by the right hand side of equation (4.90) and the values of 

H-f~nction outside the integral sign have been taken from 

Table. 4.3. The results are also given in Table 4.3 and are 
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shown by curves of Fig.4.3.a. {for case I,II and III ) and 

Fig.4.3.b. ( for case IV,V and VI ). 

Form 4: 

After single iteration , the expression for H(w,~) is 

obtained as 

1 
-:-::~--. == H(w ,IJ) 

2 
+T ~ )log 

2 
( (~ + 1 )/~)) + 

where 

T
2 

( 1 - V4.1) ] 
c/2K+(.1/K) (T

1
- T

2 
/K)log(1+K). + K 

T~ = (a- q.JIK) (1./(1- Y-1-1>] 

T = 
2 

bK - c ( 1 + K,.t ) 
(11(1 - ... 4.1 >] K 

Similarlyas in form (1) we have calculatedthe 

(4.99) 

(4.100) 

(4.101) 

residual 

intensities and H-function for doublets and given in table 

4.4 • 

In. calculating the residual intensities from equation (4.79) 

,the H-function within the integral sign have been replaced 

by the right hand side of equation (4.91)and the values of 

H-function outsidethe integral sign have been takeh from 

Table 4.4. The results are also given in Table 4.4 and are 

shown by curves of Fig.4.4.a. ( for case I,II and III ) and 

Fig.4.4.b~·· (·for case IV,V and VI ) • 

., 
I 

' 
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4.43. Calculation for a Triplet. 

For a triplet k = 3 

Y1 :rj :rj = 5:3:1 a = 5/9, 01 = 1/3, a = 1/9 
12 3 , 1 2 3 

(4.102) 

Three cases were considered . . 
I. 

Ylf. 
= 5/9, 

Y12 = 1/3, 1)3 = 1/9, & = OJ (4.103) 
j A. = n = 9/14, A. = n = 3/4, A = n = 9/10 

f. 1 2 2 9 3 

II. 
Ylf. = 5/3, 1)2 = 1, 1)9 = 1/3, & = OJ 
A. = 3/8, A 1/2, A 3/4 

. (4.1~4) 

n = = n = = n = 1 1 2 2 9 3 

III. Y/1 = 5/9, r)2 = 1/3, l}s = 1/9, & =OJ (4.105) 

A = n = 1/6, A = n = 1/4, A = n = 1/2 
1 .t 2 2 3 3 

Out of three cases , case I is identical with the case 

considered by Karanjai [196Bb]. 

'" 

Following Busbridge and Stibbs , H(n ~) in the case of a 
r 

triplet can be approximated by 

H(n /..1) == H(l -a A - 01 A -OIA k , ~ ) (4.106) 
1 1 1 2 2 8 3 2 

where, 

k == (1/2)(01 (1 -"A. )(1 n In ) + 
·f 

2 2 2 1 2 
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+ Ot (1 
3 

lOO.l 

A ) ( 1 - n In ) 
3 1 3 

(4.107) 

Here I have considered the four approximate forms of 

H-function as the case of a doublet ( Form (1) to Form (4), 

equations (4.86) - (4.89) ). Writting 

w = 1 - ex A - ex A - ex A - k 
1 1 2 2 3 3 2 

(4.108) 

in equation (4.106) I calculate H-functions and residual 

intensities for the cases considered and tabulated in the 

following manner. 

Forms Tables Cases 

(1) 4.5,4.6,4.7 I, II, III 

(2) 4.8,4.9,4.10 I, II, III 

(3) 4.11,4.12,4.13 I, II, III 

(4) 4.14,4.15,4.16 I, II, III 

Results are.also shown by the curves , in which the residual 

intensities are· plotted as the functions of p in the 

fillowing manner • 

Forms Figures Cases 

(1) 4.5.a, 4.5.b, 4.5.c I, II, III 

(2) 4.6.a, 4.6.b, 4.6.c I, II, III 

(3) 4.7.a, 4.7.b, 4.7.c I' II, III 

(4) 4.B.a, 4.8.b, 4.8.c I" II, III 

From tables I-IV and Fig. 4.5.a -4.8.b it will be seen that 

the 
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effect of interlocking is to increase r (J.l} and to decrease 
i 

r (f.l ) for all J..l• Let d (J.d denote the differences 
2 

r (#J) r (J..I) in the interlocked case for a doublet. 
2 i 

Similarly for a triplet let 

d (JJ ) = r (p) r (p) (4.109) 
i 2 1 

d (JJ ) = r (J.l} r·(J.l) (4.110) 
2 9 2 

d (JJ ) = r (#J ) r (JJ ) (4.111) 
9 9 1 

·~ 

Values of d(JJ) for the. cases I-VI are shown in Fig.4.9. to 

Fig.4.12. and d (J-1), d (JJ) and d (~.J)·are shown as follows: 
1 2 9 

Forms Figures Cases 

(1) 4.13.a,4.13.b,4.13.c I, II, III 

(2) 4.14.a,4.14.b,4.14.c I, II, III 

(3) 4.15.a,4.15.b,4.15.c I, II, III 

(4) 4.16.a,4.16-b,4.16.c I, II, III 

-f. 

Remarks . . 

Residual intensities for doublets and triplets can be 

calculated in a similar way as the procedure described here 

in section 4.4. using the exponential form of planck 

function. 
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Table 4.1. Values of the H-functions and residual 

intensities for a doublet with interlockin~ 

T/1 = 1 Ill T/2 = 1/2 

J.l H(n J.l) 
2 

H(n J.l) 
2 

r (J.l ) 
1 

r (J..l ) 
2 

o.o 1.0000 1.0000 0.8349 0.8894 

0.1 1.0602 1.0728 0.8251 0.8872 

0.2 1.0937 1.1107 0.8016 0.8718 

0.3 1.1182 1.1374 0.7789 0.8562 

0.4 1.1.374 1.1.577 0.7584 0.8420 

0.5 1.1.531 1.173'7 0.7402 0.8293 

0.6 1.1.661 1.1869 0.7242' 0.8181 

0.7 1.1.773 1..1978 0.7100 0.8081 

o.s 1.1869 1.2071 0.6973 0.7993 

0.9 1.1953 1 •. 2151 ._ 0.6861 0.7914 

1..0 1.2027 1.2221. 0.6759 0.7843 

Table 4.1. (continued) 

.·. 'l) 1 . = 2 , T/2 = 1 

./-1 . H(n p) z . H(n 1.1) z . r (J.l ) 
1 

r (J.l ) z 

0.0 1.0000 1.0000 0.7108 0.7815 

0.1 1.0877 1.11.56 -0.7061 0.7880 

0.2 1.1.392 1.1781 0.6836 0.7723 

0.3 1..1781 1.2227 0.6604 0.7544 

0.4 1.2093 1.2570 0.6388 0.7372 

0.5 1.2351 1.2844 0.6192 0.721.3 

0.6 1.2570 1.3069 0.601.6 0.7070 

0.7 1.2759 1.3258 0.5858 0.6940 

0.8 1.2924 1.3419 0.5716 0.6823 

0.9 1.3069 1.3557 0.5587 0.6718 

1.0 1..3199 1.3678 0.5471 0.6622 

182 



Chapter-4 183 

Table 4.1. (continued) 

T/1 = 4 , T/2 = 2 

J.l H(n J.l) 
2 

H(n J.l) 
2 

r (J.l ) 
1 

r (J.l ) 
2 . 

0.0 1 .. 0000 1.0000 0 .. 5632 0 .. 6331 

0.1 1.1153 1 .. 1651 0.5644 0 .. 6506 

0.2 1 .. 1867 1 .. 2585 o .. -5468 0 .. 6391 

0.3 1 .. 2424 1 .. 3269 0.5272 0.6228 

0.4 1..2881 1.3802 0 .. 5083 0.6058 

0.5 1.3269 1.4233 0.4907 0.5894 

0.6 1..3603 1.4590 0 .. 4746 0 .. 5741 

0.7 1 .. 3895 1.4892 0.4598 0.5601 

0.8 1.4153 1.5150 ().4464 0.5472 

0.9 1.4383 1.5375 0.4341 0.5354 

1.0 1 .. 4590 1.5571 0.4222 0.5245 

Table 4.1. (con.tinued) 

'?t = 6 , T/2 = 3 

J.l H(n p ) 
2. 

H(n J.l) 
2 

r (p ) 
1 

r (J.l ) 
2 

o.o . 1.0000 1.0000 0.4779 0.5398 

0 • .1 1 • .1295 1 • .1934 0.4815 0.5623 

0.2 1 .. 2120 1.3059 0 .. 4673 0.5542 

0.3 1.2775 1.3895 0.4508 0.5402 

0.4 1 .. 3321 1.4554 0 .. 4344 0.5248 

0.5 1.3788 1.5091 0.4189 0.5095 

0.6 1.4195 1.5540 0.4046 0.4949 

0.7 1.4554 1.5921 0.3913 0.481.3 

0.8 1.4873 1.6248 0.3792 0 .. 4687 

0.9 1 .. 5160 1.6534 0.3680 0.4570 

1.0 1.5419 1.6785 0.3576 0.4462 
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.'f 

Table 4.1. (continued) 

l}1 = 8 , 
T/2 = 4 

p H(n J..l) 
2 

H(n p) 
2 

r (J..l) 
t 

r (J.d 
2 

0.0 1.0000 1.0000 0.4213 0.4756 

0.1 1.1383 1.2118 0.4260 0.5004 

0.2 1.2280 1.2118 0.4140 0.4947 

0.3 1 • .3000 1.3375 0.3996 0.4827 

0.4 1.3606 1.431.8 0.3852 0.4687 

0.5 1..4128 1.5068 0.3713 0.4546 

0.6 1..4586 1.5683 0.3584 0.4409 

0.7 1..4992 1.6199 0.3464 0.4280 

o.s 1.5355 1.6639 0.3353 0.4159 

0.9 1..5683 1.7018 0.3251 0.4047 

1.0 1.5980 1.7350 0.3156 0.3944 

Table 4.1. (continued) 

1)1 = 10 , 
Y12 = 5 

p H(n J..l) 
2 

H(n J..l) 
2 

r (J..l ) 
1 

r (J..l) 
2 

0.0 1..0000 1.0000 0.3804 0.4285 

0.1. 1.1443 1.2249 0.3856 0.4542 

0.2 1.2392 1.3602 0.3752 0.4502 

0 •. 3 1.3158 1.4625 0.3623 0.4396 

0.4 1.3807 1.5444 0.3493 0.4270 

0.5 1.4370 1.6118 0.3368 0.4138 

0.6 1.4866 1.6686 0.3250 0.4010 

0.7 1.5307 1.7172 0.31.40 0.3889 

o.8 1.5703 1.7592 0.3038 0.3774 

0.9 1.6062 1.7961 0.2944 0.3667 

1.0 1..6388 1.8286 0.2856 0.3568 



,:~ 

Chapter-4 

Table 4.2. Values of the H-functions and residual 

intensities for a doublet with interlocking 

Y'l1 
= 1 , 

Y'l2 
c: 1/2 

/.1 H(n 1.1) 
2 

H(n 1.1) 
2 

r (J..l ) 
1 

r (f.l ) 
2 

0.0 1.0000 1.0000 0.8218 0.8703 

0.1 1.0589 1.0712 0.8117 0.8691 

0.2 1.0918 1.1086 0.7887 0.8552 

0.3 1.1160 1.1351 0.7667 0.8411 

0.4 1.1351 1.1553 0.7470 0.8281 

0.5 1.1507 1.1714 0.7295 0.8165 

0.6 1.1637 1.1845 0.7141 0.8062 

0.7 1.1749 1.1955 0.7005 0.7971 

0.8 1.1845 1.2049 0.6883 0.7890 

0.9 1.1930 1.2130 0.6775 0.7817 

1.0 1.2004 1.2200 0.6678 0.7751 

Table 4.2.. (continued) 

. 1)1 = 2 , 1)2 = 1 

/.1 H(n 1.1) 
2 

H(n 1.1) 
2 

r (J..l ) 
1 

r (f.l ) 
2 

0.0 1.0000 1.0000 0.8218 0.8703 

0.1 1.0849 1.1120 0.6870 0.7588 

0.2 1.1351 1.1733 0.6648 0.7453 

0.3 1.1733 1.2174 0.6424 0.7296 

0.4 1.2040 1.2515 0.6216 0.7144 

0.5 1.2297 1.2789 0.6029 0.7003 

0.6 1.2515 1.3014 0.5862 0.6874 

0.7 1.2703 1.3204 0.5711 0.6758 

0.8 1.2869 1.3366 0.5576 0.6652 

0.9 1.3014 1.3507 0.5454 0.6557 

1.0 1.3144 1.3629 0.5344 0.6471 
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J.l 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

o.a 
0.9 

1.0 

J.l 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

o.a 
-~- 0.9 

1.0 

Table 4.2. (continued) 

T11 = 4 , 
T/2 = 2 

H(n f.l) 
2 

H(n J.1) 
2 

r (f.l) 
~ . 

' 

1.0000 1.0000 0.5456 

1.1104 1.1586 0.5442 

1.1795 1.2496 0.5264 

1.2337 1.3168 0.5073 

1.2786 1.3697 0.4891 

1.3168 1.4127 0.4722 

. 1..3499 1.4484 0.4569 

1..3790 1.4788 0.4429 

1.4047 1.5049 0.4302 

1.4277 1.5276 0.41.86 

1.4484 1.5475 0.4080 

Table 4.2. (continued) 

T11 = 6 , T/2 = 3 

H(n J.l) 
. 2 

H(n J.1) 
2 

r (J.I ) 
:l 

1.0000 1.0000 0.4621 

1..1235 1.1849 0.4629 

1.2030 1.2942 0.4482 

1.2665 1.3763 0.4318 

1.3198 1.441.5 0.4160 

1.3657 1.4950 0.4011 

1.4059 1..5398 0.3874 

1.4415 1.5781 0.3749 

1.4732 1.6111 0 .. 3633 

1.5018 1.6399 0.3528 

1.5277 1.6654 0.3431 

r (f.l ) 
2 

0.5999 

0.6163 

0.6068 

0.5928 

0.5780 

0.5636 

0.5501 

0.5376 

0.5261 

0.5155 

0.5058 

r (f.l ) 
2 

0.5085 

0.5289 

0.5224 

0.5105 

0.4971 

0.4836 

0.4708 

0.4587 

0.4474 

0.4370 

0.4274 
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Table 4.2 .• (continued) 

11 = 8 , "(}2 = 4 
1 .. 

J.l H(n J.1) 
2 

H(n J.1) 
2 

r (1-J ) 
t 

r (J.l ) 
2 

0.0 1.0000 1.0000 0.4073 0.4470 

0.1 1.1315 1.2021 0.4090 0.4691 

0.2 1.2177 1.3239 0.3964 0.4647 

0.3 1.2874 1.4763 0.3821 0.4544 

0.4 1.3465 1.4904 0.3680 0.4422 

0.5 1.3976 1.5515 0.3547 0.4298 

0.6 1.4427 1.6030 0.3423 0.4177 

0.7 1.4829 1.6472 0.3309 0.4063 

o.a 1.5189 1..6854 0.3204 0.3955 

0.9 1.5515 1.71.89 0.3107 0.3855 

1..0 1.5812 1.7485 0.3018 0.3761 

Table 4.2. (continued) 

"111 = 1.0 , "(}2 = 5 

J.l H(n J.l) 
2 

H(n p) · 
2 

r (J.I ) 
t 

r (J.I ) 
2 

0.0 1.0000 1..0000 0.3678 0.4023 

0.1 1.1370 1.21.42 0.3701. 0.4252 

0.2 1.2279 1..3452 0.3590 0.4221 

0.3 1.3020 1..4454 0.3461 0.41.30 

0.4 1.3652 1.5261 0.3334 0.4020 

0.5 1..4203 1.5931. 0.321.3 0.3905 

0.6 1.4690 1..6497 0.3100 0.3791. 

0.7 1..51.26 1..6984 0.2995 0.3683 

o.a 1.5518 1.7407 0~2898 0.3580 

0.9 1.5874 1.7779 0.2809 0.3484 

1.0 1.6199 1.81.08 0.2726 0.3395 
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Table 4.3. Values of the H-functions and residual 

intensities for a doublet with interlocking 

Tl~., = 1 -n2 = 1/2 , 
1-l H(n J.l) 

2 
H(n 1.J) 

2 
r (J.J ) 

:f. 
r (J.J ) 

2 

0.0 1.0000 1 .. 0000 0 .. 8356 0 .. 89901 

0.1 1.0603 1 .. 0729 0 .. 8259 0.8880 

0.2 1.0938 1.1108 0.8023 0.8725 

0.3 1 .. 1183 1.1375 0 .. 7795 0 .. 8569 

0.4 1 .. 1375 1 .. 1577 0.7590 0.8426 

0 .. 5 1.1531 1 .. 1738 0.7408 0 .. 8299 

0.6 ·1.~662 1.1869 0.7247 0.8186 

0.7 1.1773 1.1979 0.7104 0.8086 

o.8 1.~869 1..2072 0.6978 0.7997 

0.9 1.1953 1.2152 0.6865 0.7918 

1.0 1.2027 1 .. 2221 0.6763 0.7847 

Table 4.3. (continued) 

n~., = .2 n2 = 1 ,. 
1-l H(n 1-1) 

2 
H(n 1.J) 

2 
r (J.J ) 

f. 
r (/-1 ) 

2 

0.0 1.0000 1.0000 0.7129 0.7840 

0.1 1.0879 1.1157 0.7082 0.7904 

0.2 1.1394 1.1782 0.6855 0 .. 7745 

0.3 1.1782 1.2228 . 0.6622 0.7565 

0.4 1.2093 1 .. 2571 0.6405 0.7391 

0.5 1.2352 1 .. 2844 0.6208 0.7231 

0.6 1.2571 1 .. 3069 0 .. 6031 0. 7086 

0 .. 7 1.2759 1.3258 0.5872 0.;6956 

0.8 1.2924 1 .. 3418 0.5729 0.6838 

0.9 1.3069 1 .. 3557 0.5600 0.6732 

1.0 1.3198 1 .. 3678 0.5483 0.6635 
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Table 4.3. (continued) 

-n1 = 4 , 1'12 = 2 

1-1 H(n p) 
2 

H(n p) 
2 

r (p) 
1 

r (p) 
2 

o.o 1.0000 1.0000 0.5661 0.6369 

0.1 1.1154 1.1652 0.5673 0.6545 . 

0.2 1.1868 1.2586 0.5495 0.6428 

0.3 1.2424 1.3269 0.5299 0.6263 

0.4 1.2882 1.3801 0.5108 0.6091 

0.5 1.3269 1.4232 0.4931 0.5925 

0.6 1..3602 1.4589 0.4768 0.5771 

0.7 1.3894 1.4890 0.4620 0.5628 

0.8 1.4552 1.5149 0.4484 0.5498 

0.9 1.4382 1.5373 0.4360 0.5378-

1.0 1..4589 1.5570 0.4247 0.5269 

Table 4.3. (continued) 

n1 = 6 , ~2 = 3 

1-1 . H(n #J .) . 
. 2 

H(n #J) 
2 

r (#.1 ) 
1 

r (IJ) 
2 . 

o.o 1.0000 1.0000 0.5661 0.6369 

0.1 1.1154 1.1652 0.5673 0.6545 

0.2 1.1868 1.2586 0.5495 0.6428 

0.3 1.2424. 1 .. 3269 0.5299 0.6263 

0.4 1.2882 1.3801 0.5108 0.6091 

0.5 1.3269 1.4232 0.4931 0.5925 

0.6 1.3602 1.4589 0.4768 0.5771 

0.7 1.3894 1.4890 0.4620 0.5628 

0.8 1.4152 1.5149 0.4484 0.5498 

0.9 1.4382 1.5373 0.4360 0.5378 

1.0 1.4589 1.5570 0.4247 0.5269 

·:-_. i . I 
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Table 4.3. (continued) 

111 =a , 1}2 = 4 

p- · H(n-J-1) H(n J.i) r (J-1) r (J-1 ) 
2 2 :t 2 

0.0 1.0000 1.0000 0.4233 0.4785 

0.1 1.1383 1.2119 0.4280' 0.5033 

0.2 1.2281 1.3374 0.4159 0.4976 

0.3 1.3000 1.4317 0.4015 0.4854 

0.4 1.3605 1.-5066 0.3869 0.4713 

0.5 1.4127 1.5680 0.3730 0.4570 

0.6 1.4584 1.6196 0.3601 0.4432 
' - ' 
' 0.7 1.,4990 1.6636 0.3480 0.4302 i 

0.8 1.5353 1.7015 0.3369 0.4180-

0.9 1.5680 1.7347 0.3266 0.4067 

1.0 1.5977 1.7640 0.3170 0.3963 

Table 4.3. -(continued) 

~1 = 10', 1}2 = 5 

J-1 H(n J..l) 
2 

H(n J..1) 
2 

r (J-1 ) 
:t 

r (J-1 ) 
2 

o.o 1.0000 1.0000 0.3818 0.4306 

0.1 1.1443 1.2249 0.3870 0.4563 

0.2 1.2391 1.3600 0.3766 0~4523 

0.3 1.3157 1.4623 0.3637 0.4417 

0.4 1.3806 1.5441 0.5506 0.4289 

0.5 1.4368 l. .• 6115 0.3380 0.4157 

0.6 1.4863 1..6683 0.3262 0.4028 
-I 

0.7 1.5304 1.7168 0.3151 0.3905 

0.8 1.5700 1.7589 0.3049 0.3790 

0.9 1.6059 1.7957 0.2954 0.3682 

1.0 1.6385 1.8282 0.2866 0.3582 
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Table 4.4. Values of the H-functions and residual 

intensities for a doublet with interlocking 

TJ1 - J. , TJ = 1/2 
2 

1-l H(n J..l) 
1 

H(n J..l) 
2 

r(n J..l) 
1 

r(n J..l) 
2 

0.0 1.0000 1.0000 0.8359 0 .. 8904 

0.1 1.0603 1.0729 0.8261 0 .. 8883 

0.2 1.0938 1.1108 0.8025 0 .. 8728 

0.3 1.1183 1.1375 0.7797 0.8571 

0 .. 4 1.137.5 1.1577 0.7592 0.8428 

0.5 1.J.531 1.1738 0.7410 0.8301 

0.6 .1.1662 1.J.869 0.7249 0.8188 

0.7 "1.1773 1.1979 0.7106 0.8088 

0.8 J..J.869 1.2072 0.6979 0.7999 

0.9 ·1.1953 J..2J.52 0.6866 0.7919 

J..O .J..2027 1.2221 0.6765 0.7848 

Table 4.4. (continued) 

TJ1 - 2 , T/2 - 1 

J..l H(n J..l) 
1 

H(n J..l) 
2 

r(n J..l) 
1 

r(n J..l) 
2 . 

o.o J..OOOO 1.0000 0.7139 0.7852 

0.1 1.0879 J..1158 0.7092 0 .. 7916 

0.2 1.1394 1.1782 0.6864 0.7757 

0.3 1.1782 1.2229 0.6631 0.7576 

0.4 1.2094 1.2571 0.6413 0.7401 

0.5 1.2352 1.2845 0.6216 0.7241 

0.6 1.2571 1.3070 0.6038 0.7095 

0.7 1.2760 1.3258 0.5879 0.6964 

0.8 1.2924 J..34J.9 0.5736 0.6846 

0.9 1.3070 1 .. 3557 0.5606 0.6739 

1.0 1.3199 1.3678 0.5489 0.6642 
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Table 4.4. (continued) 

Y)1 - 4 , 
712 

= 2 

l.l H(n 1.1) 
1 

H(n l.l) 
_2 

r(n 1J) 
1 

r(n 1J) 
2 

0.0 1.0000 1.0000 0.5484 0.6400 

0.1 1.1i55 1.1653 0.5696 0.6578 

0.2 1.1869 1.2587 0.5518 0.6459 

0.3 1.2426 1.3270 0.5320 0.6292 

0.4 1.2883 1.3802 0.5129 0.61.18 

0.5 1.3270 1.4233 0.4951 0.5951 

0.6 1.3604 1.4590 0.4787 0.5797 

0.7 1.3895 1.4892 0.4638 0.5651 

0.8 1.4153 1.5150 0.4502 0.5520 
' 

0.9 1.4383 1.5374 0.4377 0.5399 
i 

1.0 1.4590 1.5570 0.4263 0.5289 

Table 4.4. (continued) 

711 - 6 , 712 - 3 

l.l H(n 1.1) 
1 

H(n 1.1) 
2 

r(n IJ) 
1 

r(n 1.1) 
2 

o.o 1.0000 1.0000 0.4835 0.5477 

0.1 1.1297 1.1937 0~4873 0.5706 

0 •. 2 i.2123 1.3062 0.4729 0.5623 

0.3 1.2778 1.3897 0.4561 0.5479 

0.4 1.3323 1.4555 0.4395 0.5320 

0.5 1.3790 1.5092 0.4238 0.5163 

0.6 1.4196 1.5540 0.4093 0.5014 

0.7 1.4555 1.5920 0.3958 0.4874 

0.8 1.4874 1.6248 0.3835 0.4745 

0.9 1.5161 1.6533 0.3721 0-4625 

1.0 1.5419 1·.6784 -0.3716 0.4514 
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Table 4.4. (continued) 

T/1. =8 !J nz - 4 

1.1 H(n 1.1) 
1 

H(n 1.1) 
2 

r(n 1.1) 
1 

r(nl.l) 
2 

0.0 1.0000 1.0000 0.4267 0.4835 

0.1 1.1386 1.2122 0.4316 0.5088 

0.2 1.2284 1.3378 0.4195 0.5029 

0.3 1.3004 1.4320 0.4049 0.4905 

0.4 1.3609 1.5069 0.3903 0.4762 

0.5 1.4131 1.5684 0.3763 0.4617 

0.6 1.4588 1.6199 0.3632 0.447.6 

0.7 1.4994 1..6639 0.3510 0.4344 

0.8 1.5357 1..7019 0.3397 0.4,220 

0.9 1.5684 1.7350 0.3293 0.4106 

l..O 1.5981 1.7642 0.3197 0.3999 

Table 4.4. (continued) 

111. - l.O!J 11 = 5 
2 

1.1 H(n J.1) 
1 

H(n 1.1 )-
2 

r(n J.l) 
1 

r(n 1.1) 
2 

0.0 1.0000 1..0000 0.3855 -0.4361 

0.1 1.1447 1.2253 0.3909 0.4623 

0.2 1.2396 1.3605 0.3804 0.4582 

0.3 1.3162 1.4628 0.3674 0.4473 

0.4 1.3811 1.5446 0.3542 0.4343 

9-5 1..4373 1.6120 0.3415 0.4208 

0.6 1.4868 1.6687 0.3296 0.4077 

0.7 1.5309 1..7172 0.3184 0.3952 

o.8 1.5705 1.7589 0.3081 0.3834 

0.9 1.6063 1.7961 0.2985 0.3725 

1.0 1.6389 1.8286 0.2896 0.3623 

I 
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Table 4.5. Values of the H-functions and residual 

intensities for a triplet. 

1.1 H(n p) 
f. 

H(n 1-1) 
2 

H(n 1.1) 
3 

r(n p.) 
f. 

r(n p.) 
2 

r(n 1.1) 
g 

0.0 1.0000 1.0000 1.0000 0 .. 8947 0.9279 1.0016 
0.1 1.0376 1.0416 1.0466 0.8859 0.9230 t't.9934 
0.2 1.0577 1.0629 1.0694 0.8668 0.9095 0.9841 
0.3 1.0720 1.0778 1.0849 0.8488 0.8965 0.9761 
0.4 1.0830 1.0891. 1.0964 0.8327 0.8849 0.9692 
0.5 1.091.9 1.0980 1.1054 0.81.87 0.8748 0.9634 
0.6 1.0992 1.1.054 1.1126 0.8064 0 .. 8659 0.9584 
0.7 1..1054 1..1115 1.11.85 0.7956 0.8581. 0.9540 
0.8 1.11.06 1.1166 1.1235 0.7861 0.8512 0.9502 
0.9 1.1.152 1.1.21.1 1.1.277 0.7776 0.8451 0.9469 
1.0 1.11.93 1..1250 1..131.4 0.7700 0.8396 0.9439 

Table 4.6. Values of the H-functions and residual 

intensities for a triplet. 

1.1 H(n 1-1) 
1 

H(n 1-1> 
2· 

H(n 1.1) 
a 

r(n p.) 
f. 

r(n p.) 
2 

r(n 1.1) 
3 

0.0 1..0000 1. .. 0000 1..0000 0.7334 0.7887 0.9485 
0.·1. 1 .. 0746 1 .. 0906 1.1173 0.7287 0.7913. 0.9425 
0 .. 2 1.1173 1.1.394 1.1742 0 .. 7066 0.7739 0.9261 
0 .. 3 1.1491 1..1742 1.2124 0.6839 0.7552 0.9103 
0.4 1.1742 1 .. 2011 1.2403 0.6629 0.7374 0.8962 
0.5 1.1949 1 .. 2226 1.2617 0.6439 0.7213 0.8839 
0.6 1..2124 1..2403 1.2788 0.6269 0.7068 0.8730 
0.7 1.2273 1.2551. 1.2927 0.6117 0.6937 0.8635 
0.8 1.2403 1. .. 2678 1.3043 0.5981 0.6820 0.8552 
0.9 1.251.6 1..2788 1.3141 0.5858 0.6715 0.8477 
1.0 1.2617 1.2883 1.3226 0.5747 0.6620 0.8411 



Chapter-4 195 

Table 4.7. Values of the H-functions and residual 

intensities for a triplet. 

J..l H(n J..l) 
:l 

H(n J..l) 
2 

H(n J..l) 
3 

r(n J..l) 
:l 

r(n J..l) 
2 

r(n J..l) 
3 

0.0 1.0000 1.0000 1.0000 0.5162 0.5630 0.7576 
0.1 1.1145 1.1526 1 .. 2406 0 .. 5183 0.5783 0 .. 7727 
0.2 1.1854 1.2406 1.3575 0.5020 0.5664 0.7560 
0.3 1.2406 1.3059 1.4347 0 .. 4836 0 .. 5499 0.7357 
0.4 1.2860 1.3575 1.4905 0.4657 0.5328 0.7160 
0 .. 5 1.3244 1.3996 1.5328 0.4489 0.5163 0.6979 
0.6 1.3575 1.4347 1.5661 0.4334 0.5009 0.,6816 
0.7 1.3864 1.4647 1.5931 0.4192 0.4866 0 •. 6669 
o .. 8 .1.4120 1.4905 1.6153 0 .. 4062 0.4736 0.6539 
0 .. 9 1 .. 4347 1.5130 1.6341 0.3943 0.4615 0.6421 
J. .. O 1.4552 1.5328 1.6500 0.3834 0.4505 0.6316 

Table 4.8~ Values of the H-functions and residual 

intensities for a triplet. 

J.l H(n J.l) 
1 

H(n J.l) 
2 

H(n J.l) 
3 

r(np) :l . r(n J.l) 
2 

r(n J.l) 
9 

0.0 1.000 1.0000 1.0000 0~8893 0.9203 0.9897 
0.1 1.0373 1.0412 1.0463 0.8805 0.9160 0.9824 
0.2 1.0573 1.0625 1.0690 0.8617 0.9031 0.9745 
0.3 1.0716 1.0775 1.0846 0.8441 0.8907 0.9676 
0.4 1.0827 1.0888 1.0962 0.8284 0.8797 0.9617 
0.5 1.0916 1.0978 1.1052 0.8147 0.8700 0.9567 
0.6 1.0990 1.1052 1.1125 0.8027 0.8615 0.9523 
0.7 1.1052 1.1114 1.1185 0.7922 0.8541 0.9485 
0.8 1.1105 1.1166 1.1235 0.7829 0.8475 0.9452 
0.9 1.1152 1.1211 1.1279 0.7746 0.8417 0.9422 
1.0 1.1193 1..1251' 1.1316 0.7672 0.8364 0.9396 
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Table 4.9. Values of the H-functions ~nd residual 

intensities for a triplet. 

J.l H(n iJ) 
~ 

H(n iJ) 
2 

H(n J.l) 
a r(n 1.1) 

1 
r(n iJ) z 

r(n 1.1) 
3 

0.0 1.0000 1..0000 1.0000 0.7220 0.7699 0.9071 
0.1 1.0738 1.0896 1.1164 0.7167 0.7732 0.9075 
0.2 .1.11.64 1.1385 1.1738 0.6949 0.7575 0.8967 
0.3 1.1483 1.1738 1.2126 0.6730 0.7404 0.8853 
0.4 1.1738 1.2011 1.2412 . 0.6527 0.7241 0.8746 
0.5 .1.1948 1.2230 1.2633 0.6344 0.7093 0 .. 8650 
0.6 1.2126 1.2412 1.2810 0.6181 0.6958 0.8564 
0.7 1.2279 1.2565 1.2954 0.6035 0.6838 0 .. 8487 
0.8 1.2412 1..2696 1.3075 0.5904 0.6729 0.8419 
0.9 1.2529 1 • .2810 1.3178 0.5786 0.6632 0.8358 
1.0 1.2633 1.2909 1.3266 0.5680 0.6543 0.8303 

Table 4.10. Values of the H-functions and residual 

intensities for a triplet. 

1.1 H(n J.l) 
t 

H(n J.l) 
2 

H(n 1.1) 
9 

r(n 1.1) 
1 

r(n 1.1) 
2 

r(n iJ) 
9 

o.o 1.0000 1.0000 1.0000 0.5026 0.5416 0.7001 
0 .. 1 1.1139 1.1523 1.2424 0.5039 0.5576 0.7280 
0.2 1.1857 1.2424 1.3645 0.4883 0.5481 0.7225 
0.3 1.2424 1.3103 1.4468 0.4710 0.5341 0.7104 
0.4 1.2894 1.3645 1.5070 0.4541" 0.5192 0.6967 
0.5 1.3296 1.4092 1.5532 0.4384 0.5047 0.6833 
0.6 1.3645 1.4468 1.5898 0.4239 0.4909 0.6706 
0.7 1.3952 1.4791 1.6196 0.4107 0.4781 0.6589 
0.~ 1.4224 1.5070 1.6443 0.3986 0.4663 0.6482 
0."9 1.4468 1.5315 1.6652 0.3874 0.4554 0.6384 
1.0 1.4688 1.5532 1.6830 0.3772 0.4454 0.6295 
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Table 4.11. Values of the H-functions and residual 

intensities for a triplet. 

J..l H(n J.l) 
1 

H(n f..l) 
2 

H(n f..l) 
3 

r(n f..l) 
1 

r(n p) 
2 

r(n p) 
9 

0.0. 1.0000 1.0000 1.0000 0.8946 0.9275 1.0004 
0.1 1..0374 1.041.3 1.0464 0.8855 0.9225 0.9923 
0.2 1..0574 1.0626 1.0692 0.8665 0.9089 0.9831 

.. 1 0.3 1..0717 1.0776 1.0847 0.8484 0.8960 0.9751. 
0.4 1..0828 1..0889 1. .. 0962 0.8324 0.8845 0.9684 
0.5 1.091.6 1.0978 1.1052 0.8184 0.8744 0.9626 
0.6 1.0990 1.1052 1.1.124 0.8062 0.8655 0.9576 
0.7 1.1052 1.11.13 1..11.83 0.7954 0 .. 8578 0.9534 
0.8 1.1105 1.1.165 1.1233 0.7859 0.8509 0.9496 
0.9 1. .. 1.151. 1.1.209 1.1.276 0 .. 7774 0.8448 0.9463 
1.0 1.1191. 1.1248 1 .. 1313 ·0.7699 0.8393 0.9434 

Table 4.12. Values of the H-functions and residual 

intensities for a triplet. 

1-l H(n J.l) 
1 

H(n p) 
2 

H(n p) 
3 

r(n p) 
1 

r(n p) 
2 

r(n p) 
a 

0.0 1..0000 1.0000 1.0000 0.7334 0.7896 0.9521 
0.1 1.0748 1..0907 1.1175 0.7288 0.7922 0.9459 
0.2 1.1175 1.1395 1.1744 0.7067 0.7748 0.9292 
0.3 1.1492 1.1744 1.2125 0.6840 0.7560 0.9131 
0.4 1..1744 1.2012 1.2403 0.6630 0.7:382 0.8988 
0.5 1..1950 1.2226 1.2618 0.6441 0.7220 0.8863 
0.6 1.2125 1.2403 1.2788 0.6271 0.7074 0.8753 
0.7 1.2274 1.2552 1.2927 0.6118 0.6943· 0.8656 
0.8 1.-2403 1.2678 1.3043 0.5982 0.6826 0.8571. 
0.9 1..2517 1.2788 1.3142. 0.5859 0.6720 0.8495 
1.0 1.2618 1.2884 1.3226 0.5748 0.6625 0.8428 
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Table 4.13. Values of the H-functions and residual 

intensities for a triplet. 

J-1 H(n p) 
1 

H(n J-1) 
2 

H(n p) 
3 

r(n J-1) 
1 

r(n J-1 ) 
2 

r(n f..l) 
3 

o.o 1.0000 1.0000 1.0000 0.5131 0.5636 0.7710 
0.1 1.1147 1.1528 1.2408 0.5158 0.5793 0.7867 
0.2 1.1857 1.2408 1.3576 0.4999 0.5676 0.7692 
0.3 1.2498 1.3061 1.4348 0.4819 0.5513 0.7480 
0.4 1.28.62 1.3576 1.4905 0.4642 0.5343 0.7274 
0.5 1.3245 1 .. 3997 1.5328 0.4477 0.5179 0.7084 
0.6 1.3576 1.4348 1.5661 0.4324 0.5025 0.6914 
0.7 1.3865 1.4647 1.5930 0.4184 0.4883 0.6761 
0.8 1.4120 1.4905 1.6153 0.4056 0.4753 0.6625 
0.9 1.4348 1.5130 1.6340 0.39.39 0 .. 4633 0.6503 
1.0 1.4552 1.5328 1.6500 0.3831 0.4522 0.6393 

Table 4.14. Values of the H-functions and residual 

intensities for a triplet • 

. f· 

J-1 H(n IJ) 
1 

H(n J-1 ) 
2 

H(n J-1) 
3 

r(n' J-1) 
1 

r(n J-1) 
2 

r(n J-1) 
3 

0.0 1.0000 1.0000 1.0000 0.8948 0.9281 1.0019 
0.1 1.0377 1.0416 1.0467 0.8860 0.9232 0.9938 
0.2 1.0577 1.0629 1.0695 0.8669 0.9096 0.9844 
0.3 1.0720 1.0779 1.0850 0.8489 0.8966 0.9763 
0.4 1.0830 1.0891 1.0964 0.8328 0.8850 0.9695 
0.5 1.0919 1.0981 1.1054 0.8188 0.8749 0.9636 
0.6 1.0992 1.1054 1.1126 0.8065 0.8660 0.9586 
0.7 1.1054 1.1115 1.1185 0.7957 0.8582 0.9542 
0.8 1.1107 1.1167 1.1235 0.7861 0.8513 0.9504 
0.9 1.1153 1.1211 1.1278 0.7776 0.8452 0.9471 
1.0 1.1193 1.1250 1.1314 0.7701 0.8397 0.9441 
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Table 4.15. Values of the H-functions and residual 

intensities for a triplet. 

J-1 H(n p) . ~· 
H(n J-1) 

. 2 
H(n J-1) 

3 
r(n J-1) 

~ 
r(n J.1) 

2 
r(n J.l) 

3 

0.0 1.0000 1.0000 1.0000 0.7332 0.7900 0.9539 
0.1 1.0748 1.0907 1al.175 0.7287 0.7926 0.9477 
0.2 1.1175 1.1395 1.1.744 0.7066 0.7752 0.9308 
0.3 1.1492 1.1744 1.2125 0.6839 0.7563 0.9146 
0.4 1.1744 1.2012 1.2403 0.6630 0.7385 0.9002 
0.5 1.1951 1.2227 1.2618 0.6440 0.7223 0.8875 
0.6 1.2125 1.2403 1.2788 0.6270 . 0.7077 0.8765 
0.7 1.2274 1.2552 1.2928 0.6118 0.6946 0.8667 
0.8 1.2403 1.2679 1.3044 0.5981 0.6829 0.8581 
.0.9 1.2517 1.2788 1 .. 3142 0.5858 0.6723 0.8505 
1.0 1.2618 1.2884 1.3226 0.5747 0.6627 0.8437 

Table 4.16. Values of the H-functions and residual 

intensities for a triplet. 

J.l H(n J.l) 
~ 

H(n p) 
2 

H(n p) 
a 

r(n J.l) 
1 

r(n J.l) 
2 

r(n J.l) 
3 

o.o 1.0000 1.0000 1.0000 0.5088 0.5638 0.7862 
0.1 1.1148 1.1529 1.2410 0.5120 0.5800 0.8028 
0.2 1.1858' 1.2410 1.3577 0.4967 0.5686 0.7845 
0.3 1.2410 1.3062 1.4349 0.4792 0.5526 0.7623 
0.4 1.2863 1.3577 1.4906 0.4620 0.5358 0.7407 
0.5 1.3247 1.3998 1.5329 0.4458 0.5195 0.7209 
0.6 1.3577 1.4349 1.5662 0.4308 0~5042 0.7030 
0.7 1.3866 1.46'48 1.5931 0.4.1-71 0.4901 0.6870 
0.8 1.4122 .. 1'.4906 1.6154 0.4045 0.4770 0.6727 
.0'~9 1.4349 1.5131 1.6341 0.3929 0.4651 0.6599 
1.0 1.4554 1.5329 1.6500 0.3823 0.4540 0.6484 
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CHAPTER- 5 

SOLUTION OF RADIATIVE TRANSFER 
PROBLEMS IN A FINITE ATMOSP-HERE 



-1 

5.1. Introduction. 

Das (1978, 1980) has solved various problems of radiative 

transfer in finite and semi-infinite atmosphere using a 

method involving Laplace transform and linear singular 

-operators. 

In the present work the one sided Laplace transform 

together with the theory of linear singular .operators has 

been applied to solve the transport equation which arises in 

the problem of a finite atmosphere having ground reflection 

according to Lambert·s Law taking the Planck·s function as 

an exponential function of optical depth (Sec-5.2). 

In the theory of radiative transfer for homogeneous 

plane-parallel stratified finite atmosphere the X- and V

functions-of Chandrasekhar (1960) play a central role-. The 

equations satisfy a system of coupled nonlinear integral 

equations. Busbridge (1960) has demonstrated the existence 

of the solution of these coupled non-linear __ integral 

equations in terms of a particular solution of an auxiliary 

equation. Busbridge (1960) has obtained two coupled linear 

integral equations for X(z) and Y(z) which defined the 

meromorfic extensions to the complex domain jZf of the real 

valued solution of the coupled non-linear equations of X-



212 

and Y- ~unctions. 

Busbridge (1960) concluded that all solutions of non-linear 

coupled integral equations for X- and V- functions are the 

solutions of the coupled linear integral equations to the 

extended complex plane but all solutions of the coupled 

linear integral equations are not solutions of . the coupled 

non-linear integral equations. Mullikin (1964) has proved 

that all solution of coupled non-linear integral equations 

are solut-ions of the coupled 1 inear integral, equations but 

there exists a unique solution of the coupled linear 

integral equations with some linear constraints. Finally he 

has obtained the Fredholm equations of X- and Y- functions 

which are easy for iterative computations. Das (1979) has 

obtained a pair of Fredholm equations with the 

Wiener~Hopf technique from the c~upl~ linear integral 

equations with coupled linear constraints .• _ 

In the present work, the time-dependent X- and V- functions 

( Biswas and Karanjai, 1990) which gives rise to a pair of 

the Fredholm equations with the application of the 

Wiener-Hopf technique has been obtained (Sec-5.3.). These 

Fredholm equations define time-dependent X-functions _ in 

terms of time-dependent V-functions and vice-versa. These 
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representations are unique with respect to the coupled 

linear constraints defined by Mullikin (1964). 

In the study of time-dependent radiative transfer problems 

in finite homogeneou~ plane-parallel atmospheres it is conv

enient to introduce X- and Y- functions (vide, Chandrasekhar 

, 1960). These functions satisfy non-linear coupled integral 

equations. Due to their important role in solving transport 

problems, it is advantageous to simplify the equations 

satisfied by them. Lahoz (1989) did this and obtained exact 

linear and decoupled integral equations satisfied by the 

time-independent X- and Y- functions. 

In the· present work, the same method has extended to the 

time-dependent radiative transfer 

However, the equations obtained , 

problem 

although 

(Sec-5.4). 

linear, are 

singular and not solvable by the standard methods applicable 

to Fredholm equations instead they have to be solvable by 

the theory of singular integral equations ( vide, 

Muskhelishvili, 1946). 
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5.2. Exact Solution of the Equation of Transfer in a Finite 

Exponential Atmosphere by the. Method of Laplace 

Transform and Linear Singular Operator. 

5.21. Basic Equation and Boundary Conditions. 

The integra-differential equation for the intensity of 

radiation I (T ,J..l), at an optical depth T for the problem of 

diffuse reflection and transmission .in a finite atmosphere 

can be written in the form (vide, Das, 1980) as 

+1 

= IJ.) (T ,,., .) - I 
-1 

V' (#-1' ) I (T ,1-1' )dj..t' v 
B (T) 

J.) 

-t where I (T ,,., ) is the intensity in the direction cos 1-1 at a 
J.) 

-t depth T ,.the angle cos J..l is measured from outside drawn 

normal to the face T = 0 , is the characteristic 

function for non-conservative scattering which satisfies the 

condition 
1 

V'o =I V'(l-l') d1-1' ; VJ(#-1') is even, 

0 

(5.2) 

v is the frequency and B (T) is the Planck function at any 
v 

depth (form is same as in equation (1.11)). Then equation 

(5.1) becomes 



-t--
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dl (T ,J,J) 
v 

J.l -. -dr-:----

+1 

where for convenience I have omitted the subscript v. 
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(5.3) 

The boundary conditions associated with the equation (5.3) 

are 

I(O, 1-1) = O, O< J.J :$1 (5.4) 

I(T .,J.J ) = I , O< J.J :s 1 , T >O (5-5) 
0 9 0 

where T is the thickness of the finite atmosphere and the 
0 

bounding face T = T is having ground reflection according 
0 

to Lambert·s law is a constant. 

5.22. Integral Equations for Surface Quantities. 

Let us define 

t: -- sfTO f ( s,p) 

0 

f (T 11J.J ) 
-sT e 

f(T ~J.J) = 0 , when 

Re s>O 

T ) T 
0 

(5.6) 

(5.7) 

Let us now apply the Laplace transform defined in equation 

(5.6) to equation (5.7) to obtain the equation satisfying 
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_ the boundary condition as 
J -T0 e J 

where 

i.e., 

(J.l s - 1 ) I ( s ,,_, ) = 1-1 s I ( 0 ,_, ) - 1-1. se - S ( s ) 

S(T) = I 

s*(s) = 

+S. 

V' (J.l' ) I (T ,,_,. ) c4J, + (b 
0 

-j, 

+:l 

J 
+ 

* V' (p' ) I (T ,/-1' )cfl.l' + b (1 
0 

Let us apply the operator 

+1 

J 
-s. 
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(5.8) 

(5.9) 

(5.10) 

(5.11) 

on both sides of· equation ( 5.8) and I obtain , with 

equation (5~10) 

+1 

T(1/s) s*(s) = J 
-1 

+1 

-1 

J.lS!p(J.l)l(O,p)4J/(J.lS- 1) + b (1 0 

+ 
sb 

1 
s +~ (1-

-<s+f3>T ) e o 

e-eTO) + 

(5 .. 12) 
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+:l 

where T ( 11 s ) = 1 + I V' (iJ ) dj.ll (iJ s - 1 ) " 

-1· 

Equation (5.8) gives 

I(O,.lls) - e 
-T s 

0 l(T .,11s) 
o· 

= s*<s> 
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(5.13) 

(5.14) 

(5.15) 

Equation (5.12) ,. together with equation (5.14) , gives for 

complex z , where z = 11s, 

+1 

-T /z I 
[I (0, z) - e 

0 I (T 
0

,. z)] T( z) = iJV' (J.l ) I ( 0 ,J.l ) $ I (iJ - z ) -

-1 

+1 

J.IVJ{J.l )I(T ,J.l )ct.JI(J.l - z) + b (1 - e-To/z) + 
0 0 

b 
--,..--1---,.- - ( 1/Z +~) T ) 

+ 1 . + f3 z ( 1 - e o 
(5.16) 

Let us put 01 
0 

-1 = f3 , then equation (16) becomes 

-T /:z 

[I (0, z) - e 
0 

I(T 
0

, z)] T( z) 

+1 

= J J.IV' (J.l )I (O,J.l )4t I (J.l - z) 

-:l 
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+1 
-'T /Z J 0 . 

e 

-1 

+ 
ba 

1 0 

z +a 
0 

(1 -
-<.t/z + 1/01 >'T 

0 0 ) e· 
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(5.17) 

Let. us put. ;z = -:z in equation (5.17) and multiply the 

-'T /z 
0 resulting equation by e on both sides to obtain , for 

complex z~ 

+1 
-'T /Z 

0 [I ('T 
0 

, -z) - e 1(0,-z)JT(z) =J J.J'V' (J.J ) I ('T ,p ) qu / (J.J + z) -
0 

-1 

/-I'll' .(J.l ) I ( 0 ~J.l )4J / (J.J + z .) + b ( 1 
0 

ba 
1 0 

01 - z 
0 

-'T /z -'T /01 
(e o e o o) 

-T /Z 
0 e ) 

(5.18) 

Equations (5.17) and (5.18) are the linear integral 

equations for the surface quantities under consideration. 

5.2~. Linear Singular Integral Equations. 

Equation (5.17) and (5.18) are the equations defined for 

complex z ~ where does not lie between -1 and 1 When z 
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lies between -1 and 1 , equation (5.17) and (5.18) will give 

the linear singular integral equations by the application of 

Plemelj·s formulae (~ide, Mushkelishvili,l946) with boundary 

conditions (4.4) and (5.5) as 

-T /Z 

[I(O,z) - e 0 I ] T (z) 
g 0 

f.llp (f.J )I ( 0 ,p ) d/.1 / (f.J - z ) -

and 

0 

0 

1-l'IJ' (J.I )I (T , 1-1 ) 41 I (J.I + z) -
0 

--T /z f 
e 

0 
P 1-JV'(I-J )I 4J/(1-J - z) + + b (1 

g 0 

0 

+ 
bet 

f. 0 

z + Ct 
0 

-(t/z + t/Ot >T 
(1 - e o o ) (5.19) 

I (T 
0 

,; -z) T
0 

( z ) = PI 
0 

/-IV' {p )I (T , ""1-/ ) 4J / (f.J - Z ) -
0 

f. 

e
-To/z I 

. J .. llp(J..l )I(O,J-1 )4t/(p + Z) + 

+. e --To/z I 
0 

1 

0 

b Ct T /z 
__ t_o_(e o 
Ct - z 

0 

-T /Ct 

e 0 0 ) (5.20) 
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where 
1 

T (Z) = 1 
0 

2 2 
d~ [~(~) - p(z)] I (z - p ) -

0 

1 

- 2z 2 p(z) PJ dpf(z
2

- p
2

) 

0 

(5.21) 

in which P ·denotes the Cauchy principal value of the 

integral. 

Equations (5.19) and (5.20) are the linear singular integral 

equations from which I shall determine the surface 

quanti ties I-(0, z) and I ( -r , -z) by the application of the 
0 

theory of linear singular operators. 

5.24. Theory of Linear Singular Operators. 

Following Das (1978,1980] I can write the following 

theorems. 

THEOREM 1. 

The linear integral equations tor z & (0,1) , 

L (R(z,-x )] = l(z,-x ) , 
+ 0 0 

(5.22) 

L [R(z,-x )3 = m(z,-x ) 
- 0 0 , 

(5.23) 

where 



-;:i; 

>6-
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L [f(z~-x ) = f(~~-x )T (z) 
+ 0 0 0 

I-IV' <1-1 ) t (J.l , -x ) dp I (J.l - z ) + 
0 

L 

+ e '"""l"o/z J 
0 

~Y' {1.1) f (~ ~-x )411(1-1 + z) 
0 

1 

(f(z~-x ) = 
0 

f (~ ~ ->: ) T ( z } 
0 0 . 

0 

py1 (p ) f (~ ~ -x ) 411 (J..l + z) 
0 

where 

X - < 1./z + 1./X >T 

l(z,-x ) 
0 [1 

0 

= e 
0 z + X 

0 

X -T /z -T /X 

+ 0 
(e 

0 0 0] e 
z - X 

0 

0 

X -<1/z + 1/X >T 

m(z,-x ) 
0 [1 

0 0 
= - e 

0 z + X 
0 

X -T /z -T /X 
0 [e 

0 0 OJ e 
z - X 

0 

admit of solutions of the 'form 

R(z,.-x ) = S(z,.-x ) + T(z~-x ) 
0 0 0 

G(z,-x ) = S(z,-x ) + T(z~-x ) 
0 0 0 

(5.24) 

(5.25) 

] + 

(5.26) 

] + 

(5.27) 

(5.28) 

(5.29) 

:: 
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where 

S(z,-x ) = x [X(z)X(x ) - Y(z) Y(x )]/(z + x ) 
0 0 . 0 .0 0 

T(z,-x ) = x [X(z)Y(x ) - Y(z) X(x )]/(x - Z) 
0 0 0 0 0 

With constraints on X(z) and Y(z) as 

( i) when 'I' <112 
0 

s 

1 _= 1 X (J.I )lJ' (/-1 )4J/ (I< - f..l-) + 

0 

s 

+ e -r-0 ./K ·1 V(p )lJ' (J.l )4i I ( K. + 1-l) 

0 

e 0 = K Y(p )lJI(J.I )41/(K- J.l) + """"l" ./K J 
""""l" 0./K ,f 

+ e . "J 
0 

0 

X(J.I )lp(p )4J/(K + f..l) 

(ii) when -lp
0 

= 1/2 

i 

1 = J [X(J.I) + Y(J.I)}p(J.J)4t 

0 

+ -r
0
J Y(J.J ~{J..I )41 = J [X(p) - Y(p )::{ulp(p )41 

0 0 

and K is the positive root of the function T(z), when 

V' <112 , defined by 
0 . 
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(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 
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+1 

T(z) = 1 + I z ~(~)d~/(~ - z) 

-i 
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(5.36) 

and where [X(~) - Y(~)] and [X (1-J) + Y(~)] are the respective 

solutions of 

i 
-'l" /Z 

( 1 - J ) L [f(z) J = (1 -
0 

) f(~)~(~)d~ (5.37) e 
+ 

0 

1. 
-'l" /Z 

( 1- J ) L [f ( z}] (1 + 
0 ) "f ( I.J) ~( 1-l) d!.J (5.38} = e 

0 

THEOREM 2 . 
. As the operators L and L are linear for z & {Osl), then 

+ 

for any constant C, I have 

and 

1 

L± ( zf ( z)) 
""""T /Z J 

- zL±(f(z) ~ (1 ~ e · 
0 

) 1-J~(p)f(I.J)dp 

0 

THEOREM 3. 

If R(z,-x ) and 9(z,-x ) are the solutions of 
0 . 0 

L (R(z ,-x ) ] 
+ o· 

L (R(z,.-x )] 
- 0 

then 

= l(z,-x ) 
0 ' 

= m(z,-x ) 
0 ' 

(5.39) 

(5.40) 

(5.41) 

(5.42) 
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1 

L [M(z)] = I w£-x ) 1 ( z ,.->: ) d>: 
" + . 0 0 0 

(5.43) 

0 

1. 

L (N(z)] = J V'( -:X ) m(z,.-x ) dx , 
'0 0 0 

(5 .. 44) 

0 

admit the solution of 

1 

M(z) = I ~(-x ) R(z,-x ) dx , 
0 0 0 

(5.45) 

0 

1 

N(z) = f lp(-x ) Q(z,-x ) dx , 
0 0 0 

(5.46) 

0 

5.25. Solution for Surface Quantities. 

Linear singular integral equations (5.19) and (5.20) are the 

required integral equations from which l will have to 

determine I (0,~) and I (T ,-z) ,. 
·0 

the quantities under 

consideration, by the application of the theory of linear 

singular operators indicated in section 5.2.4. Equations 

(5.19) and (5.20) on addition and after some rearrangement 

give 

-r /z 

L [l(O,z) + l(T ,. -z) - e 0 I ] = 
+ 0 g 

2b (1 - e 
0 

-r /z 
0 ) + 
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1 

+ b
1
l(z, -a

0
) + 1

9 
J V'<J.I) l(z, ;.dcJt..l 

0 

Equations (5.19) and (5.20) on subtraction 

manipulation give 

L [l(O,z) l(T , -z) 
0 

1 

e 
--r /z 

0 I ] = 
g 

= b
1
m(z, -a

0
) + 1

9 
I VJ(/..l) m(z, -:1-t)d/..t 

0 

where 1 ( z , -p ) and m(z , -p) are given 
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(5.47) 

and after 

(5.48) 

by equations 

(5.26) and (5.27). Equations (5.47} and (5.48) with Theorems 

1,2 ·and 3 of section 5.2.4. will give us the desired 

quantities I(O,z) and l(T ,-z). The 
0 

(5.47} is given by 

solution of equation 

-T /Z 
0 

[ I ( 0, z ) + I (T , -z ) - e I ] -

2b 
0 

1 - 6 
0 

[X(z) - V(z.)) + 

where 

0 g 

1 

+ b
1 

R(z , -o.
0

) + 1
9 
J VJ{J..l) R(z , f..l )q.., 

0 

1 

6
0 

= J (X(p) - V(J..l )}p(J..l )q.t 

0 

The solution of equation (5.48) is given by 

(5.49) 

(5.50) 
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.. [l(O,z) + l(T ~ -z) 
0 . 

~ 

e 
,-z- /z 

0 
I ] = 

g 

= b G( z -oc ) 
~ , 0 1

9 
J VJ(J.J) G(z , -;.t)c:tJ 

0 
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(5.51) 

Equation·. (5.50) and (5.51) on addition give I(O,z) and 

equations (5.47) and (5.51) on subtraction give 1(-r ,-z) as 
- 0 . 

I(O,z) 

+ 

and 

+ 

--r /z 

= I e 
9 

b 
0 

l. 6 
0 

I (T -z) o' -

0 

(X(z) 

:t 

I + I 
9 

V' (J.J) T(z , -;.t)q.I 

0 

- Y(z)) + b S(z 
~ 

, -;.t) 

VJ(~) S(z , -;.t)qu + 

b 
0 

l. _ 
6 

[X(z) - Y(z)] + bs. T(z , -:a
0

) 

0 

+ 

(5.52) 

(5.53) 

where S(z, -~) and T(z, -~) are given by equations (5.30) 

and (5.31). 

5.3. The Time-Depend•nt X- and Y- Functions. 

5.31~ Be~ic Equation. 

The coupled nonlinear integral equations satisfied by the 
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time-dependent x- and Y- function (vide, Biswas and 

Karanjai, ~990) are of the form 

(a) 
X (T 

1 
,,_,, s) = 1 + 

29 
/-1 X 

1 . 

I 
X(T ,p ,s)X(T ,.x,s)-Y(T ,p ,s)Y(T ,x,s) 

X 1 ' 1 1 
p + 'X 

dx (5 ... 54) 

0 

O~p-5. 1 

( - T~,G-) <a> Y(T 
1 

,p ,s) = exp ,.. + 29 p X 

1 

I 
Y(T ,p ,s)X(T ,x.s-)-X(T ,p .s)Y(T ,x,s) 

X 1. 1 · 1 - 1 

. /-1 X 
dx (5.55) 

0 ,.. -

0 s J..l 5. 1 

where G = 1 + s/c (5.56) 

T is the thickness of the atmosphere ; c, the velocity of 
1 

light. ; a_nd s, Laplace transform parameter. 

Following Chandrasekhar (1960) equations (5.54) and (5.55) 

can be written as 

X (T 
1 

,p, s) = 1 + ~ X 

xJ 
1 

X (T ,,., "s) X (T "X" s) -Y (T ,_, , s) y (T , X, s) 
1 1 1 1 

J..l_+ X 
Y'(x)dx (5.57) 

0 

0 5. J..l s 1 
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T a 
Y(T

1 
11p 11 s) = exp (- ·~ ) + ~ _x 

:( 

I 
Y(T ,IJ ,s)X(T ,x,s)-X(T ,J.-1 ,s)Y(T ,.x,s) 

X 1 1 1 1 · lp(IJ)dx 
. p-x 

(5.58) 

0 

where lp(:X), the characteristic function satisfying the 

Holder condition on 0 5x ~ 1 11 is non-negative and-satisfies 

the condition 

1 

lJI(X) dx ~ 1/2 (5.59) 

0 

The atmosphere is said to be conservative when 

~o = 1/2 and non-negative otherwise 

The dispersion function T(z,s) 11 z & (~l,l)c can be defined 

by 

and 

t':'here 

T(z,s) = 1 - 2z
2 J -a 

0 

V'(X)dx 
2 2 

Z - X 

T(z,s) -:t: = (H(z,s)H(-z,s)) 

H(z,s) = 1 + zH(z,s) J 
0 

.t 

lp(x)H(x 11 s)dx 
)( + z 

(5.60) 

(5.61) 

(5.62) 
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According to Busbridge (1960) , the only zeros of T(z,s) are 

at z = ±K, K>1, when V' <112 
0 

and when V'o = 1/2. 

Following Busbridge (1960), Dasgupta (1977), and ·nas (1978) 

H(z,s). is meromorfic on (-1,0)c 

z = - K and tend to 1 as z----4 

where 

A +Hz 
0 0 

H ( z , s ) = -=-=------K + z 

H(z,s) = h z + h 
1 0 

-J 
0 

-I 
0 

.t 

.t 

having a simp~e pole at 

0 . It can be represented by 
+ 

P(x,s)dx (5.63) 
X + Z 

K >1, V'o <l./2 

P(x,s)dx (5.64) 
X + Z 

K 0( ' '~'o = 1/2 , 

~ 

A = (1 + P )K, p = J P(x.,s) ~x/x, (5.65) 
0 -.1 -.1 

0 

1 

f 1 - 2 I ) -.1/2. 

H = VJ(X) dx 
0 

(5.66) 

0 

1 

(2 J )-~/2 
h 

2 dx = X VJ( X) 
t 

(5.67) 

0 

h = (1 + 'P ) 
0 -1 

(5.68) 
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P(x,s) =·¢(x,s)/H(x,s) 

-2 2 2 2 ¢(x,s) = >Y(x)/( 1. (x,s) + n x V' (x)) 
0 

T (x,s) = 1 -
0 

2~2J 
0 

1 

Y'(t) - lp(X) 

x2 - t2 

- xy.r(x)log( (1 + x)/(1 - x)) 
G 
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(5.69) 

(5.70) 

(5.71) 

where ¢(x,s) is non-negative and continuous on (0,1), tends 

to Y'(O), as x ---+ 0 , tends to 0((log(1 - x)-2
) when 

+· 

X 1 , and 1/H(z~s) is regular on (-1,0)c. 

Following Busbridge (1960) and Mullikin (1964) I find that 

the coupled linear equations satisfied by X(z~s) and Y(z,s) 

c for z & (-1-,1) .. are of the form 

X(z,s)T(z,s) = 1 + zU(X)(z,s) 

- exp(-(T /z)G)V(Y)(z,s) 
. 1 

Y(z,s)T(z,s) = exp(r(~ /z)Q) + zU(Y)(z,s) 
1 

- z exp(-(T /z)G)V(Y)(z,s) 
1 

with constraints for Y' < 1/2 , 
0 

(5.72) 

(5.73) 

0 = 1 + KU(X)(K,s) - K exp(-(T 
1 

/K)GV(Y)(K,s) (5.74) 

0 = (exp(-(T /K)Q) + KU(V)(K,s)) -
1 

for Y' = 1/2 
0 

- K exp(-(T /K)V(X)(K.s) 
1 

(5.75) 
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1 

~ 

1 = J p(~){X(x,s) + Y(x,s) dx 

0 

1 
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(5.76) 

T
1 
J Y(x,s)p(x) dx = J Xp(x)(X(x,s) - Y(x,s))dx (5.77) 

0 0 

The other conditions for which X(z,s)· and Y(x,s) hold are 

H(z!'s) 

Y(z,s) 0 when 

where for M = X or Y 

1 

when T 
1 

T 
1 

ex 

V(M)(z,s) = J ~(x)M(x,s)dx/(x + z) 

0 

(5.78) 

(5.79) 

(5.80) 

is analytic for z & (-1,1) bounded at the origin O(z- 1
) 

when z . ----+ oc and 

1 

U(M)(z,s) = J ~(x)M(x,s)dx/(x - z) 

0 

(5.81) 

is analytic for z & (O,l)e , bounded at the origin O(z-
1

) . 

• 
when z oc. 

5.32. Fredholm equations_. 

Equations. (5.72)and (5.73) with equation (5.61) can be 

written in the form 
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X(z,s)/H(z,s) = H{-z,s)(l + zU(X)(z,s) 

exp(-(T /z)U)H(-z,s)V(Y)(z,s) 
1 
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(5.82) 

Y(z,s)/H(z,s) = H(-z,s)(exp(-(T /z)Q) + zU(Y)(z,s) -
. 1 

- z exp(-(T /z)Q)H(-z,s)V(Y)(z,s) 
1 

(5.83) 

I shall assume that X(z,s) and Y(z,s) are regular for 

Re z>O and bounded at the origin. Equation (5.63) gives 

Hence 

A Hz 
0 0 H(-z,s) = ........,~--K z -I 

0 

1 

P(x,s)dx 
X - Z 

for VJ
0 

< 1/2 

1 

V(H)(z,s)J P(x,s)dx = D(M,P )(z,s) + D(P,M )(z,s) 
. X - Z 0 . 0 

. 0 
1 

where --I VJ(X)M(x,s)P0 (x,s)dx 
D(M,P

0
) (z,s) x + z 

and 

D(P,M )(z,s) 
0 

where 
0 

0 

I 
1 VJ(X)P(x,s)M (x,s)dx 

0 . - . 

X - Z 

0 

1 

- f P(x ,s) dx 
X + Z 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

(5.88) 
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c -i is regular on (-1,0) , bounded at the origin and O(z ) when 

z ----+ex and D(M,P )(z ,s) 
0 

is regular -for z on c (-1.,0) , 

-i bounded at the origin and O(z ) when z,~--~ ex • and D(P,M ) 
~ 

c . 
(z,s) is regular for z, on (0,1) bounded at the origin , 

and O(z- 1
) when z ex. 

Hence , equation (5.82) and (5.83) can for~ <112 be written 
0 

in the form 

X(z,s)/H(:z,s) 

A - H :z 
+ exp(-(T2:h:)G)( ~ _ 

2
° V(Y)(z,s) - D(Y,P

0 
)(z,s)) = 

= H(-z,s)(~ + zU(X){z,s) + exp(-(T /z)G)(P,Y )(z,s)) (5.89) 
i 0 

A - H z 
Y(z,s)/H(z,s) + z exp(-(T

1
/z)tl)( ~ 

2
° V(X)(z,s) 

D(X,P
0 

)(z,s)J = ~(-z,s) (exp(-(T 
1 

/z)z) + zU(Y) (z,s) + 

+ z exp(-(T /:z)Q)D(P,X )(z,s)) 
.I 0 

(5.90) 

The left-hand side of equation (5.89) and (5.90) are 

regular for Re z>O and bounded at the origin; the 

right-hand side of equations (5.89) and (5.90) are regular 

c for z, on (0,1) , bounded at the origin· and tends to 

constants , say A and B, respectiv~ly, when z ex • 

Hence, -by modified form of Liouville·s theorem I have 
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X(z,s) = H(z,s) [ z exp(-(T~ /z)G (n<Y,P
0

< z,s) 

A Hz 
---:~~--2°-V(X)(z,s)) +A], (5.91) 

Y(z,s) = H(z,s)[ z exp(-(T~ /z)Q (n<X,P
0

< z,s) -

A -Hz 
~ _; 

2
° V(X)(z,s)) + B ] , (5.92) 

~quations (5.91) and (5.92) together with Equations (5.78) 

and (5.79) give~ 

A = ~, B = 0 (5.93) 

Hence, for '~'o = 1/2, the expression.of X(:z,s) and Y(:z,s) 

are 

X(z,s) = H(z,s)[1 + z exp(-(T /z)G)(D(Y,P )(z,s) 
~ 0 

( h z + h ) V(Y)(z,s))] 
1 0 

( 5.94) 

Y(z,s) = H(z,s) z exp(-(T /z)G)(D(Y,P )(z,s)) 
1 0 

- ( h z + h ) V(Y)(z,s)) 
1 0 

( 5.95) 

Hence, following Mullikin (1964) equations (5.91) and (5.92) 

together with equations (5.74) and (5.75) give unique 

representation of time-dependent X- and Y- functions for 

Y' <112 and 
0 

equations (5.94) and (5.95) together with 

equations (5.76) and (5.77) give unique representations of 

X- and Y- functions for Y' = 1/2. 
0 
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5.4. An Exact Linearization and D•coupling of the Integral 

'Equations Satisfied by Time-Dependent X- and 

Y-Functions. 

5.41. Analysis. 

The integral equations incorporating the various invariances 

of the time-dependent problem of diffuse reflection and 

transmission can be reduced to one or more pairs of integral 

.equations of the following form (vide, Biswas and Karanjai, 

1990) 

X(J.l,S) = 1 + 

1 

X(J.l ,s)X(J.l' ,s) - V(J-1 ,s)V(J.l' ,s) ..~. .• 
J.l + J.l' ~ 

(5 .. 96) 

Y(J.l,S) = exp[(-1-
1

/J-1)] + 

1 

Y(l-l ,s)X(p' ,s) - X(p ,s)Y(I-l' ,s) 
J.l - J.l' 

(5 .. 97) 

Following Chandrasekhar (1960) , I can write the above 

equations in the form 

X(p,s) = 1 + 
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+~I X(p ,s)X(,t.~' ,.s) - Y(tJ ,s)Y(tJ' ,s) (J.l' ) ctJ' 
1-l + 1-l' VI 

0 

Y(JJ,s) = exp[(-r /J..l)] + 
1 

1 

+~I 
0 
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(5.98) 

(5.99) 

where T is the optical thickness of the atmosphere and G = 
1 

1 + s/c , where c is the velocity of light, s is the Laplace 

invariant of the time variable and the characteristic 

function V'(J..l) is an even polynomial in 1-1 satisfying 

1 

VJO = J VJ(J..l) dJ..l ~ 1/2 

0 

where VI = 1/2 holds, VJ(J..l) is said to be conservative ; and 
0 . 

non-conservative otherwise. 

Clearly , equations (5.98) and (5.99) are non-linear and 

coupled. These equations have been linearized in an exact 

manner (vide, Mullikin, 1964) • The results are 

X(/-l ,s)K(J.t ,s) =l+~J 

- exp( ( -r /J.l )G 
1 

0 

1 

0 

Y(JJ' ,s) 
J.l + 1-l. 

VI (J.l' ) ctJ' -

VI (J.l, ) dJ.l , (5.101) 
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and 

- ex.p[ (-r 
1

11-1 )G ~I 
0 

where K(~,s) is defined by 

K(J.I,S) _ 1 -~J [ J1 ! JJ' 
0 

1 
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f. 

YCp! ,s) 
1-1 - ~-~· 

0 

X(iJ' ,s)_ mt •• •) _..., •• 
1.1 + 1.1' y """ ....,... 

(5.102) 

J1 -,-;--=-~-~- ] Y' (J.I' ) '*"I ( 5.103) 

I now proceed to decouple equations (5.101) and (5.102) in 

an exact manner (vide, Lahoz, 1989). I introduce the 

following singular integral equation, which is linear in 

1/T(J.I, s_): 

1 

1 
= 1 -~I [ T (p, s) 

(5.104) 

0 

which _in pr-:inciple 11 is solvable for T(p ,s) as Y' (J.I) and 

K(J.I,s) are known functions. 

Next, I multiply equation (5.101) by 

T(J.I ,s) K(J.I ,s) (J.I' 1-1) 
(5.105) 

which I assume is well defined in 
·c 

p & (0,1] and integrate 

with respect to 1-1 from 0 to 1 to obtain 
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0 

1 

X (J.f' , s) 

J.l + J.l' 

238 

V' (p' ) 4-t' = 1 -

1 

T ( 1.1 ' s) [ 1 - p (IJ ., s ) ~ I Y(I-J' , s) 

1-1' - 1-1 
V' (1-J' ) 4J' + 

0 

1 " I Y("' ~s) ] + 1f J.l'; _~J.l P(p' ,s) VJ(p') 41' (5.106) 

0 

where l have used equation (5.104) and defined ·the function 

P(J..l,s) (in principle known) by 

P(J.l ,s) _ ~I 
0 

1 
ex p ( --r 11-1 ) 

1 (5.107) 

Substituting equation (5.106) in equation (5.102) I get the 

decoupled equation for Y~,s) as follows: 

Y(#-1 ,.s)K(/-1 ,s) = T(-,.,,.s) exp[(--r- 11-1 )G ] + T(f.~,.S) P(#-1 ,s) 
1 . 

1 

(1' - exp[ ( --r 
1 

lp )G]] ~ I Y(/-1' ,.s) 
,_,. - J.l 

V' (J.l' ) q.,• 

0 

T(f.l ,s) exp((-'t" 
1 

/J.f )Q i{r J 
. 0 

1 

Y(J.l' ,.s) X 
,_,. - 1.1 

+ 

(5 .. 108) 
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A similar_analysis yields the decoupled equation for X(1-f,s): 

X(J.l,s)K(p,s) = [1- T(tJ,s) P(J.l,s)exp[(-r 1 11-l)Q ]] X 

1 

x(J..l• ,s) 
~-~· - 1-1 

0 

T(f.l ,s) exp[ (-r-
1 

lp )Q i!g J 
0 

X Vf(p• ,s) dp• 

1 

x(J.l· ,s) 
p• -. 1-l X 

(5.109) 
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APPENDIX I 

6.1 The relation (3.66) of chapter 3 

I have to show that (equation (3.66) chapter 3) 

I ( t ,i-J ) = 0 
~ 

241 

(6.1) 

For this , with usual notation (vide, Chandrasekhar, 1960) I 

have 

* I (t,p) ~ 
1 

1 ( 1 
2 

L 
C( 

- lc l 
01 

e I (6.2) 

where the constants L are determined by the equa.tions 
01 

J. {La/ 
Since 

( 1 - f..l. k )} = 0 , (i = 1 ,2,3 •••• n) 
\. C( 

n 

TT n 

( 1 - IJ k 0( ) l L 01 I ( 1 - f..lk cc) 
. CC=.t 

(6.3) 

(6.4) 

is a polynomial of degree (n - 1) with n distinct zero , it 

is identically zero. 

·Hence , every L = 0 , and in the limit , as n 
C( 

* I ( t,p) = 0 • 
.t 

which is the required relation. 

----> 0( 

(6.5) 



:( 

242 

APPENDIX II 

6.2. The relation (3.96) of chapter 3 

To establish the relation, (3.96), of Chapter 3, I consider 

D (X) = (1 
m 1 + J..l.X 

1. 

m 
ai J.l i 

1- J..l.X 
1. 

= 

I can derive a single recursion formula for D (x) .Then 
m 

D (x) 
1 [ (1 l m-f. ( 1-

1 ) ] =- -X) a. J..l. 
m X • 1. \. 1 + \. 1-li X 

1 
[ V'm-f. D ] =- -

X m-f. 

where Y'm = (1 -A) - l. ai #l~ 
1. 

From this formula I have 
Y' V'm-2 V'1 

D (x) 
m-f. + + (-1 )m-2 --- ... -.. 

m X 2 m-f. 
X X 

(m = 0,1, ••• 4n) 

and 

(6.6) 

= 

(6. 7.) 

(6.8) 

+ 

(6.9) 

VI "" 2 ('1 - A) (6.10) 
0 
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Moreover, let p
2

j be the coefficient of ,_,zj in the Legendre 

polynomial P (/-1), then 
2n 

n 

P. 
2 J 

a. 

D2 j ( 1\ ) . = .( 1 - A j l. . 1'" + J.l. k 
t. '" r 

Since 1-1. ·s are the zeros of P <J.l> ; Equation (6.11) 
t. · 2n 

reduces to 

n 

~ P D . ( kr ) = 0. .L 2 j 2 J 
J=O 

(6 .. 11) 

(6.12) 

Substituting for D . ( k ) into equation (6.12) I get the 
ZJ r 

characteristic eqpation as 

p >.. 
zn 

2n 
+ •• - ••••••• + p = 0 

0 

From this equation it follows that 

1 
(-1)n p 

0 = = 
( k k )2 X p 

1 n zn 

( J.ls. ..... J.ln 
)2 

= 
A 

and J-11.,.,2 •••• 1-l k .... k == (A )1/2 

n 1 n 

(6.13l 

(6.14) 

(6.15) 
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6.3 The relation (4.38) of chapter 4 

To establish the relation (4.38) , of Chapter 4 , I consider 

D (x) 
m 

= ( -1) ."n w m l k l 
r=1 r r · . 

\. 

= 
1+/-l . X 

cr>'l. 

{6.16) 

1 - J.1 (r)ix 

I can derive a single recursion formula forD (x) .Then 
m 

D (x) 
1 [ l k l m-1 ( 1 

1 ) ] = "n w • ai. /-1 c r > - = 
m X r=1 r r 1 + 

)( 

'" 1-lcr> 

1 
[ .lpm-1 D ] (6.17) = -

X m-1 

=1: l. a\. #-1 <: > i where lpm "n w (6.18) 
r r 

r \. 

From this formula I have 

D (x) 
lpm-1 lpm-2 (-1 )m-2 

. ¥'f. 
+ = -- + -..... + 

m X 2 m-f. 
)( )( 

( m = 0 , 1 , ••• 4n ) (6.19) 

and 

(6.20) 
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n 

Let p (fJ) = 
2n 

~ p zn 
L 2nf..l 

j=O 
i.e. 

z· 
be the coefficient of f..l J 

in the Legendre polynomial P (fJ), 
2n 

then 
n k 

D ( ( J( ) =2 
a. 

1. 
X 

2j r ~<r>OI 
r=1 

'l?r W r l. 
1. 

1 + f..l J( 
<r> <r>OI 

(6.21) 

Since 
f..l c r > \. s are the zeros of P < f..l> 

2n 
, Equation (6.21) 

reduces to 

n 

· ~ . P D ( ( K ) = 0 ( 6. 22) 
j f

0 
2 j 2 j r < r > 01 

Substituting for ·n ( ( K ) from Equation (6.20) into 
2j r <r>OI 

Equation (6.22) I get required form of the characteristic 

equation as 

P
2 

n ( 1 - 11/N ) 

(zn K 2n + ··-······· + p = 0 
0 

r <r>OI 

where M and N are given by the equation (4.39). 

From this equation it follows that 

1 = 
( ( r K< r > 1 ( r kc r > n )

2 
(1- M/N ) P 

zn 

(6.23) 

= 
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( l.l<r>t" • • • · )
z 

~-'<r>n 
= (6.24) 

( 1 - MIN.) 

and 1.1 • 1..1 • • • • 1..1 • ( K . . . . ( K = 
<r>t .<r>Z <r>n r <r>s. r <r>n 

= ( 1 - M/N)
1

/
2 (6.25) 

which is the required relation. 
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SOLUTION OF THE EQUATION OF TRANSFER FOR 

INTE~LOCKED MULTIPLETS BY 'i'HE METHOD OF DISCRETE 

ORDIN:\.TES WITH THJ!: PLANCK FUNCTION AS A 

NONLINEARIFUNCTION QF OPTICAL -DEPTH 

I 
I 
1 T.K.DEB 

M/W Stmion. Si/iguril Departme/11 of Telecomnumications. West Bengal. India 

I 
and 

G. B I S W A S and S. KARAN J A I 
I 

Department of ;lflllirematics, North Bengal Unil'ersity. W.B., India 
I 
I 

I (Received 18 May, 1990) 

Abs.lracl. Tl1~ ~4uation of transfer [!br interlockc? m~ltiplets. has been solv9d by th9 inetln~d of discrete 
ordmatcs, ongmally due to Chahdlasckhar, cons1dcnng nonhncar form of the Planck function to be 

B,.(T) = b, + h1 e-ll 
I I. Introduction 
I 

Woolley and Stibb~ (1953) [applied the theory of forh1ation of absorption lines by 
coherent scattering to the ca~~ of interlocking without redistribution and deduced the 
equation pf transfer in the Mjlne-Eddington model. They have also obtained a solution 
for the case of triplet:; by Eddington's approximate method. Bus bridge and Stibbs ( 1954) 
applied the principle of invafiance governing the law of diffuse reflection with a slight 
modification to soiv\: exactlylthc equation of transfer in the M-E modeL Oasgupta and 
Karanjai ( 1972) applied SoJolev's probabilistic method to solve the transfer equation 
for the case of interlocking wib10ut redistribution. Another exact solution of the equation 

I 
of transfer has been given by Dasgupta ( 1956) by his form of the Wiener-Hopftechnique. 

I 
Karanjai and Barman ( 1981) applied the extension of the method of discrete ordinates 
to find an exact solution of /he problem of line formation by interlocking in the M-E 
model. basgupta ( 1978) obiaincd an exact solution of the transfer equation for non
coherent scattering arising rrbm interlocking of principal lines without redistribution by 
Laplace transforma~ion anctJthe Wiener-Hopf technique using a new representation of 
the H-function obtained by Dasgupta (1977). While solving the transfer equation, 

I 

Dasgup~a consider\!d the flanck function to be linear .in t (optical depth), i.e., 
B,.(T) =' B(t) = b0 + b 1 r. Karanjai and Karanjai (1985) solved the equation of transfer 

I • 
lor interlocked multiplcts with the Planck function as a nonlinear function of optical 

I 

depth following the methodiuscd by Dasgupta ( 1978). They considered two nonlinear 
. , I 

forms of B v(T), VIZ.: I 
(I) aj1 exponential atmo~phere (Delg'lnnocenti, 1979) in which 

B,,(T) ;=.- B(t) == b0 + b1 e-11
'; 

I -
•. I 

Astrophysir.·s and Spac~, >.:ience 178: 107-117, 1991. 
0 1991 Kiliwer Amd.:~.f. · Publi.rlu!n. Printed in Belgium. 

. ,' 
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(2) an almosphere (Busbridge, 1955) in which 

B ,.(T) = B(t) = b0 + b1 t + E 2 (t) . 

In this pap..::r, we have ob~ained the solution of the equation of transfer for interlocked 
1]1llltiplets by discrete orclinate method ih nn exponential atmosphere in which 

B,.(T) = b0 + b1 e-P•, 

Where T is the optical depth. 

2. The Equation of Transfer 

The equation of transfer considered here is of the form (Woolley and Stibbs, 1953) 

df,.( T, f.l) ( ( ) ( ) ( ) f.l = 1 + IJ,.)I,. T, f.l - I + t:IJ,. B\' T -
dT ' . 

(l) 

• I 

where r denqtes the optical depth and 1/,. = k,./ k denoting the line absorption coefficient 

for the rth line and k the continuous absorption coefficient which is assumed to be 
constant for each line. In the present case we consider that the collision constant t: and 
Planck's function remitin ·constant for cue~ line. We also consider an exponential 
at,nospherc for which Planck's function, i.e., the thermal source function is given 
(Degl'Innocenti, 1979) by 

B,.(t) = b0 + h1 e -II•, (2) 

where b0 , h1, and fJ are three positive constants. 

Now, if we use Equation (2) in Equation (I) we have the transfer equation for the rth 
interlocked line in the forrn 

dl,.( !,Jl) ( ( ) -fiT !• ---- == 1 + IJ,.)f,. T, p)- (l + t:IJ,. (b0 + b1 e ) -
dr . . _ .. _ 

+I 
II 

- W - e)a,. I 
fJ=I 

f Ip(T,/L')dp'' (3) 

-I 

where 

~., = IJ,./(1/ 1 + 172+ '"' + IJd, r= J,2, ... ,k; (4) 

so that 

'X1 + ct2 + · · · + ak = I · (5) 
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Equation (3) is to be solved subject to the boundary conditions 

fr(b, - Jl') = 0 , (0 < J1 ~ 1) 

and 

3. Solution -of Equation (3) 

Following Bus bridge (1953) and Stibbs ( 195,3), let 

· represent the solution of Equation (3 ), where 

~r(l + f:IJr) Tr = ___ _____c;_;__.-~'------

1 1 + IJr + fJ 
1-- (1- e)IJrlog -~-

2{3 I + IJr - fJ 

and 

109 

(6) 

(7) 

(8) 

(9) 

(10) 

This consists of two parts. The first part consists of ihe solution for a bounded 

atmosphere as rtends to infinity. The second part: viz., Ir*( r, Jl) represents the departure 

of the; asymptotic solution from the value Ir( r, p) as we approach the boundary. 

Now if we insert Ir( r, J1) from Equation (8) in Equation (3) and taking 

(1 - e)IJr 
w = 

r 1 + IJr ' 

( 11) 

we have the equation 
'I 

~ ·11 df:j_'.!J!l = /*( 7:, Jl) - wr __ I __ [ I IJ I 1,:'( 7:, p') dJ1' ~} ( 12) 
·' dt r 2'k p=lp -I IJ, . -I 

p=l 

together with the boundary conditions 

( 13) 

and 
(14) 
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For the sake of convenience, Equation ( 12) can be rewritten in the form 
+I 

f" d!J_/r.J.lJ =I* (t,") _ _!V,./3._ [ ~ 11 J * ( ')d J ..,,,. d (r) r k L. p /(/') T, J1 Jl' , 
r p~t I IJ, -1 

( 15) 

I'~ I 

together with the boundary conditions 

(I 6) 

and 

(I 7) 

Equation ( 15) can pe replaced by the system of 2n linear equations 

(18) 

p=J 

(i = ±I, ± 2, ... , ± n), 

where the Pcr)/s (i = ± I, ... , ± 11 and {LcrJ _, = - 11tr)) are the zeros of the Legendre 
polynomials P 2,(p) which arc dependent on the lines of iqterlockiog ar1q a;'s 
(.i = ±I, ... , ± n) and (a _1 = aj) are correspon!ling Gaussian weights. However, it is 
to be noted that there is no term with j = 0. Fqr simplicity, we write 

in Equation (18). 
The system of Equations ( 18) admits of integrals of the form 

lc~J;=K(r)ie-"', (i= ±I, ... , ±n), 

where g1, 1/s and K are constants. 
Now if we insert this form for /1~,; in Equation (18) we have 

constant 
• ·. g(r)i = IV, ----

1 + ~r!-l(r)iK 

(19) 

(20) 

(21) 

(22) 

If we insert for g1,.1; from Equation (22) back into Equation (21) we obtain the charac-

~ 

J;..'.!'\~-

~ 

'I 
:~ 

i ,, .. 

,, 
\:. 

' i 

., 

~ g 

" 

~ 
~. 

i.!. 
il 
:i 
g 
'I 

~ 
~ 

' j 

" l 

~1 
~ 

~{ 
~ 
!'· 
'1 

~·· 

.~i 
~\ 



. ~-

EQUATION OF TRANSFER FOjl. INTERLOCKED MULTIPLETS Ill 

teristic equation in the form 

(23) 

in which a1 = a_ 1 and J.l(r) _
1 

= - J.l(r)j. 

We can rewrite the characteristic equation in the form 

1 [ k II 

1 = -k-- L ~/pWp .L 
'\' p~l ;~I 

t.... IJ" 

(24) 

p~l 

This is the characteristic equation which gives the values of K(r)· If w, < 1 
(r"' I, 2, ... , k), the characteristic equation (24) gives distinct non-zero· roots which 

occur in pairs as ± K(r)01. (<;t"' 1, 2, ... , li). 
Therefore, Equa~ion (I 8) admits the 2n independent integrals of the fqrm 

f25) 

According to Chandrasekhar ( 1960), the solutions (20) satisfying our requirements of 

the boundedncss of the solutions arc 

ll L e-K{r)x't 

I* _ b '\' (r)oc 
(r)i - W, I ,?... ----''----'-"---- • 

"= I 1 + ~rK(r)ocJ.l(r)i 
(26) 

together with the boundary condition 

at r = 0. . (27) 

4. The Elimination of the Constant and the Expression of the Law of Diffuse 
Reflection in Closed Form 

The boundary conditions and the emergent intensity can be expressed iri the form 

S,(J.lcrJ;) = 0, (i = 1, 2, ... , n) (28) 

and 

(29) 

where 

(30) 
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Next we obseu.:: that the function 

II 

( 1 -· ~,.{J{t) f1 ( 1 - ~rK('r)aJl)S,(Jl) 
a:= I 

in a polynomial of degree (n -J: !) irt Jl which vanishes for Jl = Jl;, i = 1, 2, ... , n. There 
must accordir•gly exist a relation of the forn1 

n n 

(I - ~,Pft) f1 (I - ~,Kcr>aJl)S,(Jl) - (Jl - C,) f1 (Jl - Jl;), (31) 
a= I i= I 

where C,. js a constant. . 
The constant of proportionality can be found by comparing the coefficient of the 

highest power of Jl (nameiy, Jl" + 1 
). 

So we have, from Equation (31) 

( -1)"+ 1 P( )( C) S ( ) ;: K .;: K ;: p ' Jl Jl - ,. 
,. JL = biiVr '>r (r)l · • • '>r (r)., '>r R,.(Jl) (I _ p~,Jl) ' (32) 

where 

ll 

P,.(Jl) = f1 (Jl - Jl;), (i = !, 2, ... , n) (33) 
i= 1 

and 

R,\ll) = TI (I- ~,.K(r)afl), (a= I, 2, ... , n). (34) 
a= I 

Moreover, if we combine Equations (32) and (33), we obtain 

(35) 

where 

Rlr)x(x) = f1 (I - ~,.K1 ,.) 7x) {36) 
y"' a 

and 

{J ¥- K(r)a . (37) 

The tools of the characteristic equation ( 17) can be written in the form 

"K "K (I II' ~r (r) I · · · i;,. (rln fl(r) I · · • fl(r)n = - W,) - · (38) 

-

·~ 
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Now by usc of EqJJation (38), Equation (32) becomes 

(39) 

where 
II n (ll + Jl.(r)i) 

] i =I 

H,(/l) = -------
Jlrr>J · · · Jl(r)n " TI (1 + ~rK(rJa:ll) 

(40) 

c<= l 

and the characteristic roots are evaluated from Equation (24). If we put J1. = 0 in 

Equations (30) and {40) we have 

(41) 

and we l~an next <,;Valuate r~= I L(r)X from Equation (35). Then 

(42) 

where 

II 

/,(x) = L (43) 
?<= i 

Now fJx) defiiied in this manner is a polynomial of degree n - I in x, which takes the 

values 

for 

x= 1/';,K,,,", (a= 1,2, ... ,n). 

In other words·,~ 

(I - (rf3x)f,.(x) - P,.(x) (44) 
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Therefore, we must accordingly have a relation of the form 

(45) 

wh.ere A, ~nd B, are certain constants to be determined. 
The constant A, follows from the comparison of the coefficients of x" + 1

• Thus 

(-1)"+1 
A .,_, 

' • K • K 1;,. (r)l ' '· Sr (r)n 

(46) 

Next, if we put x = ( 1;,,[3)- 1 in Equation (46) (cf. Chandrasckhar, 1960) we have 

I. C., 

(- 1)" 
B,. = + ( -I)"J.l(r)l ··· J.l(r)n X 

/;,,.{JI;,,.K(r)l , , . /;,,.K(r)n 

x fi (- _
1

) (c -_·1 
) . 

r {J(,,. r /;,,.{3 

Now if we use the relations (48), (47), and (46) we get 

I. C., 

_(,.(U) = - C,P,.(O) + B,.R,(O), 

(- I)" 
,/;('1) = - C,(- I)" Jl(rJI • • · Jl(r)n + -·--- · · ·-- · --- ·- + 

/;,,.{J(,,.K(r)l , .. (,.K(r)n 

· ( ·1)(. ·I) + ( -I)"Jl(r)l · · · J.l(r)nflr -- C,.- ~- · 
{JI;,,. {Jr;,. 

From Equation (43) using Equation (49) we have 

~ I ho (.' .I If" • {'' ho L... "(r)O< ·~ ·-··· r ( - IVr) ~ Sr J - - + 
ot=· 1 w,h 1 wrh 1 

(47) 

(48) 

(49) 

(50) 

,.. 
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Now if we use Ec!uation (50) in Equation (42) we get 

Cr = _1_· 1 -- Trbl 

~rP h ;: /3( I - w )112 H (- _I_) 
0 ~r r r p, 

~r 

(51) 

and if we combine Equation (40), the diffusely ret1ccted intensity fc~> (0, {L) 111 

Equation (29) takes the form 

This is the rc~quired solution in a closed fon1J. If we combine Equation (8) at r = 0 and 

Equation (52) we have 

(53) 

which is th(: i·equired solution of Equation (3) in the nth approximation by the discrete

ordinates method. 

If we put Cr from Equation (51), we get the solution in the form 

(54) 

Chandrasekhar's ( 1960) equation for 1)0, J-1) in the case of coherent scattering is given 

by (B ,.(T) = b0 + h1 r) (see also Karanjai and Bannan, 1981 ), and 

1,.(0, J-1) "' bl ~)I - 1Vr)
1
i
2 pHr(J-1) + h0 ( I - 1Vr}

112 H,-(J-1) + 

(55) 

If we compare Equations (54) and (55) we sec that if we put h 1 "'0, we have the same 

solution for both cases. Moreover, for large values of j3, i.e., p--. x. The solution (54) 
takes the form 

(56) 

i.e., B ,.(T) then behaves like a constant or independent of r. This fact can also be 

explained froill the point of view that 

B.(T) = h0 + b1 e-IIT_.b0 as p--. x.. 
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To establish the relation (38) we consider . ~ ' ~ ; 

k ,, 

\~ IJ,. II',. ' - a; f.l(!J!_ = .D,(x) = .L. L, 
,. 1 I+ J.l(r)ix 

k 

= ( -- !)'" L 1/,.W,. I 
r:,;. I 

a;J.I(~J~--
1 - f.L<rJix 

we can derive a single recursion formula for D,x. Then 

.) _ __ m- 1 1 [ k ( D,(\ -X r~l IJ,.lV,. ~ a;Jl(r)i I 

[ 1/1,- I - D,- I] ' 
X 

where 

From this formula we have 

D,(x) = t/1,=-!- t/1,:!- + · · · + ( -1)"'- 2 ~ + 
X x- Xm-1 

(- !)"'-I 
+ ----- [t/10 - D0 (x)], (m = 0, I, ... , 4n) 

x"' 

and 
k 

t/Jo = 2 I IJ,.II',.. 
r=l 

Moreover, let P2i be the coefficient of f.1 2J in the Legendre polynomial P211 (f.1). 

Then 

II 

I p~jD2i(~,.K(r)"Y.) = 
i~ () 

Since ~he f.lcrJ/s are the zeros P211 (f.1). Equation (62) reduces to 

II 

I p2.iD=,(~,.K(rp) = () · 
i ~ () 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 
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't~ _,._; , ... ,: ): ;;.i .. ~-:;·+~: -.~ 
If we substitute for D2.i(~,.K<,.>") fl·6'rii}E·quation (6'IT:i1'itd Equation (63) we get the 

required form of the ch:.:·actcristic equation as 

From lhis equtltion it follows that 

and 
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Abstract. An approximate solution of the transfer equation for coherent scattering in stellar atmospheres 
with Planck's function as a nonlinear function of optical depth, viz., 

B,.(T)=/>0 +b 1e 1'' 

is obtained by Eddington's method. 

I. Introduction 

Chandrasekhar ( 1960) applied the method of discrete ordinates to solve the transfer 

equation for coherent scatt..:ring in stellar atmosphere with Planck's function as a 

iinear function of optical depth, viz., B,.(T) = b0 + b 1 r. The equation of transfer for 

coherent scattering has also been solved by Eddington's method (when 'lv• the ratio of 
line to the continuum absorption coefficient, is constant) and by Stromgren's method 

(when 11,. has small but arbitrary variation with optical depth_(see \Y.ool!ey and Stibbs, 
I 953 ). Dasgupta (I 977b) applied the method of Laplace ~ransform and Wiener-Hopf 

technique to find an exact solution of the transfer equation for coherent scattering in 
stellar atmosphere with Planck's function as a sum of elementary functions 

II 

B ,.(T) == h0 + h1 T + 2:; h,.E,.("r), 
r .. 2 

by usc of a new representation of the /1-function oblained by Dasgupta ( 1977a). 

In the present paper, we have obtained an approximate solution of the equation of 

transfer for coherent isotropic scattering by the method used by Eddington (Woolley and 

Stibbs, 1953) in an exponential atmosphere (Degi'Innocenti, I 979; Karanjai and 
Karanjai, 19~5; Deb eta/., I 990), 

B,.(T) = b0 + b 1 e ·· 11 '. 

where {J. b0 , b 1 are positive constants. 

:ls!rophysics and Space Science 171J: 299-302, 1991. 
ID 1991 K lt~wc•r A cadc•mic l'uhlixlu•rs. l'rillled in IJl'iKilllll. 
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2~ Eql!illion of Tr~nsfcr 
The equation of transfer for coherent scattering can he written (cf. Woolley and Stibbs, 

I lJ53) in the limn 

cos Od/,.(0)/p dx = - (k +.1,.)1,.(0) + (I - c)i,.J,. + (k + ci,.)B,.(T). (!) 

To lind an approxiniate solution of Equation (I), we proceed as follows: let 

1,. = ( lj4n) I 1,.(0) dw, 

H,."" (lj4n) I I,.(U)cosOdll', 

K,. ,._ (lf4n) I l,.{(j) cos 2 1Jdw, 

in which the in:..::gration is made over all directions. 

(2a) 

(2b) 

(2c) 

By multiplying Equation (I) hy (dw/4rr) and (dw cos 0/4n) and integrating we obtain 

dH . .ipdx = -(k + c/,.)(1,.- B,.). 

dK,.,pdx = -(k + I,.)H,., 

(3) 

(4) 

where B ,.( T) = B , .. If we measure the optical depth in the continuous spectrum outside 

the line so that dr = -kpdx and set 1,./k = IJ,., then (3) and (4) becomes 

df/,,/dr =(I+ CIJ,.) (J,.- B,.), 

dK,./dr= (I+ IJ,.)H, .. 

(5) 

(6) 

If, moreover, we assume that 1/,. is independent of r, the equation can be readily 

integrated. Introducing Eddington's approximation 

K ,. = ( I J3 )J ,. , 

Equations (5) and (6) can be combined to give 

(7) 

where 

q~ = 3(1 + Cl/,.) (I + IJ,.), (8) 

Equ~ltion (7) is~ • be solved subject to the boundary conditions: (A)J,. = 2H,. at r = 0 
and (B) the requ.tenient that (J,.- B,.) shall not increase exponentially as r--> x. 

3. Solution of Equation _(7) 

Let 

B,. = ho + hI e - flr (9) 

.c::o. 



I ... 

.. 
'I ,~' 

j i· 

! .' 

Then Equation (7) can be written in the form 

d2J,.;dr2 = q;J,.-IJoCJ~[! + (b 1 /b0 )e-f~<]. 

which is a second-order differential equation. 
If we solve Equation (\'))and usc the boundary condition {B) we get 

301 

(10) 

( 1 I) 

where b
2 

is a constant to be determined from the boundary condition (A), where f3 =P q , .. 

From Equatilin (II) we get 

(dJ,./dr),~u = - [{Jb 1 + b2q,. + b 1 /PJ(q~ -{]2)]. 

From Equation (6) with K ,. = ( lj3)J,. we find that 

H,, = [1/3(1 + 17,.)] [(dJ,./dr)]. 

Hence. 

[
(I + 17,.) (b0 + b 1 ) + ~/3b 1 + (1 + 1],, + ~{3) }! 1fJ

2 

~] 
. q~ - {3-

h:!. = - ........ --· - ----.. --------
j + IJ,. + ~q,, 

Finally we get 

[ 
h {J2 J j. "' /) + !J l' ·fir + ____ I ... _ l' -(I< _ 

I (J I , f')~ 
q~- )-

(I+ 1/,.)(/Jo + h1) + ~b 1 {3 + (1 + IJ,. + ~fn - 1
- e-q,.r [ 

b(f] 
. . q~ - {32 
---- ----·. -------·----·--

(! + 11,. + *q,.) 

(12) 

( 13) 

(14) 

( 1 5) 

Now. J ,. (the average intensity) enables us io finq the intensi-ty witliin tl1e absorption line 
at any optical depth and in any direction by solving the fund<\mental equation of line 

formation, 

cos0d1,.(0)/d< =(I+ 11,.)1,.(0)- (1- e)IJ,.J,.

- (I+ e17,.)B,,; (16) 

J ,. and B ,. being known funciion of r. 
The solution for 1 ,.( 0) cari be writ en down immediately since Equation ( 16) js a linear 

ditfcrential equation with co11stant coefficients. 

4. Residual Intensity 

The residual intensity in the mean contours is given (cf. Woolley and S tibbs. 1953) by 

r,. = (H,./11),.,. 1 , 
( 1 7) 
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wiH.:n: the omission or th(.: suflix I' means Oil/side !he line. By virtue or the.: boundary 
comlitilll) J,. = 2H,. at r = 0 we have 

r,. = (J,.;J)r, ". 

:\!so. ,.)ui:>idc the line 17,. = 0 and q ,. = Ji. Equation ( 15) with r = 0 gives 

h,{f 
},,(0) o= /> 11 + /J 1 + -·- · ··--

(/~- w 

I + IJ,. + ~q,. 

lienee, by Equation·; (IX). (19), and (20) we have 

~q.,(Jf- q~ )h" + ~q~(/3- q,.)h, r = .-. · · · · · ..... - · -· X 
,. 2 ,/3 ({3~- 3)h11 + 6(fi- J3)h 1 

X w2
- 3) (3 + 2 J3L_ 

1 1:
2

- if,.) (I + 11,. + ~~/ •. ) 
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AN EXACT SOLUTION OF THE EQUATION OF TRANSFER 

WITH THREE-TERM SCATTERING INDICATRIX IN AN 
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and 
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Abstract. The general equation for radiative transfer in the Milne-Eddington model is considered here. The 
scattering function is assumed to be quadratically anisotropic in the cosine of the scattering angle and 
Planck's intensity function is assumed for thermal emission. Here we have taken Planck's function as a 
nonlinear function of optical depth, viz., B.(T) = b0 + b1 e-P•. The exact solution for emergent intensity 
from the bounding face is obtained by the method of the Laplace transform in combination with the 
Wiener-Hopf technique. 

I. Introduction 

Chandrasekhar (1960) has considered the problem of radiative transfer with general 
anisotropic scattering in the Milne-Eddington model to obtain the exact form of 
emergent intensity from the bounding face and nth approximate intensity at any optical 
depth by discrete ordinates procedure assuming Planck's function to be linear in the 
optical depth. Das (1979b) obtained an exact solution of this problem using the Laplace 
transform and the Wiener-Hopf technique. Wilson and Sen (1964) solved the same 
problem by a modified spherical-harmonic method. In this paper we considered the 
equation of transfer with anisotropic scattering in the M-E model with Planck's function 

~'· as a nor.linear function of optical depth viz., 

(Degl'lnnocenti, 1979), where b0 , b1, and {3 are three positive constants. 

2. Basic Equation and Boundary Conditions 

The equation of transfer in a stellar atmosphere can be written (cf. Chandrasekhar, 
1960; Das, 1979b) as 

/). d/ v(x, JJ.)fp dx = (kv + a'v)I v(x, JJ.) - (1/2)uv(l - Bv) X 

+I 

X f P(JJ., JJ.')Jv(X, /). 1
) dJJ.' - (kv + BvG'v)Bv(T), (1) 

-I 

Astrophysics and Space Science 179: 89-96, 1991. 
~ © 1991 Kluwer Academic Publishers. Printed in. Belgium. 
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where 

2 

P(p,, p,') = I W,P,(p,)PI(p,') (2) 
t~o 

is the phase function for non-conservative scattering with a three-term indicatrix; 
I.(x, p,), the specific intensity in the direction arc cosp, at a depth x; k., the absorption 
coefficient; arc cos Jl is being measured from outward drawn normal to the face x = 0; 
a v, the scattering coefficient; p, the density of the atmosphere; B .(T), Planck's function; 
T, the local temperature at a depth x; e., the collision constant; and v, the frequency. 
We define the optical depth t. in terms of the scattering and absorption coefficient and 
the optical depth -r. in terms of the absorption coefficient; 

with 

co 

t. = J (k. + a.)p dx, 

X 

co 

X 

dt. = - (k. + a.)p dx, 

d-r. = -k.pdx. 

If we follow Degl'Innocenti (1979) and Karanjai and Karanjai (1985) we adopt 

B.( 'L) = B<~) + B<;) e- "'~,., 

where B~0), B~1 ), and a are three positive constants. 
Hence, Equation (7) with Equations (5) and (6) becomes 

where 

In this model we shall assume that 

1'/v = (k. + aJ-l 

is constant with optical depth. Equation (1) with Equations (3) and (8) becomes 

Jl d!(t, p,)fdt = I(t, p,) - (1 - c0 jw0 )B(t) -

+I 

(3) • 

(4) 

(5) 

(6) 

(7) 

(8) • 

(9) 

(10) 

- (1/2) f (c0 + c1p,p,' + ~c2 (3p,2 - 1) (3p,' 2
- 1)/(t, p,') dp,' , (11) 

-l 

• 
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where c0 , c1 , and c2 are given by 

(12) 

and for convenience, we have omitted the subscript Vo For the solution of Equation ( 11) 
we have the boundary conditions 

I(O, - JL) = 0, (13a) 

and 

I(t,JL)exp(-t/JL)~o when t~oo, IJLI::;l. (13b) 

3. Solution for Emergent Intensity 

The Laplace transform of F(t) is denoted by F*(s), where F*(s) is defined by 

co 

F*(s) = s J exp( -st)F(t) dt, Res> 0; (14) 

0 

and we set 

+I 

Im(t) = (1/2) J Jlm l!(s, JL) djL, m = 0, 1, 2, (15) 

-1 

which implies that 

+ 1 

I!(s) = (1/2) J Jlm l!(s, JL) dJL, m = 0, 1, 2 0 (15) 

-I 

Equation (11) with Equation (15), takes the form 

Jl dl(t, JL)fdt = I(t, JL) - [c0 I0 (t) + c1JLI1 (t) + 

+ ic2 (3JL 2 
- 1) (3/2 (t) - I0 (t))] - (1 - c0 /w0 )B(t) 0 (17) 

Now subjecting Equation ( 17) to the Laplace transform as defined in Equation ( 14) we 
have, using the boundary conditions, 

(JLs - 1)/*(s, JL) = JLS!(O, JL) - (1 - c0 fw0 )B*(s) - (c0 IJ(s) + 

+ C 1JLft(s) + ic2 ((3JL2 
- 1) (3I:f(s) - IJ(s))) 0 (18) 

Equation (18)-gives 

I(O, JL) = (c0 IJ{1/JL) + c1JLJ{(1/JL) + ic2 (3JL2 
- 1) + 

·+ (3/i(1/JL) - IJ(1/JL)) + (1 - c0 /w0 )B·*(l!JL) 0 (19) 
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Equation (19) with Jl = s- 1
, s is complex, takes the form 

/(O,s- 1
) = (c0 - ~c2(3s- 2 - 1)/~(s) + c1s- 1Jt(s) + 

+ ~c2(3s- 2 - 1)/{(s) + (1- c0 jw0 )B*(s), 

we shall apply the operator 

+I 

(1/2) f ... Jl djJ. 

-I 

on both sides of Equation (18) to get 

I 

- (1 - c0 )s- 1 IJ(s) + Jt(s) = (1/2) J Jll(O, JJ.) djJ. -

0 

and 

I 

- (1 - !c1)s- 1Jt(s) + I{(s) = (1/2) J jl 21(0, JJ.) djJ., 

0 

we shall also apply the operator 

+I 

(1/2) f · · · dJJ.f(JlS - 1) 

-I 

on both sides of Equation (18) to get 

where 

and 

as- 1 - (1 - c0 jw0 )B*(s)t0s- I = [ 1 + c0 t0s- I - ~c2 (3t2s- 1 
-

- t0 s- I )]JJ(s) + ci t1s- 1 /f(s) + ~c2 [3t2s- 1 
- t0 s- 1 ]/{(s), 

I 

as- 1 = (1/2) J JJ.S(Jls- 1)- 1 /(0, JJ.) djJ. 

0 

+I 

tms-l = (1/2) f (JJ.S- 1)-l Jlm djJ., m = 0, 1, 2. 

-I 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) " 

(26) 

(27) 

If we follow the usual procedure for elimination of IJ(s), Jt(s), and /{(s) among 
Equations (26), (22), (23), and (25), after some lengthy calculations settings= z- 1, we 



have 

where 

where 
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I 

T(z)I(O, z) = (1/2) I x(x- z)- 1 L(x, z)I(O, x) dx + 

0 

I 

T(z) = 1 - 2z2 I 1/f(x) dx(z2
- x 2

)-
1

, 

0 

1/J(x) = (1/2) (A + Bx2 + Cx4
), 

L(x, z) =A - ~c 2x2 + (B + C + ~c2)xz- (1/3)Cz2 + Cx 2 z 2
, 

B*z- 1 = b0 + bd(l + {Jz) = (d0 + d1z)/(1 + {Jz), 

93 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

A = c0 + :;}c2 , B = c1 (1 - c0 ) - ~c2 - ~c2(1 - c0 ) (1 - cd3), (34) 

C = ~c2(1 - c0 ) (1 - cd3), (35) 

where we shall assume that 

(36) 

and 

I 

1/10 = I 1/J(x) dx < ~. (37) 

0 

~ But for 

y = k(k + a) < 1 , (38) 

B*z- 1 is analytic in (- y- \ Ol, bounded at the origin and 0 < y < 1. According to 
Busbridge (1960), the equation for T(z) possesses the following properties: T(z) is 
analytic in z for (- 1, 1Y, bounded at the origin, has a pair of zeros at z = ± K (K > 1), 
K is real and can be expressed as 

T(z) = [H(z)H(- z)]- 1 
, (39) 

where H(z) and H(- z) have the following properties: H(z) is analytic for z E (- 1, Ol, 
bounded at the origin, has a pole at z = - K. H(- z) is analytic for z E (0, 1)c, bounded 
at the origin, has a pole at z = K. 
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If we follow Busbridge (1960), Das (1979a) and Dasgupta (1977) we have for 1/10 < ~, 
I 

H(z) = 1 + zH(z) f 1/J(x)H(x) (x + z)- 1 dx (40) 

0 

or 

H(z) = (A 0 + H 0 z)/(z + K) - M(z), (41) 

where 

I 

M(z) = f P(x) dxf(x + z), (42) 

0 

P(x) = </J(x)/H(x), -(43) 

</J(x) = n- 1 Y0(x)/[T~(x) + Y~(x)], 
I 

T0 (x) = 1 - 2x 2 f (1/J(t)- 1/J(x)) dt/(x2
- t2

)-

0 

- 1/J(x)x log(l + x)/(1 - x), 

Y0 (x) = nxljl(x), 

A 0 = (1 + P _ 1)K, 

I 

P_ 1 = f x- 1P(x)dx, 

0 

H 0 = (1 - 21/10 )- 112 • 

Equation (28) with Equation (39) takes the form 

1(0, z)/H(z) = H( -z)G(z) + (1- c0 /w0 )H( -z)B*z- 1
, 

where 

I 

G(z) = (1/2) f x(x- z)- 1 L(x, z)I(O, x) dx, 

0 

we shall assume that 

1(0, z) is regular for Rez > 0 , 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

bounded at the origin. Equation (51) with the above assumption on 1(0, z) gives the 
following properties of G(z): G(z) is regular on (0, lY, bounded at the origin O(z) when 
z~oo. 

.... 
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Equation (50) with Equations (32) and (51) gives 

1 

/(0, z)/H(z) = H(- z) [ (1/2) f x(x - z) + L(x, z)/(0, x) dx + 

0 

+ (1 - c0 /w0 ) (d0 + d1z)f(l + Pz)J. (53) 

Equation (53) can be put in the form 

1 

/(0, z)/H(z) = H(- z) [ (1/2) f x(x - z)- 1 L(x, z)/(0, x) dx + 

0 

+ (1- c0 /w0 ) (d0 /z + d1)/(z- 1 + P)]. (54) 

Therefore, the left-hand side of Equation (54) is regular for Rez > 0 and bounded at the 
origin and the right-hand side of Equation (54) is regular for z on (0, l)c and bounded 
at the origin and tends to a linear polynomial in z, say (x0 + x 1z) when z-+ oo. Hence, 
by a modified form of Liouville's theorem we have 

/(0, z) = [x0 + x 1z]H(z) (55) 

and 
1 

(1/2) f xL(x, z)/(0, x) dxf(x - z) + 

0 

Equation (55) will give emergent intensity from the bounding face if x0 and x 1 are 
determined. We shall now determine the constants x 0 and x 1 • If we set z = 0 in 
Equation (56), we have 

1 

(1/2) f L(x, 0)/(0, x) dx + d0 (1 - c0 /w0 ) = x 0 • (57) 

0 

Equation (57) with Equation (55) gives 

(58) 

where 
1 

y 1 = (1/2) f L(x, O)H(x) dx - 1 , (59) 

0 

1 

Y2 = (1/2) f xL(x, O)H(x) dx, (60) 

0 

(61) 
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As T(z) has a zero at z = K, Equation (28) gives 

I 

(1/2) J xL(x, K)I(O, x) dxf(x - K) + 
0 

+ (1 - c0 /w0 ) (d0 + d1K)/(1 + {JK) = 0, 

Equation (62) with Equation (55) gives 

where 

I 

y3 = (1/2) J xL(x, K)H(x) dxf(x - K), 

0 

I 

y4 = (1/2) J x 2L(x, K)H(x) dxf(x- K), 

0 

z2 = (1 - c0 /w0 ) (d0 + d1K)/(1 + {JK), 

Equations (58) and (68) give 

where 

Xo = (YzZz- z!y4)/(Y!Y4- Y3Yz)' 

X1 = (z!y3- Y!Zz)f(Y!Y4- Y3Yz)' 

(Y!Y4- Y3Yz) =I= 0. 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

Hence, Equation (55) with Equations (67) and (68) gives the emergent intensity from 
the bounding face of the atmosphere. 
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Abstract. The equation which commonly appears in radiative transfer problem in a finite atmosphere having 
ground reflection according to Lambert's law is considered in this paper. The Planck's function Bv(T) is 
taken in the form, 

Bv(T) = b0 + b1 e-PT. 

The exact solution of this equation is obtained for surface quantities in terms of the X - Y equations of 
Chandrasekhar by the method of Laplace transform and linear singular operators. 

1. Introduction 

Das (1978, 1980) has solved various problems of radiative transfer in finite and semi
infinite atmosphere using a method involving Laplace transform and linear singular 
operators. 

In this paper we have considered the one-sided Laplace transform together with the 
theory of linear singular operators to solve the transport equation which arises in the 
problem of a finite atmosphere having ground reflection according to Lambert's law 
taking the Planck's function as a nonlinear function of optical depth: viz., 

B)T) = b0 + b1 e-fh, 

where b0 , b1 , and f3 are positive constants (Delg'Innocenti, 1979; Karanjai and Karanjai, 
1985; Deb eta/., 1990). 

2. Basic Equation and Boundary Conditions 

The integra-differential equation for the intensity of radiation I( r, J.l), at any optical 
depth r for the problem of diffuse reflection and transmission in a finite atmosphere can 
be written in the form (Das, 1980) as 

(1) 

-I 

Astrophysics and Space Science 181: 267-275, 1991. 
""t. © 1991 Kluwer Academic Publishers. Printed in Belgium. 
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where Iv('c, f.l) is the intensity in the direction cos- 1 f.1 at a depth r, the angle cos- 1 f.1 
is measured from outside drawn normal to the face r = 0, t/J(f.l) is the characteristic 
function for non-conservative scattering which satisfies the condition 

I 

t/10 = J t/l(f.l') df.1' < ~; t/l(f.l') is even, (2) 

0 

vis the frequency and Bv(T) is the Planck's source function at any optical depth. We 
have taken 

B)T) = b0 + b1 e-fJ-r:. 

Then Equation ( 1) becomes 

+I 

f.1 dl(r,f.1)=I(r,f.1)- J t/J(f.1')I(r,f.1')df.1'-(b0 +b1 e-P-r), 
dr 

-I 

where for convenience we have omitted the subscript v. 
The boundary conditions associated with Equation (3) are 

/(0, - f.l) = 0' 0 < f.1::;; 1' 

•o> 0' 

(3) 

(4a) 

(4b) 

where r0 is the thickness of the finite atmosphere and the bounding face r = r0 is having 
ground reflection according to Lambert's law, /g is a constant. 

3. Integral Equations for Surface Quantities 

Let us define f*(s, f.l) as the Laplace transform off( r, f.l) by 

To 

•• 

f*(s,f.l) = s J f(r,Jl)e-s-rdr, Res> 0; 

0 

,. 
(5a) 

f( r, f.l) = 0 , when r > r0 • (5b) 

Let us now apply the Laplace transform defined in Equation (5a) to Equation (3) to 
obtain the equation satisfying the boundary condition as 

(6) 

where 

+I 

S(r) = J t/J(f.l')I(r, f.1') df.1' + b0 + b1 e-P-r => (7) 

-I 
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+I 

~ S*(s) = t/I(J.L')I*('r, J.L') dJ.L' + b0 (l- e-no) + - 1
- (1- e-(s+P)-ro) 0 I 

sb 

s+f3 
-I (8) 

Let us apply the operator 

+I 

I 0 0 0 t/I(J.L) dJ.Lf(J.Ls- 1), 

-I 

on both sides of Equation (6) and we obtain, with Equation (8), 

+I 

T(1/s)S*(s) = I dJ.L J.LS t/I(J.L)I(O, J.L)f(J.Ls - 1) -

-I 

+I 

- e--ros I J.LS t/I(J.L)I('r0 , J.L) dJ.Lf(J.LS - 1) + 
-I 

where 

+I 

T(lfs) = 1 + I dJ.L t/I(J.L)/(J.Ls - 1) 0 

-I 

Equation ( 6) gives 

I(O, J.L) - e- roll' I( -r0 , J.L) = S*(l/J.L) ~ 

~ I(O, lfs) - e--ros I( -r0 , 1/s) = S*(s) 0 

(9) 

(10) 

(11) 

(12) 

(13) 

Equation (10), together with Equation (12), gives for complex z, where z = s- 1
, 

[1(0, z)- e-rofz I(r0 , z)]T(z) = 

+I +I 

=I J.Lt/I(J.L)l(O,J.L)dJ.Lf(J.L-Z)-e--r:o/z I J.LtfJ(J.L)!(-r0 ,J.L)dJ.L(J.L-z)+ 

-1 -1 

b + boO - e- To/z) + __ I - (1 - e- flro e- To/z) 0 

1 + {3z 

Let us put o:0 = p- 1
, then Equation (14) becomes 

[1(0, z) - e- ro/z I( -r0 , z)] T(z) = 

(14) 
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+I +I J Jl t/J(JL)/(0, Jl) dJLf(Jl - z) - e- To/z I Jl t/J(JL)l( -r0 , Jl) dJLf(Jl - z) + 
-I -I 

(15) 

Let us set z = - z in Equation (15) and multiply the resulting equation bye- To/z on 
both sides to obtain, for complex z, 

[/(-ra, -z)- e-TofzJ(O, -z)]T(z) = 
+I 

= I JLtfJ(JL)l(-ra,JJ.) dJLf(Jl + z)- eTo/z X 

-I 

+I 

X I JLtfJ(JL)l(O,JL)dJLf(Jl. + z) + ba(l- e-""'ofz)-

-I 

(16) 

Equations (15) and ( 16) are the linear integral equations for the surface quantities under 
consideration. 

4. Linear Singular Integral Equations 

Equations (15) and (16) are the equations defined for complex z, where z does not lie 
between - 1 and 1. When z lies between - 1 and 1, Equations (15) and (16) will give 
the linear singular integral equations by the applications of Plemelj's formulae (cf. 
Mushkelishvili, 1946) with the boundary condition (4) as 

I 

(!(0, z) - e- To/zIg] T0 (z) = P I Jl 1/J(!J.)l(O, IJ.) diJ./(iJ. - z) -

0 

I 

-e-Tofz J iJ.t/J(iJ.)l(-ra, -~J.)diJ./(iJ.+z)-
a 

I 

- e- ""<o/z P J iJ.t/J(JL)lg diJ./(Jl- z) + 

0 

+boO - e- ""<o/z) + b, eta (1 - e- ""<o(l/z+ ''"") 

z +eta 
(17) 

... 
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and 

I 

I( -r-0 , - z)T0 (z) = P f Jli/J(Jl)l( -r-0 , - Jl) dJlf(Jl - z) -

0 

I I 

- e--r:o/z f Jli/J(Jl)l(O, Jl) dJlf(Jl + z) + f Jli/J(Jl)lgdJlf(Jl + z) + 

0 0 

(18) 

where 

I I 

T0 (z) = 1- 2z2 f dJl[I/J(Jl)- ljJ(z)]/(z2
- Jl2

)- 2z2 1/J(z)P f dJlf(z2
- Jl2

), 

0 0 (19) 

in which P dneotes the Cauchy principal value of the integral. 
Equations (17) and (18) are the linear singular integral equations from which we shall 

determine the surface quantities /(0, z) and /( -r-0 , - z) by the application of the theory 
of linear singular operators. 

5. Theory of Linear Singular Operators 

If we follow Das (1978, 1980), we can write the following theorems. 

THEOREM 1 

The linear integral equations for z E (0, 1), 

where 

L+ [R(z, - x 0 )] = l(z, - x0 ), 

L (Q(z, - x0 )] = m(z, - x0 ), 

I 

(20a) 

(20b) 

L + [f(z, - x0 )] = f(z, - x0 )T0 (z) - P f Jli/J(Jl)f(Jl, - x0 ) dJlf(Jl - z) + 
0 

I 

+ e- -r:ofz f Jli/J(Jl)f(Jl, - x0 ) dJlf(Jl + z), (21a) 

0 

I 

L _ [f(z, - x0 )] = f(z, - x0 )T0 (z) - P f Jli/J(Jl)f(Jl, - x0 ) dJlf(Jl - z) -

0 
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I 

-e-~o/z f f1ifi(f1)f(f1, -Xo)df1f(f1+Z), (2lb) 

0 

X X l(z, -Xo) = _0_ [1- e-~o(I/z+I/xo)] + _0_ [e-~o/z- e-~o/Xo]' (22a) 
z + x0 z- x0 

X X 0 m(z, _ Xo) = _o_ [1 _ e- ~o(I/z+ I/xo)] ___ [e- ~o/z _ e--r:ofxo], 

z + x0 z- x0 

(22b) 

admit of solutions of the form 

R(z, - x0 ) = S(z, - x0 ) + T(z, - x0 ), (23a) 

Q(z, - x0 ) = S(z, - x0 ) - T(z, - x0 ) , (23b) 

where 

S(z, - x0 ) = x0 [X(z)X(x0 ) - Y(z)Y(x0 )]/(z + x0 ) (24) 

and 

T(z, - x0 ) = x0 [X(z)Y(x0 ) - Y(z)X(x0 )]/(x0 - z). (25) 

With constraints on X(z) and Y(z) as 
(i) when 1/10 < ~ 

I I 

1 = K f X(fl)ifi(/1) dflf(K- /1) + e- -r:o/K K f Y(f1)ifi(f1) dflf(K + /1), (26a) 

0 0 

I 1 A-

e- ~o/K = K f Y(/1)1/J(/1) dflf(K- /1) + K e-~o/K f X(/1)1/J(/1) dflf(K + /1); 
0 0 (26b) 

(ii) when 1/10 = ~ 

1 

1 = f 1/1(/1) [X(fl) + Y(fl)] dfl, (27a) 

0 

1 1 

'o s ifi(fl)Y(fl) dfl = s flifi(/1) [X(f1)- Y(fl)] dfl (27b) 

0 0 
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and K is the positive root of the function T(z), when t/10 < !, defined by 

+I 

T(z) = 1 + I zt/I(Jl) dJ1/(J1- z) (28) 

-I 

and where [X(z)- Y(z)] and [X(z) + Y(z)] are the respective solutions of 

I 

L+ [f(z)] = (1 - e- ~olz) ( 1 - I t/I(Jl)f(Jl) dJ1) (29) 

0 

and 
I 

L_[f(z)] = (1 + e-~ofz)(1- I t/J(J1)f(J1)dJ1) · (30) 

0 

THEOREM 2 

As the operators L + and L _ are linear for z E (0, 1 ), then for any constant C, we have 

L ± ( CF(z, - x0 )) = CL ± (F(z, - x0 )) 

and 
I 

L ± (zf(z)) = zL+ (f(z) - (1 + e- ~"1") I Jlt/I(Jl)f(Jl) dJ1 . 

0 

THEOREM 3 

If R(z, - x 0 ) and Q(z, - x0 ) are the solutions of 

L+[R(z, -x0 )] = l(z, -x0 ), 

L_[Q(z, -x0 )] = m(z, -x0 ), 

I 

L + (M(z)) = I t/1(- x0 )l(z, - x0 ) dx0 , 

0 

I 

L _ (N(z)) = I t/1(- x0 )m(z, - x0 ) dx0 , 

0 

admit of a solution of 

I 

M(z) = I t/1(- x 0 )R(z, - x0 ) dx0 , 

0 

(31) 

(32) 

(33a) 

(33b) 

(34) 

(35) 

(36) 
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I 

N(z) = f l/1(- x0 )Q(z, - x0 ) dx0 . (37) 

0 

6. Solution for Surface Quantities 

Linear singular integral equations (17) and (18) are the required integral equations from 
which we will have to deterrnine/(0, z) and/( -.0 , - z), the quantities under consideration, 
by the application of the theory of linear singular operators indicated in Section 5. 

Equations (17) and (18) on addition and after some rearrangement give 

L+ [/(0, z) + /(r0 , - z)- e- <o/z JR"] = 

I 

= 2b0 (l - e- <ofz) + bi l(z, - o:0 ) + Ig f l/l(p)l(z, - Jl) dJl. 

0 

Equations (17) and (18) on subtraction and after some manipulation give 

L_ [1(0, z)- /(r0 , -z)- e- <o/z Ig] = 

I 

= bim(z, - o:0)- Ig f l/I(JL)m(z, - Jl) dJl, 

0 

(38) 

(39) 

where l(z, - Jl) and m(z, - Jl) are given by Equations (22a) and (22b). Equations (38) 
and (39), with Theorems 1, 2, and 3 of Section 5, will give us the desired quantities /(0, z) 
and /( -r0 , - z). The solution of Equation (38) is given by 

[I(O,z)+I(-r0,-z)- /ge-<ofz]= 
I 

2b f = --0
- (X(z)- Y(z)) + biR(z, - o:0 ) + Ig R(z, - Jl)l/I(Jl) dJl, 

1- G0 

(40) 

0 

where 

I 

G0 = f l/I(Jl) [X(Jl)- Y(Jl)] dJl. (41) 

0 

The solution of Equation (39) is given by 

I 

= bi Q(z, - o:0 ) - Ig f l/I(JL)Q(z, - Jl) dJl. (42) 

0 

.· 
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Equations (40) and (42) on addition give I(O, z) and Equations (38) and (42) on sub
traction give I( -c0 , - z) as 

and 

I 

I(O, z) = Ig e- To/z + Ig f 1/J(JJ.)T(z, - JJ.) djJ. + 

0 

b 
+ --0 - [X(z)- Y(z)] + b1S(z, - )J.) 

1- G0 

b 
I( r 0 , - z) = --0 - [X(z) - Y(z)] + 

1- G0 

I 

+ b1 T(z, - a0 ) + Ig J 1/!(JJ.)S(z, - JJ.) djJ., 

0 

where S(z, - JJ.) and T(z, - JJ.) are given by Equations (24) and (25). 

References 

Chandrasekhar, S.: 1960, Radiative Transfer, Dover Pub!., New York. 
Das, R. N.: 1978, Astrophys. Space Sci. 58, 419. 
Das, R. N.: 1980, Astrophys. Space Sci. 67, 335. 
Deb, T. K., Biswas, G., and Karanjai, S.: 1991, Astrophys. Space Sci. 178, 107. 
Degi'Innocenti, E. L.: 1979, Monthly Notices Roy. Astron. Soc. 186, 369. 
Karanjai, S. and Karanjai, M.: 1985, Astrophys. Space Sci. 115, 295. 
Muskhelishvili, N. I.: 1946, Singular Integral Equations, P. Noordhoff, Holland. 

(43) 

(44) 



··r 

J· 
~~ . 

SOLUTION OF THE EQUATION OF TRANSFER FOR 

INTERLOCKED MULTIPLETS WITH PLANCK FUNCTION AS A 

NONLINEAR FUNCTION OF OPTICAL DEPTH 

S. KARANJAI 

Department of Mathematics, North Bengal University, West Bengal, India 

and 

T.K. DEB 

Department of Telecommunications, M/W Station, Siliguri, West Bengal, India 

(Received 20 November, 1990) 

Abstract. The equation of transfer for interlocked mu1tip1ets has been solved exactly by the method used 
by Busbridge and Stibbs (1954) for exponential form of the Planck function Bv(T) = b0 + b1 e-P<. 

1. Introduction 

The equation of transfer in the Milne-Eddington model for interlocking without redis
tribution have been discussed by Woolley and Stibbs (1953), where a clear statement 
of the problem will be found. Taking the Planck function to be linear, they have obtained 
a solution by means of Eddington's approximation and calculated the residual intensi
ties and the total absorption in the emergent flux for doublet and triplet lines. Bus bridge 
and Stibbs (1954) applied the principle of invariance governing the law of diffuse 
reflection with a slight modification to solve exactly the equation of transfer in the M-E 
model. Dasgupta and Karanjai (1972) applied Sobolev's probabilistic method to solve 
the same problem. Karanjai and Barman (1981) applied the extension of the method 
of discrete ordinates to solve the problem. Dasgupta (1978) obtained an exact solution 
of the problem by Laplace transform and Wiener-Hopftechnique using a new represen
tation of the H-function obtained by Dasgupta (1977). The same problem has also been 
solved by Karanjai and Karanjai (1985) by the method used by Dasgupta (1978) and 
by Deb et a/. (1991) by discrete ordinate method using the Planck function as an 
exponential function of optical depth. 

In this paper we have solved the same problem by the method used by Bus bridge and 
Stibbs (1954), using the Planck function B )T) as an exponential function of optical 
depth (Degl'Innocenti, 1979) 

B)T) = b0 + b1 e-P•. 

Astrophysics and Space Science 184: 57-63, 1991. 
:;t © 1991 Kluwer Academic Publishers. Printed in Belgium. 
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z. EqmJtjoQ 9f 'fr~m~f~!r 

W ooll~y and Stibps (195~) m.~d~ c~rt.ain JlSS!.ll1.lpiioot>1 viJ.:., (i) that tbe Hn~s ~~ llP .~lo.s~ 

together that vari..~tiop,s of tbe coptjpuous aJ>sorptjon co~ffl.-eje.,nt .~ :mQ. of the :Pla.nels: 
fqnction 8y{T) with wav~let:l~b may he !le_glected- This also mearJ.s t}Hlt the low.e.r ,stat~s 
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Jp tb.e p.r~.ent pJlpe.r, we lw.¥.e fwt.IJ .. er :;tss!Jm.ed .th.oat (.i:y} 

/Jv(T):;=,b,o+.htf!~fl:c, (1) .:i( 
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P./r.(~, .JL~ _ (·l _1_ ')/ ( ·) _ (1 + ~ (b + b -P:r:) _ p. .. . 0 
..,. ' .,. nr 'r' r, p. .. ' . ·. .enrJ .0 ·, .. l f! 0 

.. 4J 0 0 • 0 0 

,+-l 0-) 

-~ 1 s·· I ~[o..,.e« -·, 1-r: .d' { ). ,r .t: ·2 .t]p · .. 0 p(., p. Lp I 
p=lo . 
. ;: .1 

.(3) 

at+thf:.··t.q~~:l .. 
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write 

where 

and 
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Ar T = --------'-----
r 1 1 + P~r 

1 -- (1 - e)17 log --
2P r 1- P~r 

Ar = (1 + BIJr)/(1 + '1r)' 

~r = 1/(1 + '1r) · 

(r = 1, 2, ... , k), 

Then 1:' ( 1:, Jl) satisfies the equation 

dl:'(•, Jl)- (1 ) *( ) (1 ) Jl - + '1r lr 7:, Jl .. - - e rJ.r X 
d-r; 

+1 

k 1 I xp~t2 11P 1;( 1:, Jl') dJl' , (r = 1, 2, ... , k) 

-I 

together with the boundary condition 

(0 < Jl' :::;; 1 , r = 1, 2, ... , k) . 

Moreover, Ir(-r;, Jl) must be at most linear in -r; as 7:-4 oo. 

59 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Now we have the problem of a scattering atmosphere (exponential) subject to external 
~ radiation whose intensity is given by Equation (11). We want to find the emergent 

intensity Ir* (0, Jl) of frequency vr. This will be the intensity of the diffusely reflected 
radiation and can be calculated when the appropriate scattering function is known. 

In the present problem the scattering function splits up into k 2 functions 

srs(Jl, Jl 1
) (r = 1, 2, ... 'k; s = 1, 2, ... 'k) 

but it is convenient to reunite them temporarily in the function 

P(v, v')S(v, v'; Jl, Jl'), 

where v is any one of v1 , v2 , ••• , vk. 

k 

P(v, v') = rl.v L li(vp- v') 
p=l 

(12) 
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lJ denoting Dirac's <)..function, and 

S(vr, vs; Jl, p.') = SrJJl, p.'). (13) 

Then the law of diffuse reflection for the atmosphere can be written as (Stibbs, 1953; 
Busbridge, 1953), 

co I 

I:er(o, p.) = 2~ J P( v, v') d v' J S( v, v'; p., p.')/~?c(o, - p.') dp.' , (14) 

0 0 

The equivalent form in terms of the functions Srs(Jl, p.') is 

(15) ~' 

3. Scattering Function 

If we follow Bus bridge and Stibbs ( 1954) we have the scattering function from frequency 
vs and direction - p.' into frequency vr and direction Jl, in the form 

(16) 

where 

(17) 

4. H-function 

Following Busbridge and Stibbs (1954), Equation (17) can be written as 

(18) 

5. Emergent Intensity 

From Equations (11), (15), and (9) we have 

(19) 
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If we substitute from Equation (16) we get 
I 

lr*(O, Jl) = !rxrH(~pJl)Pt ~A1- Ap) I Jl' X 
~rJl + ~pJl' 

0 

If we use the relations 

1 1 [ p 1 J 
(~pPJl'- 1) (~pJl + ~pJl') = (~rPJl + 1) ~pPJl- 1- ~rJl + ~pJl' ' (21) 

we get from Equation (20) 

(22) 
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From Equation ( 6), 

/r(O, f.l) = bo + bl Tr + /r* (0, f.l). 
1 + ~rPf.l 

If we use Equations (18), (22), (23) we get 

and thus 

which is the final form of the emergent intensity in the rth line. 

(23) 

(24) 

(25) 



EQUATION OF TRANSFER FOR INTERLOCKED MULTIPLETS 

References 

Busbridge, I. W.: 1953, Monthly Notices Roy. Astron. Soc. 113, 52. 
Busbridge, I. W. and Stibbs, D. W. N.: 1954, Monthly Notices Roy. Astron. Soc. 114, 2. 
Dasgupta, S. R.: 1977, Astrophys. Space Sci. 50, 187. 
Dasgupta, S. R.: 1978, Astrophys. Space Sci. 56, 13. 
Dasgupta, S. R. and Karanjai, S.: 1972, Astrophys. Space Sci. 18, 246. 
Deb, T. K., Biswas, G., and Karanjai, S.: 1991, Astrophys. Space Sci. 178, 107. 
Degl'Innocenti, E. L.: 1979, Monthly Notices Roy. Astron. Soc. 186, 369. 
Karanjai, S. and Barman, S.: 1981, Astrophys. Space Sci. 77, 271. 
Karanjai, S. and Karanjai, M.: 1985, Astrophys. Space Sci. 115, 295. 
Stibbs, D. W. N.: 1953, Monthly Notices Roy. Astron. Soc. 113, 493. 

63 

Woolley, R. v. d. R. and Stibbs, D. W. N.: 1953, The Outer Layers of a Star, Oxford University Press, London. 



TIME-DEPENDENT SCATTERING AND TRANSMISSION 

FUNCTION IN AN ANISOTROPIC TWO-LAYERED 

ATMOSPHERE 

T.K. DEB 

Department of Telecommunications, MfW Station, Siliguri, West Bengal, India 

and 

S. KARANJAI and G. BISWAS 

Department of Mathematics, North Bengal University, West Bengal, India 

(Received 26 April, 1991) 

Abstract. In this paper we consider the time-dependent diffuse reflection and transmission problems for a 
homogeneous anisotropically-scattering atmosphere of finite optical depth and solve it by the principle of 
invariance. Also we consider the time-dependent diffuse reflection and transmission of parallel rays by a 
slab consisting of two anisotropic homogeneous layers, whose scattering and transmission properties are 
known. It is shown how to express the time-dependent reflected and transmitted intensities in terms of their 
components. In a manner similar to that given by Tsujita (1968), we assumed that the upward-directed 
intensities of radiation at the boundary of the two layers are expressed by the sum of products of some 
auxiliary functions depending on only one argument. Then, after some analytical manipulations, three groups 
of systems of simultaneous integral equations governing the auxiliary functions are obtained. 

1. Introduction 

Sobolev (1956) dealt with the one-dimensional problem of time-dependent diffuse 
reflection and transmission by a probabilistic method. Diffuse reflection of time
dependent parallel rays by a semi-infinite atmosphere was treated by Ueno (1962) on 
the basis of the principle of invariance. Bellman eta/. (1962) obtained an integral 
equation governing diffuse reflection of time-dependent parallel rays from the lower 
boundary of a. finite inhomogeneous atmosphere. Ueno (1965) also obtained this 
equation by probabilistic method. Matsumoto (1967a) derived functional equations in 
the integral radiation allowing for the time-dependence given by Dirac's D.-function and 
Heaviside unit step-function. Matsumoto (1967b) also derived a complete set of 
functional equations for the scattering (S) and transmission (T) functions which govern 
the laws of diffuse reflection and transmission of time-dependent parallel rays by a finite, 
inhomogeneous, plane-parallel, non-emitting, and isotropically-scattering atmosphere, 
where the dependence of the time of the incident radiation is given by Dirac's D.-function 
and Heaviside's unit step-function. A formulation of the time-dependent H-function was 
accomplished by means of the Laplace transform in the time-domain. Numerical 
evaluation of the H-function based on numerical inversion of the Laplace transform 
presented by Bellman eta/. (1966) was made. 

Recently, Karanjai and Biswas (1988) derived the time-dependent X- andY-functions 

Astrophysics and Space Science 189: 95-117, 1992. 
© 1992 Kluwer Academic Publishers. Printed in Belgium. 
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for homogeneous, plane-parallel, non-emitting, and isotropic atmosphere of finite opti-
cal thickness using the integral equation method devleoped by Rybicki (1971), Biswas 
and Karanjai (1990a) have derived the time-dependent H-, X-, and Y-function in a 
homogeneous atmosphere scattering anisotropically with Dirac's &.function and 
Heaviside unit step-function type time-dependent incidence. Biswas and Karanjai 
(1990b) have also derived the solution of diffuse reflection and transmission problem 
for homogeneous isotropic atmosphere of finite optical depth. In this paper we derived 
the nonlinear integral equations for X- and Y-functions (Chandrasekhar, 1960) for 
anisotropically-scattering atmosphere. The anisotropy is represented by means of a 
phase function which can be expressed in terms of finite-order Legendre polynomials. 
The principal ofinvariance is applied to derive the functional equations for time-depen
dent scattering and transmission functions. Next we considered the time-dependent 
diffuse reflection and transmission of plane-parallel rays by a slab consisting of two -<II( 

homogeneous anisotropically-scattering layers, whose scattering and transmission 
functions are known. The problem of the time-independent scattering and transmission 
of radiation in plane-parallel atmosphere of two layers was treated first by Van de Hulst 
(1963; also see Tsujita, 1968). Hawking (1961) dealt with the problem analytically 
starting with Milne's integral equation. Later on, Hansen (see Tsujita, 1968) formulated 
the scattering and transmission functions in a medium consisting of two optically thin 
layers by the invariant imbedding partical-counting method. Gutshabash (1957) formu
lated the problem as solutions of simultaneous integral equations. So far as his equations 
are solvable, the scattering and transmission functions required are given exactly for two 
layers of different albedos and different large optical thickness. We have extended the 
same problem (Tsujita, 1968) for the time-dependent transfer of radiation .. 

2. Derivation of Fundamental Equations 

2.1. FORMULATION OF THE PROBLEM 

In an anisotropically-scattering medium, the intensity of radiation/( T, Jl, ¢, t) at any time _... 
t, any optical depth r, in the direction cos- 1 Jl, satisfies the equation of transfer 

~ aJ(r, Jl, ¢, t) + aJ(T, Jl, ¢, t) +I( A.. t) = J( A.. t) 
a 

Jl a T,Jl,'f', T,Jl,'f',, 
C t T 

(1) 

in which the source function J(( 1:, Jl, ¢, t) is given by 

2n + 1 

J( T, Jl, ¢, t) = L f f P(Jl, ¢; Jl
1

' ¢' )/( T, Jl
1

' ¢'' t) dJl' d¢' ' (2) 

0 -1 

where P(Jl, ¢; Jl', ¢' ), the general phase function and c represents the velocity of light. 
In the above, Jl and ¢represent, respectively, the cosine of the zenith distance and the 
azimuthal angle. We decompose the intensity of radiation field into two components for 
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two directions, viz., intensity directed towards the lower surface of the atmosphere 
(J+ ( 't, Jl, cp, t)) and intensity directed towards the upper surface of the atmosphere 
(I- ( "C, Jl, cp, t)). 

We consider the initial boundary conditions 

!("C, Jl, cp, 0) = 0' 

J+ (0, Jl, cp, l) = /inc(Jl, cp, l), 

1- ( '!1 , Jl, cp, t) = fi':.c(Jl, cp, t) . 

(3) 

(4) 

(5) 

Equations (4) and (5) asserts that the lower and the upper surfaces are illuminated. 
However, we shall restrict ourselves for the time being to the case of illumination on 
the upper surface ( "C = 0) by means of an instantaneously collimated beam of light at 

>- timet = 0. The other surface will be free from any incident radiation. We now distinguish 
between the reduced incident intensity which is incident orr-boundary surface and 
penetrates to the depth 't without suffering any collision and diffuse radiation which 
arises due to different processes (Chandrasekhar, 1960). For the total radiation field we 
have 

J+ ( 't, Jl, cp, t) = 1; ( 't, Jl, cp, t) +/inc (Jl, cp, t- c:) exp (- ~), (6) 

1-("C, Jl, cp, t) = I;J('t, Jl, cp, t) + /i~c (Jl, cp, t- 't
1c: "C) exp (- '!

1
; "C), (7) 

where the subscript 'd' represent diffuse fields. If we substitute these expression for 
J+ ( 't, Jl, cp, t) and/- ( 't, Jl, cp, t) in Equation (1) we get two separate equations of transfer 
for two components 

( c- 1 ~ + ~ + 1)1; ( 't, Jl, cp, t) = J( "C, Jl, cp, t), 
at a"C 

(8) 

( 
_ 1 a a ) -c ) c -+-+ 1 Id 't,Jl,cp,t =l('t,Jl,cp,t), 

at a"C 
(9) 

where 

2n +I 

J("C, Jl, cp, t) = 41n f f IA"C, Jl', cp'' t) x 
0 -I 

2n I 

X P(Jl, cp; Jl'' cp')Jl' dcp' + 41n f f P(Jl, cp; Jl', cp') X 

0 0 
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X P(IJ., <jJ; IJ. 1
, </J 1

) d1J. 1 d</JI . 

Let us now put in Equation (10) 

Iinc(IJ., </J, t) = FD(t)D(IJ. - /Lo)D(</J- </Jo), 

I;~c(IJ., </J, t) = 0 ; 

where F is a constant. 
Hence, we get 

2n +I 

J( r:, IJ., </J, t) = 
4

1
n J J IA r:I, /L

1

, <PI, t)P(IJ., ¢; IJ.
1

, ¢ 1

) d1J.
1 

d</J
1 + 

0 -I 

. + ~FP(IJ., ¢; IJ.o, ¢0 ) exp (- _::_) D (t- _!__) . 
llo CIJ.o 

The new set of boundary conditions are given by 

I;t(r:, IJ., </J, t) = 0, 

I;; ( r:, IJ., -¢, t) = 0 . 

(10) 

(11) 

(12) 

(13) 

(14a) 

(14b) 

This simplification of boundary conditions are the characteristic of such formulation. 
Let us n~,.g,npne the scattering and transmission function (cf. Matsumoto,_1967a) as 

S( r:, IJ., ¢; IJ.o, ¢0 , t) =I;; (0, IJ., ¢, t), (15) 

I( r:, IJ., ¢; IJ.o, ¢0, t) = I;t ( r:I, IJ., ¢, t) . (16) 

2.2. PRINCIPLE OF INVARIANCE 

We shall now derive the functional equations for these two functions. The four principles 
of invariance (Matsumoto, 1969) for this problem take the following forms: 

(A) The intensity I;; ( r:, IJ., ¢, t) in the upward direction at timet and at depth r: is given 
by 

I;; ( r:, IJ., </J, t) = FIJ.- IS (r:I - r:; IJ., ¢: IJ.o, ¢0, t- _!__) exp (- _::_) + 
CIJ.o llo 

t I 2n 

+ 4~/L J dtl J J S(r:I-r:;IJ.,</J;IJ.
1

,</J
1

,t-t
1

)/;t x 
0 0 0 

X ( r:, IL I, </J 1
, t 1

) diJ. I d</J 1 
• (17) 
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(B) The intensity I; ( -r:, Jl, ¢, t) in the downward direction at time t and at a depth 7: 

is given by 

_.. by 

t 

I; ( 7:, Jl, ¢, t) = FJl- 1 T( -r:; Jl, ¢; J10 , ¢0 ,t) + -
1
- I dt' X 

4nJ1 
0 

I 2n 

X I I S(-r:;J1,¢;J1',¢',t-t')I;t(-r:,J1',¢',t')dJ1'd¢'. 
0 0 (18) 

(C) The diffuse reflection of the incident radiation by the entire atmosphere is given 

t 

+I; (-r:, Jl, ¢, t- .!....) exp (- ~) + -
1
- I dt' x 

CJl J1 4nJ1 
0 

I 2n 

X I I T(-r:;J1,¢;J1',¢',t-t')I;t(7:,J1 1 ,¢',t')dJ1'd¢'. (19) 

0 0 

(D) The diffuse transmission of the incident radiation by the entire atmosphere is 
given by 

( 7: ) ( 7:1 - 7:) ( 7:1 - 7:) 
X exp - CJlo +I; -r:, Jl, ¢, t-----;;;- exp - -

11
- + 

t I 2n 

+ 4~11 I dt' I I T(-r:1 - -r:; Jl, ¢, J10 , ¢0 , t- t') X 

0 0 0 

X I;(-r:, Jl', ¢', t') dJ1' d¢'. (20) 

A derivation of these four equations is based on classical intuitive physical arguments 
(Ambartsumian, 1943; Chandrasekhar, 1960; Presendorfer, 1958). Although these 
equations do not provide a complete knowledge of radiation intensity at any depth (or 
neutron distribution in a given medium) but only the reflected and transmitted inten
sities, it has some real advantages for numerical computations. 



100 T. K. DEB ET AL. 

2.3. INTEGRAL EQUATIONS EOR THE SCATTERING AND TRANSMISSION FUNCTION 

We differentiate Equation (17)-with respect to -rand take the limit as -r~ 0 

t 

X S( ! 1 , Jl,+¢; J10 , ¢0, t) + -
1
- f dt' X 

4nJ1 
0 

21t I 

X f f S(-r,;J1,¢;J1',f,t-t')[dl,t(-r,~;¢',t') dJ1'd¢'l~o· (21) 

0 0 ~ 

From Equation (8), we get by use of Equation (14) 

1
. d/,t ( -r, Jl', ¢', t') J(O, Jl', ¢', t') 
Im = ' 
~~ 0 d-r Jl' 

(22) 

where 

27t I 

J(O, Jl', ¢', t) = _..!._ f f .£_ S( -r1 , Jl", ¢", t) dJ1" d¢" + 
4n J1" 

0 0 

+ iFl>(t')P(Jl, ¢; Jlo, ¢o) · (23) 

In deriving Equation (23) we have used the expression for J( -r, Jl, ¢, t), Equation (9) now 
yields, after use of Equations (14) and (15) 

. d/j ( -r, Jl, ¢, t) J(O, Jl, ¢, t) 
hm =- + 
~~o d-r J1 

If we substitute Equations (22) and (24) in Equation (17), after cancellation andre
arrangements of terms, we get 

oS(-r1 ;J1,¢,J10 ,¢0 ,t) (1 1)(1 o 1) ---'---'--'--.:.....;:_--'--'-- + - + - - - + X 
8-r, J1 Jlo c ot 



I 

+ _!_ I 
4n 

0 
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27t 

P(- Ill' ¢11 - Jlo, l/Jo) __!!_ d¢1 + I d I 

Ill 
0 
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d I d II 
X P(- JL 1, l/J1; JL 11 , l/J 11 )S( ri; JL 11 , l/J

11
; JL0, ¢0 , t) ~ d¢1 ~~ d¢ 11 . (25) 

JL JL 

Equation (25) is the required functional equation of the time-dependent S-function. 
_.. Again, if we differentiate Equations (18), (19), and (20) with respect to rand taking the 

limit as r---> ri and r---> 0, respectively, and following the same procedure we get 

= exp (- ~) (j (t- ....!_)P(- JL, ¢; - Jlo, l/Jo) + 
Jlo CJLo 

t I 2>t I 2>t 

X P(JL, ¢; - Jlo, l/Jo) dJLI d¢1 + _1_ I dtl I I I I X 
JL 1 16n2 

0 0 0 0 0 

X S(ri; JL, ¢; JL1, l/J1, t- t1)T(ri; JL 11 , l/1 11 ; JL0 , ¢0 , t1) X 

d I d II 
X P(JL1, l/J1; - Jl 11 , l/J 11 ) __!!_ df ___!!____ dl/J 11 , 

Ill JLII 
(26) 

oS(ri; JL, ¢; Jlo, l/Jo, t) = P( m· - ,n) 
a JL, 'f'• Jlo, 't'O X 

ri 

x exp (- ri (_!_ + ~)) (j (t- ..':!.- ~) + exp (- ri) x 
Jlo JL CJL CJLo JL 
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t I 2n 

X 4~ f dt' f f T( 'ri; !l", cf/', llo• </J0 , t- t')P(/l, </J; - !l", </J") X 

0 0 0 

t I 2n 

x 3(t' _ _5_)d/l" d<fJ" +_.!_ fdt' f f T(ri;!l,</J;!l',</J',t-t')x 
C/l !l" 4n 

0 0 0 

t 

X 3 (t' -.5_) exp (- ~) P(!l', <P'; - llo• </J0) d/l' d</J' + -
1
- f dt' X 

C/l /lo !l' 16n2 

0 

I 2n I 2n 

X f f f I T(ri;!l,</J;/l',<fJ',t-t')T(ri;Il",</J";Ilo•<Po•t') x 

0 0 0 0 

(27) 

I 2n 

X I I P(- ll• <fJ; !l" • <P")S ( TI; !l", <P", llo• </J0 , t- :~) X 

0 0 

I 2n ~ 

X d/l" d<fJ" + _.!_ I I T( -ri; /l. !l', <P', t)P(- /l. <P; - llo• <Po) X 
!l" 4n 

0 0 

t I 2n I 2n 

xd/l' d</J' +-
1
- Idt' I I I I T(ri;/l,</J;/l',t-t')x 

!l' 16n2 

0 0 0 0 0 

(28) 

Equations (25), (26), (27), and (28) are the required functional equations for'S' and 'T' 

functions. Let us now introduce the Laplace transform with respect to the time-variable 
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which enabies us to eliminate (at least formally) the time-variable, 

oS(ri;f1.,¢;f1.o,cf1o,s)+(~+_!_)(1+~)s( . .+.· .+. )= 
TI' fl., 't'' flo, 't'O' S 

OTI fl. flo c 

I 2n 

= P(fl., ¢; -flo, ¢o) + 41-rr: f f P(fl., ¢;fl."'¢") x 

0 0 

d " 
X S(ri; fl.",¢"; f1.0 , ¢0 , s) _!!____ d¢" + 

fl." 

I 27t 

+__!__ f f S(ri;f1.,¢;f1.',¢',s)P(-f1.',¢'; -f1.0 ,¢0 ) dfl.' d¢' + 
4n fl.' 

0 0 

I 21t I 21t 

+ 161n2 f f f f S( TI; fl., cp, fl.'' cp'' s)S( Tl; fl."' cp" ; flo, cf1o, s) X 

0 0 0 0 

(29) 

I 27t 

= P(- fl.,¢; flo, ¢o) ~xp (- TIS)+__!__ f f T(rl; fl.",¢"; flo, ¢o, s) X 
Cfl.o 4-rr: 

0 0 

.... , 
d " 1 ( T) ( T S) x P( -fl.,¢; -fl.",¢")_!!____ d¢" +- exp -----.!.. exp --1

- x 
fl." 4-rr: flo Cfl.o 

I 21t 

X f f S( TI; fl., cp, fl.', cp', s)P(fl., fl.' ; -flo, cp0 ) ~, dcp' + 
0 0 

(30) 
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8S(-ri;J.l.,¢;J.l.o,¢o,s) ( (1 1)) ----'------'----- = exp - -r1 - + - x 
a~ J.l. J.l.o 

( .. Is ( 1 1 )) 1 ( .. I) X exp - - - + - P(J.L, ¢; - J.l.o, ¢0 ) + - exp - - x 
c J.l. J.l.o 4n J.l.o 

I 27t 

X exp (- :;) J J T( -r1 ; j.l.
11

, ¢ 11

; J.l.o, ¢0 , s)P X 

0 0 

x (J.l., ¢, - J.l. 11
, ¢ 11

) _!!:_ d¢11 +- exp - __!_ exp - - 1
- x d 

11 

1 ( -r) ( -r s) 
J.l. 11 4n J.l.o CJ.l.o 

I 21t 

X J f /(-rl; J.l., ¢, J.l.'' ¢, s)P(J.L'' ¢'; - J.l.o, ¢o) d:' d¢' + 
0 0 

I 21t I 21t 

+ 16
1
n 2 J f f f T(-r1 ;J.L,¢;J.L',¢',s)P(J.L',¢'; -J.L~~,¢ 11 )x 

0 0 0 0 

(31) 

I 21t 

S( . II ,/,II "' ) dj.J.II dmll 1 f f T( "' I A.' ) X 'rl 'J.l. ''t' 'J.l.o, 't'O• S - 't' +- 'rl; J.l., 't'; J.l. ''t' 'S X 
J.l. 11 4n 

0 0 

( 

I ,f,l ) dj.J. I d I 1 
X P - J.l. , 't' , - J.l.o, ¢o - ¢ + --

J.l.' 16n2 

I 21t I 21t 

x f f f f T(-r1 ;J.L,¢,J.l.',¢',s)P(-J.L',¢',J.l.
11 ,1J11 )X 

0 0 0 0 

d I d II 

X S( -r1 ; J.l. 11
, ¢ 11 

; J.l.o, ¢0 , s) __!!:__ d¢' _!!:_ d¢11 
• 

J.l.' J.l.ll 
(32) 
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2.4. THE REDUCTION OF THE INTEGRAL EQUATIONS 

We have 

105 

P(Jl, ¢; Jl', ¢') = I (2- <>o,m) [I w[Pi(Jl)Pi(/l')] cosm(¢' - ¢). 
m~O t~m (33) 

If we follow Chandrasekhar (1960), we obtain 

N 

S(7:1 ; Jl, ¢; Jlo• ¢0 , s) = L S(m)(7:1 ; Jl, Jlo; s) cosm(¢0 - ¢) (34) 
m~O 

N 

T( 7:1; Jl, ¢; Jl0 , ¢0 , s) = L T(m)( 7:1 ; Jl, Jl0 , s) cosm (¢0 - ¢). (35) 
m~o 

»- If we substitute these expansions of S and T in Equations (29)-(32) and after some 
rearrangements we get 

1 (1 s)r(m)( . ) ar(m)(7:1;Jl,Jlo,s)-
- + - rl ' fl, flo, s + -
il c 87:1 

= (2- Do,m) L w[ P[(Jl) + - X 
N [ ( fY+m 

t~m 2(2- Do,m) 

I 

X I s(m)(7:1;{l,{l 1 ,S)P[({l) ~']x 
0 

I 

1 I d "J + T(m)(7: . 11
11 

II s)Pm(,") __!!__ 
2(2 _ () ) I • r • r-0• I r " • 

o.m il 
0 . 

(36) 

(37) 
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as<m)(•1; J.l, J.lo, s) N 

a.1 
= (2- Do,m) L ( -1Y+mwlm X 

l~m 

X Pt(J.l) exp (- "
1 

( 1 + ~)) + 
1 

X 
J.l C 2(2- Do,m) 

1 

X I T(m)(•1;j.l,J.l 1 ,S)Pt(J1.1
) ~']x 

0 

"' 

X [Pt{J1.0 )exp[ _2!_(/+~)] + 
1 

x 
J.lo C 2(2- D0 ,m) 

; .. 
1 

X Pt(J.l•)T(m)(•1;j.l•,J.lo,s) _!!_ , I d .J 
J.l. 

(38) 

0 

_.!._ ( 1 + ~) T<m)( . . . ) + oT<m)(•1; J.l, J.lo, s) = 
•1' J.l' J.lo' s 

J.lo c o~ 

=(2-Do,m)~wt[Pt(J.l)exp(-"1 (1+~))+ 1 
x 

l~m J.l C 2(2- Do,m) 

1 

X I T(m)(•1;j.l,J.l0 ,s)Pt{J.l1
) ~']X 

0 

1 

[ ( [y+m I d •] X pm(J.l)+- pm(J.l•)s(m)(•;J.l•,J.l )_!!_. (39) 
I 0 2(2 _ D ) I 1 0, s n 

O,m 
0 

J.l 
~ 

If we now let "' 

I 

( lY+m I d I m , _ m - (m) . 1 m 1 J.l (40) t/11 ( • 1, J.l, s) - P1 (J.l) + S ( •1, J.l, J.l , s) P1 (J.l ) -~ 
2(2 - D0 m) J.l 

• 0 

and 

I{Jt(•1;J.l,S)=exp(- "1 (1+~))Pt(J1.)+ 1 
X 

J.l C 2(2 - Do, m) 

1 I d I X T(m)(•1; J.l, j.l 1
, s)Pt(J.l) : , (41) 

0 

* 
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then, in view of principle of reciprocity (Chandrasekhar, 1960) we can rewrite 
Equations (36)-(39) in the form 

c 1)(1 s)s(m)( . ) as(m)(ri;Jl,Jlo,s)_ - + - + - r 1 , Jl, J10 , s + -
J1 Jlo c 07:1 

N 

=(2-Do,m) L (-1Y+mwf't/J!"(r1 ;j1,s)t/lf'(r1 ;j10 ,s), (42) 
l=m 

1 (1 ~)r(m)( . ) + ar(m)(ri;Jl,Jlo,s) = - + r1 , Jl, J10 , s 
~ 

J1 c a~ 
/!c 

N 

= (2- Do,m) L wf' t/J!"( r1 ; Jl, s)¢!"( 7:1 ; }10 , s) (43) 
l=m 

and 

ascml(r1; Jl; Jlo, s) N 

07:1 
= (2- Do,m) L ( -1)'+mwf' 

l=nz 

X ¢!"(r1; Jl, s)¢f'(r1 ; }10 , s) (44) 

and 

__!__ ( 1 + ~) yCml(r1; Jl, Jlo, s) + (JyCml(rl; Jl, Jlo, s) = 
Jlo c 07:1 

,....., 
N 

.;, = (2 - Do, m) L wf'¢!"( r1 ; Jl, s)t/J1m( r1; Jl, s). (45) 
l=m 

Now by use of Equations (42) and (44) we get 

(;

0 

+ l) ( 1 + ~)scml(r1 ; Jl, Jlo, s) = 

N 

= (2 - D0 , m) L (- l)'+m wf' [1/1!"( r1 ; Jl, s)t/1!"( r1 ; }10 , s) -
l=m 

- ¢;"( r1 ; Jl, s)¢?'( r1 ; }10 , s)] ; (46) 

~ 
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and by use of Equations (43) and (45) 

X wt[¢[(7:1 ; fl., s)ljl[(-r:1 ; f.J-0 , s)- 1/1/(7:1 ; fl., s)¢/(7:1 ; f.J-0 , s)]. (47) 

Equations (46) and (47) are the two fundamental equations of our problem. 

3. Solution 

3.1. LEGENDRE EXPANSION OF THE PHASE FUNCTION AND THE PRINCIPLE OF 

INVARIANCE 

Let us now consider that the atmosphere consists of two different layers. Denoting the 
quantities in the upper layer by subscript '1' and the quantities in the lower by subscript 
'2' and if we use Equations (46) and (47) we have 

and 

where 

N W(m) 
S(m)(-r;.· II II s) = ~ (2- c) ) " (-f)l+m ~X 

' z' r' rO' 0, m f...J Q 
fl.+ fl-o l=m 

x 1/1/( 7:;; fl., s)l/1/( 7:;; f.J-0 , s) - ¢/( 7:;; fl., s) - ¢1( 7:;; fl., s)¢/( 7:;; f.J-0 , s), 
(48) 

I 

( 1)/+m I d I m . m - (m) • 1 m 1 fl. 1/11 (-r:;, fl., s) = P1 (fl.)+ S; (-r:;, fl., fl., s)P1 (fl.) -
2(2- Do m) f.J-

1 

• 0 

(50) 

(51) 

s 
Q = 1 + - and i = 1, 2 . (52) 

c 
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If we use the above representations and again if we use Equations (34) and (35) we can 
write the scattering and transmission function in each layer as 

N 

S;(-r:;; f.l, ¢; f.lo, ¢0 , s) =.I s~m)(-r:;; f.L, f.L0 , s) cosm(¢0 - ¢); (53) 

N 

T;(-r:;; f.l, ¢; JL0 , ¢0 , s) = I T}m)(-r:;; f.L, f.L0 , s) cosm(¢0 - ¢) 
m~O 

(i= 1,2). (54) 

In what follows we inquire into how represent the scattering and transmission functions 
in the whole atmosphere. If we follow Tsujita, we introduce diffuse radiation intensities 
/ 1 ( -r:;; f.L, ¢; JL0 , ¢0 , s) and / 2( 7:;, f.L, ¢; f.L0 , ¢0 ; s) which leave the upper and lower layers 

• .~ in the direction (JL, ¢)with respect to the boundary between the two layes, where (JL0 , ¢0 ) 

denotes the direction of the incident radiation at the upper surface 1: = 0 

must satisfy the conditions 

/1(-r:1,f.L,¢;JL0 ,¢0 ,s)=O for 0<JL<1, 

/2(1:1; f.L, ¢; JL0 , ¢0 , s) = 0 for -1 < f.L < 0. 

(55) 

(56) 

Then from the principle of in variances (A)-(B) we have after the Laplace transform with 
respect to time variable 

I (m)(· )-F-1S(m)(· ) ( Q-r:1)+ 2 7:1 ' f.l, f.lo, s - f.l 2 7:2' f.L, f.lo, s exp - f.lo 

1 

+ 1 f s(m)(1: 'II 11
1 S)f(m)(7: '11

1 
II S) d11' d.f.' (57) 

2(2 s;. _ s;. ) 2 2' ~"'' f"' ' I 1 ' t"' ' t"'O• t"' 't' ' 
u uo m f.l , 0 

1 

X f S\m)(-r:1,f.L,f.L',s)I~m)(7:1 ,f.L',f.Lo,s)df.L' d¢'. (58) 

From (C)-(D), 0 

FJL- 1 S ( 7:o; f.L, ¢; f.lo, ¢o, s) = FJL- 1 S 1 ( 7:1; f.L, ¢; f.lo, ¢o, s) + 

(59) 



110 

and 
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I 2n 

+ -
1
- I I T2 (r2 ; f.l, ¢; f.l 1

, ¢1
, s) X 

41tf.l 
0 0 

(60) 

where r0 , r 1 , and r2 are the optical thickness of the whole atmosphere, the upper and .. the lower layer, respectively. Furthermore, we assume that I;( r1 , f.l, cp, f.l 1
, ¢', s) can be 

expanded in the form 

N 

I;(r1 ; f.l, ¢; f.l 1
, ¢ 1

, s) = L /}ml(r1 ; f.l, f.l 1
, s) cosm(¢1 

- ¢), 

(i=1,2)o (61) 

If we substitute this expansion in Equations (58) and (57) and taking account of 
Equations (53) and (54) and allowing for 

2n I cosm(¢" - ¢) cosn(¢1 
- ¢") d¢" = Dm,n1t cosm(¢1 

- cp)(m # 0, n # 0) = 
0 

= 2n (m = n = 0), (62) 

we obtain 

I 

1 I s(m) ( 0 I )J(m) ( 0 I ) d + 1 !1 ' f.l, f.l , s 2 !1 , f.l , f.lo, s f.l ' 
2(2- Do m)f.l 

• 0 

(63) 

I (m)( 0 )-F -ls(ml( o , ) ( riQ)+ 
2 rl ' f.l, f.lo, s - f.l 2 rl ' f.l, f.lo• s exp - f.lo 

I 

+ 
1 I s(m)(r 0 f.l f.l 1 ·s)J(m)(ro f.l 1 f.l s) df.l 1 

2(2 _ {) ) 2 2 • • • I • • O• 
0 

O,m 
0 

(64) 

3020 AUXILIARY FUNCTIONS AND THEIR FUNCTIONAL RELATIONS 

Let us now consider some auxiliary functions- .in terms of which / 1 ( r 1 ; f.l, ¢; f.lo, ¢0 , s) 
and / 2 ( T1 ; f.l, ¢; f.lo, ¢0 , s) are formed. If we ·assume that they depend on only one 
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argument, we seek functional relations satisfied by them and then solve the system of 
equations. For convenience, we put 

N 

I (m)( )-F Jlo ~ (m)A(m)( ) 
1 7:1, Jl, Jlo, s - -- L., wl,l 1 Jl, Jlo, s ' (65) 

Jl- Jlo l=m 
N 

I (m)( . ) _ F Jlo ~ (m)B(m)( ) 
2 '1:1, Jl, Jlo, s - -- L., W2,1 1 Jl, Jlo, s · (66) 

Jl+Jlo l=m 

If we insert Equations (65), (66), (48), and (49) into Equations (63) and (64) and 
.. rearrange them approximately, we have 

N N W~ 

L W~":}A)m)(Jl,Jl0,s)=(2-c\,m) L ~ ¢~m)(-r:1 ,Jl,S)X 
l=m l=m Q 

(67) 

I 

X exp - - 1
- +- L (- IY+m __3.,_!_ X 

( 
7: Q) 1 I { N w<m) 

Jlo 2 l=m Q 
0 

x [ t/1/( 7:2 , Jl, s)t/1/( r2 , Jl', s) - ¢;''( r2 , Jl, s)¢t( 7:2 , Jl', s)]} X 

X [ ~ w~":J A)m)(Jl, Jlo, s)] [-Jl-, + , Jl J dJl' , 
I= m Jl + Jl Jl - Jlo 

(68) 

we rewrite Equation (67) as 
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[ 

m ( -lY+m II 
X (2 - D0 , m)¢1 ( 1:, Jl0 , s) + 

2 
Jlo t/1!" ( 7:1, Jl', s) X 

0 

I 

x[J 
0 

t/1!"( -r:1, Jl, s)t/1!"( -r:1, Jl', s) - ¢;"( 7:1 , Jl, s)¢!"( 7:1 , Jl', s)J x 
Jl + Jl' 

(69) 

If we take account of Equation ( 48), we write the third term of the right-hand side of 
the above equation as 

Then we put 

(m)( ) (2 s: )mm( ) ( -l)l+m l/.2,1 Jlo, s = - uo,m 'f'l 7:1, Jlo, s + 
2 

Jlo X 

N 

I ~ w(m) Bm(u' II s) 

f 
L... 2, I I r- • r-0 • 

X t/1;"(-r:I,Jl',s) l=m dJl'. 
Jl' + Jlo 

0 

(70) 

(72) 
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If we make use of Equations (70), (71 ), (72) and rewrite Equation ( 69) once more, we 

have 

X m 1: S + 2, I X 
1 (W(m) ) 

t/11 
( I• /l, ) 2(2- Do,m) wtJ Q 

I 

I S (m) ( 1 )B(m) ( 1 ) d/l
1 

X I 1:1,/l•/l ,S I /l ,/lo,S -. 
Ill 

(73) 

0 

On the other hand, by rewriting Equation (68), we have 

N 

L wtJ A)m) (!1 1

' llo• s) 

Ill - !lo J 1 
d + X 

!l 2(2 - D0 , m) 

l~m 

X--------

I 

I [ N Jd 1 

(m) • 1 (m) (m) 1 /l 
X s2 (1:2, /l, !l, s) L wl,IB I (/l , /lo, s) -1 • 

0 
l~m /l 

(74) 
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N 

I L w\",'J A)m) (Jl', Jlo, s) 

+ Jl2o f t/Jim(7:2,Jl',s) l~m ' dJl'' 
Jl - Jlo 

(75) 

0 

rx~":J (Jl0 , s) = (2 - D0 , m)¢1m ( 7:2 , Jlo, s) exp (- 7:~~) + 

(76) 

If we make use of Equations (75) and (76) and rewrite Equation (74) once more, we have 

B~m)(Jl,Jl0 ,s) = rx~":J(Jl0 ,s)t/Jf'(7:2 ,Jl,S)- rxtJ X 

(77) 

From Equations (73) and (77) we get 

A)m)(Jl,Jl0 ,s) = rx\":J(Jl0 ,s)¢f'(7:I,Jl,S)- rx~":J(Jl0 ,s) X 

I 

X f S\m) ( 7:I; Jl, Jl'' s)¢!"( 7:2, Jl'' s)- rx~":J<Jlo, s) 2(2 _\o, m) X 

0 

I 

X (:~:)Q f S\m)(7:I;Jl,Jlo,s)¢'('(7:2,Jl',s) ~, + 
I, I O 

I I 

+ 1 f s(m)(7: 0 II II' s) f s(m)(7: 0 II II" s)A(m) X 
4(2 - () )2 I I ' ,.., r ' 2 I ' ,.., r ' I 

O,m 
0 0 

(78) 
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and 

I 

X s<m)(r . ,, ,, s)B(m)(," II s) _!!:_ __!!_ f 
d II d I 

I I ' r~-r ' 1 r ' ,.-o, · 
Jl" Jl' 

0 

Again, from Equations (78) and (79), if we use Equations (73) and (77) we get 

ASm)(Jl,Jl0 ,s)·= a~",'}(JL0 ,s)/)~",'}(JL,S)- at'J(JL0 ,s) x 

X P~",'}(JL,S) + 
2

(
2 

_\,o.m) (:~~)QatJ(JL0 ,s) X 

>« /)~",'J'(Jl, s) - a~",'} (JL0 , s)PtJ (Jl, s), 

1 (w(m)) 
B.<"')(" " s) = . . ____I_,_!_ QIX(m)(" s) X 

I ,.,, rO• •w2 _ D ) w<m) I,/ rO• 
"-\ 0, m 2,/ 

"' (m).( ) (m)( ) (m)( ) + (m)( ) X "'' 1'1J f.!.,.s - a2.1 Jlo, s Y2.1 Jl, s a3,1 Jlo, s 
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(79) 

(80) 

(81) 

(82) 
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1 
{J (m) ( 11 s) = ,J,(m) (1: 11 s) + X 

2,1 ,.,, '1'1 I>,.,, 4(2- () )2 
O,m 

I 

I S(m)( 1 ) (m)( 1 ) dJ.L' 
X I 'LI,J.l,J.l ,s Y2,1 J.l ,s 7' (83) 

0 

(84) 

(85) 

"" 
... 

I 

(m) _ (m) • 1 (m) 1 J.l I 
d' 

Yl,l (J.L, s)- s2 (1:2, J.l, J.l 's)fJI,I (J.L 's) 7 ' (86) 

0 

I 

(m) _ (m) • 1 (m) 1 J.l I 
d' 

Y2,1 (J.L, s)- S2 C•2, J.L, J.l, s)fJ2,t (J.L, s) 7 , (87) 

0 

1 
Y(m)(ll s)= ,J,(m)(• II s)+ X 

3,/ ,.,, '1'1 2> ,.,, 4(2- () )2 
O,m 

(88) 

I 

X S(m)('L • II 11 1 s){J(m)(111 S) ____!!____ I 
d' 

2 2 ' ,.,...., r- ' 4, I r- ' · (89) • 
J.L' 

0 

If we combine Equation (82) with Equation (86), Equation (83) with Equation (87), 
Equation (84) with Equation (88), and Equation (85) with Equation (89). We can deter
mine fJ?.'P(J.L, s) and y~"l)(J.L, s) (i = 1, 2, 3, 4) numerically. From Equations (71), (72), 
(75), (76), (80), and (81) (:tt'P(J.L0 , s), A)m)(J.L, J.L0 , s), and B~m)(J.L, J.lo, s) can be calculated 
and then from Equations (65) and (66), /~m)('Lp J.L, J.L0 , s) and I~m)(1:2 , J.L, J.L0 , s) are deter
mined. Thus we obtained S(1:0, J.L, ¢, J.L0 , ¢0, s) and T(1:0 , J.L, ¢; J.lo, ¢0, s) from 
Equations (59) and (60). 
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Abstract. An exact solution of the transfer equation for coherent scattering in stellar atmospheres with 
Planck's function as a nonlinear function of optical depth, of the form 

Bv(T) = b0 + b1 e-fh, 

is obtained by the method of the Laplace transform and Wiener-Hopf technique. 

1. Introduction 

Chandrasekhar (1960) applied the method of discrete ordinates to solve the transfer 
equation for coherent scattering in stellar atmosphere with Planck's function as a linear 
function of optical depth, viz., B vCT) = b0 + b1 r. The equation of transfer for coherent 
scattering has also been solved by Eddington's method (when 1'Jv, the ratio of line to the 
continuum absorption coefficient, is constant) and by Stromgren's method (when 1'/vhas 
small but arbitrary variation with optical depth) (see Woolley and Stibbs, 1953). 
Dasgupta (1977b) applied the method of the Laplace transform and Wiener-Hopf 

...._, technique to find an exact solution of the transfer equation for coherent scattering in 
stellar atmosphere with Planck's function as a sum of elementary functions, viz., 

n 

\!t Bv(T) = b0 + b1r + L b,E,(r), 
··~ r= 2 

/1.' by use of a new representation of the H-function obtained by Dasgupta (1977a). 
' Recently, Karanjai and Deb (1990) solved the equation of transfer for coherent isotropic 

scattering in an exponential atmosphere by Eddington's method. 
In this paper, we have obtained an exact solution of the equation of transfer for 

coherent isotropic scattering by the method of the Laplace transform and Wiener-Hopf 
technique in an exponential atmosphere (Degl'Innocenti, 1979; Karanjai and Karanjai, 
1985; and Karanjai and Deb, 1990), where 

Bv(T) = b0 + b1 e-fJT, 

where b0 , b1, and f3 are positive constants. 

Astrophysics and Space Science 189: 119-122, 1992. 
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2. Equation of Transfer 

The equation of transfer considered here is of the form 

dlv( r, J-L)/dr = Iv( r, J-L) - wlv( r) - (1 - w)Bv(T), 

where we have taken Planck's function B vCT) as 

Bv(T) = b0 + b1 e-PT, 

0 < (1 - Bv)/(1 + 1Jv) = W < 1 , 

/vfk = 1Jv' 0 < Bv< 1; 

(1) 

(2) 

(2a) 

(2b) 

I., k being the line and continuous absorption coefficient; r, the optical depth in the total 
absorption coefficient; e., the collision constant; and I.(r, Jl) is the intensity in the 
frequency, in the direction cos- 1 J-L, J v ( r) is the average intensity 

+I 

Jv(r)=(1/2) f Iv(r,J-L)dJ-L. 

-I 

For the solution of Equation (1) we have the boundary conditions 

(i) I.(O,-Jl)=O, 0<f-L<1, 

3. Solution for Emergent Intensity 

The Laplace transform ofF( r) is denoted by F*(s), where F*(s) is defined by 

co 

F*(s) =sf exp( -sr)F(r) dr, 

0 

Rls > 0. 

The formal solution of Equation (1) (Dasgupta, 1977b) is 

I.(O, Jl) = wJ~(1/J-L) + (1- w)B~(l/J-L). 

(2c) 

(3) 

(4) 

The Laplace transformation of Equation (1) with necessary re-arangement 
(Dasgupta, 1977b) yields 

T(z)I.(O, z) = wGv(z) + (1 - w)B~(l/z), (5) 

where 

T(z) = 1 - (w/2)z log[(z + 1)/(z- 1)], (6) 

and 
I 

G.(z) = (1/2) J xi.(O, x) dxf(x- z). (7) 

0 
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T(z) has its roots ± k, real for 0 < w ::$; 1 

k(>1)-oo as w-1. 

According to Dasgupta (1974) we have 

H(z)- H0 + H _ 1/z + · · · as z- oo , 

where 

Ho = (1- w)-1/2 

and 
I 

H _ 1 = - (wH~/2) J xH(x) dx. 

0 

By-the well-known relation (Busbridge, 1960) 

1/T(z) = H(z)H(- z) on [- 1, 1]c, 

we rewrite Equation (5) as 

Iv(O, z)/H(z) = H( -z) [wGv(z) + (1 - w)B;(l/z)]. 

If we use the Laplace transformation of Equation (2) by Equation (3) we have 

B;(s) = b0 + sbd(s + {3). 

For s = z- 1 

B;(1/z) = b0 + h1/(1 + {3z) = (d0 + d1z)/(1 + {3z) (say), 

where 

di = b0 {3 and d0 = b0 + b1 • 

If we insert Equation (14) in Equation (12) we have 

121 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

I v(O, z)JH(z) = H(- z) [ wG v(z) + (1 - w) (d0 + d1 z)/(1 + {3z)] (15) 

which can be rewriten as 

/~(0, z)/H(z) = H( -z) [wG(z) + (1- w) (d0 jz + d1)/(1/z + {3)]. (16) 

Now as z - oo, G vCz) - 0(1/z), since we seek solution I v(O, z) regular for Rez > 0 and 
continuous on [0, 1]c and since H(z) is regular on [- 1, O]c/[- k], - k is a simple pole 
of H(z), 1/H(z) being regular on [ - 1, O]c. 

We see that the left-hand side of Equation (16) is regular at least for Rez > 0 except 
perhaps at oo, and the right-hand side of Equation (16) is regular at on [0, 1]c except 
at oo, both sides being bounded at the origin. 

The right-hand side of Equation (16) is 

C0 as z-oo, (17) 
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where 

(18) 

Hence, by a modified Liouville's theorem both sides of Equation (16) can be equated 
to C0 , so that the left-hand side of (16) is 

C0 as z-> oo, (19) 

the right-hand side of (16) is 

C0 as z-> oo. (20) 

Equation (16) can be put in the form 

1(0, z)/H(z) = C0 == H0 (1 - w)d1 /3. (21) ., 

If we use the relationship d1 == b0 f3 in (21) we get when z 

/(0, z) = H(z) (1 - w)H0 b0 . 

Since we have H0 = (1 - w)- 112 • 

Hence, fr~m Equation (22) we get 

/(0, z) = H(z) (1 - w)112 b0 , 

which is the same as deducted by Karanjai and Karanjai (1985). 
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Abstract. A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck's 
function as a nonlinear function of optical depth, viz. 

B.(T) = b0 + b1 e-li< 

is obtained by the method developed by Busbridge (1953). 

1. Introduction 

Chandrasekhar (1960) applied the method of discrete ordinates to solve the transfer 
equation for coherent scattering in stellar atmosphere with Planck's function as a linear 
function of optical depth, viz., 

The equation of transfer for coherent scattering has also been solved by Eddington's 
method (when IJv, the ratio ofline to the continuum absorption coefficient is constant) 
and by Stromgren's method (when 1'/v has small but arbitrary variation with optical 

·depth; see Woolley and Stibbs, 1953). Busbridge (1953) solved the same problem by 
a new method using Chandrasekhar's ideas. Dasgupta (1977b) applied the method of 
Laplace transform and Wiener-Hopftechnique to find an exact solution of the transfer 

. equation for coherent scattering in the stellar atmosphere with Planck's function as a 
sum of elementary functions, viz., 

n 

Bv(T) = bo + bl 'r + L brEr(-r), 
r=2 

using a new representation of the H-function obtained by Dasgupta (1977a). Recently, 
Karanjai and Deb (1991a, b) solved the equation of transfer for coherent isotropic 
scattering in an exponential atmosphere by Eddington's method and the method of 
Laplace transform and Wiener-Hopf technique. In this paper, we have obtained a 
solution of the equation of transfer for coherent scattering in an exponential atmosphere, 

Astrophysics and Space Science 192: 127-132, 1992. 
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i.e., 

Bv(T) = b0 + b1 e-f3T; 

where b0 , b1, and /hre three positive constants, by the method used by Bus bridge (1953). 

2. Equation of Transfer 

With the usual notation of transfer for the Milne-Eddington model can be written 
(Bus bridge, 1953; Chandrasekhar, 1960) as 

+I 

J1. dlv = (kv + av)Iv -1av J lvdJ1. 1 
- kvBv(T), 

pdz 
-I 

(1) 

where z is the depth below the surface; kv, the continuous absorption coefficient; and 
avis the line-scattering coefficient. We assume that kv and av are independent of depth 
and we write 

Then 

and 

z 

t = J p(kv + aJ dz, 

0 

z 

r= J pkvdz, 

0 

av 
IJv = k' 

1 kv 
Av=--=--. 

1 + '1v kv + av v 

where B v(T) is the Planck's function. 
Substituting into Equation (1), we get 

+I 

. . d/ v - . ( ) - l ( 1 - , ) J I ( I) d I - , (b b - f3J.. ,t) jl-.--fvf,Jl. 2 Av vf,Jl. J1. Avo+ le . 
drv 

-I 

Equation (5) has to be solved subject to the boundary conditions 

Iv(O, - J1. 1
) = 0, (0 < J1. 1 < 1) 

(2a) 

(2b) 

(3) 

(4) 

(5) 

(6a) 
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and 

(6b) 

3. Solution for Emergent Intensity 

For convenience we suppress the subscript v to the various quantities and consider a 
particular solution of Equation (5), which does not satisfy Equation (6a) in the form 
(Busbridge, 1953) 

Tb 
1(t,fl)=bo+ 1 1 e-PA.t, 

1 + /3Afl 

where 

). 
T----------

1 - 1 1 + ;.p 
1- -(1- ).)log--

2 ;.p 1 - ;.p 

as readily verified by substitution. We, therefore, write (cf. Busbridge, 1953) 

Tb 
1(t, fl) = b0 + 1 1 e-PA.t + 1*(t, fl). 

1 + fJ).fl 

Then 1*(t, fl) satisfied the integro-differential equation 

+ 1 

fl d1*(t, fl) = 1*(t, fl) - f(l - ).) I 1*(t, fl') dfl' ' 
dt 

-I 

together with the boundary conditions 

and 

1*(t, fl) e- tfJ.L-> 0 as t-> oo , 

(7) 

(8) 

(9) 

(10) 

(lla) 

(llb) 

we require the emergent intensity 1*(0, fl). This is the sum of r{(O, fl), where r{(t, fl) is 
the solution of Equation (10). 

Subject to the boundary condition 

(12) 

and 1{(0, J.l) which is the diffusely reflected intensity corresponding to the incident 
intensity given by Equation (11). It can be shown that unless)..= 0 (which is not so), 

Jt(t, J.l) = 0 0 (13) 
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Hence, 

I 

I*(O, Jl) = f!(O, Jl) = _.!._ I S(Jl, ll') ( Tl bl - bo) dfl' ' 
211 PA.11- 1 

(14) 

0 

where (cf. Chandrasekhar, 1960) 

S(fl, Jl') = (1- A.)~H(Jl)H(Jl') 
ll + Jl' 

(15) 

and H(Jl) is the solution of 

I 
.... 

H(Jl) = 1 +HI- A)JlH(Jl) I H(Jl') dfl' . 
ll + ll' 

(16) 

0 

From Equations (14) and (15), we have 

I 

I(O, Jl) = i(l- I.)H(Jl) I ( T1 b1 
- b0 ) __l!:j:_H(Jl') dfl' = 

Pl.fl - 1 11' + 11 
0 

I 

= 1(1 - I.)H(Jl)T b I ll' H(Jl') dfl' -
2 

I I (/l' + fl)(PA.fl' - 1) 
0 

I 

- i(l- I.)H(Jl)b0 I -11-'-H(Jl') dfl' = 
Jl' + ll ,+ 0 

I 

= i(l- I.)H(Jl) Tlbl I H(Jl') dfl' + 
p;. ll + ll' 

0 

I 

+ i(l- I.)H(Jl) Tlbl I H(Jl') dfl' -
pt. (11' + 11) CPA.11- 1) 

0 

I 

- i(l - I.)H(Jl)b0 I ( 1 - - 11
-) H(Jl') dfl' . (17) 

ll + ll' 
0 

.-.,.;. 
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After some rearrangement and with Equation (16), this gives 

I*(O, Jl) = H(Jl)T1 b1 1 _ T1 b1 + 
1 + PA.Jl H(- 1/PA.) 1 + PA.Jl 

+ (H(Jl) - 1) b0 - ~(1 - A.)H(Jl)b0 r:t.o 

where 

0 

Following Chandrasekhar (1960) 

1- H1- A.)rxo = ;..r;2, 

we have from Equations (9) and (18) 

which represents our solution. 

We have to show that 

Jt(t, Jl) = 0 . 

Appendix 

For this, with the usual notation (cf. Chandrasekhar, 1960), we have 

-<r- where the constants La are determined by the equations 

n 

I La/(1 - /l;kJ = 0 , (i = 1, 2, 3, ... , n) . 
a= I 

Since 

n n n (1 - Jlka) I La/(1 - Jlka) 
a= 1 a= 1 

is a polynomial in 11 of degree (n - 1) with n distinct zero, it is identically zero. 
Hence, every La = 0, and in the limit, as n--+ oo 

Jt(t, Jl) = 0 . 
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(18) 

(19) 

(20) 

(21) 

(A.1) 

(A.2) 

(A.3) 
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Abstract. A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck's 
function as a nonlinear function of optical depth, viz., 

B.(T) = b0 + b1 e-P• 

is obtained by the method of discrete ordinates originally due to Chandrasekhar. 

1. Introduction 

Busbridge (1953) solved the transfer equation for coherent scattering in stellar atmos
phere with Planck's function as a linear function of optical depth, viz. B v(T) = b0 + b1 1: 

by a modified principle of invariance method. Chandrasekhar {1960) solved the same 
problem by the method of discrete ordinates. The same problem has also been solved 
by Eddington's method {when IJv, the ratio of line to the continuum absorption 
coefficient is constant) and by Stromgren's method (when IJv, has small but arbitrary 
variation with optical depth) (see Woolley and Stibbs, 1953). 

Dasgupta (1977b) applied the method of Laplace transform and Wiener-Hopf 
~ technique to find an exact solution of the transfer equation for coherent scattering in 

stellar atmosphere with Planck's function as a sum of elementary functions, viz., 

n 

Bv(T)=bo+bi'L+ L brE/o), 
r= 2 

using a new representation of the H-function obtained by Dasgupta (1977a). Recently, 
Karanjai and Deb (1991, 1992a) solved the equation of transfer for coherent isotropic 
scattering in an exponential atmosphere by Eddington's method and by the method of 
Laplace transform and Wiener-Hopf technique. 

By use of a method developed by Bus bridge (1953), Karanjai and Deb (1992b) solved 
the same problem. 

In this paper, we have obtained a solution of the equation of transfer for coherent 
isotropic scattering in an exponential atmosphere by the method of discrete ordinates, 
where B vCT) = b0 + b1 e- P-r and b0 , b1 and f3 are three positive constants. 

Astrophysics and Space Science 192: 209-217, 1992. 
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2. Equation of Transfer 

The equation of transfer considered here is of the form 

+I 

/l d/v = (kv + (Jv)Jv- -!(Jv I fvd/l'- kj3v(T) 
pdz 

-I 

(1) 

(Bus bridge, 1953; and Chandrasekhar, 1960) where z is the depth below the surface; 
kv, the continuous absorption coefficient; and CJv, the line-scattering coefficient. We 
assume that kv and CJ" are ind~pendent of depth and we write 

z 

t = I p(kv + CJ.) dz , 

0 

Then r = A.J and 

i.e., 

If we substitute in Equation (1) we get 

+I 

ll d!v(t, !l) = Iv(t, /l)- -!(1- A.\') I Iv(t, !l') dll' - Av(bo + bi e-IJ)..t) 
dt 

-I 

Equation (5) has to be solved subject to the boundary conditions 

Iv(O, -11) = 0, (0 < W~ 1) 
and 

(2a) 

(2b) 

(3) 

(4a) 

(4b) 

(5) 

(6a) 

(6b) 

Now a particular solution of Equation (5), which does not satisfy Equation (6a) is 

Tb I (t 11) = b + v I e- oc,.t 
v 'r 0 ' 

1 + !Xv/l 
(7) 
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where 

Av Tv= -----'------- (8a) 

1 - 1 (1 - A. ) log l + cxv 
2 v l-ex 

v and 
(8b) 

as readily verified by substitution. 
If we follow Busbridge (1953) we write 

T 
Iv(t, Jl) = bo + b, v e-rx,.t + It(t, Jl) 

1 + CXvJl 
(9) 

_.. Then It(t, Jl) satisfies the integra-differential equation 

+I 

dit(t, Jl) - I*( ) 1(1 , ) I I*( ') d , J1 - v t, J1 - 2 - ILv v t, J1 J1 ' 
dt 

(10) 

-I 

together with the boundary conditions 

(lla) 

and 

(llb) 

3. Solution for Emergent Intensity 

For convenience we suppress the subscript v to the various quantities and in the nth 
approximation, we replace Equation (10) by the system of 2n linear equations 

dft - I* 1(1 ,) " * . - 1 2 . Jl;-- ; - 2 - 11. L,., ajij , 1 - ± , ± , ... , ± n, 
dt j 

(12) 

where the 11/s (i = ± 1, ± 2, ... , ± n and Jl-; = - J1;) are the zeros of the Legendre 
polynomial P2,(Jl). a'js U = ± 1, ... , ±nand a_j =a) are corresponding Gaussian 
weights. However, it is to be noted that there is no term with j = 0. For simplicity, in 
Equation (12) we write 

Ij for If(t, Jl;) (13) 

The system of Equations (12) admits of integral of the form 

(14) 

where the g;'s and k are constants. 
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Now if we insert this form for It in Equation (12) we have 

g;ll + l1;kl = 1(1- .A) I ajgj , 
j 

. . = (1 _ 1 ) constant . . g, II. • 

1 + l1;k 

(15) 

(16) 

If we insert for g; from Equation (16) back into Equation (15) we obtain the charac
teristic equation in the form 

1 = 1CI - A.) I ~ . 
j 1 + 11jk 

(17) 

If we remember that aj = a_ j and 11-j = - 11j we can rewrite the characteristic 
equation in the form 

(18) 

This is the characteristic equation which gives the values of k. If A. > 0, the characteristic 
Equation (18) gives distinct non-zero roots which occur in pairs as ± k, (r = 1, 2, ... , 
n). 

Therefore, Equation (12) admits the 2n independent integrals of the form 

Ij = (l _.A) constant e±k,, . 

1 ± 11A 
(19) 

According to Chandrasekhar (1960), the solutions (14) satisfying our requirements that 
the solutions are bounded by 

(20) 

together with the boundary condition 

b1 T 
I*_; = - - b0 at t = 0 . 

1- C/..11-i 
(21) 

4. The Elemination of the Constants and the Expression of the Law of Diffuse 
Reflection in Closed Form 

The boundary condition and the emergent intensity can be expressed in the form 

S(ll;) = 0 (i = 1, 2, ... , n) (22) 
and 

[ 
T/(1 - A.) b0 J 1*(0, 11) = (1 - A.)b1 S( -11) - - , 

1 + C/.11 (1 - A.)b, 
(23) 
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where 

( ) 
~ Lr T/(1 - .J.) bo s J1 = L. --+ + ----=--
r~ I 1 - krJl 1 - CI.Jl (1 - .J.)b, 

(24) 

Next we observe that the function 

11 
(1 - CI.Jl) Il (1 - krJl) S(Jl) 

r~ I 

is a polynomial of degree n + 1 in J1 which vanishes for J1 = Jl;, i = 1, 2, ... , n. There must 
accordingly exist a relation of the form 

11 n 

(1- CI.Jl) fl (1- krJl)S(Jl) oc (Jl- C) fl (Jl- Jl;) , (25) 
r~ I i~ I 

where C is a constant. 
The constant of proportionality can be found by comparing the coefficients of the 

highest power of J1 (viz. Jl"+ 1
). 

Thus, from Equation (25) we have 

S()
=(-1)11

+
1 b0 k k P(Jl){Jl-C) 

J1 I . . . ,a ' 
b1 (1 - .J.) R(J1)(1 - CI.Jl) 

where 
n 

P(Jl) = fl (Jl - Jl;) i = 1, i, ... , n , 
i=I 

and 
n 

R(Jl) = fl (1 - krJl) r = 1, r, ... , n . 
r= 1 

Moreover, combining Equations (26) and (27) we obtain 

where 
Rr(x) = fl (1 - khx) 

h#r 
and 

Cl. =/= kr . 

The roots of the characteristic equation (18) can be written in the form 

k, k2 ... k,J1IJ12 ... J111 = .J_I/2 . 

Now by use of Equation (32), Equation (26) becomes 

S(Jl) = - boa.J.'/2 H(- Jl){Jl- C) ' 
(1 - .J.)b, (1 - CI.Jl) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 
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where 
11 n (Jl + Jl;) 

;~I 

H(Jl) = --- ---- (34) 
Jl1Jl2 ... Jln 11 n c1 + k,.Jl) 

r~ I 

and the characteristic roots are evaluated from Equation (24 ). 
If we put Jl = 0 in Equations (24) and (34) we have 

" T b L L,.+--+ 0 
r ~ I 1 - A ( 1 - A )b 1 

(35) 

We can next evaluate I:~~ 1 L,. from Equation (29). Then 

(36) 

where 

(37) 

Now f(x) defined in this manner is a polynomial of degree (n - 1) in x which takes the 
values 

for 

P(1/k,.)(1/k,.- C) 

(1- ajk,.) 

x = 1/k,. (r = 1, 2, ... , n) . 

In other words, 

(1 - ax)f(x) - P(x)(x - C) = 0 

Therefore, we must accordingly have a relation of the form 

(1- ax)f(x)- P(x)(x- C)= R(x)(Ax +B) , 

(38) 

(39) 

where A and B are certain constants to be determined. The constant A follows from 
the comparison of the coefficient of X

11 + 1
• Thus 

(40) 

Next, if we put x = a- 1 in Equation (40) we have 

B = ( -1t + (C -1/a)P(a- 1
) 

ak1k2 ••• k, R(a- 1) ' 
(41) 
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i.e., 

(42) 

Now by use of the relations (42), (41), and (40) we get 

f(O) = - CP(O) + BR(O) = - C(- 1 t Jl1Jl2 ... Jln + 

( - 1 )n ( 1 )n H( - I) (C - I) + + - Jl1Jl2 · · · Jln -IX - IX . 
cxklk2 ... kn 

(43) 

From the Equation (37) using Equation (43) we have 

(44) 

By use of Equation (44) in Equation (38) we get 

(45) 

If, moreover, we combine Equation (44), the diffusely reflected intensity 1*(0, Jl) in 
Equation (23) takes the form 

I*(O, Jl) = b0 cxA. 
1
;
2 
H(Jl) [Jl + C] _ Tb0 _ bo . 
1 + IXJl 1 + CI.Jl 

(46) 

This is the required solution in closed form. If we combine Equation (9) at t = 0 and 
Equation (46) we have 

(47) 

which is the required solution of Equation (5) in the nth approximation by the discrete 
ordinate method. 

On putting C from Equation (45) we get the solution in the form 

(48) 

Chandrasekhar's (1960) solution for /(0, Jl) in the case of coherent scattering is given 
by (for B vCT) = bo + bl T) 

/(0, Jl) = b0 A. 112 H(Jl) + b1 )..
31

2 H(Jl)Jl + 1h1 A.(1 - A.)H(J.!)ct.1 , (49) 
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where 
I 

an = I H(JJ.)JJ." djJ. . (50) 

0 

If we compare Equations (48) and (49) we see that by putting b1 = 0 we have the same 
solution for both the cases. Moreover for large values of f3 (i.e., f3---+ oo) the solutions 
(48) takes the form 

(51) 

i.e., f3 then behaves like a constant or independent of T. This fact can also be explained 
from the point of view that 

Bv(T) = b0 + b1e-f3r,.---+b0 as /3---+oo. 

Also the result obtained by Karanjai and Deb (1992b) is the same as obtained here. 

Appendix 

To establish the relation (32) we consider 

Dm(x) = (1- 2) L: a;JJ.'/' = (- 1r0- 2) I a;JJ.'/' , 
i 1 + /).;X i 1 - /).;X 

(m = 0, 1, ... , 4n) . 

We can derive a single recursion formula for Dm(x). Then 

Dm(x) = _!_ [c1- 2) I a;JJ.;"- 1 (1- -'-)] = 
X i 1 +/).;X 

where 

t/1111 = (1 - 2) - I a;JJ.7' 

From this formula we have 

· ,/, ,/, ,/, ( _ 1 )m- I 
Dm(x) = ~- 'f'm-2 + ... + ( -l)m-2_'1'1_ + X 

X X2 Xm-1 Xm 

x [t/10 - D0(x)] (m = 0, 1, ... , 4n) 

and 

t/10 = 2(1- 2) . 

(52) 

(53) ,~ 

(54) 

(55) 

(56) 
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Moreover, let P2j be the coefficient of J1. 2j in the Legendre polynomial P3n(Jl), then 

Since the Ji./S are the zeros of P zn(Jl). Equation (57) reduces to 

n 

L PzjDzikz) = 0 . 
j~O 

(57) 

(58) 

If we substitute for D 2ikr) from Equation (56) into Equation (58) we get the required 
form of the characteristic equation as 

From this equation it follows that 

1 (-1)nPo (JliJlz···Jlnf 

(klkz ... knf A.Pzn A 
i.e., 

References 

Busbridge, I. W.: 1953, Monthly Notices Roy. Astron. Soc. 113, 52. 
Chandrasekhar, S.: 1960, Radiative Transfer, Dover, Pub!., New York. 
Dasgupta, S. R.: 1974, Astrophys. Space Sci. 30, 327. 
Dasgupta, S. R.: 1977a, Astrophys. Space Sci. 50, 187. 
Dasgupta, S. R.: 1977b, Phys. Letters 64A, 342. 
Karanjai, S. and Deb, T. K.: 1991, Astrophys. Space Sci. 178, 299. 
Karanjai, S. and Deb, T. K.: 1992a, Astrophys. Space Sci. 189, 119. 
Karanjai, S. and Deb, T. K.: 1992b, Astrophys. Space Sci. 192, 127. 

(59) 

(60) 

(61) 

Woolley, R. v. d. R. and Stibbs, D. W. N.: 1953, The Outer Layers of a Star, Clarendon Press, Oxford. 



"' .,l ~-
i!l 

THE TIME-DEPENDENT X- AND Y-FUNCTIONS 

S. KARANJAI 

Department of Mathematics, North Bengal University, W.B., India 

and 

T. K. DEB 

Department of Telecommunications, M/W Station. Siliguri, W.B., India 

(Received 18 November, 1991) 

Abstract. The application of the Wiener-Hopf technique to the coupled linear integral equation of time
dependent X- and Y-functions gives rise to the Fredholm equations with simpler kernels. The time
dependent X-function is expressed in terms of time-dependent Y-function and vice versa. These are unique 
in representation with respect to coupled linear constraints. 

1. Introduction 

In the theory of radiative transfer for homogeneous plane-parallel stratified finite atmos
phere the X- and Y-functions of Chandrasekhar (1960) play a central role. These 
equations satisfy a system of coupled nonlinear integral equations. Bus bridge (1960) has 
demonstrated the existence of the solutions of these coupled nonlinear integral equations 
in terms of a particular solution of an auxilliary equation. Bus bridge ( 1960) has obtained 
two coupled linear integral equations for X(z) and Y(z) which defined the meromorphic 
extension to the complex domain I Z I of the real valued solution of the coupled nonlinear 
integral equations of X- and Y-functions. Busbridge (1960) concludes that all solutions 

· of nonlinear coupled integral equations for X- and Y-functions are the solutions of the 
coupled linear integral equations to the extended complex plane but all solutions of the 
coupled linear integral equations are not solutions of the coupled nonlinear integral 
equations. Mullikin (1964) has proved that all solutions of coupled nonlinear integral 
equations are solutions of the coupled linear integral equations but there exist a unique 
solution of the coupled linear integral equations with some linear constraints. Finally 
he has obtained the Fredholm equation of X- and Y-functions which are easy for iterative 
computations. Das (1979) has obtained a pair of the Fredholm equations with the 
Wiener-Hopftechnique from the coupled linear integral equations with coupled linear 
constraints. 

In this paper we have considered the time-dependent X- andY-functions (Biswas and 
Karanjai, 1990) which give rise to a pair of the Fredholm equations with the application 
of the Wiener-Hopf technique. These Fredholm equations define time-dependent 
X-functions in terms of time-dependent Y-functions and vice versa. These represen
tations are unique with respect to the coupled linear constraints defined by Mullikin 
(1964). 

Astrophysics and Space Science 196: 223-229, 1992. 
© 1992 Kluwer Academic Publishers. Printed in Belgium. 
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2. Basic Equation 

The coupled nonlinear integral equations satisfied by the time-dependent X- and 
Y-functions (Biswas and Karanjai, 1990) are of the form 

0 ~ f.l < 1' (1) 

I 

( ( 
-r1Q) w J Y(-r1 ,fJ.,s)X(-r1,x,s)X(-r1 ,fJ.,S)Y(-r1,x,s) d 

Y -r1 , f.l, s) = exp - ---;; + 
2

Q f.l --'-'---____:; __ f.l ___ x______ x, 

where 

s 
Q=l+-, 

c 

0 

0 ~ f.l < 1' (2) 

(3) 

-r1 is the thickness of the atmosphere; c, the velocity of light; and s, Laplace transform 
parameter. 

If we follow Chandrasekhar (1960) Equations (1) and (2) can be written as 

I 

f.l J 1/t(x) X(-r1 , f.l, s) = 1 +- -- [X(-r1 , f.l, s)X(-r1 , x, s)-
Q X +Jl 

0 

-Y(-r1 ,fJ.,s)Y(-r1,x,s)]dx, O~J1.<1, (4) 

- X(-r1 , x, s)Y(-r1, f.l, s)] dx, 0 ~ f.l < 1; (5) 

where 1/t(x), the characteristic function satisfying the Holder condition on 0 ~ x ~ 1, is 
non-negative and satisfies the condition 

I 

1/10 = J 1/t(x) dx ~!. (6) 

0 

The atmosphere is said to be conservative when !/to = ! and non-conservative otherwise. 

4. 

•' 



THE TIME-DEPENDENT X- AND Y-FUNCfiONS 

The dispersion function T(z, s), z E (- I, IY can be defined by 

and 

where 

1 

2z
2 f T(z, s) = 1 - Q ljl(x) dxT(z 2 

- x 2
) 

0 

T(z, s) = (H(z, s)H(- z, s))- 1 , 

1 

H(z, s) = 1 + zH(z, s) f 
0 

ljl(x)H(x, s) dx 

x+z 
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(6a) 

(6b) 

(7) 

According to Busbridge (1960), the only zeros of T(z, s) are at z = ± K, K > 1, when 

1/10 < ! and K---+ oo when 1/10 = ! . 
Following Busbridge (I960), Dasgupta (1977), and Das (1978) H(z, s) is mero

morphic on (- 1, O)c having a simple pole at z = - K and tend to 1 as z---+ 0 +. It can 
be represented by 

where 

1 

H(z, s) = A 0 + H0 z _ f P(x, s) dx , 
K+z x+z 

0 

1 

f P(x, s) dx 
H(z,s) = h1z + h0 - , 

x+z 
K---+ oo, 1/!o = L 

0 

1 

P _ 1 = f P(x, s) dxfx, 

0 

1 

( f )-1/2 

H0 = 1 - 2 ljl(x) dx 

0 

1 

h1 = 2 x 2 1jf(x) dx , ( f ) -1/2 

0 

h0 = ( I + P _ 1 ) , 

P(x, s) = ¢(x, s)/H(x, s), 

(8) 

(9) 

(10) 
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I 

2x
2 f T0 (x, s) = I- Q (1/t(t)- ljt(x)) dt/(x 2

- t2
)-

0 

xljt(x) 
- -- log((I + x)f(I - x)), 

Q 

where ¢(x, s) is non-negative and continuous on (0, I), tends to ljt(O)x as x -4 0 +, tends 
to O((log(I- x)- 2

)) when X-41_, and I/H(z,s) is regular on (-I, oy. 
If we follow Bus bridge (I960) and Mullikin (I964) we find that the coupled linear 

equations satisfied by X(z, s) and Y(z, s) for z E (- I, IY are of the form 

X(z, s)T(z, s) = I+ zU(X) (z, s)- z exp(- (cdz)Q)V(Y) (z, s), (II) 41. • 

Y(z, s)T(z, s) = (exp(- ( 'LI/z)Q) + zU(Y)(z, s))-

- z exp(- ( cdz)Q) V(X) (z, s), (12) 

with constraints for 1/to < ~. 

0 = I + KU(X) (K, s)- K exp(- ( ci/K)Q) V(Y) (K, s), (13a) 

0 = (exp(- ( rdK)Q) + KU(Y) (K, s))- K exp(- (cdK)V(X)(K, s), (13b) 

for l/t0 = ~. 
I 

I = f 1/t(x)(X(x, s) + Y(x, s)) dx, (I4a) 

0 

1 1 

'L1 f Y(x, s)ljt(x) dx = f xljt(x) (X(x, s)- Y(x, s)) dx. (I4b) .·~ 

0 0 

The other conditions for which X(z, s) and Y(z, s) hold are 

X(z, s) -4 H(z, s) when 'L1 -4 oo , (I5a) 

Y(z, s) -4 u when 'L1 -4 oo , (15b) 

where for M = X or Y 

1 

V(M) (z, s) = f ljt(x)M(x, s) dxf(x + z) (I6) 

0 
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is analytic for z E (- 1, oy bounded at the origin O(z- I) when z-+ oo and 

I 

U(M) (z, s) = J t/J(x)M(x, s) dxf(x - z) 

0 

is analytic for z E (0, 1 y, bounded at the origin O(z- I) when z-+ oo. 

3. Fredholm Equations 

Equations (11) and (12) with Equations (6b) can be written in the form 

X(z, s)/H(z, s) = H(- z, s) (1 + zU(X) (z, s))- z exp(- (-r:Ifz)Q) X 

x H(- z, s) V(Y) (z, s), 

Y(z, s)JH(z, s) = H(- z, s) ((exp(- -r:Ijz)Q) + zU(Y) (z, s)

- z exp(- ( -r:Ifz)Q)H(- z, s) V(X) (z, s). 
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(17) 

(18) 

(19) 

We shall assume that X(z, s) and Y(z, s) are regular for Rez > 0 and bounded at the 
origin. Equation (8) gives 

Hence 

where 

and 

where 

I 

H( -z, s) = Ao- Hoz- J P(x, s) dx fi ,/, I or 'Po< 2. 
(K- z) x- z 

0 

I 

J 
P(x, s) 

V(M) (z, s) -- dx = D(M, P0 ) (z, s) + D(P, M 0 ) (z, s), 
x-z 

0 

I 

D(M, P0 ) (z, s) = J t/J(x)M(x, s)P0 (x, s) dx 

x+z 
0 

I 

D(P, M 0 ) (z, s) = J t/J(x)P(x, s)M0 (x, s) d 
X, 

x-z 
0 

I 

Po(z, s) = J P(x, s) dx 
x+z 

0 

(20) 

(21) 

(22) 

(23) 

(24) 
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is regular on (- 1, oy, bounded at the origin O(z- I) when z ~ oo, 

I 

( ) _ I 1/J(x)M(x, s) dx 
M 0 z,s - , 

x+z 
(25) 

0 

is regular on (- 1, oy, bounded at the origin O(z- 1
) when z-+ oo and D(M, P0 ) (z, s) 

is regular for z on (- 1, oy, bounded at the origin and O(z- 1
) when z-+ oo and 

D(P, M 0 ) (z, s) is regular for z, on (0, 1Y bounded at the origin, and O(z- 1
) when z ~ oo. 

Hence, Equations (18) and (19) can for l/10 <~be written in the form 

X(z, s)/H(z, s) + z exp(- (r1/z)Q) X 

x (Ao- Hoz V(Y)(z, s)- D(Y, P
0
)(z, s)) = -4i. ~ 

K- z 

= H( -z, s) (1 + zU(X) (z,s) + zexp( -(r1 /z)Q)D(P, Y0 ) (z, s)), (26) 

Y(z, s)/H(z, s) + z exp(- ( r 1/z)Q) X 

x 0 0 V(X) (z, s) - D(X, P0 ) (z, s) = (
A -Hz ) 

K- z 

= H(- z, s) (exp(- (r1/z)z) + zU(Y) (z, s)) + 

+ z exp(- ( ri fz)Q)D(P, X0 ) (z, s) . (27) 

The left-hand side of Equations (26) and (27) are regular for Rez > 0 and bounded at 
the origin; the right-hand side of Equations (26) and (27) are regular for z, on (0, 1Y, 
bounded at the origin and tends to constants, say, A and B, respectively, when z ~ oo. 

Hence, by a modified form of Liouville's theorem we have 

X(z, s) = H(z, s) [ z exp(- ( r1/z)Q) ( D(Y, P0 ) (z, s) -

-
0 0 V(Y)(z, s) +A , A -Hz ) J 
K-z 

Y(z, s) = H(z, s) [z exp(- (r1/z)Q) (n(X, P0 ) (z, s)

- Ao - Hoz V(X) (z, s)) + BJ' 
K-z 

Equations (28) and (29) together with Equations (15a) and (15b) gives 

A= 1, B = 0. 

(28) 

(29) 

(30) 
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Hence for 1/10 = !, the expression of X(z, s) and Y(z, s) are 

X(z, s) = H(z, s) [ 1 + z exp(- ( -cdz)Q) (D(Y, P0 ) (z, s) -

- ( -h 1z + h0 )V(Y) (z, s))], 

Y(z, s) = H(z, s)z exp(- (-c1/z)Q) (D(X, P0 ) (z, s))

- ( -h1z + h0 )V(X) (z,s)). 
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(31) 

(32) 

Hence, following Mullikin (1964) Equations (28) and (29) together with Equations (13a) 
and ( 13b) give unique representations of time-dependent X- and Y-functions for 1/10 < k 
and Equations (31) and (32) together with Equations (14a) and (14b) give unique 
representations of X- and Y-functions for 1/10 = !. 
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Abstract. We have considered the transport equation for radiative transfer to a problem in semi
infinite atmosphere with no incident radiation and scattering according to planetary phase function 
w(1 + x cos 0). Using Laplace transform and the Wiener-Hopf technique, we have determined the 
emergent intensity and the intensity at any optical depth. The emergent intensity is in agreement with 
that of Chandrasekhar (1960). 

1. Introduction 

The transport equation for the intensity of radiation in a semi-infinite atmosphere 
with no incident radiation and scattering according to the phase function 
w(1 + x cos 0) has been considered. This equation has been solved by Chandrasek
har (1960) using his principle of invariance to get the emergent radiation. The 
singular eigen function approach of Case (1960) is also applied to get the intensity 
of radiation at any optical depth. Boffi (1970) has also applied the two sided 
Laplace transform to get the emergent intensity and the intensity at any optical 
depth. Das (1979) solved exactly the equation of transfer for scattering albedo 
w < 1 using the Laplace transform and the Wiener-Hopf technique and also 

..- deduced the intensity at any optical depth by inversion. 
In this paper we have solved the above problem exactly by a method based on 

the use of the Laplace transforlll and the Wiener-Hopf technique. The intensity 
( at any optical depth is also deri.ved by inversion. 

2. Basic Equation and its Solution 

The equation of transfer appropriate to the problem (Chandrasekhar, 1960) is 

( ) J
+l dlr,p., 1 

JL = I( T' JL) - - w I( T' p.,')(1 + XJLJL 1
) dp.,' ' 

dr 2 -1 

(1) 

where the symbols have their usual meaning. 
We shall have the following boundary conditions 

Earth, Moon and Planets 59: 1-10, 1992. 
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1(0, - f.L) = 0, 0 < f.L < 1 ; (2a) 

I( ) L (k ) 
1 + x(1- w)(f.L/k) 

T, f.L ---;. 0 exp T , as T ---;. oo ; 
1 - kf.L 

(2b) 

where L 0 is a constant and k is the positive root, less than 1, of the transcendental 
equation. 

1 = ~ [1 + x(1 - w)] lo (~) -
zk e g1-k 

Let us define 

1 
--zxw(1- w). 

k 

f*(s)=s 1= exp(-sT)f(T)dT, R11s>O. 

Let us set 

wherem = 0,1, 

which gives 

1 I+1 

I6(s) =- I*(s, f.L') df.L' 
2 -1 

and 

1 I+1 

Ii(s) = 2 _
1 

/*(s, f.L')f.L' df.L' , 

Equation (1) with Equation (5) takes the form 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Now, subjecting Equation (8) to the Laplace transform as define in Equation (4), 
we have, using the boundary conditions, 

( f.LS - 1)/*(s, f.L) = f.LS/(0, f.L) - wl6(s) 

-xwf.Lii(s) . 

Equation (9) gives (on putting s = 11 f.L) 

/(0, f.L) = w/6(11 f.L) + XWf.Ll[(lf f.L). 

(9) 

(10) 
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Equation (10) with JL =lis, sis complex, takes the form 

1(0, lis)= wl6(s) + xws-1Ii(s), 

we apply the operator 

1 J+1 

- ... djL 
2 -1 

on both sides of Equation (9) to get 

1 f1 

Ii(s)- (1 ~ w)s- 1 I6(s) =- J-Ll(O, JL) dJL 
2 0 

we apply the operator . 

1J+1 

- ... dJLI(JLS- 1), 
2 -1 

a(1/s) = 1 + wto(1/s) + xwt1(lls)Ii(s) , 

where 

111 

a(1/s) =- JLS(JLS- 1)-1!(0, JL) dJL 
2 0 . 

and 

3 

(11) 

(12) 

(13) 

(14) 

(15) 

•(16) 

(17) 

Eliminating I6(s), It(s) among Equations (11), (13) and (15) and settings= liz, 
we have 

where 

where 

w JL f
1 

T(z)I(O, z) =- .--
2 o-JL-z 

X [1 + JLX(1 - w)z]/(0, JL) dJL, 

T(z) = 1 + wx(1 - w)z_2 + w[1 + x(1 - w)z 2]t0(z) , 

. ( ) - z djL J
+1 

toz -- --. 
2 -1 JL- z 

(18) 

(19) 

(20) 

Following Chandrasekhar (1960) and considering Equation (3), we see that T(z) 
has a pair of roots at z = ±k- 1 and 
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T(z)= 
1 

, zE(-1,1t, 
H(z)H( -z) 

(21) 

where H(z) is Chandrasekhar's H-function for planetary scattering. Equation (18) 
with Equation (21) takes the form 

I(O, z) = H( -z) ~ t ____!!:___ x 
H(z) 2 Jo JL- z 

x [1 + JLX(1 - w)z]I(O, JL) df.L, (22) 

Equation (22) can be written as 

I~Cz;) = H(- z)wG(z) , 

where 

G(z) =- ____!!:___ [1 + JLX(1 - w)z]I(O, JL) df.L. 1 fl 
2 o JL-z 

(23) 

Let us seek solution /(0, z) of Equation (22) by Wiener-Hopf technique on the 
assumption that /(0, z) is regular for Rl z > 0 and bounded at the origin. 

Equation (23) with the above assumption on I(O, z) gives the following proper
ties of G(z): G(z) is regular on (0, 1t, bounded at the origin and a constant as 
z ~ oo. Equation (23) then gives 

(
1

- ~1~(0, z) = w(1- kz)H( -z)G(z), (24) 

where H( -z), H(z), l!H(z) has the following properties: H(z) is regular for 
z E ( -1, Ot, uniformly bounded at the origin has a simple pole at z = -(1/k), 
k < 1; k is real on the negative real axis and bounded at infinity and tends to 
Ho + H-1Z- 1 + H_2z-2 + ···when z ~oo. 

Hence, l!H(z) is regular for z in (-1, Ot and bounded at the origin. Similarly, 
H(-z) is regular for z E (0, 1t uniformly bounded at the origin has a simple pole 
at z = llk, k < 1; k is real, on the positive side of the real axis and bounded at 
infinity and tends to H 0 - H_1z-1 + H_2z-2

- ···when z ~oo. 
Following the properties of H(z), l!H(z), H( -z) (Busbridge, 1960) the left 

hand side of Equation (24) is regular for Rl z > 0, bounded at the origin and the 
right hand side of Equation (24) is regular for z E (0, 1t and bounded at the 
origin and tends to a polynomial say A + Bz, as z ~ oo. 

Hence by a modified form of Liouville's theorem 
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(1 - kz)I(O, z) =A + B when z E (-1, O)c 
ll(z) z, 

(25) 

and 

A+ Bz = w(1- kz)ll( -z)G(z), when z E (0, 1Y. (26) 

Equation (25) gives the emergent radiation as 

I(O z) = (A + Bz)ll(z) 
' 1- kz ' 

(27) 

where the constants A and B are two arbitrary constants to be determined later 
on. 

3. Intensity at Any Optical Depth 

The radiation intensity at an optical depth T is given by the inversion integral as 

J(T, f.L) = (lf27Ti) ~r:i: exp(sT) X 

x I*(s, f.L) ds/s, c > 0. (28) 

Equation (9) with Equation (11) takes the form 

I*(s, f.L)/s = cp(s, f.L)/(s- 1/f.L), (29) 

where 

w(s- 1/s) 
cp(s, f.L) = 1(0, f.L)- 1(0, 1/s) + /~(s). (30) 

s 

But 

lim (s -1/f.L)/*(s, f.L) exp(sT)/s~o. (31) 
S--->1/ iJ-

Hence the integrand of Equations (28) is regular for s E ( -oo, -1Y and has simple 
pole at s = ±k, k < 1. 

Hence by Cauchy's residue theorem, Equation (28) gives 

l(T, f.L) = RP + lim (1127Ti) j /*(s, f.L)esr ds/s, 
R-+oo Jr (32) 

where RP is the sum of the residues of the poles at s = ±k and r = 
r 1 U CD U v U EF U r 2 . [r 1 and r 2 are arcs of the circle of radius R having centre 
at s = 0 (clockwise) and v is an arc of a small circle of radius r having centre at 
s = - 1 (anticlockwise) and CD and EF are the lower edge and upper edge of 
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i-axis 

B(c+ i5) 

Real axis 

s-plane 

Fig. 1. 

the singular line (-R, -1)] (Figure 1). Hence, following Kourganoff (1963) we 
have -

( I*(s, f.L) exp(sr) ds/s __,.o, whenR __,.oo 
Jr1urz 

(33) 

and 

F I*(s, f.L) exp(sr) ds/s __,. 0, when r __,. 0. (33a) 

Hence in the limit of R __,. oo, r __,. 0, Equation (32) with Equations (33) and (33a) 
becomes 

I(r, f.L) = Rp + (1127Ti) f. I*(s, f.LV.,. dsls + 
CD 

+ (1!27Ti) I I*(s, f.L)e•.,. ds/s. 
EF 

(34) 

Here on CD and EF, 

s = -v, u;:;.1 (34a) 
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and on CD, 

H(1ls) = X(11v) + i?TY(11v) 
H(11v)Z(11v) 

(35) 

and on EF, 

H(1ls) = X(11v)- i?TY(11v). 
H(1/u)Z(1/u) ' 

(36) 

where 

. X(11v) = 1 + wx(1 - w)v-2
- w[1 + x(1 - w)v-2

] x 

~ 1 (u + 1) (37) _., x-log -- , 
2v v -1 

Y(11v) = (w/2)u-1
; (38) 

Z(11v) = (X2(11v) + ?T2Y\11v, JL)) . (39) 

Therefore on CD 

¢(s, JL) = V(1/v, JL)- i?TW(11v, JL) (40) 

and on EF, 

¢(s, JL) = V (1/v, JL) + i '7T W (11v, /.L) , (41) 

where 

V(11v ) = /(0 ) - [ (B- vA)(11v) J x 
'JL 'JL (v + k)H(11k)Z(11v) 

,_.._ { 1 v + 11JL } (u + 11JL)wa1/2 
X + + ' 

1 + x(1- w)lv2 1 + x(1 - w)lv2 
(42) 

W 11v = [ (B- vA)Y(11v) ][1 + v + 1/J.L J 
( 'JL) (v + k)H(11k)Z(11v) 1 + x(1- w)lv2 

• 

Now, Equation (33) with Equations (29), (34a), (40) and (41) gives 

I( ) R 1 f' {u(1/v, JL)- i?TW(11v, JL)} -u..- d TJL= -- e u+ 
' p 2'7Ti 1 v + 11 JL 

1 f' V(11v, JL) + i?TW(11v, JL) -u..- d (44) +- e u. 
2'7Ti 1 v + 11 JL 

Hence when JL > 0, Equation ( 44) give 

)' 
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(45) 

where fL < 0, we shall assume that (V(llv, fL) ± i7TW(llv, IL) e-"T satisfies HOlder 
condition on (1, oo) and we have by Plemelj's formula (Muskhelishvili, 1946) 

~ f"" V(1/v, !L) ± i7TW(l!v, IL) e-uT dv = ±! (V( -fL, IL) ± 
2m 1 v + llfL 2 

0 W( )) TIJ.L 1 p f"" V(llv, fL) ± i7TW(llv,JL) ±l7T -fL,fL e +-X X 
27Ti 1 v + 1/fL 0 

(46) 

where P denotes the Cauchy principal value of the integral. Hence Equation ( 44) ..-4 

with Equation ( 46) for fL < 0 gives 

l(T, !L) = RP + V( -fL, !L) eT'J.L + P J"" W(1/v, IL) e-uT dv, (47) 
1 v+li!L 

where 

(48) 

where, R±k is the residue of the integral in Equation (32) at s = ± k, and Rk is 
given by 

Rk =lim (s- k)I*(s, !L) es"ls 
S--->k 

li H(lls)(As + B)s [1 (1 )/ ] sT = m 
2 

+x -w se 
s--->k{s + x(1- w)}(1- SfL) 

H(llk)(Ak + B)k [1 + x(1- w)lk] ekT 0 

[e + x(1 - w)](1 - k!L) 

Similarly, R-k is given by 

R-k = lim (s + k)I*(s, IL) esT/s 
s--->(-k) 

= lim (s + k)H(1/s)(As + B)s X 

s--->(-k) (s- k){s2 + x(1 - w)}(1 - SfL) 

X [1 + x(1 - w)!s] esT 

_ (B- Ak)k[1 -ox(1- w)!k] e-kT 

2k{e + x(1 - w)}(1 + kfL) 
lim (s + k)IT(lls) 

s--->(-k) 

= (B- Ak)[1- x(1- w)k]e-kT [dT(lls)lds];2-_k 
2{e + x(1 - w)}(1 + kfL) 

(49) 

(50) 
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4. Determination of constants A and B 

When z ~ 0, from Equation (26) we get 

A= (w/2) I: 1(0, !L) d11-. (51) 

From Equation (51) and Equation (25) we get after simplification 

A[1 - ~ Jl H(P-) d/LJ = wB [-ao + Jl H(P-) dP-J = m' (52) 
2 0 1 - kP- 2k 0 1 - kP-

~ where 

' 

ao = J: H(P-) d11-, m = constant . 

H(z) has a simple pole at z = -(1/k) where 

l!H(z) = 1- zH(z) J1 

1/J(z)H(P-) d11-, 
o 11-+z 

where 

w 
1/J(P-) =- [1 + x(1 - w)P-2

] • 
2 

Equation (53) has a zero at z = -(1/k) and so 

1 + .!_ Jl 1/J(P-)H(P-) d/L = 0 . 
k o 1L- llk 

(53) 

(54) 

(55) 

In Equation (55) putting the value of 1/J(P-) and simplifying and using Equation 
(52) we get 

Putting 

where 

A = 2mN/ (x(1 - w) _ c) 
kQ k ' 

B= 2mN ' 
Q(k +c) 

xw(1- w)a1 c= 
Q 

N=~+x(1-w), Q =2- wao, 

2mN2 

11- = llkwegetkA + B = -
QkR 

(56) 

(57) 

(58) 
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(59) 

If we use Equations (58) and (59) we get from Equation (27) 

l(O, "-) = (kA + B)k [(1 + £) + {x(1 - w) _ c}"-] H(J.L) ' 
r- lC + x(1 - w) k k r- 1 - kJ.L (60) 

when 7~oo from Equations (47), (48) and (49) we get 

l(T, J.L) ~ H(llk)(Ak + B)k X [1 + x(1- w)!k]ek,.. 
[JC + x(1 - w)](1- kJ.L) 

(61) 

Hence Equation (61) with Equation (2b) gives 

(Ak + B)k La 
JC + x(1- w) = H(1/k)' 

(62) 

I(O ) = ~{1 + £ + [x(1- w)- c]} H(J.L) . 
,J.L H(1/k) k J.L k 1-kf..L' 

(63) 

which is the expression obtained by Chandrasekhar (1960). 
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Abstract. We discuss a simple method of linearization and decoupling of the integral equations 
satisfied by time-dependent X- and Y -functions which play an important role in the study of non
stationary radiative transfer problems. 

1. Introduction 

In the study of the time-dependent radiative transfer problems in finite homoge
neous plane-parallel atmospheres, it is convenient to introduce X- andY -functions 
(Chandrasekhar, 1960). These functions satisfy non-linear coupled integral equa
tions. Due to their important role in. solving transport problems, it is advantageous 
to simplify the equations satisfied by them, and, if possible, do so in an exact 
manner. Lahoz (1989) did this and obtained exact linear and decoupled integral 
equations satisfied by the time- independent X- andY -functions. 

In this paper we have extended the same method to the time-dependent radiative 
transfer problem. However, the equations obtained, although linear, are singular 
and not solvable by the standard methods applicable to Fredholm equations; instead 
they have to be solved by the theory of singular integral equations (Muskhelishvili, 
1946). 

2. Analysis 

The integral equations incorporating the various in variances of the time-dependent 
problem of diffuse refelection and transmission can be reduced to one or more 
pairs of integral equations of the following form (Biswas and Karanjai, 1990). 

I 
X( ) _ 1 l¥ 1-l Jd ,X(tt,s)X(J.t',s)- Y(J.t,s)Y(tt',s) 

fL, 8 - + 2 Q fl + I ' 

0 1-l 1-l 
(1) 

Astrophysics and Space Science 203: 135-138, 1993. 
© 1993 Kluwer Academic Publishers. Printed in Belgium. 
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Y( ) - {(- I )Q} w !I d I Y(!-L, s) X(p/, s)- X(!-L, s) Y(!-L
1

' s) (2) 
/-L, s - exp TI p + ZQ 1-L 1 ' 

!-L-1-L 
0 

Following Chandrasekhar (1960), we can write the above equations in the form: 

X( ) _ 1 1-L !I d 1• 1.( 1)X(p,s)X(!-L
1
,s)- Y(!-L,s)Y(!-L1,s) 

/-L, S - + Q /-L 'f/ /-L + 1 l 

0 1-L 1-L 

. Y(!-L,s) 

I 

exp{( -rr/ 1-L)Q} + ~ j d!-L1 x 
0 

·'·( 1) Y (!-L, s )X (!-L1
, s) - X (!-L, s )Y (!-L1

, s) 
X'f/Jl I ' p,-p, 

(3) 

(4) ~ 

where TI is the optical thickness of the atmosphere and Q = 1 + sf c, where c 
is the velocity of light, s is the Laplace invariant of the time variable and the 
characteristic function '1/J(p,) is an even polynomial in p, satisfying 

I 

'1/Jo = j '1/J (p,) dp, S: ~ , (5) 

0 

where '1/Jo = ! holds, '1/J(p,) is said to be conservative; and non-conservative other
wise. 

Clearly, Eqs. (3) and (4) are non-linear and coupled. These equations have been 
. linearized in an exact manner (Mullikin, 1964). The results are 

and 

I I 

X (!-L, s )K (p, s) = 1 + QI-L j dp1 'lj;(p1
) X ~1-L ' 8

) 
1-L - 1-L 

0 
I I 

- exp{(-rrf p,) Q} QI-L j dp,1 '1/J (p,1
) y ~fl ' 8

) 

1-L + 1-L 
0 

(6) 

(7) 
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where ]( (p, s) is defined by 

1 

137 

K(p, s) = 1 - 1:!:_ j dp' '1/J(tt) [-I - - _I-] , (8) 
Q p' + f.L p' - f.L 

0 

We now proceed to decouple Eqs. ( 4) and (5) in an exact manner (Lahoz, I989). 
We introduce the following singular integral equation, which is linear in I IT(p, s ): 

1 

I - I - f.L J d ' '1/J(p') _I -
T(p, s) - Q f.L T(p', s )K (p', s) p' - f.L. 

0 

(9) 

which, in principle, is solvable for T(p, s) as '1/J(p) and ]( (p, s) are known func
~ tions. 

Next, we multiply Eq. (6) by 

(p' I Q )'1/J(Il) 
T(p, s )K (tt, s )(Jt' - p) ' 

which we assume is well defined in p E [0, I] and integrate with respect top from 
0 to I to obtain 

f.L j1 dp' [W(p')X(p',s)] =I- T(-p,s)x 
Q p' + f.L 

[

0 
1 1 l (10) 

x I- P( )l!:.jd 1 '1/J(tt')Y(p',s) + f.L jd 1 '1/J(p')Y(p',s)P(p',s) 
f.L, s Q f.L p' - f.L Q f.L p' - f.L ' 

0 0 

where we have used Eq. (9) and defined the function P(p, s) (in principle known) 
by 

1 ' P(Jt, 8 ) = f.L j dp' '1/J(p ) exp( -rr/ Jl) _I_. 
Q T(p', s )K(p', s) p' + f.L 

0 

(11) 

If we substitute Eq. (10) in Eq. (5) we get the decoupled equation for Y(p, s) as 
follows: 

Y(p,s)K(p,s) = 

= T(-Jt,s)exp{(-r1lp)Q}+ 

I 

+ T( -p, s)P(Jt, s)[l - exp{( -rtf p)Q}] Qf.L j dp' '1/J(p'~Y(p', s) + 
p - f.L 

0 
1 

+ T( -p, s) exp{ ( -r
1 
I p )Q} Qp j dp' '1/J((Jt', 8 ))~(p'' 8 )P(p'' 8 ). 

f.L - f.L 
0 

(12) 
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A similar analysis yields the decoupled equation for X (J-t, s ): 

X(J-t, s)K(J-t, s) = [1- T( -J-t, s)P(J-t, s) exp{( -rl/ J-t)Q}] X 

X [1 + J-t jl·dj.tl 7/J(J-ti)X(J-tl, s)] + 
Q Ill - J-t 

0 . . . 
. l I I 

+T( -J-t, s) exp{( -rr/ J-t)Q} QJ-t j dj.t1 7/J(J-t '~)X(J-t 's). 
J-t - J-t 

0 

(13) 

Eqs. (12) and (13) are linear, singular and decoupled and, in principle, solvable 
by the theory of singular integral equations (Muskhelisvili, 1946). 
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ABSTRACT : 

Chandrasekhar (1960), has considered the problem, b~ his 

discrete ordinate procedure, of the basic non-conservative matrix 
~ 

equation of radiative transfer for diffuse reflection for . a 

combination of Rayleigh and isotropic scattering in a semi-infinite 

atmosphere. Schnatz and Siewert ( 1970) have obtained the exact 

solution of the basic transport equation for non-~onservative 

rayleigh phase matrix by the eigenfunction approach of Case(1960). 

Bond and Siewert(1971) have obtained a rigorous general solution of 

a non-conservative matrix equation of transfer, which appears for 

consideration of polarization by the eigen function approach of 

Case( 1960). Das .( 1979a) solved the basic integra-differential ·~~ 

equ~tion for radiative transfer in diffuse reflection in a 

combination of Rayleigh and isotropic scattering for a 

semi-infinite atmosphere exactly for the emergent intensity matrix 

by use of the Laplace transform and Wiener-Hopf technique. 

In this paper, we shall consider the Laplace' transform and 

Wiener-Hopf techr,ique to solve the matrix transport equation for a 

scattering which scatters radiation in accordance with the phase 

matrix obtained from a combination of Rayleigh and isotropic 

scattering in a semi-infinite atmosphere. The basic matrix equation 

is subject to the Laplace transform to obtain an integral equation~-

for the emergent intensity matrix. On application of the 

Wiener-Hopf technique this matrix integral equation· gives the 

emergent intensity matrix in terms of a singular H-matrix and an 

7 1 

,. 



unknown matrix. The unknown matrix has been ob,tained by. equating 

the asymptotic solution of the boundary condition at infinity. 

1. INTRODUCTION 

The method of Laplace Transform and Wiener-Hopf Technique has 

been applied to solve problems of radiative transfer by Dasgupta 

(1977), Das (1979b) Karanjai and Karanjai (1985) 'and others. 

Recently Karanjai and Islam •(1993) solved radiative transfer 

problems with anisotropic scattering by the same method. We lil<e to 

solve have a particular anisotropically scattering problem where 

the phase matrix consists of contributions from isotropic and 

Rayleigh scattereing. 

2. BASIC MATRIX TRANSPORT EQUATION AND BOUNDARY CONDITIONS : 

The basic integra-differential equation for infinity matrix I (1:,~) 

can be written in the form 

dl("C,p) 
d't = I(-r,p} - + w K(p,p') dp' ( 1 ) 

where 1: is the optical thickness of the atmosphere, ~ is the 

direction parameter, I('t,JJ) is a (2x1) matrix , w (0 < w < 1) is 

the albedo for single scattering. According to Burniston and 

Siewert (1970), 

K(/-1,~), a (2x2) matrix·, can be written as 

K(~,~·) = Q(p) QT (JJ') ( 2 ) 
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where Q(~), a (2x2) matrix, can be defined by 

Q(~) = 3(c+2) 112 

c+2 [ 
c~ ~ - 2 ( 1 - c) 

1 3 . 
3 (c + 2) 

(2c) 112 
(1 

0 ( 3 ) 

QT (~) is the transpose of Q (~), and cis aparameter (0 < c < 1 ) 

A solution of Equation (1) is required with the following boundary 

conditions 

I ( 0 I -Jj 

1 and I ( -r 1IJ) --+ 2 

= 01 

w L o [ --,-__:..;I<__ ] 
k - p e 

(4a) 

't'/k 
Q(Jl) as -r--+ Q.l 

I (4b) 

where K is a positive root greater than one and real of the 

equation T (z) = det D {z) ( 5) 

where D (z) = E + 
dp . ( 6) 

~ - z 

~ (IJ) is a (2x1) matrix and~ (p) is defined by 

1p (IJ) : (1/2)W Q
1 (~J) Q(~J) (7) 

and 

E is a unit matrix 1 D(z) is a (2x2) matrix and L
0 

is a specified 

(2x1) matrix.· 

3. SOLUTION FOR EMERGENT INTENSITY MATRIX : 

The Laplace transform of the intensity matrix is defined by 

r* (s,p) 
CJ:) 

I 
-a'C = s 0 e I ('t'IJl) 

Let us set Iu(-r) , a (2x1) matrix as 

73 

dp Re s > o (8) 



·' 

~ 

+1 

lu ('t) = (1/2) I QT ( IJ' ) I ( 't,IJ') diJ' ( 9) 
-1 

+1 
I* Iu ( s) = (1/2) J_1 QT ( IJ' ) (s,IJ') diJ' ( 10) 

we subject the Laplace transform as defined in Equation (8) to 

Equation (1) to get (Using Equations (4a), (9, (10)) 

* * (IJS- 1) I (s, IJ) = /JS I(o, IJ)- ~ Q(iJ) Iu (s) ( 11 ) 

The solution for the emergent intensity matrix arrived from 

Equation (11) 

I (O,IJ) = c.> Q(IJ) (1/IJ) 

Equation (12) gives for iJ = 1/s , s is complex 

* I (0,1/s) = w Q(1/s) Iu (s) 

we now apply the (2x2) matrix operator 

to Equation (11) to get * D (1/s) Iu (s) = a(1/s) 

( 1 2 ) 

( 1 3 ) 

( 14) 

( 15) 

where D (1/s) is a (2x2) matrix and a(1/s) is (2x1) matrix defined 

by 

and 

+1 
D(1/s) = E + J_

1 

1 

a(1/s) = (1/2) f
0 

respectively where 

p ( 11) dJ.l 
-(IJS - 1 ) 

., (IJ) is given by Equation (7) , is a (2x2) unit matrix . 

(16) 

(17) 

Eliminating I~ (a) between Equations (13) and (15) we get a matrix 

integral equation as 
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D{z) I(O,z) = w Q(z) a(z), where s = 1/z 

Following Bond a Siewert ("1971) 1 we have 

T(z)= det D(z) = -i c T
1 

(z) T2 (z) + 

[(1-c) + ~ c (1-w) z 2]T 0 (z) 

and 

2 3(1-w)z , 

+1 
I_, 

n = 1 or 2 

dll 
JJ - z 

(18) 

( 19) 

(20) 

(21) 

where T(z) is analytic in the complex plane cut from -1 to +1 along 

the real axis with two zeros at z = ± k , k is real (k > 1 ). 

We consider the (2x2) H-matrix equation (cf. Abhyankar and 

Fyrriat, 1970) as 
1 

H(z) : E + zH(z) J
0 

Ht (J.l) VJ (!l) d~-i / (J.l +z ) (22) 

where 11J(IJ) is given by Equation (7). 

We shall assume that the (2x.2) H(z) matrix is analytic. in the 

complex plane cut from -1 to 0 1 bounded at the origin 1 has a pole 

at z = -k ., k is real (k > 1) and similarly the H(-z) matrix is 

ana 1 yt i c in the comp 1 ex p 1 ane cut from 0 to 1 , bounded at the 
- 1. origin, has a pole at z = k , k is real , (k >1). Hence , H (z), 

the inverse of the H··lllatr-ix, is analytic in the complex plane cut 

from -1 to 0 and bounded at the origin. If the (2x2) H-matrix is a 

symmetric matrix, it can be proved that 

1 Z € (-1,1) 0 
. ( 23) 

• 
Now Equation (18) togethet· with Equation (23) takes the form 
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.• ~ .. 

·:·· 

.. -~ 
< 

'5~ 

~ .. 

H- 1 (z) a· 1 (z) I(O,z) [ k k z ] 

:: w [ · k ~ z ] H(-z) a(z) (24) 

where the left hand side of Equation (24) is regular for. Re z > o ·, 

bounded at the origin and the ~ight hand side of Equation (24) is 

analytic in (0,1) 0 
, bounded at the origin and tends to a constant 

matrix (2x1) say A, when z --+ a>subject to the assumption that 

I(O,z) is analytic for Re i>O and bounded at the origin. Hence, by 

a modified for;n of Liouville's theorem, Equation (24) gives· the 

emergent intensity matrix I (O,z) as 

I (O,z) = [ -.,.-k-:.~..:....-z-] Q(z). H(z) A (25) 

We now determine the matrix A. The inversion integral gives the 

intensity matrix I(~,p) as 

a+SV 
I(~.~) = (1/2n i) lim I I(s,p) 

0~ 
e ds/s , 

&.>-+ a> a- 1 v 

where 

* I (s,p) can be obtained as 

* [ -1 -1 1 ( s, p) Is = 1 ( o ,IJ) - ( ps) Q • ( 1 Is) Q ( P) 

I(O,#-l)]/ (s - 1/IJ) 

r*cs,p)/s = [I(O,P)I (s- 1/2) - Q(p) 

H(1/s)A/(s- 1/k)p(s-1/P)] 

a >O (26) 

(27) 

(28) 

The integral of' Equation (26) is analytic for s in (-a>,-1 )c , has 

poles at s = ± 1/k , k is real k >1 ., where s = 1/JJ is not a pole 

as 
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* ). • t I lim (s- 1/~) I (s,~ e s 0 (29) 
s--+1/~ 

<'· 

The contribution fo pole at s = 1/k will give the asymptot-ic ~· 

solution of Equation (1) as 

I(1:,~) --+ [ k~ll] Q(jJ} H(k) es/k A when 1: --t <0 

Equation (4b) with Equation (30) gives the matrix A as 

A= (1/2) [ w H-
1
(K)] La 

(30) 

( 31 ) 

l:quation (25) with l:quation (31) gives the emergent intensity in 

the form 

I(O,z) = (1/2) w La H-
1
(k) H(Z) Q(z) ( k ~ z] (32) 

4. CONCLUSIONS : 

Here we a11ow the values c (0 < c < 1) and w (0< w <1) to 

study the.general mixture of Rayleigh and isotropic scattering. 

a. When w = 1 and c (O< c <1) the basic matrix transport equation 

yields a conservative model for a mixture of Rayleigh and 

isotropic scattering. 

b. When w ( O< w < 1 ) and c= t we obtain the general Rayleigh · 

scattering problem. 

c. When c = and w = 1 , the problem yields Chandrasekhar's (1960) 

Rayleigh scattering model and Q(~) reduces to Sekera's (1963) 

form for factorising the Rayleigh scattering phase matrix (Das,1979c)r. ,.,. 
d. In this problem there exists some possibilities for future 

development such as determination of the H-matrix expr~ssion 

and the values of the D(z) matrix on both sides of the cut etc. 
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e. There exists some possibilities to determine a characteristic 

func~ion which is an even function having polynomial expression 

but has a transcendenta1 form . 
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