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ApPEnDIX IT1
6.3 The relation (4.38) of chapter 4

To establish the relation (4.38) , of Chapter 4 ; I consider

m

a u

: i
D (x) =Zk n w z 1" (r> -
™m r=1'r r .
i 1 + u Y
- : (ri

m

(rii (6.16)
1 —‘y(r)ix

a p

= (-1)" 2 :=4"7r‘°r E;

1 can derive a single recursion formula for Dm(x) -Then

_ 1 k m—1 i —
Dm(x) T Tx E r=1 nrwr ziai.#(r) [.l - x ] ]

o 1+ Hers
- 19
4 _ . - .
where wm = Z nrwr ziai“(r)i {6.18)

From this formula 1 have

¥ ¥ Y
.. m—4 - m-2 _ m-2 1
Dm(x) = — 3 + ceee.. + (~-1) — *
X X
+(——1—’m—_1 '[w’—'D (x)] (m = 0,1 4n) (6.19)
" o [+ e ‘
" and
k
v, =2 z 7w (6.20)

r =4




Appendix III ) 245

— 2N . .. 2
Let P (u) = z P u i.e. p,, be the coefficient of u

i%o

.‘in the Legendre polynomial F;n(y),

then

k ai
Pz.i Dzj(trhnwot) =r=21 . . 1 +P¢r>’:(r)a x

N 3

n
X [zpzju“ } _ (6.21)
i%o _

Since u ‘s are the zetros of P (uy , Equation (6.21)
. (r Zn“

>i

reduces to

sznzj ( Crk<r)a ) =0 (6.22)

N 3

3

Substituting for Dzj( L K

”m) from Equation (6.20) into

Equation (6.22) I get required form of the characteristic

equation as

P, (1 —M/nN)
= + teeeniaee. + P =0 (6.23)
£2n . 2n o

r (ryat
where M and N are given by the equation (4.39).

From this equation it follows that

2
(CrK(r>1 c’z»k'(x")n) (1—M/N)P2n
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and . R, . K . e K
y(r)i H(r)Z “(r)n (r {r)1 :r {r>n

= (1 - /Y3

which is the required relation.
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Abstract. The equation of transfer |for interlocked multiplets has been salved by the method of discrete
ordinates, originally due to Chandrasekhar, considering nonlincar form of the Planck function to be

BAT)=by+b,e .

1. Introduction

)

Woolley and Stibbs (1953) iupplicd the theory of formation of absprption lines by
coherent scattering (o the cuisc of interlocking without redistribution and deduced the
equation of transfer in the Milne-Eddington model. They have also obtained a solution
for the case of triplets by Eddington’s approximate method. Busbridge and Stibbs (1954)
applied the principle of invax‘riancc governing the law of diffuse reflection with a slight
modification to soive exactlyjthe equation of transfer in the M—E model: Dasgupta and
Karanjai (1972) applied Sobolev’s probabilistic method to solve the transfer equation
for the case of interlocking wi’Lhout redistribution. Another exact solution of the equation
of transfer has been given by ll)asgupta (1956) by his form of the Wiener—-Hopf'technique.
Karanjai and Barman (1981) applicd the extension of the method of discrete ordinates
to find an exact solution of %lhc problem of line formation by interlocking in the M-E
model. Dasgupta {1978) oblained an exact solution of the transfer equation for non-
coherent scattering arising from interlocking of principal lines without redistribution by
Laplace transformation and|the Wiener—-Hopf technique using a new representation of
: the H-function obtained b)ll Dasgupta (1977). While solving the transfer equation,

Duasgupta considered the Planck function to be linear in ¢ (optical depth), i.e.,

B(T)=B{t)=b,+bt Kz}'ranjai and Karanjai (1985) solved the equation of transfer

for interlocked multiplets w‘ilh the Planck function as a nonlinear funhction of optical

depth following the method jused by Dasgupta (1978). They considered two nonlinear

forms of B (T), viz.: l

(1) ab exponential atmosphere (Delg'Innocenti, 1979) in which

S

B(T) = B(1) = ';,U F b e

. |
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108 T. Ko DEB 1E AL,

(2) an aimosphere (Busbridge, 1955) in which
B(T)=B(t)= by + byt + Ex(1).
In this paper, we have obgz'lined the solL}tion of the equation of transfer for interlocked
multiplets by discrete ordinate method ih an exponential atmosphere in which
BAT)=b,+b,e P,

where 7 is the optical depth.

2. The Equation of Transfer

The equation of transfer considered here is of the form (Woolley and Stibbs, 1953)

u d"l(—i#") = (L n ) (5 p) = (L + en)B(T) -

+ 1

‘ -9 Y, J L), . ()

p=1
-1

where T denates the optical depth and 7, = k,/k denoting the line absorption coefficient
for the rth line and & the continuous absorption coefficient which is assumed to be
constant for each line. In the present case we consider that the collision constant ¢ and
Planck’s function remain constant for cach linc. We also consider an exponential
atmosphere for which Planck’s function, i.e., the thermal source function is given
(Degl’Innocenti, 1979) by '

B(T)=by+ b e b, ' )

where by, #,, and f are three positive constants.
Now, if we use Equation (2) in Equation (1) we have the transfer equation for the rth
interlocked line in the form

o B () = (34 o) G+ by e -
! .
- 31 - E)arpil L(n,p')dy', (3)
<1
where
So= 00+t ), r=12,...,k; 4)
so that

Ak Ay ko = ] &)
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Equation (3) is to be solved subject to the boundary conditions
L®, -p)=0, (O<p<l)
and

I(t,p)e" -0 as 1.

3. Solution-of-Equation (3)

Following Busbridge (1953) and Stibbs (1953), let

b T,
I(t,p) =bg + Nt ekl Sy Ll NN £ (€ A7)

1+ Bug,
- represent the solution of Equation (3), where
1 +
r-— & 611,)1
+n,+
1-— (1-¢nlog Lentp
2B I+n-8
and -
I
¢

_l+r],'

109

(M

(8)

9

(10)

This consists of two parts. The first part consists of the solution for a bounded
atmosphere as ttends to infinity. The second part: viz., L¥(t, 4t) represents the departure

. of the asymptotic solution from the value 7,(1, i) as we approach the boundary.
Now if we insert 7,(1, ¢) from Equation (8) in Equation (3) and taking

(1~ e,
M’I‘ B e—

L+ 7,
we have the equation

[

dI*(z, w, 1 & e x4,
S drem IXop) - — - [ > Mn J I3z p') du ]
dt 2 X p=1 . 4
Z Ne -1
p=1
together with the boundary conditions
T,
IHO, —p') = —by = =
1 - ﬂér#

and

Mt p)e ™0 as 1—>00.

(1

(12)

(13)

(14)
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For the sake of convenience, Equation (12) can be rewritten in the form

+ |

. diE (o w2 k o
o7 ”_(—:;_“ =15 (W) - Z. o | Loy (mu)dut ), (15)
pe
Z ’7,; -1 ’
p=1
together with the boundary conditions
hT,
150, —p) = - A to— by, (16)
[ =& Bu-
and
IN(tp)e 750 as 1o 20. (17)
Equation (13) can be replaced by the system of 2n linear equations
; dix, w, | d
Srlleryi = Iy —— "_,“_': Z Hp Z ajl(";,),:l ’ (18)
dt 2 K p=t1 7
X,
p=1
(i==+1,+2,..., +n),
where the p,,;'s (i= +£1,..., £ and y,, ,= - p,) are the zeros of the Lependre

polynomials P,,(u) which are dependent on the lines of interlocking and g;'s
(j= +1,..., tn)and (¢ _; = a;) are corresponding Gaussian weights. However, it is

to be noted that there is no term with j = 0. For simplicity, we write

l(t),' fOr I(T-)i ( T #(r)i)

in Equation (18).
The system of Equations (18) admits of integrals of the form

- KNz .
15y = 8y € , (=210, +0),

where g,,;'s and K are constants. .
Now if we insert this form for /*, in Equation (18) we have

. w1 k
g(r)i[l + Cr"l(r)iK] = “f”""lr Z ’7p Z ”jg(p),:l ’
2 K p=1 7
2 M
p=1
constant

By = Wy
I+ &pnK

(19)

(20y

2

If we insert for g, from Equation (22) back into Equation (21) we obtain the charac-

s
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teristic equation in the form

111

1
| =- —-——~—] ; (23)

5 [Z ¥y L. T K

PR
in which @; = a_; and p,, = ~ g, .
We can rewrite the chardcteristic equation in the form
1 A
t=— [Zm@———-——l » Kz] (24)
=1 - $p )y
Z n, ’ p F(),

p=1

This is the characteristic equation “which gives the values of K(,) If w<l
(r=1,2,...,k), the characteristic equation (24) gives distinct non-zero roots which

occur in pairs as + K, (¢ =1,2,.

, ).

Thercfore, Equation (18) admits lhc 2n mdcpcndcnl integrals of the form

constant

(r) exK(r)uT .
i

1 + é #(r)tK(r)a

According to Chandrasekhar (1960), the solutions (20) satisfying our requirements of

the boundediess of the solutions are

n L e—l\’(,,,t
- (rx
Ik =wb

r¥l

b
a=t 1+ érK(r)au(r)i

together with the boundary condition

b,T,
({ — al

1 - Erﬂu(r) i

e
I(l’)-.' -

£23)

(26)

27

4. The Elimination of the Constant and the Expression of the Law of Diffuse
Reflection in Closed Form

The boundary conditions and the emergent intensity can be expressed in the form

S () =0, (i=1,2,.

.., h)
and
T,|w,
13,0,p) = wb, S,(~p) - ——"
1+ ¢ fu
where
L T
‘) (u) — Z (r)ax r/wr
a=1 1 = érK(r)“ I - érﬁu

(28)
by
— 29
w,b, (29)
by
—_— 30
w,b, (30)
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Next we obser /e that the function

(1= &80 [1 (1 = EK e S, ()

a=1

in 4 polynomial of degree (n + 1) in p which vanishes for u = p;, i = 1,2, ..., n. There
must accordirgly exist a relation of the form

(1 - érﬂ#) I_[ (] - er(r)alu)Sr(#) ~ (.u - Cr) H (# - .ul) ’ (31)
a=1 i=1
where C, is a constant. ,
The constant of proportionality can be found by comparing the coefficient of the
highest power of u (namely, p"*1).
So we have, from Equation (31)

&m=%%?¢&mm@mgﬁ£%%§£%, 62)
where

=TT w=p), G=1L2e0m) (33)
and

R = Ul (1= EKppat)s (2= 1,2,...,0). (34)

Moteover, if we combine Equations (32) and (33), we obtain

b P(1/&Kya
2 érK(r)l s érK(r)ncrﬂ M X
w,.b, R(r)a(l/er(r)a)

‘[“r)m = (_ l)"

X —————, (35)
(] - __ﬂ_é’__)
K(r)zér
where
Rll')z(x) = H (1 - érK(r)?'}‘) . - (36)
y# o ) i
and
B# Ky (37)
The roots of the characteristic equation (17) can be written in the form
érK(r)l tee c‘rK(r?nluS’)l o M = (] - wr)”2 ' . (38)

i
N

<&
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Now by use of Equation (38), Equation (32) becomes

_bo& B0 = W) RH- W) [n =G

S, () = Lo
(# wr:bl(l - ﬂéﬂu) e
where
I H (u+ l’l(rv)i)
i=1
H, () = - ;
Hon s Kor T (146K i)
o=

113

(39)

(40)

and the characteristic roots are evaludted from Equation (24). If we put u=0 in

Equations (30) and (40) we have

4 T b b
Z S r 0 0
l (r)a + —_— + ——— =
a1 w, W

érﬂ(l - wr)l/2 Cr’
b, w.b,

r r

and we can next evahiate 0, Li,,, from Equation (35). Then

n [()
Y Lipe= (- 1y })’ (&Ko - EKmELTON]

a=1 1 ¥
where

PAYEK ) [é——l~ - c,]

" réd(r)a

(41)

(42)

(43)

L) =Y - ” Ry (%) .
x=]
R r a(l/érK r)az)(l - ___"___)
" ( Koyl
Now f,{x) defiried in this manner is a polynomial of degree n — 1 in x, which takes the
values
P (1/EK )[ 1 C]
r rit(r)o - Mr
o B ) irK(r)a
(1- Mf_ré_) ’
\ K(r)a ér ’
for

In other words,*

(1 = &Bx)fi(x) ~ P(x) x-C)=0.

(44)
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Therefore, we must accordingly have a relation of the form
(1-&p)(x) = P(x)(x - C)=R(x)(4,x + B,), (45)

where 4, and 8, are certain constants to be determined.
The constant A, follows from the comparison of the coefficients of x"*!. Thus

-1y + 1
AI = v ( ) ,_ ° (46)
‘;rK(r)l e :rl\(r)n

Next, if we put x = (¢,8)~ " in Equation (46) (cf. Chandrasekhar, 1960) we have

(o )(e
GRS\ A7

érﬂ‘:rK(f)l tt érK(r)n ) R (_l_)
"\& B

, (47)

r

_ (=1
crﬂérK(r)l e érK(r)n

1 -1
H-—=)[c-2). 48
* ( ﬂé,)( :,> (48)

Now if we use the relations (48), (47), and (46) we get

+ (- I)"#(rn <o P X

r

./;'(U) = - C"Pr(o) +BrRV(0) b

Le.
o (_ 1)”
/,(‘) = - Cr( - l)"“(r)l st u(r)n Fon PR +
érﬁérK(r)l e CrK(r)n
R H( '1><C ‘ 1) (49)
- oyt s B e T r— 0]
’ pe, BE,
From Equation (43) using Equation (49) we have
n I
S L= 2 Gl wrep-
, .
+ =2 & Bl - w,)“zH(— _]_> (yl - C) (50)
w,b, BE/ \EB
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Now if we use Equation (50) in Equation (42) we get

T,b,
1
by B - w,)' 2 H, ( - —:)
B,
and if we combine Equation (40), the diffuscly reflected intensity /X, (0, u) in
Equation (29) takes the form
b()érﬂ(l - Wr)ller(“) [lu + Cr] _ Trbl (52)

10, ) = ~ b,
# L+ peu L+ pep

C = ; 1)

r

I
—
il‘ﬂ

This is the required solution in a closed form. If we combine Equation (8) at t = 0 and
Equation (52) we have
b 1 - w)'?H (u)] C
1"(0’ ﬂ) - ()érﬁ( r) r(p') [H + r] , (53)
I+ BEn
which is the tequired solution of Equation (3) in the nth approximation by the discrete-

ordinates method.
If we put C, from Equation (51), we get the solution in the form

biT,  Hw
H(-VER (1 + peu)

Chandrasekhar’s (1960) equation for /,(0, u) in the case of coherent scattering is given
by (B.(T) = b, + b, 1) (see also Karanjai and Barman, 1981), and

1,0, ) = by(} = w)! 2 H (1) + (54)

100, 1) = by &L = w,) 2 pH () + by(1 = w,)" " H () +

n 1 n
+ bl(l - wr)l/2 §r|: Z o T Z #(r),} . (55)
j=

a=1 C,K(,):!

If we compare Equaliohs (54) and (55) we sec that if we put b, = 0, we have the same
solution for both cases. Moreover, for large values of f3, i.c., f— . The solution (54)
takes the form

lr(()a .u) = b()(l - wr)l/2 Hr(l"') ’ (56)

i.e., B,(T) then behaves like a constant or independent of . This fact can also be
explained from the point of view that

BAT)=by+b,e b, as f—x .
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Appendix

To estublish the relation (38) we consider ~

k

n

k

m

D, ()= now Y ik

P i px

”r

ai r)i
= (-1 Y g, Yy e

r=l i

I = peyx

we can derive a single recursion formula for D, x. Then

1 k
D, = - [ 2 W, X i (1 -
X ;

r=1

.
==

where

l//m = Z nw, - Z ai#(,:)i .
i

»

From this formula we have

En_r‘——_l ',b,,, -2

Dlll('/“) = - —’,—_ +
X X=
( _ 1);:: ~ 1
+ o [‘/’0
X
and
3
Yo=2 nw,.
r=1

Morcover, let P,; be the coefficient of u% in the Legendre polynomial P,, (u).

Then

Z F'.'.i Dzj(ger(r)z) =

j=0

P
a;

res

=) RW, Y e
1

71+ ;l(,)ier(,), j=0

[‘pm—l - Dnl—-l]v '

+(_1)m~2

- Do(«\')] s

!

h
xnl-—l

(m=20,1,..

k
Z P:,lu(z;)i'

o]

I+ gy x

., 4n)

Since the p,,,’s ure the zeros P,,(u). Equation (62) reduces to

> Pyl (&K ;) = 0.

j=0

- (57)

(38)

(39

(60)

(61)

(62)

(63)
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If we substitute for Dy (&K yq) 1O
required form of the ch:acleristic equation as

P i
P = D)+ Py =0
‘:2"K 21 r
Sr (r)a

From this equdtion it follows that

: l _ (_ l)”1)() = (#(r)l e .“(r)”)Z

(eKppy - EKGp? 1= WPy, -,

and

Bimys -+ Beom K & Ko & = (1 - w)"2.

References -

Busbridge. 1. W.: 1953, Monthly Notices Roy. Astron. Soc. 113, 52.
Busbridge, I. W.: 1955, Monthly Notices Roy. Astron. Soc. 115, 521.
Busbridge. I. W, and Stibbs, D. W. N. 1954, Monthly Notices Roy. Astron. Soc. 146, 551.
Chandrasckhar, S.; 1960, Radiative Transfer, Dover, New York.
Dasgupta, S. R.: 1956, Sci. Cudture 22, 177.

Dasgupta, S. R.: 1977, Astrophys. Space Sci. 50, 187.

Dasgupta, S. R.: 1978, Aswrophys. Space Sci. 56, 13.

Dasgupta, S. R. and Karanjai, 8.: 1972, Astrophys. Space Sci. 18, 246.
Deg!'lnnocenti, E. L.: 1979, Monthly Notices Roy. Astron. Soc. 186, 369.
Karanjai, S. and Barman, S.: 1981, dstrophys. Space Sci. 71, 271.
Karanjai, S. and Karanjai, ™ - 1985, Astrophys. Space Sci. 115, 295.
Stibbs. D. W. N.: 1953, Mout:aly Notices Ray. Astron. Soc. 113, 493.

117

a0 Equation (63) we get the

(64)

(65)

Woolley, R. v.d. R. and Stibbs. D. W. N.: 1953, The Outer Layers of a Star, Oxford University Press, London.



SOLUTION OF THE EQUATION OF TRANSFER FOR
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Abstract. An approximate solution of the transfer equation for coherent scattering in stellar atmospheres
with Planek's function as a nonlincar function of optical depth, viz.,
BAT)=b,+be ™

is obtained by Eddington’s method.

1. Introduction

Chandrasckhar (1960} applicd the method of discrete ordinates to solve the transfer
equation for coherent scattering in stellar atmosphere with Planck’s function as a
finear function of optical depth, viz., B (T) = b, + b, 7. The cquation of transfer for
coherent scattering has also been solved by Eddington’s method (when n, the ratio of
line to the continuum absorption cocfficient, is constant) and by Strémgren’s method
(when #, has small but arbitrary variation with optical depth (see Woolley and Stibbs,
1953). Dasgupta {1977b) applied the method of Laplace transform and Wiener—-Hopf
technique to find an exact solution of the transfer equation for coherent scattering in
stellar atmosphere with Planck’s function as a sum of clementary functions

BAT) = b, + -h, T+ Y bhE(1),

by usc of a new representation of the H-function obtained by Dasgupta (1977a).

In the present paper, we have oblained an approximate solution of the equation of
transfer for coherentisotropic scatlering by the method used by Eddington (Woolley and
Stibbs, 1953) in an exponential atmosphere (Degl’Innocenti, 1979; Karanjai and
Karanjai, 1985; Dcb er al., 1990),

BATY= b, + b e ",
where f8, b,, b, are positive constants.

Astrophysics and Space Science 178: 299-302, 199].
© 1991 Khawver Academic Publivhers. Printed in Belgiuni.
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2. Equation of Transfer

The cquation of transfer for coherent scattering can be written (cf. Woolley and Stibbs,
1953) in the form
cos 0dl (0)pdx = —(k + I (0)+ (1 - e)f S, + (k + &l )B(T). (N

To find an approxiniate solution of Equation (1), we proceed as follows: let

J‘.=(1/4H)JI|,(())dx|’, (2a)
H, = (1/4n) [ 1.(0)cosOdw, (2b)
K, = (1/4dn) J 1.(0) cos®0dw, (2¢)

in which the intcgration is made over all dircctions.
By multiplying Equation (1) by (dw/4x) and (dw cos #/4n) and inlegrating we obtain

dH .ipdx = - (k +&l.)(J,- B.). . (3)
dK . pdx= —-{(k+1)H,, 4)

where 8 (T') = B,. 1f we measure the optical depth in the continuous spectrum outside
the line so that d7= —Apdx and set [ /k = n,, then (3) and (4) becomes

dH jdt=(1 +ey)(J. - B,). (5)
dK jdt=(1 + y)H,. ’ (6)

If, moreover, we assume that g, is independent of 7, the equation can be readily
integrated. Introducing Eddington’s approximation

K. =(1/3)/,,
Lquations (5) and (6) can be combined to give

d*/ d? = q2(J. - B)), M
where

g2 =3 +en)(l +n), (8)

Lqudtion (7) is 11 be solved subject to the boundary conditions: (A)J, = 2H at 1= 0
and (B) the requ.renient that (J, - B,) shall not increase exponentially as 7— oc.

3. Solution of Equaiion (7)

Let
B,=by+be I, 9

«

W

»
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FRANSFER EQUATION FOR ('011{5)&_1-:;\"1::sCMTERINo IN_§T]
Then Equation (7) can be written in the form
d2/,yd7* = ¢2J, = bogi[ 1+ (5,/by) e 1. (10)

which is a second-order differential equation.
If we solve Equation (}9) and usc the boundary condition (B) we get

Jo=bo+be M byem T+ (6,8%(q2 - )] e 1, (1)

where . is a constant to be determined from the boundary condition (A), where B#q..
From Equation (11) we get

(dJ,/d7)cm0 = = [Bby + bag, + BB NGE — F)] ' (12)
From Equalion (6) with K, = (1/3)J, we find that
H, = [1/3(1 + n)][(dJ,/dD)] . : (13)

Hence,

W

[(1 +0) (o + by) + 3Bk, + (1 + 1, + 3P) _l/}_ﬂ.z]

PR - S (14
L+, +34, )

o
=Nl o

Finally we get

I} 2
Jo=hg+bie Fy l::'l} ;] e -
g =B

L b
[“ S ) B+ b))+ 20,4 (1, +3) ;/‘Je
- ek (15)
(L+n,+%q,) .

Now, J, (the average intensity) enables us {o find the intensity within the absorption line
at any oplical depth and in any dircction by solving the fundamental cquation of line
formation,

cos0dl (O)ydz= (1 + g ) 0) - (1 - &nd, -
- (1 +en)B,; (16)
J, and B, being known function of . :
The solution for I (0) cari be writen down immediately since Equation (16} is a lincar
differential cquation with constant cocflicients.

4. Residual Infensity

The residual intensity in the mean contours is given (cf. Woolley and Stibbs, 1953) by

"\'=(H\-/l{)x.=()v (]7)
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where the omission of the sullix v means outside the line. By virtue of the boundary
condition J, = 2H  al v= 0 wec have

r, = (J”..J)“ 0n- . (18)

Also, outside the line . = 0 and ¢, = \/3 Equation (13) with 7= 0 gives

bR
JI(O) == [)” + /)I " _;”/} e
g, - F

) 5 h, > 5

(L+ )by + b))+ (L4, +3f) *Lﬂﬁ +3Bb, ,

q, — P~

o N . (20)
1+ 1.+ 3¢,

Hence, by Equations (18), (19), and (20) we have

_ 3P = aD)by + 343 (B = 4.)by
T2 3B - Bby + 6(f - SR,
2 /
(p-3)0 ?‘25/3)_,. . o)
g )+ g+ 1) .
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Abstract. The general equation for radiative transfer in the Milne-Eddington model is considered here. The

scattering function is assumed to be quadratically anisotropic in the cosine of the scattering angle and
" Planck’s intensity function is assumed for thermal emission. Here we have taken Planck’s function as a

nonlinear function of optical depth, viz., B,(T) = b, + b; e~ #". The exact solution for emergent intensity

from the bounding face is obtained by the method of the Laplace transform in combination with the
'Wiener-Hopf technique.

1. Introduction

Chandrasekhar (1960) has considered the problem of radiative transfer with general
anisotropic scattering in the Milne-Eddington model to obtain the exact form of
emergent intensity from the bounding face and »th approximate intensity at any optical
depth by discrete ordinates procedure assuming Planck’s function to be linear in the
- optical depth. Das (1979b) obtained an exact solution of this problem using the Laplace
transform and the Wiener—Hopf technique. Wilson and Sen (1964) solved the same
problem by a modified spherical-harmonic method. In this paper we considered the
equation of transfer with anisotropic scattering in the M—E model with Planck’s function
" as a norlinear function of optical depth viz.,

B(T)=by+ b, e F

(Degl’Innocenti, 1979), where b, b,, and f are three positive constants.

2. Basic Equation and Boundary Conditions

The equation of transfer in a stellar atmosphere can be written (cf. Chandrasekhar,
1960; Das, 1979b) as

pdl (x, wfpdx = (k, + 6,),(x, ) = (1/2)0,(1 - &,) X

+ 1

X J P(u, ) (x, p')dp’ — (k, + &,6,)B,(T), (1

-1
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where

P(u,p') = /20 W, P, ()P, (u") )

is the phase function for non-conservative scattering with a three-term indicatrix;
I,(x, ), the specific intensity in the direction arc cosu at a depth x; k,, the absorption
coefficient ; arc cos y is being measured from outward drawn normal to the face x = 0;
a,, the scattering coefficient; p, the density of the atmosphere; B (T'), Planck’s function;
T, the local temperature at a depth x; &,, the collision constant; and v, the frequency.
We define the optical depth ¢, in terms of the scattering and absorption coefficient and
the optical depth 1, in terms of the absorption coefficient;

e | @, ()

T, = J k,pdx; 4
with

dt,= —(k, + o,)pdx, (5)

dr, = —k,pdx. 6)

If we follow Degl’Innocenti (1979) and Karanjai and Karanjai (1985) we adopt
B(t,) = BY + B e~ ™, (7

where B, B, and o are three positive constants.
Hence, Equation (7) with Equations (5) and (6) becomes

B(t,) = by + b e P, ®) ,
where

bo=BY, b =By and f=ok,/(k, +0). €)

In this model we shall assume that
n, =k, +ao)"! (10)

is constant with optical depth. Equation (1) with Equations (3) and (8) becomes
pdI(t, wyde = I(t, p) = (1 — co/wo)B(t) -

-(1/2) J (co + cyppt’ +562(3u% — 1) Bp'? = DI, p') dp’ (11)
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where ¢y, ¢,, and ¢, are given by

CofWo = C1/Wy = cofw, = 6(1 — &)f(k + 0) ; (12)
and for convenience, we have omitted the subscript v. For the solution of Equation (11)
we have the boundary conditions

10, - =0, O<u<l (13a)
and

It,wexp(—t/u)—»0 when —>o0, [u|=1. (13b)

3. Solution for Emergent Intensity

The Laplace transform of F(r) is denoted by F*(s), where F*(s) is defined by

[o 0]

F*(s)=s J exp(—st)F(r)dt, Res>0; (14)
o]
and we set
+1
L.(0)=(1/2) J urlx(s,wydy, m=0,1,2, (15)
-1
which implies that
+1
I (s) = (1/2) J ks, wdu, m=20,1,2. : (15)
-1

Equation (11) with Equation (15), takes the form
pdI(e, wy/de = I(t, ) — [colo(@) + ey, () +
+36030% = 1) L) — L) — (1 - co/wo)B().  (17)
Now subjecting Equation (17) to the Laplace transform as defined in Equation (14) we
have, using the boundary conditions,
(ps = DI*(s, ) = psI0, p) — (1 = co/wo)B*(s) — (col§(s) +
e puli(s) + e (Gr - VBB - ). (18)
Equation (18)-gives ‘ ’
10, ) = (col§(A/p) + ey pIF (1) + 3¢,(3p” - 1) +
 OIF(1/E) ~ I3 (1) + (1 — cowo)BH(1/p). (19)
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Equation (19) with u = s~ 1, s is complex, takes the form
100,57 1) = (co — 5623572 = DIF(s) + ¢ys~ ' I(s) +
+ 363577 = DIF() + (1~ co/we)B¥(5)

we shall apply the operator

+1
(1/2) J pdp
-1
on both sides of Equation (18) to get

(1= c)sm Ug(s) + IF(6) = (12) j WO, ) s ~

= (1 = co/wo)s ™ 'B*(s)

and
1
(1 = de)s ™ IHG) + ) = (12) j V210, 1) g,
0
we shall also apply the operator
+1
(1/2) J -+ dpf(ps - 1)
-1

on both sides of Equation (18) to get

as™ ' — (1 = co/wo)B¥(Mos ™" = [1 + cotos ™' — 4¢,(3ts

— tos T DE(S) + cyty5 7 THE(S) + 2¢,[3t,5 71 — tos T HIF(s),

where
1
as~' = (1/2) J ps(us — 1)~ 2(0, ) du
0
and

+1
s~ =(1/2) J (s~ 1~ 'pmdu, m=0,1,2.
-1

&

(20)

@1

(22)

(23)

24

(25) 4

(26)

@7)

If we follow the usual procedure for elimination of I#(s), I#(s), and I¥(s) among
Equations (26), (22), (23), and (25), after some lengthy calculations setting s = z~ !, we



¥

have

where

¥

where

EXACT SOLUTION OF THE EQUATION OF TRANSFER

T(2)I(0,2) = (1/2) J x(x — z)~ ' L(x, 2)I(0, x) dx +

+ (1 = co/wo)B*z™ 1,

T(z)=1- 222 J Y(x)dx(z? - x*)~1,

W(x) = (1/2) (4 + Bx* + Cx*),
L(x,2) = A — 3¢2x% + (B + C + 2¢,)xz — (1/3)Cz* + Cx?z2,

B*27 V= by + b, /(1 + Bz) = (d, + d,2)/(1 + B2),

do=bo+b1a d1=boﬁ,
A =c +£62’ B=c((1- Co)‘%cz _%cz(l —¢o) (1 —¢/3),

C= %cz(l —¢co) (1 —¢,/3),

where we shall assume that

and

»
¥ But for

Y(x) = 3(4 + Bx?> + Cx*)> 0

¢0=J¢(x)dx<%.

y=kk+o)<l1,

93

(28)

29

(30)
€Y
(32)
(33)
(34)

(3%)

(36)

37

(38)

B*z~!is analytic in (- y~ !, 0)°, bounded at the origin and 0 < y < 1. According to
Busbridge (1960), the equation for T(z) possesses the following properties: T'(z) is
analytic in z for (- 1, 1)¢, bounded at the origin, has a pair of zeros atz = + K (K > 1),
K is real and can be expressed as

T(z) = [H(DH(-2)]",

(39

where H(z) and H( - z) have the following properties: H(z) is analytic for ze (- 1, 0)¢,
bounded at the origin, has a pole at z = ~ K. H( - z) is analytic for z € (0, 1)¢, bounded
at the origin, has a pole at z = K.

o}
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w

If we follow Busbridge (1960), Das (1979a) and Dasgupta (1977) we have for i, <1,

H(z) =1 + zH(2) J Y(x)H(x) (x + z) "' dx
0

or
H(z) = (A, + Hy2)/(z + K) — M(2),

where

1

M(z) = J P(x)dx/(x + 2),

0

P(x) = ¢(x)/H(x),
¢(x) = n~ Yo (/[ T3 (x) + Y§(x)],

To(x) = 1 - 2x? J (W) — ¥(x)) de/(x* - 2) -

— Y(x)x log(1 + x)/(1 - x),
Yo(x) = mxl(x),
Ay=(1+P_)K,

1

P ,= '[x'lP(x)dx,

4]
Hy = (1-2yp)" 2.
Equation (28) with Equation (39) takes the form

1(0,2)/H(z) = H(-2)G(2) + (1 = co/wo)H(~2)B*z™ !,

where

G(z) = (1/2) J x(x — z)7'L(x, 2)I(0, x) dx ,
0

we shall assume that

I(0,z) isregular for Rez>0,

(40)

(41)

(42)

@3

(44)

(45)
(46)
(47)

(48)

(49)

(50)

(51)

(52)

bounded at the origin. Equation (51) with the above assumption on I(0, z) gives the
following properties of G(z): G(z) is regular on (0, 1)¢, bounded at the origin O(z) when

Z— Q0.
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Equation (50) with Equations (32) and (51) gives
I(0, 2)/H(z) = H(-2) |:(1/2) J x(x — 2) + L(x, 2)I(0, x) dx +

+ (1 = co/wo) (do + dy2)/(1 + ﬁZ)] : (53)

Equation (53) can be put in the form

I{0, 2)/H(z) = H(-2z) |:(1/2) J x(x — z2)7 ' L(x, 2)I(0, x) dx +
0

» + (1 = co/wo) (dofz + d))(z™" + /)’):| : (54)
Therefore, the left-hand side of Equation (54) is regular for Rez > 0 and bounded at the
origin and the right-hand side of Equation (54) is regular for z on (0, 1)¢ and bounded
at the origin and tends to a linear polynomial in z, say (x, + x;z) when z — co. Hence,
by a modified form of Liouville’s theorem we have

I{0, 2) = [xy + x,2]H(2) (55)
and
i 1
(1/2) J xL(x, 2)I(0, x) dx/(x — z) +
0
+ (1 = ¢ofwo) (dy + d12)/(1 + B2) = (x5 + x,2)/H(-2) . (56)
Equation (55) will give emergent intensity from the bounding face if x, and x, are
determined. We shall now determine the constants x, and x;. If we set z=0 in
Equation (56), we have
1
2 (1/2) J L(x, 0)I(0, x) dx + do(1 — co/wy) = xo - (57)
0
Equation (57) with Equation (55) gives
Xoy1 + X1 Y2 +2, =0, (58)
where
1
»=>1/2) J L(x, 0)H(x)dx — 1, (59)
[
1
y2 =(1/2) J xL(x, 0)H(x) dx , (60)
(o]
z; = (1 = co/wo)d, - (61)

a8
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As T(z) has a zero at z = K, Equation (28) gives
1

(1/2) J xL(x, K)I(0, x) dx/(x — K) +
0

+ (1 — co/wy) (dy + d K)/(1 + BK) =0, (62) u

Equation (62) with Equation (55) gives

Xoys+t X1 ¥4 +2,=0, (63)
where .:

y3 =(1/2) J xL(x, K)H(x) dx/(x — K), (64) PO

0

ya =(1/2) J x2L(x, K)H(x) dx/(x — K), (65)

2, = (1 = ¢o/wo) (dp + 4, K)/(1 + BK), (66)
Equations (58) and (68) give

Xo = (¥222 ~ 21 Y )/(¥1Ya — ¥3¥2) (67)

X1 = (2193 = 1120174 — ¥3)2) 5 (68)

where

(71Y4 = yay2) #0.

Hence, Equation (55) with Equations (67) and (68) gives the emergent intensity from
the bounding face of the atmosphere.

&
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Abstract. The equation which commonly appears in radiative transfer problem in a finite atmosphere having
ground reflection according to Lambert’s law is considered in this paper. The Planck’s function B (T) is
taken in the form,

B(T)=by+ b, e P

The exact solution of this equation is obtained for surface quantities in terms of the X — Y equations of
Chandrasekhar by the method of Laplace transform and linear singular operators.

1. Introduction

Das (1978, 1980) has solved various problems of radiative transfer in finite and semi-
infinite atmosphere using a method involving Laplace transform and linear singular
operators.

In this paper we have considered the one-sided Laplace transform together with the
theory of linear singular operators to solve the transport equation which arises in the
problem of a finite atmosphere having ground reflection according to Lambert’s law
taking the Planck’s function as a nonlinear function of optical depth: viz.,

B,(T)=by+ b, e P,

where by, b,, and f are positive constants (Delg’Innocenti, 1979; Karanjai and Karanjai,
1985; Deb et al., 1990).

2. Basic Equation and Boundary Conditions

The integro-differential equation for the intensity of radiation I'(t, u), at any optical
depth zfor the problem of diffuse reflection and transmission in a finite atmosphere can
be written in the form (Das, 1980) as

d/,(z, 1)
# P ———

e =1,(tp) - j W) (v, ') dp” - B(T), oy

Astrophysics and Space Science 181: 267-275, 1991.
© 1991 Kluwer Academic Publishers. Printed in Belgium.
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where I,(t, ) is the intensity in the direction cos !y at a depth 1, the angle cos 'y

is measured from outside drawn normal to the face 7= 0, () is the characteristic
function for non-conservative scattering which satisfies the condition

Yo = J Wp)dp <35 Y(u') iseven, @)

v is the frequency and B, (T) is the Planck’s source function at any optical depth. We
have taken

B(T)=by+ b, e F".
Then Equation (1) becomes

dI(z, 1)
H dt

=I(z, ) - j Y )M (g, p) dp’ = (bo + by e™77), 3)

where for convenience we have omitted the subscript v.
The boundary conditions associated with Equation (3) are

I00, —w) =0, O<u=<l, (4a)

I(ty, w) =1, O<pu<l, 75> 0, (4b)

where 1, is the thickness of the finite atmosphere and the bounding face t = 7, is having
ground reflection according to Lambert’s law, I, is a constant.

3. Integral Equations for Surface Quantities
Let us define f*(s, u) as the Laplace transform of f(z, u) by
f*(s,u)=SJf(r,#)e‘”dr, Res>0; (5a)
4]
f, =0, when 1> 1,. (5b)

Let us now apply the Laplace transform defined in Equation (5a) to Equation (3) to
obtain the equation satisfying the boundary condition as

(s = DI*(s, 1) = psI(0, ) = pis €™ "I (g, 1) = $*(5), ©)
where
S(7) = J W It p)dy' + by + by e F = @)

&

&

¥
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+1
b
L §%s) = j W )8+ o= e770) & 2 (1= o).
s+
|
®)
Let us apply the operator
+1
j ) duf(us - 1), ©)

—1
on both sides of Equation (6) and we obtain, with Equation (8),
+1
T(1/5)S*(s) = J d ps Y(I(O, w)/(us — 1) ~

—1

+1

—e " j ps Y(u (o, p) dp/(us — 1) +

-1

sb,

+ bo(1 — e™"™) + (1 — e~ G+Pwy (10)
s+ B
where
T = 1+ | s - ). (1)
Equation (6) gives
10, p) — e~ ™ [(to, p) = S*(1/u) = (12)
= I(0, 1/s) — e~ ™ I(1q, 1/5) = S*(s) . (13)

Equation (10), together with Equation (12), gives for complex z, where z = s~ 1,

(70, 2) — ™™/ I(7o, 2)]T(2) =

= J py(I(0, p) dpf(p — z) — e~ ™= J py (I (o, p) dp(p — 2) +
b,
1+ Bz

+ bo(l — e~ ™) + (1 - e Brog=m/zy, (14)

Let us put o, = =, then Equation (14) becomes

[10,2) — e™ ™F (5, )] T(2) =
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+1 +1

o= J p()(0, 1) dp/(pn — z) — e =% J pp (I (2o, ) dpf/(pt — 2) +

-1 -1

b
+bo(1 = = 07) 4 150 (] - gl gy (15)
Z+
Let us set z = —z in Equation (15) and multiply the resulting equation by e ~ ®/Z on

both sides to obtain, for complex z,

(v, —2) — e~ ™10, —2)]T(2) =

+ 1

= J (I (1o, ) dpf(p + 2) — e™ X
X J p(I(0, p) dp/(p + 2) + bo(l — e~ /%) -

-1

_ -b_1 % (e—To/z _ e—ro/om) , (16)

O — 2
Equations (15) and (16) are the linear integral equations for the surface quantities under
consideration.

4. Linear Singular Integral Equations

Equations (15) and (16) are the equations defined for complex z, where z does not lie
between — 1 and 1. When z lies between — 1 and 1, Equations (15) and (16) will give
the linear singular integral equations by the applications of Plemelj’s formulae (cf.
Mushkelishvili, 1946) with the boundary condition (4) as

(1(0,2) — e~ ™" L]To(2) = P J pY (0, ) dp/(p — 2) -

o}
1

_em s J WU (o0 — 1) At + 7) —

—-e” “’”Pf w(l, duf(p - 2) +
0

byay

z+ o

+ bo(1 —e™™/%) + (1 — g~ wot/z+ 1/o) %))

§

&



W

'y

N

EQUATION OF TRANSFER IN A FINITE EXPONENTIAL ATMOSPHERE 271

and
I(to, —2)To(2) = P J pY(I (o, — ) dpf(p — 2) ~
— e ™7 J (IO, p) dp/(u + 2) + j (L, dp/(p + 2) +
+ bo(1 — e==0/7) — % (67 ™07 — ¢ o/w) (18)
where

To(z) = 1 -2z J dp[¥(w) — ¥@))/(2* - p?) - 22°Y(2)P J du/(z* - u?),
y o 19

in which P dneotes the Cauchy principal value of the integral.

Equations (17) and (18) are the linear singular integral equations from which we shall
determine the surface quantities 1(0, z) and I(1,, —z) by the application of the theory
of linear singular operators.

5. Theory of Linear Singular Operators

If we follow Das (1978, 1980), we can write the following theorems.

THEOREM 1

The linear integral equations for z e (0, 1),
L+ [R(Z’ - xo)] = I(Z, - xO) > (203)
I_(Q(z, —x0)] = m(z, —x,), (20b)

where

1

L. [f, —x)] = flzs ~xo)To() - P J Wt — o) A — 2) +

e G = 50) i+ 2, (12)

0
1

L_[f(z, —x)l = f(z, = x5)To(2) — P J p()f(p, = xo) dpf(p — 2) —

0
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1
—e" ™~ J WS (s — xo) dugf( + 2) (21b)
0
Iz, - x4) = X0 [ _ em otz 0] 4 Yo [g-rolz _ e /%] (22a)
Z+ Xq zZ — X
m(z, —x0)= Xo [1 _ e—ro(l/z+1/xo)] _ xo [e—'ro/z _ e-"—'o/xo] ,
Z 4+ Xq Z — Xq
(22b)
admit of solutions of the form £ .
R(z, —x4) = S(z, —x) + T(z, —x,), (23a)
0(z, —x5) = S(z, —x) = T(z, - xo), (23b)
where
S(z, —x) = %[ X(2)X(x0) — Y(2)Y(x0)]/(z + xo) (24)
and
T(z, - xo) = %[ X(2)Y(x0) — Y(2)X(x0)]/(x0 — 2) . (25)

With constraints on X(z) and Y(z) as
(i) when ¥ <3

1 1

1=K J X(w) () dp/(K = p) + e"°/KKJ Y(u)(w) dp/(K + 1), (262)

1 1 PN
e- ik _ K j Y(W() duf(K — ) + K e~ /% j XV duf(K + 1) ;
J / (26b)
(ii) when y, =3
1= j W) X () + Y()] dt, (27a)
J V)Y () dpt = J W) [X() - Y()] du @7b)
0 0
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and K is the positive root of the function T'(z), when y, < 3, defined by

T@=1+ J z(u) dp/(p — 2)

and where [X(z) — Y(2)] and [X(z) + Y(2)] are the respective solutions of

L. [f(2)]=(1-e ™) (1 - : Y f (W) d#)
and 01

L_[f(2)] = (1L +e™™F) (1 - : () f(w) du) .
THEOREM 2 '

273

(28)

29)

30)

As the operators L, and L _ are linear for z e (0, 1), then for any constant C, we have

L (CF(z, — x;)) = CL , (F(z, — X))

and

L, (@) =zL:(fz) - (1 F e ™F) f p(p)f () du .

THEOREM 3

If R(z, — x,) and Q(z, - x,) are the solutions of
L. [R(z, —x5)] =1(z, — x4),
L_[Q(z, —x0)] = m(z, —x,),

then

L, (M) = f W(—x0)l(z, = xo) dx,

L_(N(2)) = J Y(— xo)m(z, —xo) dx, ,

admit of a solution of

M(z) = J (= xo)R(z, — x0) dx, ,

(1)

(32)

(33a)
(33b)

(34)

(33)

(36)
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NE) = J V(= 30)0(z, - xg) dxo G37)

6. Solution for Surface Quantities

Linear singular integral equations (17) and (18) are the required integral equations from

which we will have to determine (0, z) and I(z,, — z), the quantities under consideration,

by the application of the theory of linear singular operators indicated in Section 5.
Equations (17) and (18) on addition and after some rearrangement give

L [10,2) + I(zg, —2) —e” ™FI ] =
= 2bo(1 ~ e™ ™) + bl(z, — o) + Igj Y(wi(z, —p)dp. (38)

Equations (17) and (18) on subtraction and after some manipulation give

L_[I0,2) - I(ty, —2) — e~ *FI,] =

 bume, =)~ I | Wm0, (39)

where I(z, — ) and m(z, — p) are given by Equations (22a) and (22b). Equations (38)
and (39), with Theorems 1, 2, and 3 of Section 5, will give us the desired quantities (0, z)
and I(t,, —z). The solution of Equation (38) is given by

[1(0,2) + I(tg, —2) — I,e™™/*]=

= lzb"G (@) - Y(@)) + byR(z, — o) + ngR(z, —-W(wydu, (40)
— VYo
where
G, = J Y(p) [X(w) — Y(p)] dpe. (41)

The solution of Equation (39) is given by

[1(0, z) - I(ty, —2) - ]ge—ro/z] =

= bIQ(Z, - ao) - Ig J‘ w(#)Q(Za —‘,U.) d”’ . (42)
0

la

!

¥
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Equations (40) and (42) on addition give /(0, z) and Equations (38) and (42) on sub-
traction give I(z,, —2) as

and

where S(z, — ) and T(z, — p) are given by Equations (24) and (25).

1
100,2) = Lye =™ + Igj YT (z, — ) du +
4]

N LCRRORLECRY
by
It ~2) = [X() - YO +

0

+0,T(z, —0p) + IgJ () S(z, —w) du,
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SOLUTION OF THE EQUATION OF TRANSFER FOR
INTERLOCKED MULTIPLETS WITH PLANCK FUNCTION AS A
NONLINEAR FUNCTION OF OPTICAL DEPTH
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Abstract. The equation of transfer for interlocked multiplets has been solved exactly by the method used
by Busbridge and Stibbs (1954) for exponential form of the Planck function B,(T) = b, + b, e~ #*.

1. Introduction

The equation of transfer in the Milne—Eddington model for interlocking without redis-
tribution have been discussed by Woolley and Stibbs (1953), where a clear statement
of the problem will be found. Taking the Planck function to be linear, they have obtained
a solution by means of Eddington’s approximation and calculated the residual intensi-
ties and the total absorption in the emergent flux for doublet and triplet lines. Busbridge
and Stibbs (1954) applied the principle of invariance governing the law of diffuse
reflection with a slight modification to solve exactly the equation of transfer in the M—E
model. Dasgupta and Karanjai (1972) applied Sobolev’s probabilistic method to solve
the same problem. Karanjai and Barman (1981) applied the extension of the method
of discrete ordinates to solve the problem. Dasgupta (1978) obtained an exact solution
of the problem by Laplace transform and Wiener—Hopf technique using a new represen-
tation of the H-function obtained by Dasgupta (1977). The same problem has also been
solved by Karanjai and Karanjai (1985) by the method used by Dasgupta (1978) and
by Deb et al. (1991) by discrete ordinate method using the Planck function as an
exponential function of optical depth.

In this paper we have solved the same problem by the method used by Busbridge and

 Stibbs (1954), using the Planck function B,(T) as an exponential function of optical

depth (Degl’Innocenti, 1979)
B (T)="by+ b e ?.

Astrophysics and Space Science 184: 57-63, 1991.
© 1991 Kluwer Academic Publishers. Printed in Belgium.
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2. Equation of Transfer

Woolley and Stibbs (1953) made certain assumptions, viz., (i) that the lings are so close
together that variations of the continueus abserption coefficient £ and of the Planck
function B, (T) with wavelength may be neglected. This also means that the lower states
are nearly equal in excitation potential and that they have the same classical damping
constant. Then the values of 71;, #,, . ..., 7, (the ratjos of the line absorption coefficients
to k) are proportional to the transition probabilities for spontaneous emission from the
upper state to the respective lower states; (if) that #y, 7, ..., 1, are independent of
depth; (iii) that the coefficient &, which is introduced to aﬂow for thermal emission
associated with the absorption is independent of both frequency and depth.
In the present paper, we have further assumed that (iv)

B(T)= by + by e, )

where f is a constant and 7= j o kpdx, x being the depth below the surface of the
atmosphere. By (i) b, b, and 7 are independent of .
Then the equation of transfer for interlocked multiplets can be written as

dl )
w B L ) - L+ en) (o + bye) -

dz
= (1~ &, Zl 5 L j 'IP"({C’ wyaw, (= 1{ 2,000,
. =7 -1
where
& = M0l + My s M) s 3)
and

In Eguation (2) the subscnpt r denotes the quantity corresponding to the line of
frequency v,. The Equation (2) have to be solved subject to the boundary conditions,

1(@ ~4)=0, @< 1, r=12...,k 5]

together with a condition limiting /,(z, ) for large 7. We shall assume that 1(s, p) is
atmostlinearin tfor large 7. Formal solutions of Equation (2) are Leasliy found, but they
do net satisfy Equation (5).

These are

’bl.l T" e~H57

e R by e (=12 R), 69

pe
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write
I,(r,y)=bo+i e P+ I¥(h,p), (r=12,...,k), ©)
1+ & pu ‘
where
A
T, = : M
L 1+55
1 2 (1-¢)n,log 1 e
and '
A =1 +en)(1+n), ()
=11 +m1,). )

Then I*(z, p) satisfies the equation

*
7 g,_d(_r,_u) =1+ 1)} (g, p)—(1.- a, X
T

+1
ko1
Xy Enp J ¥rpHdp' , (r=12,...,k) 10)
p=1 :
-1
together with the boundary condition
b, T, iy .
I*¥0, —p)=——"——-b,, O<p' <1, r=12,...,k). (11)
grﬂlu" -1

Moreover, I,(7, u) must be at most linear in 7 as 7— 0.

Now we have the problem of a scattering atmosphere (exponential) subject to external
radiation whose intensity is given by Equation (11). We want to find the emergent
intensity I*(0, u) of frequency v,. This will be the intensity of the diffusely reflected
radiation and can be calculated when the appropriate scattering function is known.

In the present problem the scattering function splits up into k2 functions

Srs(#’.u,) (r=1a2""5k;s=132""5k)
but it is convenient to reunite them temporarily in the function

P(v, v)S(v, vV'; i, p'),

where v is any one of v,, v,, ..., V..

P(v,vV)=uqa, i (v, ~ V) (12)
p=1
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d denoting Dirac’s o-function, and

Sy s s ') = S, (s 1) (13)

Then the law of diffuse reflection for the atmosphere can be written as (Stibbs, 1953;
Busbridge, 1953),

o 1
1 .
If(0, ) = > J P(y, v')dv J SO, v, )20, —p')dy', (14)
# 0 0
The equivalent form in terms of the functions S,,(u, p') is
1

L .
0, p) = o, 3, — JS,,,(;L, w0, —p')dp’ . (15)
p=1 2[1

0

3. Scattering Function
If we follow Busbridge and Stibbs (1954) we have the scattering function from frequency

v, and direction —y’ into frequency v, and direction g, in the form

’

S, 1) = (1= 4) éﬂ— HEWHEW), (16)

r Al ﬂ
where

1

k ’ '
HE W =1+ 36 0HEw 3 a(l -4 | HCt)

17
p=1 ’ Su+&u (an

4. H-function

Following Busbridge and Stibbs (1954), Equation (17) can be written as

1
k 172 k ' '
1/H(¢,u)=< 5 a,,x,,) s 15 ga-ay | 2EHGE) 4 g
p=1 2 p=1 J f,,u+fpp

5. Emergent Intensity

From Equations (11), (15), and (9) we have

1
k

b
I:k (07 H’) = ;_; Zl Srp(#, l'tl) (T’I;l - bo) . (19)
p= P p -

A

-
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If we substitute from Equation (16) we get

» £ j o
I*(0, p) = 2oz,H(f,,u)pZ:l &1 -2,) J Catop X

b,T -
—1%p by ) HE ) dy =
x(épﬁ#,_l ) (& u') du

1

. d "H(G,p') dp’
=306 HER Y &(1- 4)T, Rl -
; SR ) Grr e GB - D

zaboH@u)zé(l A)fM n (20)

If we use the relations

1 _ 1 [/3 1 ] o1
G - DEu+ &) Epr+DLEp-1 Ep+&pl

we get from Equation (20)

k
X0, u) = 30,5, (ér.u)p;l ¢( ) Pb[ EBu+1 %
<l |G e - e x
LB -1 Lu+

« Zf(l—ﬂ)J uH(éﬂ)

_1 B
a6, HE 1) z &1 - l”)T”(c,ﬂw 1) x

1

’ ! ! o
y J LECTOL S T I

&hu — 1
x(1—1,,)T,,< ! ) #H(fu)d’—%a,box
& Bu+ 1 SGu+ &
k
xH(é,u)gé,a—x)f" (é“) . @2)
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From Equation (6),

b, T,
L0, p) = by + —22— + I*(0, p) .
(0, p) = b Yy ©, 1)

r

If we use Equations (18), (22), (23) we get

b T k 12
= _r 1
0w (%+1+QW)K}:%p> ¥

o1 iaa-ujé—”—w u'}+§a,blx
2P= épu’

d T,p )j wWHEY) |,
H r r 1- }'p du’ —
X HE ) ¥ & (4m+1 ek

T,
~lob,H 1- 4
a, (6#)25( )(51; )X

1

WHEGH) 1 — 50, boH(E, p) fo
J Gt gu ”

)").[ #H(éu) :
and thus

i 1/2
L0, p) = boH(E,u){( b apx,,) +

p=

1
k ’ ’
+ Y (@& - a &) (1 - Ap)j iﬁ@ du’}+
p=t J &ut o

() {T< i apap>l/2+
(1 + & Bu) r=1

+% i (apépT’_aréer)(l A)J‘ y' (f”’) }_*_

1 H(fﬂ) X
bt f—t S (11— )T,
b g 2 T
¥ (éu)d,
&hu -1

which is the final form of the emergent intensity in the rth line.

(23)

24

25)

. A,’
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Abstract. In this paper we consider the time-dependent diffuse reflection and transmission problems for a
homogeneous anisotropically-scattering atmosphere of finite optical depth and solve it by the principle of
invariance. Also we consider the time-dependent diffuse reflection and transmission of parallel rays by a
slab consisting of two anisotropic homogeneous layers, whose scattering and transmission properties are
known. It is shown how to express the time-dependent reflected and transmitted intensities in terms of their
components. In a manner similar to that given by Tsujita (1968), we assumed that the upward-directed
intensities of radiation at the boundary of the two layers are expressed by the sum of products of some
auxiliary functions depending on only one argument. Then, after some analytical manipulations, three groups
of systems of simultaneous integral equations governing the auxiliary functions are obtained.

1. Introduction

Sobolev (1956) dealt with the one-dimensional problem of time-dependent diffuse
reflection and transmission by a probabilistic method. Diffuse reflection of time-
dependent parallel rays by a semi-infinite atmosphere was treated by Ueno (1962) on
the basis of the principle of invariance. Bellman eral. (1962) obtained an integral
equation governing diffuse reflection of time-dependent parallel rays from the lower
boundary of 4 finite inhomogeneous atmosphere. Ueno (1965) also obtained this
equation by probabilistic method. Matsumoto (1967a) derived functional equations in
the integral radiation allowing for the time-dependence given byDirac’s &-function and
Heaviside unit step-function. Matsumoto (1967b) also derived a complete set of
functional equations for the scattering (S') and transmission (7') functions which govern
the laws of diffuse reflection and transmission of time-dependent parallel rays by a finite,
inhomogeneous, plane-parallel, non-emitting, and isotropically-scattering atmosphere,
where the dependence of the time of the incident radiation is given by Dirac’s §-function
and Heaviside’s unit step-function. A formulation of the time-dependent H-function was
accomplished by means of the Laplace transform in the time-domain. Numerical
~ evaluation of the H-function based on numerical inversion of the Laplace transform
presented by Bellman et al. (1966) was made.
Recently, Karanjai and Biswas (1988) derived the time-dependent X- and Y-functions

Astrophysics and Space Science 189: 95-117, 1992.
© 1992 Kluwer Academic Publishers. Printed in Belgium.
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for homogeneous, plane-parallel, non-emitting, and isotropic atmosphere of finite opti-
cal thickness using the integral equation method devleoped by Rybicki (1971), Biswas
and Karanjai (1990a) have derived the time-dependent H-, X-, and Y-function in a
homogeneous atmosphere scattering anisotropically with Dirac’s d-function and
Heaviside unit step-function type time-dependent incidence. Biswas and Karanjai
(1990b) have also derived the solution of diffuse reflection and transmission problem
for homogeneous isotropic atmosphere of finite optical depth. In this paper we derived
the nonlinear integral equations for X- and Y-functions (Chandrasekhar, 1960) for
anisotropically-scattering atmosphere. The anisotropy is represented by means of a
phase function which can be expressed in terms of finite-order Legendre polynomials.
The principal of invariance is applied to derive the functional equations for time-depen-
dent scattering and transmission functions. Next we considered the time-dependent
diffuse reflection and transmission of plane-parallel rays by a slab consisting of two
homogeneous anisotropically-scattering layers, whose scattering and transmission
functions are known. The problem of the time-independent scattering and transmission
of radiation in plane-parallel atmosphere of two layers was treated first by Van de Hulst
(1963; also see Tsujita, 1968). Hawking (1961) dealt with the problem analytically
starting with Milne’s integral equation. Later on, Hansen (see Tsujita, 1968) formulated
the scattering and transmission functions in a medium consisting of two optically thin
layers by the invariant imbedding partical-counting method. Gutshabash (1957) formu-
lated the problem as solutions of simultaneous integral equations. So far as his equations
are solvable, the scattering and transmission functions required are given exactly for two
layers of different albedos and different large optical thickness. We have extended the
same problem (Tsujita, 1968) for the time-dependent transfer of radiation.

2. Derivation of Fundamental Equations

2.1. FORMULATION OF THE PROBLEM

In an anisotropically-scattering medium, the intensity of radiation (7, g, ¢, t) at any time
t, any optical depth 7, in the direction cos ™!y, satisfies the equation of transfer

1 aI(T’ U, ¢’ t) 61('5, U, ¢9 t)
c ot ot

+I(T:H" ¢’ t)=J(T’ﬂ, ¢’ t): (1)

in which the source function J((z, i, ¢, ¢) is given by

2xn +1

J(% 1, ¢, t)=$ J J Py, ¢ ' ¢OI(z ', ¢, ) dp’ dg’ )

where P(u, ¢; ', ¢"), the general phase function and c represents the velocity of light.
In the above, u and ¢ represent, respectively, the cosine of the zenith distance and the
azimuthal angle. We decompose the intensity of radiation field into two components for

M
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two directions, viz., intensity directed towards the lower surface of the atmosphere
(I* (7, u4, ¢, 1)) and intensity directed towards the upper surface of the atmosphere

U (% 1 ¢, 1)

We consider the initial boundary conditions

It p,¢,0)=0, 3)
I+(0’ #’ ¢’ t) = Iinc(“’ ¢’ t) ’ (4)
I~ (7:1’ s ¢s t) = Iiaka(u" ¢’ t) . (5)

Equations (4) and (5) asserts that the lower and the upper surfaces are illuminated.
However, we shall restrict ourselves for the time being to the case of illumination on
the upper surface (t = 0) by means of an instantaneously collimated beam of light at
time ¢ = 0. The other surface will be free from any incident radiation. We now distinguish
between the reduced incident intensity which is incident omboundary surface and
penetrates to the depth ¢ without suffering any collision and diffuse radiation which
arises due to different processes (Chandrasekhar, 1960). For the total radiation field we
have

I"(op, ¢, =17 (o, p ¢, 0 + Ly <u, ot - l) exp (— f) , (6)
cu 7

T, — 7 T — T
]_(T’.u9¢’t)=1¢;(raﬂ9¢’t)+Ii:c<”7¢7t— 10“ )exp<— lll >, (M

where the subscript ‘d’ represent diffuse fields. If we substitute these expression for
I (z, pu, ¢, ©) and I~ (7, u, ¢, £) in Equation (1) we get two separate equations of transfer
for two components

d 0

<c“ —+—+ 1)1}(1,;1, o, 0)=J(t, u, ¢, 1), ®)
ot ot

;0. 0 _

el =+ =+ 17 () =J(tpu, ¢, 0, 9

o ot
where
2 +1

J(T, 1, ¢, t)=4—17r J J L(tnp, ¢, 1) x

X P(, 3 ', ¢ )’ dg +ﬁ J JP(u,¢;u’,¢’) x

0
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T D 4 1

im(y’, ot - —) exp(— —> dy’ d¢’ + — x
U 4n

x I
2n
1= T -
X Ir.(w,o, t— exp| — X
u H
o 0

X Pu, g5 ', ¢")du’ do” . (10)
Let us now put in Equation (10)
Tino(tt> ¢, 1) = FO(D)0(1 — 16)0(¢ — o) » ay
L, 6,0 =0 (12)
where F is a constant. <
Hence, we get o

J(T5 #’ (P’ t) = 4_171: J J Id(‘tl’ ”I, ¢,’t)P(H’ ¢;.u',3 ¢I)d.u" d¢, +

0 -1
+ 2FP(1, 5 o, o) €XP < - i) d <t - —T—> - (13)
Ho Clo
The new set of boundary conditions are given by
(v én=0, (14a)
Iy (np¢,0)=0. (14b)

This simplification of boundary conditions are the characteristic of such formulation.
Let us now. define the scattering and transmission function (cf. Matsumoto, 1967a) as

S(Ts ,U., ¢;ﬂo, ¢0, t) = Id_(oa H': ¢: t)! (15)
I(z, i, ¢; o ¢Os t) = I; (TI’ 7 t) . (16)
2.2. PRINCIPLE OF INVARIANCE

We shall now derive the functional equations for these two functions. The four principles
of invariance (Matsumoto, 1969) for this problem take the following forms:

(A) Theintensity I; (z, p, ¢, £)in the upward direction at time ¢ and at depth tis given
by

T T
15 (%, ¢, t)=F#_1S<Tx = T b P thos %J‘_) exp<__> +
: Clo Ho

¢ 1 2=n

dr’ J‘ JS(TI—I W, @', t— )7 x
47r,u

x(tnu',¢',¢')dy do' . 17)
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(B) The intensity I (7, i, ¢, t) in the downward direction at time ¢ and at a depth
is given by

1
I;(Ts H, (P’ t) = F#—IT(T;II, ¢;/i0, ¢O’t) + m J\dt, X

1 2n
X j J S(tsu, s p's @'t — )G (nu', ¢, ¢')dp' do' .
o o (18)

(C) The diffuse reflection of the incident radiation by the entire atmosphere is given
» by

Fu='S(t; 15 @5 oy @0, 0) = Fu= Nt @, 1/, @', 1) +

t

1
+ 17 (r,y,¢,t—i>exp<—z>+— de’ x
cp p/  Anp
4]

1 2=n

X j J T(tm Qs ', ¢t = )G (nu', ¢, ') dy’ dg” (19)

0o o0

(D) The diffuse transmission of the incident radiation by the entire atmosphere is
given by

— _ T
Fu='T(ty;5 ty ¢; thos 90, 0) = Fuu ‘T<rl = T; s O; lho» ¢o,t———) X

Clio

- X exp L)+Id (ru,¢t—‘c_‘c)exp(—rl_)+
c cp M
1 2=

% Jd J J T(ty — T phs Py o Por T — ') X
0

x Ii (g p', ¢, 1) dy dg' . (20)

A derivation of these four equations is based on classical intuitive physical arguments
(Ambartsumian, 1943; Chandrasekhar, 1960; Presendorfer, 1958). Although these
equations do not provide a complete knowledge of radiation intensity at any depth (or
neutron distribution in a given medium) but only the reflected and transmitted inten-
sities, it has some real advantages for numerical computations.
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2.3. INTEGRAL EQUATIONS EOR THE SCATTERING AND TRANSMISSION FUNCTION
We differentiate Equation (17).with respect to 7 and take the limit as t— 0

Iy
hm d d (Ts Il: ¢’«t) -
=0 de

d a
_Fﬂ_l [(Cﬂo)—l —+(u)™ ' + —:I X
ot ot

t
1
X S(tl’ ﬂ’%¢; Hos ¢0, t) + — J‘ d¢’ x
4mp
0

2n 1
difj (t, u', ¢', ¢ 4
X J JS(tl;u,¢;u’,¢’,t— t')[—"(—“(p—) dp d¢] - (21)
dT =0
0 0
From Equation (8), we get by use of Equation (14)
d + ’ ! ’ 0’ /’ I’ tl
llm Id(T!u’¢3t)=J( p’ 4) ), (22)
=0 dz u
where
2 1
’ 7 1 F n " " ”
J(O’p' ,¢,t)=— J‘ J‘ o S(Tlilu’ ’¢ ’t)dy' d¢ +
4n u
4] 0
+ 3F3(t )P(1, ¢; to» §o) - (23)

In deriving Equation (23) we have used the expression for J(z, g, ¢, £), Equation (9) now
yields, after use of Equations (14) and (15)

AT Ew ) IOk
=0 dt u

8
+<C“ Pl 1)#“‘Fu“S(rl, s @5 tos o, 1) . (24)

If we substitute Equations (22) and (24) in Equation (17), after cancellation and re-
arrangements of terms, we get

0S(ty; s s o Gor ), (l +i> (l 9, 1) X

0T, U U/ \c Ot
X S(Tl s U 4)’ Ho> 4’0’ t) = P(Il, ¢; Hos ¢0)5(t) +
1 2n

"

de” +

”"

1 d
+— J J P(u, s p", ¢")S(t5 1", @5 tho, s )
4n u
0 0

-
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1 2m

1 , du’ ,
WL j JP(—M’AP’ o o) g 4
4n J1
0 0

t 1 2= 1 2n
1
+ dr' S(ts 1 @5 Mo, Por £ — 1) X
16n2J J JJ 15 B 5 Hos Po
0 0o 0 o0 O

I ' n " ” " d ! ’ d#” "
X P(=p's ¢ 5 1", ¢")S(ri5 1, 8" 5 thos os 1) : d ~o- ¢ @9)

Equation (25) is the required functional equation of the time-dependent S-function.
» Again, if we differentiate Equations (18), (19), and (20) with respect to 7 and taking the
limit as 7— 7; and 7— 0, respectively, and following the same procedure we get

aT ; 'S ; b ,t
(T2 1 @5 Bos Po )_I_#-—l
oT,

= eXp<—ﬁ) 5<I—L>P(—#a¢; = lo» Po) +

18
(1 += —>1(fl;u, ; thos Po, 1) =
c ot

Ho Cho

1 2=n

1 II. " " ”
+;t J JP(—;MP; =u" )T (5 1", 9" 5 ko Doy 1)
0 0

”

+

"

d
u
1 2=n

1
& Jonseinse ol 2)e(-2)
¥ Clo o
0 O
1 2=n
I

(U]

1 2=xn

t
du’ 1
X P(i, $5 ~ o> o) — d¢’ + — Jdt’J J
u' 167
0 [V ]

XS(rsu @', @'t = )T (v 1", @75 tos Gon ') X

d ! , d " "
XP(u', ¢ s —p", ¢") —:— d¢ f‘ de”, (26)

aS(Tl 5 U, ¢; .an ¢0’ t)
aT,

(e Gra)ol-Ga) e ()
xexp{ -5, |—+-))olt—-—-—]+exp| ——| %
Ho M Ch  Clo U

= P(#’ ¢; — Ho> ¢0) X
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1 2=n

J J f T(ts "5 @5 pos G0, 8 = 1)P(, 3 — ", ¢") X

t 1 2=

du” 1
X 5<t’ ——‘) # d¢” + — Jdt’_[ J T(t;p ¢ u', ¢, t—1') X
cu/ u" 4n
(0] o]

o]

c Ho

du’ 1
><5<t’ —ﬂ)CXP<—3>P(u',¢'; ~ Hor §0) - dgf +—— jdt’ X
u 1672
0

1 22 1 2rn

XIJ fJT(n;u,¢;u’,¢’,t—t’)T(tl;u”,¢”;uo,¢o,t’) X
0o 0

P - ) S ag S ag, @)

T
X ‘[ J‘ P(—p s 0", 9")S ('51;“”, ®", tos Pos t — —l) x

0
( —t I)T(TI’ U ¢ o> ¢0’ t) =
oty yo c Ot

=P(-p ¢; —/uo,4>o)exz><—3>5<t—3)+L eXP(—3> X
Iz cu/ Am Iz

1 2=n

cp
0 0
1 2=n
du” b 1 .
d¢ o T(vys 0, ¢ OP(— oy @5 — pos o) X
0 o0
1 22 1 2xm
- T(t,p osp,t—t')X
U

0O 0 O

" " ? ’ ” " d’ du "
xS(rl;u,qs;uo,¢o,t)P(—u,¢;u,¢)#i,d¢ 4

(28)

Equations (25), (26), (27), and (28) are the required functional equations for S’ and ‘T
functions. Let us now introduce the Laplace transform with respect to the time-variable
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which enables us to eliminate (at least formally) the time-variable,

aS(TI;u’ ¢;.u05 ¢0,S) + <l+i) (1 +£> S(Tl;ﬂ, ¢;I~10, ¢o,S)
ot “o o ¢

1 2=n

1
= P(u, 5 — o> o) + — J JP(u,¢;u”,¢”)><
4n

”

" " d# ”
X S(ty5 1", 9" 5 tos Po» ) —;17 d¢” +

1 2xn

1
+;t J JS(rl;u,¢;u’,¢’,s)P(—u’,¢’; = Hos Po)
0O o0

I

dp do’ +
U

1 2 1 2=m

1
= J J J JS(rl;u, O 1 9", 5)S (T 1", @75 o, Po» 8) X
0

o 0 0

+

d 1 d n
X P(=p's ¢35 ¢") ﬂi d¢ Tf— dg” 29)

aTT, s P s » S s -
(1 K ¢ Ho ¢0 )+<1+E)T(Tl;ﬂa¢;u05¢0’s).u' =

o1,
1 2=n
) Tls 1 ” "
= P(—p ¢5 thos o) €xp| — — | + — T(t; 4", 9" 5 pos Pos 8) X
cu/) 4m
0o 0
du” 1
X P(~pt, ¢5 1", §") o dg" + — exp(—ﬂ) exp(—ﬂ) x
U 4n Ho Clg
1 2=m
I r ! dul ’
X S(Tl;.u’ ¢,,ll 5¢ 5S)P(.u".u >~ Hos ¢0) ﬂ' d¢ +
0 O

1 2= 1 2=n

' lzjj JJS(T‘;”"P;“/"P"S)P(M',W;—u",¢")><
167 JJ )

d I3 d "
+ T(t5 1", 0" 5 Hos Bos 8) : d¢ #L d¢" (30)
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NCHX N exp ( . (l + i)) X
= 1
o, B Ho

11 1
X eXP(—T—'s-(—+—)>P(u,¢; ~ o> Po) + — exr><—ﬂ> X
c \u o 4n Ho

1 2z

s
X exp (— *) J J T(ty; 1", 9" 5 Hos Pos> S)P X
0 0

d " 1 ’E T s
X (g —u"s $7) Fm dg” +— exp (_ ‘l) exp (' ;) x
H 4n Ho Clg

1 2xn

d !
X J J It dp', 6, )P, @' 5 — tos $o) ui d¢’ +
[¢] 0

1 27 1 2=n

" 6w T(vs i §su's @ )P, ¢'5 —p", ¢") x

" d g n d ' ’
X T(t; 1", 9" 5 thor o> 5) ui dg —:— dg’ 31)

BT(T1;#, ()b’ Ho> ¢Oa S) + i(l +£) T(Tl;[l, ¢, Ho» ¢0, S) —
o7y Ho ¢

= exp(—ﬁ) exp(—E—S)P(—N,Qb; — Hos $o) +
u p

1 2=n

1 T T8
+— exp<——1)exp(—L)J‘ JP(—M, o p", ") x
4n u cu
0 O

1 2=
” " d#” n" 1 ’ ’
X S(1; 1 ’¢,#o,¢o,s)7d¢ +4—WJJT(11;M,¢;u,¢,s)><

0o 0

’ ’ d ' ! 1
X P(~ ', §s = fior §o) - ' + ——
U 167

1 2 1 2=

XJJ JJT('cl;u,¢,u',¢',S)P(—#',¢',#"a¢")><

0o 0 o0 O

X S(tsu"s ¢ 5 o ¢>o,S) ¢ d¢" (32)

.4
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2.4. THE REDUCTION OF THE INTEGRAL EQUATIONS
We have

N N
Plu, s, ¢')= X 2=, | X wrPP(wPr(u') |cosm(¢’ - ¢).
m=0

I=m

If we follow Chandrasekhar (1960), we obtain

~ S(ty; s 5 Bos Pos 5) = ZO ST (115 1, pos 8) cosm (o — @)

m=

N
T(ty; s @5 Bo> Po» S) = Z T (15, o, 5) cosm(¢o ~ @) -
m=0

105

(33)

(34)

(33)

> If we substitute these expansions of S and T in Equations (29)-(32) and after some

rearrangements we get

(m) .y .
<l+i>(l+£>S(m)(fx;u,,uo,s)+s (ot poi ) _
Ko Ho ¢ oy

e Y (—1)'"+'wm[Pm(u)+£Dl+—m
oml L 2(2 = %0,m)
. d , _ 1 [+ m
N Jsm(r;#ﬂu',S)le(l‘,) Iﬂ,_] liP/m(ﬂo) ’ 5%7%0,?

0
1

X J le(”’”)S(M)(Tl , #"9 ,u'05 S)
0

14

’
"

(m) .
. (1 i f) T (115 by gy 5) + 0T (43 b on8)
A s ¢ oty
N (_l)l+m
= (2 - m w [Pm FEA S A
o, )I=Zm 1 () 202 - 50,'")

1

d !
X j S (s w1, )P (w) “L] X
1]

X [exp |:— s <1 + f)ij,”‘(uo) +
Ho ¢

1
1 dl'L”
| T(1; 1", o, )PP (u") — |,

2(2—50,”)! (s 1”5 1o )‘1(#)”"]

(36)

(37)
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98 (1,5 ph o, 5)
0T,

m | _ﬂ f ;
X P (“)CXP< u<1+c>)+2(2_5°"")x

1
d ’
X J T (ty; p, 1, )PP (') L] g
"

0

ryerp| -2 (145) [+ L
X [P/ (o) exp|: Lo <l * c>:| * 2(2 = %,m) "

N
=Q -8, Y (D mwrx
I=m

¥«
1
d n
5 J PP (u" YT (1 1", oy 8) ] G8)
v H
(m) .
i(l +E)T(m)(fl;y;uo;s) $ T o)
Ho 2 Ty
N T K3 1
_e-8.) S wr| P ex ——‘<1+—>)+—x
@ -t 3 wr|ere () 30
1
on) gy OB
X | T (50, po, S)P (1) R
i U
1
m (_l)l+m m n n 1 d "
x [P, (o) + T2 | PP (IS (" o) | (39)
2(2 - d,,m) [z
0 S
If we now let
!
_ 1 !+ m d ’
W ) = PGy + —— L JS‘""(rl;u, W) Py 2 @)
2(2 - 5O,m)
0
and
&7 (5 4y 8) = ex (— E<1 + E>)P"'(u) +—X
(] 15 My p /l, c ) 2(2—60’,")
1
d 7
x J T (ty5 4y ', 5)P (1) : , (41)

0 .

]
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then, in view of principle of reciprocity (Chandrasekhar, 1960) we can rewrite

Equations (36)-(39) in the form

() .
<l+—1_>(1 +§) S(m)(rl;“s u'O’ S)+ aS (TI’M’ H’O’ S) =
1o o ¢ oy

. N
=(2= 8. ,m) 2 (1Y ™ w (s s W (115 tos 5) 5
I=m

0T (5 by fhos 5) _
aT,

l(1 + f) T (145 4y o, 5) +
U c

N
= (2= 8, m) 2 WY (Tis 1 ) (715 Ho» 5)
l=m

and
08 (%15 s o, il
( 1 .u ”O s)=(2__ 50,”1) Z (_1)[+mw;n
01:1 l=m
X ¢ (75 s )G (715 Hos )
- and

i <1 + f) T(M)(Tl ; ﬂ9 MO’ S) +
Ho ¢

a71(’”)(‘['-1 > U, ”0’ S) _
ot

N
= (2= 3, m) Z w O (T, SI (s 1, 8) -
I=m
Now by use of Equations (42) and (44) we get
1 1
(— ¥ ‘> (1 * E)S(M)(Tl S s o, 5) =
Ho B ¢
N
= (2= 8.,) X (1wl L (s )T Hos 5) —
I=m

— @ (5 1 $)PT (715 Hos 9] ;

(42)

(43)

(44)

(45)

(46)
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and by use of Equations (43) and (45)
1 1
<___> <1+ )Tlmz(Tlau’“09s) (2— 50 m) Z X
Po M ¢ 1=m
X w7 (a5 o SI(T5 os ) — W7 (Tys e )P (15 o, )] . (47)

Equations (46) and (47) are the two fundamental equations of our problem.

3. Solution

3.1. LEGENDRE EXPANSION OF THE PHASE FUNCTION AND THE PRINCIPLE OF
INVARIANCE

Let us now consider that the atmosphere consists of two different layers. Denoting the
quantities in the upper layer by subscript ‘1’ and the quantities in the lower by subscript
2’ and if we use Equations (46) and (47) we have

N (m)
SO (55 o s 8) = 0 (2= 8 ,) 3 (=Y KEL
B+ to I=m Q
X (55 I (5 tos ) — 07 (%5 1, 5) — @7 (5 1 )G (75 phos ) 5

(48)

(m)

N
w
Tl(m)(Ti; Hs Hos S) = aial (2 - 50, m) 2 !
M=l =m

X (@7 (T o Y (T35 1 8) = Y7 (T55 1 S)P(T:5 Bo» 5)] 5 (49)

(_ )1+m

d I
(s 1, 8) = PP(p) + ———— ) f S (', )PP (1) TL’L (50)

2(2 - 50 m
and
7,0 1
(s 1, 8) = P (w) ex (— : >+—x
& (%5 1, 5) = P"(u) exp 2 ) 0 a0
1
X J TI™(; p s )P (1) di, ; (51)
: u Y
where
0=1+> and i=12. (52)

]

L

o
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If we use the above representations and again if we use Equations (34) and (35) we can
write the scattering and transmission function in each layer as

N
Si(T5 s @ os Pos ) =. Y, ST 1y fhoy 8) cOsSm (g — @) 5 (53)
m=0
N
T, (5 s D5 tos Pos 8) = Zo T™(%5 ty po, 5) COSM( — )

(i=1,2). (54

In what follows we inquire into how represent the scattering and transmission functions
in the whole atmosphere. If we follow Tsujita, we introduce diffuse radiation intensities
I,(%;5 14, @5 to, Po, 5) and L (7, f, @5 U, Po; ) Which leave the upper and lower layers
in the direction (g, ¢) with respect to the boundary between the two layes, where (14, ¢g)
denotes the direction of the incident radiation at the upper surface t= 0

L(%5 1o § fo» B> 8) and Io(515 1, 5 o o )

must satisfy the »co‘nditions
(1, §s g, P, 8) =0 for O<pu<l, (55)
L(t s 1, @5 g, P0,8) =0 for —-1l<pu<0. (56)

Then from the principle of invariances (A)—(B) we have after the Laplace transform with
respect to time variable

m _ " Q'c
1(2 )(TI;H”'u’O’S)=FH' 1S(2 )(72;u9”0’s)exp<_ﬂ—l +
0

1

J SE (15 4, IOty 5 1, o, ) dp' dg’ ;. (57)
0

P S
2(26 = 8o, )i

1

I (45 o os ) = Fum YT (105 4, gy §) + —————— X
2(2 - 50,m)#

1
X J S(lm)('cl’ ﬂs wy s)I(2"')(rl, K5 pho, 5) du’ do’ . (58)
From (C)-(D), °
Fu=1S(%; s @ to» Po, 8) = Fu™ 'S, (%5 1, @ to» Po, 5) +

1 2=

T 1
+12(T;”’¢;ﬂ0’¢0as)eXP<—1—¢)+— f j T, x
u 4mu
0 0

X (25t 5 15 G (T 15 @5 os o, 8) dp” dgf (59)
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and
Fu='T(%; 1, }; tos Do 8) = Fu™ ' To(13; 4, ®; Bos $o 5) X

X exp(— -T‘—Q> + 11 (vs 14 @5 pos ¢o,s)exp<— %) +

Ho

1 2=

1
+— J j TZ(TZ;!I’ ¢;IJ'I, ¢,,S) X
4mp
0o 0

X (1 15 @5 thos fo» 8) dp” dg' (60)

where 14, 7;, and 7, are the optical thickness of the whole atmosphere, the upper and
the lower layer, respectively. Furthermore, we assume that I,(t;, 4, ¢, p’, ¢, 5) can be
expanded in the form

N

Lt udsp', ¢, 8)= Y, I (5 p 0, s)cosm(¢’ — @),
o

(=12). (61

If we substitute this expansion in Equations (58) and (57) and taking account of
Equations (53) and (54) and allowing for

2n

J cosm(¢p” — @) cosn(¢’ — ¢")d¢" =9, ,ncosm(¢p’ — P)(m#0,n#0) =

0

=27 (m=n=0), (62)
we obtain
IYn)(Tl ; ,‘1‘1 |u07 S) = F'Ll-_ ! Tgm)(‘cl 7 #7"#0’ S) +

1

J S (g5 o ', IS (45 145 o, 8) dit, (63)

0

P S
2(2 - 5O,m)“

T
I(zm)('cl 3 Uy Hos §) = Fﬂ—lsgm)('cl 3 U5 o 5) €XP (_ ;_Q) +
0

1
P - J S (55 o 'y T (T3 17, o, 5) dp” (64)
2(2 - 5O,m)
0

3.2. AUXILIARY FUNCTIONS AND THEIR FUNCTIONAL RELATIONS

Let us now consider some auxiliary functions'in terms of which I, (t; y, ¢; to, ¢g, 5)
and I,(7y; 4, ¢; Yo, Po, 5) are formed. If we-assume that they depend on only one

L
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argument, we seek functional relations satisfied by them and then solve the system of
equations. For convenience, we put

N
I (54t pioy ) = F =0 Y w0 AG (1, o, 9), (65)
H—=Ho i=m
(M) (g . - Bo S . om) pom)
I3 (T 4, po, 5) = F Z WZ,IBI (1 po» 5) - (66)
Bty 1=m

If we insert Equations (65), (66), (48), and (49) into Equations (63) and (64) and
rearrange them approximately, we have

y X
2w AT (i, po, 8) = (2 = 8,,) 2 o ¢ (11, 1, 5) X
I=m I=m

X 'lllm(rla lio,s) - lplm("'-ls U, s)¢lm(717 #o,s) +

1

+1J{§(—1)'+m UL e, U (s ) —
) R 0 1 (T Wy 1 T |

0

- 90T i 9| B B )|

m

!

X[ p . Illo ]du’, ©7)
I A T T

ws?

M=z

N
w8 B (py o, ) = (2 = 8o, ) 3o (= 1)+
! I=m

X [llllm(rZ’ H, s)‘//Im(TZ’ #0; S) - Im(TZs K, S)(le('cz, Ho> S)] X

1
N (m)
xexo| - 12+ 1 (= 1yem P21
p
Ko 2 J U=m Q

X [lp[m(’cz’ U, S)‘l’/'"(fz, #', S) - Im(rz’ u, s)¢lm(‘52’ ﬂla S)]} X

o b p
X |: 2 w(l',nI)A(IM)(l'Ls p’O’ S)] [ , + ,7] dﬂl ) (68)
1= p+p p - o

we rewrite Equation (67) as

2 5wy
Y, WA (s os ) = ). Q O (T, 1y 8) X
l=m I=m
1
- (_ 1)/+m ” ,
X {2 = O, )" (15 to» 5) +—2— to | (7, 1, 5) X
0
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N
Z w(z',nl)Bgm)(l‘L,s Ho> S) '

I=m Ny
X B d.u’ - Z l//lm('rl, U, S) X
B+ o 1=m Q

1
m (-1 ™ i
X (2 - 6O,m)qbl (T’ Ho> S) + —2— Ho llll (Tla u ,S) X
0
N
Y W B (W, o, ) N
f=m ’ H [+m w(lml)
X - dp'| += Y (-1yrm—2Lx
A 2i1=m 0

X I:j l/’lm('cla H, S)'p;n(tl’ ﬂlas) B ¢Im(rl’ K, S)‘le(tl’ “,:S):| X
J pp

N
X [ 2 wEB(W, o, 5) du’] : (69)

I=m

If we take account of Equation (48), we write the third term of the right-hand side of
the above equation as

m

’ 1
5()m J‘ | )( I ) % W( ) BS )( ! )| , ( )
;u9ﬂa B ,uv,,ur s S . ;0
2(2 ’ ) 1 1 ; 2,1 ¢ 0 ,

Then we put

m) m (_ 1)I+m
{7 (pos 8) = (2 = 3o, )W (715 Ho, ) + T Ho X

N
Z W(z',"/)Blm(#', lu’05 S)
I=m

du’, (71)

!

1
X J ¢lm(1:1’ .u'l5s)
J Bt u

(_ 1)[+m
2

0‘(2',"1) (ko> 8) = (2 = 8, )P (11, o, 8) + Ho X

M=z

wm B (1, o, 5)
!

it

m

dy’ . (72)

’

A

1
X j l/’lm(‘rl’”"as)
0

«
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If we make use of Equations (70), (71), (72) and rewrite Equation (69) once more, we

have

A(Im) (ﬂ’ Ho» S) = a(l’,nl) (HO’ s)¢1m (Tl’ u, S) - ug,nl) (ﬂ()’ S) X

x YT, py s) + 1 (ng’) Q> X
00 - 8, ) \wi

7

1

, , dp’

x J‘S(l'n)(fla 22y ,S)Bsm)(l,t s Hos S) :
0

On the other hand, by rewriting Equation (68), we have

N _( p N wgm[) ;
IZ WZ',nl)Blm)(l‘l" l‘o,s) = IZ 7‘ (_ 1) +m¢[m(,r2, U, S) X

X (2 - 50,m)lpl'n(1:2, ,u(), S) exp(—llg) +&x
Mo 2

Mz

! w(lr,"I)A(IM) (IJ’, ﬂOs S)
l=m

r
X '//;n(TZs lu'” S) B d/t’ i
L )

1

oe

wi?)

Q

1
T
X exp(— 1—Q> +Ho J (T, 1, 5) X
Ho 2 ’

N
z w(l’,"l)A(IM) (,U.’, uo: S) 1

!

, dp'| +—— %
B~ o . 2(2 = 0, m)

|
M=

!
X

X

N
m ’ m ! d '
S (5 1y o ,S)[Z w{ B (1 ,uo,s)] 2
I=m H.

OK__>__

(_ 1)I+m¢lm('r2’ U, S) (2 - 5o,m)¢1m(‘52, U, S) X

(73)

(74)
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Then we write a{™) (1o, 5) and a{™ (i, 5) as

.. ag’,nl) (o> 8) = (2 - 50 W (25 lo, 5) €xp < IQ)
N Ho

M=

wim A (W', o, 5)
I=m

1
+ % J‘ [M"(‘[,'z, #I’ S) d.ul s (75)
0

1= o

txf{,nl) (lu'O’ S) = (2 - 50’m)¢lm(‘62, Uo» s) exp ( — ﬂ) +
Ho

Mz

wim AT (W, o, 5)
m

1
4 <
+ HZ_O J ¢lm(12! B'ss) du’, (76)
0

il

# = o
If we make use of Equations (75) and (76) and rewrite Equation (74) once more, we have

B( )(ﬂ, .u0’ ) = a(m) (ﬂo,s)‘lfl (12, ,U., ) - a(m) X

X (ho> )P/ (725 1, ) + 1 (W(‘T’)>Q X
b b £ s
v 202 - 8,0n) \W§?
1
(m) ’ m ’ d:uI
X S2 (7"2; H" H. ’ S)AI (I’L > Hos S) 7 . (77)
4]

From Equations (73) and (77) we get
A (4, o5 8) = a7 (o, S)P™ (T, 1 8) — 0877 (Ho» 5) X

9+ 2800 9) ———— ()0 x
Ty U4, S o >
e 1 20 = 0.0 w7

1

1
* J S(lm) (TI 5 o lu'” S)‘P/m(fz, S) - a(m) (#Oa S)

— X
2(2 - 5O,m)

1
wim du’
X ( 2”)Q J S (115 1y Hoo S)PT (T ', 5) ui +

0

1

1
1
TR j ST (s 1, 5) J SE (g5, 1, $)AT X
~ Yo,m
0 4]

!

" dy’
x (" uo,s) pr £, (78)

q)



ANISOTROPIC TWO-LAYERED ATMOSPHERE

and

B (1, ior ) = 0 (Hoy 5) —— (W("’"’)>Qx
,LL, uO! llo’ 2(2 _ 50,,,,)

1

d
X JSé""('ﬁ;:.u, w8 (t, p1'ss) :

0

7

- a(2’,nl) (”0’ S) X

1
X ! (W(‘T’))QJS""’(I s s S Y (T, 15 8) X
R AN/
0

d !
X o) Gy YU (525 1 8) — 0§ (tr 5) X

1

1
X O (tg, st —————— | S (1, ) X
I k= T
0

1
dy’
X J S (v us.p”, S)BY (1", po, 5) — #
u’
0

Again, from Equations (78) and (79), if we use Equations (73) and (77) we get
AT, o, 8Y = a7 (phos IBT? (s 5) = 087 (o, 5) X

W

1
X (rm) y + ] (m) s X
B5T? (u, 5) 20 6 (W(m)) 7 (Hos $)

X B, 5) — oa§™) (po, S)BY? (1, 5),
_ 1 w(m)
B ) = 3 )(w;;;))gascv(uo,s)x
L 0, m

W p-s) — 087 (o, 59577 (s 8) + a87) (tto, 5) X
(M) (ﬂ’ S) - a(m) (l’t()’ S)y('”) (I‘Ls S) ]

By (u, 8) = ¢y, pty5) + —— %
1.1 (t, 8) = ¢ (Ty, 14, ) 4(2_50‘m)2

1
d f
XJ S (7 p, 1, Y (W', ) : ,
(4]
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(80)

(81)

(82)
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BS (wy ) = Y™ (zy, 1, ) +

_— X
42 ~ 8, )
1 .
dy’ :
X J S(IM)(‘ED /l, #’, 5)75',"1) (lu'” S) 'L, ’ (83)
, p
A
d ’
BEY (1, 8) = | ST (rs 1!, D9 5) o (84)
5 # :
H
d ’
BN s) = | ST (a5 ', ¥y 8) T (85)
: u
1
' d ’
W) = | ST (s ', BT (W' ) o (86)
pt U
1
r d !
Y (y5) = | SE (e ', )Y (W', ) o (87)
: H
(m) ,5) = (m)fr’ ,s 4+ — X
7577 (u ) = ¥ (%2, 1, ) 42 - 50,m)2
1
d 7
X JS § (22 1, ', )BSTY (15 5) i , (88)
0 s
Gy 85)= (1 1, 8) + ————— X
ya? (u )= & (tp5 1, 5) 402 - 5o,m)2
1
d !
X JS § (5 1 ' )BT (', 5) ui : (89)

0

If we combine Equation (82) with Equation (86), Equation (83) with Equation (87),
Equation (84) with Equation (88), and Equation (85) with Equation (89). We can deter-
mine B (u, s) and yP (u, 5) (i = 1, 2, 3, 4) numerically. From Equations (71), (72),
(75), (76), (80), and (81) a{? (1o, ), Ay (1, po, 5), and B{™(u, uy, s) can be calculated
and then from Equations (65) and (66), I{™ (t,, i, Uo, 5) and I§™ (<, p, 1o, 5) are deter-
mined. Thus we obtained S(to, i, @, Lo, G0, ) and T(zy, i, P; Ko, Po,s) from
Equations (59) and (60).
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AN EXACT SOLUTION OF THE EQUATION OF TRANSFER FOR
COHERENT SCATTERING IN AN EXPONENTIAL
ATMOSPHERE
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Department of Mathematics, North Bengal University, West Bengal, India

and

T. K. DEB
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(Received 26 April, 1991)

Abstract. An exact solution of the transfer equation for coherent scattering in stellar atmospheres with
Planck’s function as a nonlinear function of optical depth, of the form
B(T)= by + by e P,

is obtained by the method of the Laplace transform and Wiener—Hopf technique.

1. Introduction

Chandrasekhar (1960) applied the method of discrete ordinates to solve the transfer
equation for coherent scattering in stellar atmosphere with Planck’s function as a linear
function of optical depth, viz., B (T) = b, + b,1. The equation of transfer for coherent
scattering has also been solved by Eddington’s method (when #,, the ratio of line to the
continuum absorption coefficient, is constant) and by Strémgren’s method (when 7, has
small but arbitrary variation with optical depth) (see Woolley and Stibbs, 1953).
Dasgupta (1977b) applied the method of the Laplace transform and Wiener~Hopf
technique to find an exact solution of the transfer equation for coherent scattering in
stellar atmosphere with Planck’s function as a sum of elementary functions, viz.,

B(T)=by+bt+ Y bE(1),

- r=2

by use of a new representation of the H-function obtained by Dasgupta (1977a).
Recently, Karanjai and Deb (1990) solved the equation of transfer for coherent isotropic
scattering in an exponential atmosphere by Eddington’s method.

In this paper, we have obtained an exact solution of the equation of transfer for
coherent isotropic scattering by the method of the Laplace transform and Wiener—Hopf
technique in an exponential atmosphere (Degl’Innocenti, 1979; Karanjai and Karanjai,
1985; and Karanjai and Deb, 1990), where

B,(T)=bo+bie’",
where by, b,, and f are positive constants.

Astrophysics and Space Science 189: 119-122, 1992.
© 1992 Kluwer Academic Publishers. Printed in Belgium.
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2. Equation of Transfer

The equation of transfer considered here is of the form

df, (7 wyde = 1,(, w) = w, (1) - (1 - w)B(T), 0]

where we have taken Planck’s function B,(T) as

B(T) = by + bye~F", 2)
O<(I-¢)l+n)=w<l, (2a)
Ilk=n,, 0<eg,<1; (2b)

1,, k being the line and continuous absorption coefficient; 7, the optical depth in the total
absorption coefficient; ¢,, the collision constant; and I,(z, 1) is the intensity in the
frequency, in the direction cos~! g, J, (1) is the average intensity

7, = (1) J 1,05 1) d. 20)

For the solution of Equation (1) we have the boundary conditions
) I,(0,-p)=0, O<pu<l,

(i) I(r,u)e "™ 50 as 17— 0.

3. Solution for Emergent Intensity

The Laplace transform of F(z) is denoted by F*(s), where F*(s) is defined by
F*(s) = SJ exp(~st)F(t)dr, Rls>0. 3)
o

The formal solution of Equation (1) (Dasgupta, 1977b) is
1,00, p) = wl¥(1/p) + (1 - w)B¥(1/p) . (4)

The Laplace transformation of Equation (1) with necessary re-arangement
(Dasgupta, 1977b) yields

T(2)1,(0,2z) = wG ,(z) + (1 - w)B}(1/2), (5)
where
T(z) = 1 — (w/2)zlog[(z + D/(z - 1)], (6)

and

G.(2) = (1/2) J xI,(0, x) dx/(x - z). Q)
0
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T(2) has its roots + k, real for 0 <w <1
k(>1)> 00 as w-o1.
According to Dasgupta (1974) we have
HZ)-» Hy+H_{/z+ -+ as z- 0,
where
Hy=(1-w)~1?

and

H_, = —(wHZ[2) J xH(x) dx .

By the well-known relation (Busbridge, 1960)
1/T(z) = H(z)H(-z) on [-1,1]°¢,
we rewrite Equation (5) as

1,00, 2)/H(z) = H(-2) [wG,(2) + (1 - w)B}(1/2)].

If we use the Laplace transformation of Equation (2) by Equation (3) we have

B*(s) = by + sby /(s + B) .
Fors=z"!
B*(1/z) = by + b, /(1 + B2) = (dy + d,2)/(1 + Bz) (say),
where |

dy=byf and dy=1by+b,.

If we insert Equation (14) in Equation (12) we have

1,0, 2)/H(z) = H(-2) [wG (2) + (1 — w) (dy + d,2)/(1 + fz)]

which can be rewriten as

1,0, 2)/H(z) = H(=2) [wG(2) + (1 — w) (do/z + d)/(1/z + B)]

121

®)

€)

(10)

(a1

(12)

(13)

(14)

(15)

(16)

Now as z —» o, G,(z) = 0(1/2), since we seek solution 7,(0, z) regular for Rez > 0 and
continuous on [0, 1]¢ and since H(z) is regular on [ — 1, 0]¢/[ — k], — k is a simple pole

of H(z), 1/H(z) being regular on [ — 1, 0]°.

We see that the left-hand side of Equation (16) is regular at least for Rez > 0 except
- perhaps at 0o, and the right-hand side of Equation (16) is regular at on [0, 1]¢ except

at co, both sides being bounded at the origin.
The right-hand side of Equation (16) is

C, as z— o0,

(17)
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where
Co = Hy(1 — w)d,/B. (18)

Hence, by a modified Liouville’s theorem both sides of Equation (16) can be equated
to C,, so that the left-hand side of (16) is

Co a8 z—> 0, (19)
the right-hand side of (16) is

Cy, as z— . (20)
Equation (16) can be put in the form

I(0, 2)/H(z) = Cy = Hy(1 ~ w)d, B. @1
If we use the relationship d; = byf in (21) we get when z

1(0,2) = H(z) (1 — w)Hyb, . (22)

Since we have Hy = (1 — w)~ /2.
Hence, from Equation (22) we get

10, z) = H(z) (1 — w)'b,, (23)

which is the same as deducted by Karanjai and Karanjai (1985).
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Abstract. A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck’s
function as a nonlinear function of optical depth, viz.

B(T)=by+b e F*
is obtained by the method developed by Busbridge (1953).

1. Introduction

Chandrasekhar (1960) applied the method of discrete ordinates to solve the transfer
equation for coherent scattering in stellar atmosphere with Planck’s function as a linear
function of optical depth, viz.,

B(T)=by + b,z.

The equation of transfer for coherent scattering has also been solved by Eddington’s
method (when #.,, the ratio of line to the continuum absorption coefficient is constant)
and by Stromgren’s method (when #, has small but arbitrary variation with optical
“depth; see Woolley and Stibbs, 1953). Busbridge (1953) solved the same problem by
a new method using Chandrasekhar’s ideas. Dasgupta (1977b) applied the method of
Laplace transform and Wiener—Hopf technique to find an exact solution of the transfer
_equation for coherent scattering in the stellar atmosphere with Planck’s function as a
sum of elementary functions, viz.,

B,(T)=by+bt+ Y bE(),
re=2
using a new representation of the H-function obtained by Dasgupta (1977a). Recently,
Karanjai and Deb (19914, b) solved the equation of transfer for coherent isotropic
scattering in an exponential atmosphere by Eddington’s method and the method of
Laplace transform and Wiener—Hopf technique. In this paper, we have obtained a
solution of the equation of transfer for coherent scattering in an exponential atmosphere,

Astrophysics and Space Science 192: 127-132, 1992.
© 1992 Kluwer Academic Publishers. Printed in Belgium.
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B(T) = by + by e P

where by, b,, and f are three positive constants, by the method used by Busbridge (1953).

2. Equation of Transfer

With the usual notation of transfer for the Milne—~Eddington model can be written
(Busbridge, 1953; Chandrasekhar, 1960) as

+1

drs
H Y= (kv+ av)Iv_%o-v J Ivdy" - kav(T)’
pdz

-1

(M

where z is the depth below the surface; k,, the continuous absorption coefficient; and
o, is the line-scattering coefficient. We assume that &, and o, are independent of depth
and we write

Then

and

z

t= Jp(kv+ g,)dz,

1 k
’7v=$” Ay = = .
v l+’1v kV+O-V
T=A,t

B(T)=by+bye P*=by+ b, e P,

where B, (T) is the Planck’s function.
Substituting into Equation (1), we get

Ty

+1
| H—ji,:Iv(t:p')_—%(l —')'v) J Iv(t’.u’,)dp'l - j‘v(bO-i'-ble_BAVt)'
. -1

Equation (5) has to be solved subject to the boundary conditions

1,00, -p)=0, O<p' <1

(2a)

(2b)

€)

©)

(6a)
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and

Lt u)e >0 as t-w. (6b)

3. Solution for Emergent Intensity

For convenience we suppress the subscript v to the various quantities and consider a
particular solution of Equation (5), which does not satisfy Equation (6a) in the form
(Busbridge, 1953)

T.b

It p)=by + — 11— e B 7
(& 1) = b, 1+ pin Q)
where
A
fi=— 1+ 4B ®
1-——({0 - log——
278 1-A8

as readily verified by substitution. We, therefore, write (cf. Busbridge, 1953)

T,b
I(t, ) = bo + ———e P + I*(t, p). )
1+ pu

Then I*(z, p) satisfied the integro-differential equation

MM =16 —5(1- 4 j e p')du', (10)

together with the boundary conditions

T,b
0, —p)= - ————-b, (O<p' <1) (11a)
1 - pAu
and
IFt,pe ™50 as t-oo, (11b)

we require the emergent intensity 7*(0, ). This is the sum of IF#(0, u), where I}*(t, p) is
the solution of Equation (10).
Subject to the boundary condition

¥, -p)=0, O<p' <) (12)

and I¥(0, 4) which is the diffusely reflected intensity corresponding to the incident
intensity given by Equation (11). It can be shown that unless A, = 0 (which is not so),

IFew=0. (13)
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1

1 T,b
10, ) = 13(0, p) = 2 J S(u ') <# - bo> dy’,
4}

BAu -1

where (cf. Chandrasekhar, 1960)

S i) = (1 - DL HpH()
wp

and H(y) is the solution of

) = 1+ 401 - D) | HD gy
pp

From Equations (14) and (15), we have

U

—bo> KE p(uydy’ =

+

101 _ T,b,
10,0 = 301 l)H(u)!<m

pwH)dy'

=11 - DH(WT,b, -
(4= HHw J W -

500 - Db, | £ HG aw -
J W+

-1 - pa I [ B gy
BA JHtW

+ 101 = 2)A( L J( H(p') dp’

1

+u

- 301 - DH(wb, j (1 - H—“—) H(w) dy' .

W) (BAp—1)

(14)

(15)

(16)

a7
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After some rearrangement and with Equation (16), this gives

H(p)T1b, 1 _ T,b,
1+ Bip H(-1/p2) 1+ BAu

+ (H(p) — Dby — 3(1 = DH(p)boog

I*0, p) =

where
1
o, = JH(u)u" dp.
0

Following Chandrasekhar (1960)
=301 - Do = 222,
we have from Equations (9) and (18)

H(WT,b, 1
1+ Bau H(-1/BY’

100, ) = H(w) AP by +
which represents our solution.

Appendix
We have to show that
IF,w=0.

For this, with the usual notation (cf. Chandrasekhar, 1960), we have

1 n
¥, W zi(l =) X ALy e ™1 + pk,)},
a=1
where the constants L, are determined by the equations

Z LJ(l-wk)=0, (i=12,3,...,n).
=1
Since

[1 (k) 3 Laf(1 - k)

is a polynomial in p of degree (n — 1) with » distinct zero, it is identically zero.

Hence, every L, = 0, and in the limit, as n — o0

If(t,w=0.
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(18)

(19)

(20)

3y

(A.1)

(A.2)

(A.3)



132 T. K. DEB AND S. KARANIJAI

References

Busbridge, I. W.: 1953, Monthly Notices Roy. Astron. Soc. 113, 52.
Chandrasekhar, S.: 1960, Radiative Transfer, Dover Publ., New York.
Dasgupta, S. R.: 1977a, Astrophys. Space Sci. 50, 187.

Dasgupta, S. R.: 1977b, Phys. Letters 64A, 342.

Karanjai, S. and Deb, T. K.: 1991a, Astrophys. Space Sci. 178, 299.
Karanjai, S. and Deb, T. K.: 1991b, 4strophys. Space Sci. 179, 89.

Woolley, R. v. d. R. and Stibbs, D. W. N.: 1953, Quter Layers of a Star, Clarendon Press, Oxford.

-

LT .



SOLUTION OF THE EQUATION OF TRANSFER FOR
COHERENT SCATTERING IN AN EXPONENTIAL
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Abstract. A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck’s
function as a nonlinear function of optical depth, viz.,

B(T)=by+b e

is obtained by the method of discrete ordinates originally due to Chandrasekhar.

1. Introduction

Busbridge (1953) solved the transfer equation for coherent scattering in stellar atmos-
phere with Planck’s function as a linear function of optical depth, viz. B (T) = b, + b,
by a modified principle of invariance method. Chandrasekhar (1960) solved the same
problem by the method of discrete ordinates. The same problem has also been solved
by Eddington’s method (when 5,, the ratio of line to the continuum absorption
coefficient is constant) and by Stromgren’s method (when #,, has small but arbitrary
variation with optical depth) (see Woolley and Stibbs, 1953).

Dasgupta (1977b) applied the method of Laplace transform and Wiener—Hopf
technique to find an exact solution of the transfer equation for coherent scattering in

 stellar atmosphere with Planck’s function as a sum of elementary functions, viz.,

B(T)=by+bt+ Y bE(T),
r=2

using a new representation of the H-function obtained by Dasgupta (1977a). Recently,
Karanjai and Deb (1991, 1992a) solved the equation of transfer for coherent isotropic
scattering in an exponential atmosphere by Eddington’s method and by the method of
Laplace transform and Wiener—Hopf technique.

By use of a method developed by Busbridge (1953), Karanjai and Deb (1992b) solved
the same problem.

In this paper, we have obtained a solution of the equation of transfer for coherent
isotropic scattering in an exponential atmosphere by the method of discrete ordinates,
where B (T) = by + b, e~ #* and b, b, and B are three positive constants.

Astrophysics and Space Science 192: 209-217, 1992.
© 1992 Kluwer Academic Publishers. Printed in Belgium.
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2. Equation of Transfer

The equation of transfer considered here is of the form

+1

= (kv + Gv)Iv - %av J IvdH, - kav(T) (1)

-1

dr,
pdz

U

(Busbridge, 1953; and Chandrasekhar, 1960) where z is the depth below the surface;
k,, the continuous absorption coefficient; and o, the line-scattering coefficient. We
assume that k, and o, are independent of depth and we write

z

t= J plk,+ a,)dz , (2a)
0
T= kav dz , (2b)
[¢]
k,
n,= ok, A,=1/(1+1,)= - 3
k,+ o

Then 7= At and

B‘,(T)=b0+b1e_’3’ > (4a)

B(T) = by + b, e P (4b)

If we substitute in Equation (1) we get

+1
dr (z, ) , , _
p S gy - 31— 2) j 106 W) Q' = Aoy + by e=") |
2

dt
&)
Equation (5) has to be solved subject to the boundary conditions
Iv(os —ﬂ) = 0’ (0<Au’s 1) (63)
and
I(t,w)e "0 as t—oo, |pu|/=1. (6b)

Now a particular solution of Equation (5), which does not satisfy Equation (6a) is

T.,b
It 1) = by + —21—e™ 0, (7)
1+ oa,u
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where
A
T, = y (82)
1+«
1-3(1- zlv)log1 -
and ' v

a, = pi, (8b)

as readily verified by substitution.
If we follow Busbridge (1953) we write

T
It p) = by + by ———e™*" + I, ) . ®
1+ oa,u

Then I*(t, p) satisfies the integro-differential equation

ari, p)
“ _—H

+1
r =i - 5(1- 1) J Ly p)dp’ (10)
t
-1

together with the boundary conditions

T
B0, =p) = =by —— = bo (11a)

and
I*(t,u)e "™ -0 as t—oo, |u|<1. (11b)

3. Solution for Emergent Intensity

For convenience we suppress the subscript v to the various quantities and in the nth
approximation, we replace Equation (10) by the system of 2 linear equations

drx
=T -3 - )Y alf, i=+1,+2,..., +n; (12)
dr Jj
where the u’s (= +1, +2, ..., +n and u_, = — ;) are the zeros of the Legendre
polynomial P,,(u). @’s (j= *1, ..., +n and a_; = a;) are corresponding Gaussian

weights. However, it is to be noted that there is no term with j = 0. For simplicity, in
Equation (12) we write

I for IHt ) - (13)
The system of Equations (12) admits of integral of the form
I:'k=gie_k1 (l=ils’ i‘”) 3 (14)

where the g/’s and k are constants.
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Now if we insert this form for /¥ in Equation (12) we have

&1+ k| =%(1_}”)Zajgj > (15)
J

g = (1 - 2)Sonstant constant ' (16)
[+ wk

If we insert for g, from Equation (16) back into Equation (15) we obtain the charac-
teristic equation in the form

=3(1-2) Y - (a7
7 1+ p.jk
If we remember that a;=a_; and u_; = —u; we can rewrite the characteristic
equation in the form
1=(1-2) Z . (18)

j=1 "ﬂzkz

This is the characteristic equation which gives the values of &. If A > 0, the characteristic
Equation (18) gives distinct non-zero roots which occur in pairs as +k, (r=1,2, ...,
n).
Therefore, Equation (12) admits the 2» independent integrals of the form
constant

IF=(1- 1) ek 19
( )l-ilhk (19)

r

According to Chandrasekhar (1960), the solutions (14) satisfying our requirements that
the solutions are bounded by

n L — kKt
Ir=(-2b Y ] ¢ (20)
r=1 kr.ui
together with the boundary condition
T
1"‘_,-=—b1——b0 at r=0. 21
1—op_;

4. The Elemination of the Constants and the Expression of the Law of Diffuse
Reflection in Closed Form

The boundary condition and the emergent intensity can be expressed in the form

S)=0 (=1,2,...,n) (22)

and

(-1 _ b }

IO, ) = (1 - A)b, I:S(_ﬂ)_ 1+ o (1- )b

(23)
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where
noo L T/(1-2 b
S =Y ———+ a-a, °__ . (24)
rsil—ku l-ap (1= A)b
Next we observe that the function
(I-op) [] 1 - k) S
r=1
is a polynomial of degree n + 1in yu which vanishes forp = p;,i = 1,2,..., n. There must
accordingly exist a relation of the form
A—ow) [T A -lkw)SWoc(w-C) I] w-u), (25)
r=1 i=1

where C is a constant.

The constant of proportionality can be found by comparing the coefficients of the

highest power of u (viz. u”*1).
Thus, from Equation (25) we have

S(u) = wkl _‘_knaw ’
bi(1-2) R(u)(1 - o)
where
Pw%iﬁ(u—m)i=LL~qn,
and ”

R@W=T[U-kp) r=l,r...n.

r=1

Moreover, combining Equations (26) and (27) we obtain

R ¢/ SY¢V/ )

L =(-1y———k, ...k, ,
bO(l - A) Rr(l/kr)(l - a/kr)
where
R.(x) =[] (1 - kyx)
hstr

and
' a#k, .

The roots of the characteristic equation (18) can be written in the form
k1k2 R kn.u'hu'Z cee My = )’1/2 .
Now by use of Equation (32), Equation (26) becomes

bood'? H(-p)(p - C)
(I - )b (1 - o)

S = -

(26)

@7

(28)

29

(30)

(D)

(32)

(33)
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where

| 1__[1 (e + 1)
H() = = ; (34)

Hillp - -- Py 1 (1 + k)
r=1

and the characteristic roots are evaluated from Equation (24).
If we put u = 0 in Equations (24) and (34) we have

n /11/2C
S L+l b _brTCx (35)
r=1 1-2 (A-M1b (-4
We can next evaluate » #_, L, from Equation (29). Then
a2 b
L=(-1y"'"—2 Kk k.. k,of(0), 36
L= (C kKo ) (36)
where
2 P(l/k)(l/k, - C

AR (L- o)

Now f'(x) defined in this manner is a polynomial of degree (n — 1) in x which takes the
values

P(1/k,)(1k, - C)
(1-afk)

for
x=1/k, (r=12,...,n) .

In other words,

(1-ax)f(x) - P(x)(x - C)=0 . (38)

Therefore, we must accordingly have a relation of the form

(1 - ox)f(x) - P(x)(x — C) = R(x)(Ax + B) , 39)

where 4 and B are certain constants to be determined. The constant 4 follows from
the comparison of the coefficient of x”*!. Thus

(__1)n+1

- , 40
kik, ...k, (40)

Next, if we put x = o~ ! in Equation (40) we have

s U (C-U)PE
okk, ... k, R(a™")

) 41
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ie.,
(-1

B=— "
ok, ... k,

+ (= 1"y g H(= 1) (C = a7 1) (42)

Now by use of the relations (42), (41), and (40) we get
f(0) = ~CP(0) + BR(0) = —C(— 1)"pytp - .- t, +

(1)

T i (— 1Y H(— 0 D)(C - ) 43
S (=)'t - 1, H( ) ) (43)

From the Equation (37) using Equation (43) we have

__b—_ l/za_i_q_
TS Dby (1 - Db,

PR

N boad'PH(—a™ Yo~ - C)

(1~ )b, (44)

By use of Equation (44) in Equation (38) we get

C= 1, Tb, ) (45)
o  byaAPH(—a™ 1)

If, moreover, we combine Equation (44), the diffusely reflected intensity I*(0, i) in
Equation (23) takes the form

boad'?H(w) [p + C] _ Tb,

10, p) =
[+ op 1+ op

~ by . (46)

This is the required solution in closed form. If we combine Equation (9) at ¢ = 0 and
Equation (46) we have

by Al c
10, ) = 2* le‘;E“ vl @7)

which is the required solution of Equation (5) in the nth approximation by the discrete
ordinate method.
On putting C from Equation (45) we get the solution in the form

b, TH(y) 1
1+op H(-oa"1)

1(0, p) = by A2 H(u) + (48)

Chandrasekhar’s (1960) solution for I(0, ) in the case of coherent scattering is given
by (for BT) = by + b,7)

10, p) = bo A" H(u) + by A2 H(Wp + 56, A(1 = HH@Wo, (49)
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where
1
o, = JH(u)u" du . (50)
4]

If we compare Equations (48) and (49) we see that by putting b, = 0 we have the same
solution for both the cases. Moreover for large values of f (i.e., f— o0) the solutions
(48) takes the form

10, ) = bo A PH() ; (51)

i.e., B then behaves like a constant or independent of . This fact can also be explained
from the point of view that

B(T)=by+ bje F*>b, as B-ooo.
Also the result obtained by Karanjai and Deb (1992b) is the same as obtained here.

Appendix

To establish the relation (32) we consider

D)= (=N T M m caya -y (52)

H ix
(m=0,1,...,4n) .

We can derive a single recursion formula for D, (x). Then

mﬂhlphDZmW”<h 1 ﬂ=
x i 1+ px

(V=1 = Dpyi1 s (53)

o |-

where
Il/m = (1 - }') - Z ai.u‘;" - (54)

From this formula we have

D,,,(;):h—ﬂ”?‘z+...+(—l)’"‘z "f‘_l+(_l):_l><
X X X X
X [Wo — Do(x)](m =0, 1, ..., 4n) (55)
and
Yo=2(1-2) . (56)

),
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Moreover, let P,; be the coefficient of 4% in the Legendre polynomial Ps, (i), then
Z PyDy(K) = (1-4) Z X Z Pojit; - (7

j=0 ’kr Jj=0

Since the ;s are the zeros of P,,(u). Equation (57) reduces to

i PyDyk.) =0 . (58)

If we substitute for D, (k,) from Equation (56) into Equation (58) we get the required
form of the characteristic equation as

P, A
—ﬁ+---+PO=O. (59)

From this equation it follows that

-1y'pP o)y
1 _(1Py (g, - 1) 60)
(kiksy ... k)2 AP,, A
ie.,
Uiy oot Kihy oo k= AM2 . 61)
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Abstract. The application of the Wiener—Hopf technique to the coupled linear integral equation of time-
dependent X- and Y-functions gives rise to the Fredholm equations with simpler kernels. The time-
dependent X-function is expressed in terms of time-dependent Y-function and vice versa. These are unique
in representation with respect to coupled linear constraints.

1. Introduction

In the theory of radiative transfer for homogeneous plane-parallel stratified finite atmos-
phere the X- and Y-functions of Chandrasekhar (1960) play a central role. These
equations satisfy a system of coupled nonlinear integral equations. Busbridge (1960) has
demonstrated the existence of the solutions of these coupled nonlinear integral equations
in terms of a particular solution of an auxilliary equation. Busbridge (1960) has obtained
two coupled linear integral equations for X(z) and Y (z) which defined the meromorphic
extension to the complex domain | Z | of the real valued solution of the coupled nonlinear
integral equations of X- and Y-functions. Busbridge (1960) concludes that all solutions

- of nonlinear coupled integral equations for X- and Y-functions are the solutions of the
coupled linear integral equations to the extended complex plane but all solutions of the
coupled linear integral equations are not solutions of the coupled nonlinear integral
equations. Mullikin (1964) has proved that all solutions of coupled nonlinear integral
equations are solutions of the coupled linear integral equations but there exist a unique
solution of the coupled linear integral equations with some linear constraints. Finally
he has obtained the Fredholm equation of X~ and Y-functions which are easy for iterative
computations. Das (1979) has obtained a pair of the Fredholm equations with the
Wiener—Hopf technique from the coupled linear integral equations with coupled linear
constraints.

In this paper we have considered the time-dependent X- and Y-functions (Biswas and
Karanjai, 1990) which give rise to a pair of the Fredholm equations with the application
of the Wiener—Hopf technique. These Fredholm equations define time-dependent
X-functions in terms of time-dependent Y-functions and vice versa. These represen-
tations are unique with respect to the coupled linear constraints defined by Mullikin
(1964).

Astrophysics and Space Science 196: 223-229, 1992.
© 1992 Kluwer Academic Publishers. Printed in Belgium.
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2. Basic Equation

The coupled nonlinear integral equations satisfied by the time-dependent X- and
Y-functions (Biswas and Karanjai, 1990) are of the form

I

X(t,, 4y 8) = 1+21 #J X(y, )X (1y, x,8) = Y1y, p, )Y (11, %, 5) d

U+ x
0

0<u<l, 1)

1
Y(‘[,'l, U, S) = exp (-— TI—Q-> + L ] J‘ Y(Tl’ K, S)X(TI, X, S)X(Tla K, S)Y(Tl’ Xy S) d
I 20 p—x

k)

o<u<l, (@

where

0=1+2, 3
c
7, is the thickness of the atmosphere; ¢, the velocity of light; and s, Laplace transform
parameter.
If we follow Chandrasekhar (1960) Equations (1) and (2) can be written as

X(rh U, S) =1+ ﬁ J ‘II(X) [X(Th K, S)X(Tl’ X, S) -
QJ x+up
0

- Y(t, 4, )Y (1, x,8)]dx, 0<u<l, )]

Y(T‘,M,S)=6Xp<—ﬂ)+ Q J ‘ll(X) [Y(Tlsx S)X(Tl’u’s)
u

- X(z;, x, )Y (1, 1, 5)]dx, 0<pu<l; (5)

where (x), the characteristic function satisfying the Holder condition on 0 < x < 1, is
non-negative and satisfies the condition

- J Y(x)dx <L, (6)

The atmosphere is said to be conservative when i, = 3 and non-conservative otherwise.
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The dispersion function T(z, s), ze (— 1, 1)° can be defined by

and

where

T(z,s) =1~ %2 J W(x) dxT(z* — x?)

T(z,5) = (H(z, $)H(~-z,5)7 ",

1

H(z,5) =1+ zH(z, s) M .
: x+z

225
(6
(6b)

Q)

According to Busbridge (1960), the only zeros of T'(z, s) are at z = + K, K > 1, when
Yo <3 and K — co when v, = 3.

Following Busbridge (1960), Dasgupta (1977), and Das (1978) H(z, s) is mero-
morphic on (- 1, 0)° having a simple pole at z= —K and tend to 1 as z— 0 _ . It can
be represented by

where

1

Ay +HOZ_J P(x, s) dx
K+z

H(z,5) = N
x+z
[¢]

1

H(z,s)=hz + hy — J

0

P(x,s)dx

X+ z

1
Ay=(01+P_ )X, P_1=JP(x,s)dx/x,

0

H, = (1 - 2J lﬁ(x)dx>_1/2,

hy = (2fx2¢(x) dx)_l/z,

0

ho=(1+P_,),
P(x,s) = ¢(x,s)/H(x,s),

P(x, 5) = YT (x, 5) + w*x*Y*(x)) ,

, K> 1,y <3,

1.
’ K—)CD,l//():E,

®)

€)

(10)
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To(x,8) =1~ % J () = Y()) def(x? — %) -

- x"’Q(") log(1 + x)/(1 - x),

where ¢(x, s) is non-negative and continuous on (0, 1), tends to ¥(0)x as x —» 0, , tends
to 0((log(1 — x)~2)) when x » 1_, and 1/H(z, s) is regular on (- I, 0)°.

If we follow Busbridge (1960) and Mullikin (1964) we find that the coupled linear
equations satisfied by X(z, s) and Y(z, s) for ze (— 1, 1)° are of the form

X(z, )T(z,8) = 1 + zUX) (z, 5) - zexp(— (1,/2)Q)V(Y) (z, ) , A1) 4 -
Y(z,5)T(z, 5) = (exp(—(7,/2)Q) + zU(Y) (, 5)) -
—zexp(—(u/2)QV(X) (z ), (12)
with constraints for ¥, <3,
0=1+KUX)(K,s) - Kexp(—(1;,/K)Q)V(Y) (K, 5), (13a)
0 = (exp( - (2/K)Q) + KU(Y) (K, 5)) - K exp(— (,/K)V (X) (K, 5), (13b)

for Y, = 3,

1= j Y(x) (X(x, s) + Y(x,s))dx, (14a)
0
qJY@QM@M=JxMﬂ@@Q—Y@QNL (14b) =
The other conditions for which X(z, s) and Y(z, s) hold are
X(z,5) > H(z,s) when 1, - o0, (15a)
Y(z,5) >4 when 1, - o0, (15b)

where for M =X or Y

V(M) (zs) = J Y(x)M(x, s) dx/(x + z) (16)
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is analytic for ze (- 1, 0)° bounded at the origin O(z~ ') when z — o0 and

1
UM)(z,s) = '[ Y(x)M(x, s) dx/(x - z) (17)
0
is analytic for z e (0, 1), bounded at the origin O(z~') when z — co.

3. Fredholm Equations
Equations (11) and (12) with Equations (6b) can be written in the form
X(z, s)/H(z,5) = H(-z,5) (1 + zU(X) (2, 5)) — zexp(—(7,/2)Q) X

x H(-z, s)V(Y) (z, 5}, (18)
Y(z,5)/H(z, 5) = H(-z, 5) ((exp(— 1,/2)Q) + zU(Y) (2, 5) -
- zexp(—(1,/2)Q)H(-z, 9)V(X) (z, 5) - (19)

We shall assume that X(z, s) and Y(z, s) are regular for Rez > 0 and bounded at the
origin. Equation (8) gives

1

_, _ Ao —Hyz P(x, 5) 1
H(-z,5s) K2 J -, dx for yY,<s3. 20)
Hence
\ P(x, s)
V(M) (z,s) j ——— dx = DM, Py) (z, 5) + D(P, M) (z,5), (21)
x—z
0
where
DO P,) (2, 5) = J Y(xX)M(x, s)Py(x, s) dx 22)
x+z
0
and
D(P, M,) (z, 5) = J VP OMo(x 9) (23)
) X -z
where
Py(z, s) = J M 24)
xX+z

0o
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is regular on (- 1, 0), bounded at the origin O(z~!) when z— oo,

1

My(z, 5) = &)I)‘Cl_g__%s)_df , 25)
0

is regular on (- 1, 0), bounded at the origin O(z~!) when z— co and D(M, P,) (z, 5)
is regular for z on (- 1,0), bounded at the origin and O(z~!) when z— co and
D(P, M) (z, s) is regular for z, on (0, 1)° bounded at the origin, and O(z~ ') when z — co.
Hence, Equations (18) and (19) can for y, < 3 be written in the form

X(z, s)/H(z, 5) + zexp(— (7,/2)Q) X
y <Ao - Hyz
K

-z

V(Y)(z,s) — D(Y, Py) (z, s)) =

=H(-2z5) (1 +zUX)(zs) + zexp(—(7,/2)Q)D(P, Yy) (z, 5)), (26)

Y(z, s)/H(z, s) + z exp(—(1,/2) Q) X

-2z

« (A_Oﬂ V(X) (z5) - D(X, Py) (z, s)) =

= H(-z,s) (exp(—(7,/2)2) + zU(Y) (z, 5)) +
+ zexp(—(1,/2)Q)D(P, Xp) (2, ) - 27

The left-hand side of Equations (26) and (27) are regular for Rez > 0 and bounded at

the origin; the right-hand side of Equations (26) and (27) are regular for z, on (0, 1),

bounded at the origin and tends to constants, say, 4 and B, respectively, when z — co.
Hence, by a modified form of Liouville’s theorem we have

X(Z’ S) = H(Z’ S) I:z exp( - (II/Z)Q) <D(Y, PO) (Zs S) -

- A—‘}(ZE V(Y) (z, s)> + A:l , (28)

- Z
Y(ss) = HG, 5) [ exp(— (1,/)0) (D(X, Po) (2 s) -

_ Ao m HoZ iy s)> + B:I , (29)
K-z

Equations (28) and (29) together with Equations (15a) and (15b) gives
A=1, B=0. (30)
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Hence for y, = 3, the expression of X(z, s) and Y(z, s) are

X(z,5) = H(z,5) [1 + zexp(=(7,/2)Q) (D(Y, Py) (z, 5) -

—(—hz+h)V(Y)(z,9))], (1)
Y(z,5) = H(z, 5)z exp( - (1,/2) Q) (D(X, Po) (z, )) -
—(=hz+ h)VX)(z5)). (32)

Hence, following Mullikin (1964) Equations (28) and (29) together with Equations (13a)
and (13b) give unique representations of time-dependent X- and Y-functions for i, < 3
and Equations (31) and (32) together with Equations (14a) and (14b) give unique
representations of X- and Y-functions for y, = 3.
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Abstract. We have considered the transport equation for radiative transfer to a problem in semi-
infinite atmosphere with no incident radiation and scattering according to planetary phase function
w(1 + x cos ). Using Laplace transform and the Wiener—Hopf technique, we have determined the
emergent intensity and the intensity at any optical depth. The emergent intensity is in agreement with
that of Chandrasekhar (1960).

1. Introduction

The transport equation for the intensity of radiation in a semi-infinite atmosphere
with no incident radiation and scattering according to the phase function
w(1 + x cos #) has been considered. This equation has been solved by Chandrasek-
har (1960) using his principle of invariance to get the emergent radiation. The
singular eigen function approach of Case (1960) is also applied to get the intensity

- of radiation at any optical depth. Boffi (1970) has also applied the two sided

Laplace transform to get the emergent intensity and the intensity at any optical
depth. Das (1979) solved exactly the equation of transfer for scattering albedo
w <1 using the Laplace transform and the Wiener—-Hopf technique and also
deduced the intensity at any optical depth by inversion.

In this paper we have solved the above problem exactly by a method based on
the use of the Laplace transform and the Wiener—Hopf technique. The intensity
at any optical depth is also derived by inversion.

2. Basic Equation and its Solution

The equation of transfer appropriate to the problem (Chandrasekhar, 1960) is

+1

,L—dl(;; ) _ Ir, ) — %w Ll I(7, p)(A + xpp’) du’ @)

where the symbols have their usual meaning.
We shall have the following boundary conditions

Earth, Moon and Planets 59. 1-10, 1992.
© 1992 Kluwer Academic Publishers. Printed in the Netherlands.
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I0,-w)=0, 0<pu<l;

1+ x(1 — w)(ulk)
1—kp

I(7, ) — Lo exp(kT)

2

(22)

(2b)

where L, is a constant and k& is the positive root, less than 1, of the transcendental

equation.

-2 ] (LK)
2k k 1-k

- %xw(l —w).

Let us define

f*(s)=s J: exp(—s7)f(r)dr, Rl/s>0.

Let us set

+1

L,(1) = %f I(r, W)™ du', wherem=0,1,
-1

which gives

+1

CORE f I¥s, ') dpr
-1

and

+1

1
If(s) = —f I*(s, p)p' du’,
2)1
Equation (1) with Equation (5) takes the form

pdi(r, 1)

i = I(7, u) — wlo(r) — wxply(1) .

©)

4)

©)

(6)

™)

(8)

Now, subjecting Equation (8) to the Laplace transform as define in Equation (4),

we have, using the boundary conditions,
(s — DI*(s, p) = psI(0, ) — wld(s)
—xwul §(s) .
Equation (9) gives (on putting s = 1/u)
10, p) = wI§(1/ ) + xwul F(1/ @) .

©)

(10)
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Equation (10) with p = 1/s, s is complex, takes the form
10, 1/5) = wI§(s) + xws ' I¥(s) ,

_ we apply the opérator

1+
- ...d
2f—1 #

on both sides of Equation (9) to get

1

116 = (= w5~ 136) =3 [ w0, )

we appIy the operator

1 +1
EJ ...d,u/(,us'—-l),
-1

a(1ls) =1 + wio(1/s) + xwer(1Us)I¥(s) ,

where
1! . '
d(l/S)=5 ps(ps — 1)L, p) dp.
(1)

and

+1

@) =2 [ (w5 =7 dp, m=0,1.
o . =1

(11

(12)

(13)

(14)

(15)

- (16)

17)

Eliminating 1§(s), I7(s) among Equations (11), (13) and (15) and setting s = 1/z,

we have
T@mm@=ﬁf £
2 Joopu—.2
X [1+ px(l — w)2]I(0, p) dpe,
where o
T(z) =1+ wx(1l—w)z? + w[l + x(1 — w)z°Jto(2) »
where ' )

+1

. | d
fo(z)zéf £
2)rp—z

(18)

(19)

(20)

Following Chandrasekhar (1960) and considering Equation (3), we see that T'(z)

has a pair of roots at z = =k~ and
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— 1 _ c
T(Z)_H(z)H(—z)’ z€(-1,1)°, 21)

where H(z) is Chandrasekhar’s H-function for planetary scattering. Equation (18)
with Equation (21) takes the form

10,2) _
H(z) H(- ) omr—Z %
X [1+ px(l — w)z]I(0, p) dpe, (22)

Equation (22) can be written as

)= H-9w0()
where

G(z) =% 1+ (1 = w210, w) d. (23)

oM—2Z

Let us seek solution I(0, z) of Equation (22) by Wiener-Hopf technique on the
assumption that 1(0, z) is regular for Rl z > 0 and bounded at the origin.

Equation (23) with the above assumption on I(0, z) gives the following proper-
ties of G(z): G(z) is regular on (0, 1)°, bounded at the origin and a constant as
z — . Equation (23) then gives

A=kI0.2) _ 1 — k) H(-2)G() 24)
H(z)

where H(—z), H(z), 1/H(z) has the following properties: H(z) is regular for
z € (-1, 0)°, uniformly bounded at the origin has a simple pole at z = —(1/k),
k <1; k is real on the negative real axis and bounded at infinity and tends to
Ho+H_1z7'+ H 27>+ --- when z > .

Hence, 1/H(z) is regular for z in (—1, 0) and bounded at the origin. Similarly,
H(—z) is regular for z € (0, 1)° uniformly bounded at the origin has a simple pole
at z =1/k, k <1; k is real, on the positive side of the real axis and bounded at
infinity and tends to Ho— H_1z"' + H_,z > — -+ - when z —» .

Following the properties of H(z), 1/H(z), H(—z) (Busbridge, 1960) the left
hand side of Equation (24) is regular for Rl z > 0, bounded at the origin and the
right hand side of Equation (24) is regular for z € (0, 1)° and bounded at the
origin and tends to a polynomial say A + Bz, as z — .

Hence by a modified form of Liouville’s theorem

i
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A=k)O.2) _ 4, g, whenze (1,0) | 25)
H(z) :
and
A+ Bz =w(l — kz)H(—z)G(z), when z € (0,1)°. (26)
Equation (25) gives the emergent radiation as

10, 7) = % , @7)

where the constants A and B are two arbitrary constants to be determined later
on.

3. Intensity at Any Optical Depth

The radiation intensity at an optical depth 7 is given by the inversion integral as

c+i8

I(r, p) = (1/27i) lim J exp(sT) X
8= Jeo—is
x I'*(s, w)dsls, ¢>0. ' ’ (28)

Equation (9) with Equation (11) takes the form

I*(s, p)ls = (s, w/(s — 1/p), (29)
where
B(s, 1) = 10, w) — 10, 1s) + 281 ey, (30)
A
But
lim (s — 1/ u)I*(s, n) exp(s7)/s — 0. 31

s—1/n

Hence the integrand of Equations (28) is regular for s € (—o, —1)¢ and has simple
pole at s = =k, k<1.
Hence by Cauchy’s residue theorem, Equation (28) gives

I(t, &) = R, + lim (1/2i) J I*(s, p)e’” dsls, (32)
R—c0 r

where R, is the sum of the residues of the poles at s=*k and I =
MU CDUvUEFUT,. [I'; and I'; are arcs of the circle of radius R having centre
at s = 0 (clockwise) and v is an arc of a small circle of radius r having centre at
s =—1 (anticlockwise) and CD and EF are the lower edge and upper edge of
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i~axis
O
Blc + i)
8
>
0k ¢ N
’ Real axis
8
| __— Alc—-1is)
s-plane
Fig. 1.

the singular line (—R, —1)] (Figure 1). Hence, following Kourganoff (1963) we
have ’

J I'*(s, p) exp(s7) ds/s -0, whenR—® (33)
| STV §)

and

J I'*(s, p) exp(st) ds/s >0, whenr—0. . (33a)

v

Hence in the limit of R >, r -0, Equatioﬁ/ (32) with Equations (33) and (33a)
becomes

I(r, u) = R, + (1/2mi) I'*(s, pw)e’™ ds/s +

cp
+ (1/270) J I'*(s, w)e'" dsls . . (34)
EF : ,

Here on CD and EF,

s=-v, v=1 (34a)
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EXACT SOLUTION OF THE EQUATION OF TRANSFER

and on CD,

X(/v) +iwY (1/v)
H(1/v)Z(1/v)

H(l/s) =

and on EF,

X(/v) —ixY (1)
H(1/v)z(1lw)

H(1/s) =

where

X(U/v) =1+ wx(1—w)v 2 — w1l +x(1 — w)r™?] x

1 <v+1>
X —log ,
2v v—1

Y(1/v) = (wi2)v™t;

Z(1/v) = (X*(1/v) + w*Y*(1/v, ) .
Therefore on CD

¢(s, ) = V(Lv, ) — imW(1/v, p)
and on EF,

¢(s, ) =V (Lo, w) +izW(llv, p),

where

V (1o, ) = I(0, ) — [ (B — vA4)(1/v) } «

(v + K)HA/K)Z(1/v)

x{1+ v+ 1/u }+ (v+ I/M)wal/Z,
1+ x(1—w)/v*) 14x(1—w)?

W (1, w) = |: (B —vA)Y(1/v) }[1 L vt lp jl .

(v + k)H(1/k)Z(1/v) 1+ x(1—w)/v?
Now, Equation (33) with Equations (29), (34a), (40) and (41) gives

L[t ) = W0 ) g
2 J1 v+1/u

4 LJ V(1lv, w) +iaW(1/v, p) R
2 J1 v+ 1/u

I(7, 1) =R, —

Hence when p > 0, Equation (44) give

(35)

(36)

(37)

(38)
(39)

(40)

(41)

(42)

(44)
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I(r,p) =R, + J W(llv, wye " du/(v + Up), (45)
1

where p <0, we shall assume that (V (1/v, p) = iaW (1/v, ) e~ *" satisfies Holder
condition on (1, «) and we have by Plemelj’s formula (Muskhelishvili, 1946)

wa V(1/v, p) = iaW (1/v, p) = db
2mi J1 v+ 1/pn

—+l — +

0o 4+
+ l’ITW(—,LL, ”))er/# + _1_ X PJ V(]‘/v’ #’) - IWW(l/UD/'L) X
2711 1 v+1/p

Xe dv, (46)

where P denotes the Cauchy principal value of the integral. Hence Equation (44)
with Equation (46) for p < 0 gives

"W (1, w) e

I(r,p) =R, +V(—p,p)e”™+P dv, 47)
1 v+ 1/u

where
R,=Ri+R_,, (48)

where, R., is the residue of the integral in Equation (32) at s = = k, and R, is
given by

R, = lim (s — k)I*(s, u) /s
s—k :

= tim — DA T B 1y s e
s—kc{s® + x(1 — w)H(1 — su)
HQINAK T Bk 1y 41—y e (49)

R x( = WL~ k)
Similarly, R_, is given by
R_,= S_I)i(mk)(s + k)I*(s, p) e°/s
— 5 (s + k)H(1/s)(As + B)s
s—(—1) (s — k){s* + x(1 — w)H(1 — sp)
X [1+x(1 —w)ls]e™

(B — AKK[1 —x(1 — w)lk]e ™ .

TR + (- L+ k) e T

_ (B~ AK)1 — x(1 — w)k]e™"
20 + x(1 — w1 + kp)

[dT (1/s)/ds] 22— (50)

)
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4. Determination of constants A and B

When z — 0, from Equation (26) we get
1
- o) | 10, w . G)
0

From Equation (51) and Equation (25) we get after simplification

1 1
Alil_hv_ MJ:@[_QO_,_ M}:m’ (52)
2Jo 1—kpn 2k o 1—ku
where
1
ap = J H(w) du, m = constant .
0
H(z) has a simple pole at z = —(1/k) where
H(w) d
1/H(z) = 1 — zH(z) f Wz) (“) LASILLN R (53)
where
Y(w) = = [1 +x(1 - wp]. (54)
Equation (53) has a zero at z = —(1/k) and so
H(w)d
142> j 'al’(l") (W) dp _ =0. (55)
—1/k

In Equation (55) putting the value of y(u) and simplifying and using Equation
(52) we get

A= 2mN (x(l —w) c) __2mN
kO k Ok + ©) 56)
N=K+x(1—-w), 0 =2— way, C:x___w(léw)al
A+Bp= 25—;;’{(1 + i) + ("——(1 ; W) _ c>} . (57)
Putting
p=1lkwegetkA + B = 25’}2’{ : (58)

where
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R={M—c}(k+c).
k
If we use Equations (58) and (59) we get from Equation (27)
+ —_
10, 1) = (kA + B)k [(1 + E) + {x(l w) C}P‘} H(u) ’
P+ x(1—w) k k 1—kp
when 7— « from Equations (47), (48) and (49) we get

H(/K)(Ak + B)k
[+ x(1 — w))(1 — kp)

I(r, p) — X [1+ x(1— w)lkle .

Hence Equation (61) with Equation (2b) gives
(Ak+B)k L,

K+ x(1—-w) H(1/k)’

which is the expression obtained by Chandrasekhar (1960).
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EQUATIONS SATISFIED BY TIME-DEPENDENT X- AND
Y-FUNCTIONS

S. KARANIJAI
Dept. of Mathematics, North Bengal University, W.B., India

and

T.K. DEB
Dept. of Telecommunications, M/W Station, Siliguri, W.B., India

(Received 21 October, 1992)

Abstract. We discuss a simple method of linearization and decoupling of the integral equations
satisfied by time-dependent X - and Y-functions which play an important rdle in the study of non-
stationary radiative transfer problems.

1. Introduction

In the study of the time-dependent radiative transfer problems in finite homoge-
neous plane-parallel atmospheres, it is convenient to introduce X - and Y -functions
(Chandrasekhar, 1960). These functions satisfy non-linear coupled integral equa-
tions. Due to their important réle in solving transport problems, it is advantageous
to simplify the equations satisfied by them, and, if possible, do so in an exact
manner. Lahoz (1989) did this and obtained exact linear and decoupled integral
equations satisfied by the time- independent X - and Y -functions.

In this paper we have extended the same method to the time-dependent radiative
transfer problem. However, the equations obtained, although linear, are singular
and not solvable by the standard methods applicable to Fredholm equations; instead
they have to be solved by the theory of singular integral equations (Muskhelishvili,
1946).

2. Analysis

The integral equations incorporating the various invariances of the time-dependent
problem of diffuse refelection and transmission can be reduced to one or more
pairs of integral equations of the following form (Biswas and Karanjai, 1990).

1

_ W u X(/L s)X(p,s) =Y (u,s)Y (1, s)
X(p,s)=1+ —2—5‘/

wt

0y

Astrophysics and Space Science 203: 135-138, 1993.
© 1993 Kluwer Academic Publishers. Printed in Belgium.
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Y(/‘a s) X(.u’,’ s) - X(.u'a S)Y(/"’” s)
p—

1
Y (1, 8) = exp{(-n1/m)@} + % JE @
0

Following Chandrasekhar (1960), we can write the above equations in the form:

X )XW, 8) =Y () V(' 5) 3)

1
—14+ £
X(p,s)=1+ Qo/dmb( T

1
Y (us) = exp{(—ni/p)Q} + £ / d’

e ,)Y(M, $)X (¢ -;) :((ﬂ,S)Y(u S)

Q)

where 77 is the optical thickness of the atmosphere and @ = 1 4+ s/c, where ¢
is the velocity of light, s is the Laplace invariant of the time variable and the
characteristic function 1 (x) is an even polynomial in u satisfying

1
bo= [B(wdus 5, )
0

where ¢y = % holds, 1 (1) is said to be conservative; and non-conservative other-
wise.
Clearly, Egs. (3) and (4) are non-linear and coupled. These equations have been
. linearized in an exact manner (Mullikin, 1964). The results are

1
X(p,s)K(p,8) = 1+ s du'(p /)X(# 3)
Q 0/ " (©)
—exp{(-n1/p)Q} 5 0 /dy 1/,(#/)5;(11 ;)
and
t !
Y(p,s)K(pu,s) = exp{(—n1/n)Q} + g/dﬂ%(ﬂ')%—
01 X( ) (7)
_exp{(—rl/u)Q}ﬁ e’ p(u) ot w,s
Q 0/ Wt

4
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where K (u, s) is defined by

Am@—l——/w¢uﬂu+u . ®)

We now proceed to decouple Egs. (4) and (5) in an exact manner (Lahoz, 1989).
We introduce the following singular integral equation, which is linearin 1/T(, s):

1
N P(p') 1
(u,s> QO/ W T K s) W=

®

which, in principle, is solvable for T'(u, s) as 9 (u) and K (u, s) are known func-
tions.
Next, we multiply Eq. (6) by
(' /Q)%(w)
T(N’ S)I((r“" 5)(/", - /"') ’

which we assume is well defined in ¢ € [0, 1] and integrate with respect to u from
Oto 1 to obtain

: o[B80 -y r

{1_13(“,3) /d /’/’_}:(Z_S’) Q/d ,¢#)Y;#_SiP(u 9|

(10)

where we have used Eq. (9).and defined the function P(u, s) (in principle known)
by

. P exp(—=mi/p) 1
Plus) = Q/ T(W,s)K(uw,s) w'+p (4

If we substitute Eq. (10) in Eq. (5) we get the decoupled equation for Y (u, s) as
follows:

Y (u,8)K(p,8) =
= T(—p, s)exp{(—m1/p1)Q}+
+ T(—p, 8)P(p, s)[1 — exp{(—11/p)Q}] = /d o }:(Z 3) (12)

YU 8))Y(u §)P(W'ys)
p—p

(- 9) exp{(-n /1)Q} 5 / dp
0
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A similar anélysis yields the decoupled equation for X (i, s):

X (p, $)K (s 8) = [1 = T(—p, )1 s) exp{(~n1/m)@}] x

1
B e w(u’)X (' S)
dRIE

w—p

(13)

, P, S)X(/t s).
W~ p

AT(—p ) exp{(-n 1)QY 5 /

Eqs. (12) and (13) are linear, singular and decoupled and, in principle, solvable
by the theory of singular integral equations (Muskhelisvili, 1946).
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ABSTRACT :

Chandrasekhar (1960), has considered the problem, by his

discrete ordinate procedure, of the basic non-conservative matrix

equation of radiative transfer for diffuse reflection for  a

combination of Rayleigh and isotropic scattering in a semi-infinite

atmosphere. Schnatz and Siewert (1970) have obtained the. exact

solution of the basic transport equation for non—conserVative
rayleigh phase'matrix by the eigen function approach of Case(1960).

Bond and Siewert(1971) have obtained a rigorous general solution of

a non-conservative matrix equation of transfer, which appears for

consideration of polarization by the eigen function approach of

Case(1960). Das (1979a) solved the basic integro-differential

equation for vradiative transfer in diffuse reflection in a

combination of Rayleigh and isotropic scattering for a

semi-infinite atmosphere exactly for the emsrgent intensity matrix
by use of the Laplace transform and Wiener-Hopf technique.

In this paper, we shall consider the Laplace’ transform and

Wiener-Hopf technique to solve the matrix transport equation for a

scattering which scatters radiation in accordance with the phase

matrix obtained from a combination of Rayleigh and isotropic

scattering in a semi-infinite atmosphere. The basic matrix equation

is subject to the Laplace transform to obtain an integral equation'

for the emergent intensity matrix. On application  of the
Wiener-Hopf technique this matrix 1integral equation gives the

emargent intensity matrix in terms of a singular H-matrix and an
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unknown matrix. The unknown matrix has been obtained by.equating

the asymptotic solution of the boundary condition at infinity.

1. INTRODUCTION

The method of Laplace Transform and Wiener-Hopf Technique has

been applied to solve problems of radiative transfer by Dasgupta
'(1977), Das (1979b) Karanjai and Karanjai (1985) and others.
Recently Karanjai and 1Islam :(1993) solved radiative transfer

problems with anisotropic scattering by the same method. We like to
solve have a particular anisotropically scattering problem where

the phase matrix consists of contributions from isotropic and
Rayleigh scattereing.

2. BASIC MATRIX TRANSPORT EQUATION AND BOUNDARY CONDITIONS :

The basic integro-differential equation for infinity matrix I (t,u)
can be written in the form

+1
p—HBE s 1 - e gL, kL) 1) w o (1)

where T 1is the optical thickness of the atmosphere, u is the

direction parameter, I(T,u) is a (2x1) matrix , w (0 < ® < 1) 1s
the albedo for single

scattering. According to Burniston and

Siewert (1970),

K(u,K), a (2x2) matrix, can be written as

K(uyp') = Qu) Q' (&) (2)

12



where Q(u), a (2x2) matrix, can be defined by

4V

s
~~

1
O
g

172 cu
a(uy = —32er2) [

+ 2) 0

(2¢) Y2 (1t -3
] (3)

QT (#) is the transpose of Q@ (), and ¢ is aparameter (0 < c < 1)

A solution of Equation (1) is required with the following boundary
conditions

I(O,‘U)=0, 0 s puyus i

and I(t,u) — —% W Lo [ . ] e Tk Q1)

T as T — ® , . (4b)

where K 1is a positive root greater than one and real of the

equation T (z) = det D (z2) (5)
3 +1 dn
where D (z) = E + z J_ v (¥) TR _ (6)
P (H) is a (2x1) matrix and ¢ (4) is defined by
(1) = (1/2)8 Q" (1) Qw) (7)

and

E is a unit matrix , D(z) is a (2x2) matrix and L 6 is a specified
(2x1) matrix.

3. SOLUTION FOR EMERGENT INTENSITY MATRIX

The Laplace transform of the intensity matrix is defined by

L]
I" (s,p) =sJfye " I (x,n) du , Re s> 0

Let us set Iu(r)

(8)

v a (2x1) matrix as
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+1 :
I, (¥ = (1/2) J_, Q@ () 1 (T,n) o

. (9)

: +1 T . ' :
I, (s) = (1/2) J_, @ (') I (s,n) du ‘ (10)

we subject the Laplace transform as defined in Equation (8) to

Eqguation (1) to get (Using Equations (4a), (38, (10))

(us = 1) I% (s, ¥) = #s I(o, 1) - © Q(u) I (s) | (11)

The solution for the emergent intensity matrix arrived from

Equation (11)

I(0,0) =wa(u) I, (1/W)

u (12)
Equation (12) gives for u = 1/s , s is complex
I (0,1/8) = w Q(1/s) I, (s) (13)
we now apply the (2x2) matrix operator
+1 T .
Q (p) du
to Equation (11) to get D (1/8) I} (s) = a(i/s) (15)

where D (1/s) is a (2x2) matrix and a{1/s) is (2x1) matrix defined
by
+1

D(1/s) = E + /., fus(5)1?P ’ : (16)
and .
1 T
a(1/s) = (1/2) J Us Q@ (p) I(0,H) du

(us -1) - : -0
respectively where

‘9 (4) is given by Equation (7) , is a (2x2) unit matrix

Eliminating Iﬁ (s) between Equations (13) and (15) we get a matrix

integral equation as
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D(z) I(0,z) = w Q(z) a(z), where §-= 1/z (18)

Following Bond a Siewert (1971) , we have

T(z)= det D(z) = —5 ¢ T, (2) T,(z) + |

[(1-c) + =~ ¢ (1-0) 2*]T (2) (19)
and )

T (2) = (-1)" + 3(1-2%) T, (2) -

(-1)" 3(1-0)z® , n =1 or 2 (20)

+1

T, (2) =1+ (1/2) vz J_, —— | (21)

where T{(z) is analytic in the complex plane cut from -1 to +1 along

the real axis with two zeros at z = x k , k is real (k > 1).

We consider the

(2x2) H-matrix eguation (cf. Abhyankar and

Fymat, 1970) as

1 :
H(z) = E + zH(z) J, H' (1) ¥ () du / (u +2 )
where Y(u) is given by Equation (7).

(22)

We shall assume that the §2x2) H(z) matrix is analytic  in the

complex plane cut from -1 to 0 , bounded at the origin , has a pole

at z = -k , k is real (k > t) and similarly the H(-z) matrix is

analytic in the complex plane cut from O to 1, bounded at the
origin, has a pole at z = Kk

, k is real , (k >1). Hence , H™' (z),

the inverse of the H-matrix, is analytic in the compléx plane cut
from -1 to 0 and bounded at the origin. If the (2x25 H-maﬁrix is a
symmetric matrix, it can be proved that

D(z) = H ' (z) H ' (-z) , z € (~1,1)° - (23)

Now Equation (18) together with Equation (23) takes tha form
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W (2) @' (2) 10,2) [EpEe]
= o [ 52 ] H(-2) a(z) (24)
where the left hand side of Equation (24) is regular for.Re z » 0 |

bounded at the origin and the right hand side of Equatjon (24) is

analytic in (0,1)° , bounded at the origin and tends to a constant

matrix (2x1) say A, when z -— ogsubject to the assumption that

1(0,z) is analytic for Re z>0 and bounded at the origin. Hence, bj
a modified form of Liouville's theorem, Equation (24) gives the
emergent intensity matrix I (0,z) as
10,2) = [ 5— 1 a(z) H(z) A | (25)
We now detefmine the matrix A. The inversion integral g{ves the
intensity matrix I(t,p) as
X+ § D

I(t,0) = (1/2n 1) lim I(s,#) e°" ds/s , «)>0, (26)
. vy @ «-{v

where

I*(s,u) can be obtained as

1*(s,m)/s = [1(0,m) - (&) '@ ' (1/s) Q(n)

I1(0,u)]/ (s = 1/u) (27)
I*(s,m)/s = [1(0,0)/ (s- 1/2) - Qu)
H(1/8)A/(s = 1/k)u(s-1/u)] (28)

The integral of Equation (26) is analytic for s in (-»,-1)° , has
poles at s = £ 1/k , k is real k > ., where s = 1/4 is not a pole

as
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1im (s - 1/u) 1¥ (s,u) "%/ —— 0 (29)
s—1/u » :

The contribution fo pole at s = 1/k will

give the asymptotic
solution of Equation (1) as

I(t,u) — [RTku] Q) H(k) e*’* A when t — o (30)

Equation (4b) with Equation (30) gives the matrix A as
A= (172) [wr (k)] L ‘

. (31)

Equation (25) with Egquation (31) gives the emergent intensity in

the form

1(0,2) = (1/2) © Ly H '(K) H(2) Q(z) [ 5]

p— - (32)

4. CONCLUSIONS

Here we allow the values ¢ (0 < ¢ < 1) and & (0< ® <1) to

study the .general mixture of Rayleigh and isotropic scattering.

a. When w = 1 and ¢ (0<¢ c <1) the basic matrix tranéport equation

yields a conservative model for a mixture of Rayleigh and
isotropic scattering. . A

scattering problem.

c. When ¢ = 1 and w = 1 , the problem yields Chandrasekhar’s (1960)

Rayleigh scattering model and Q(r) reduces to Sekera's (1963)

In this problem there exists some possibilities for future
development such as determination of the H-matrix expression-

and the values of the D(z) matrix on both sides of the cut etc.

17

When © (0¢ w <¢1) and c¢c=1 , we obtain the genera1 Rayleigh -

form for factorising the Rayleigh scattering phase matrix (Das.19790%§

Y



. There exists some possibilities to determine a characteristic

function which is an even function having polynomial expression

but has a transcendental form.

REFERENCES :

Abhyankar , K.D and Fymat, A.L. 1970, Astron. Astrophys. 4,101.

Bond, G.R and Siewert, C.E, : 1971 , .Astrophys. J. 164,97,

Burniston , E.E,and Siewert , C,E. : 1970 , J.Math Phys. 11, 243.

Case K.M. : 1960, ann., phys. 9,1,

Chandrasekhar, S. : 1960, Radiative Transfer , Oxford University Press.

Das, R.N. : 1979a , Astrophys., Space. Sci. 63,171,

Das, R.N, : 1879b , Astrophys. Space. Sci. 63,155,

Das, R.N. : 1979c , Astrophys. Space. Sci.‘62,143.

Dasgupta, S.R. : 1977, Astrophys. Space Sci. 50,187.

Islam, Z, agd Karanjai, 8. : 1993, Astrophys. Space 8ci. (to appear)
‘Karanjai, S.and Karanjai, M. :1985, Astrophys. Space Sci. 115,295.

-~

Schnétz. T.W. and Siewert, C.E, : 1870, J. Math Phys. 11,2733.

Sekera, Z. 1963, Rand Memorandum R - 413 - Pr (Rand Corp.,Santa Monica),

18

ET 00 TR e
®olvo:  Tinre

R g o et e eld




