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6.3 The relation (4.38) of chapter 4 

To establish the relation (4.38) , of Chapter 4 , I consider 

D (x) 
m 

= ( -1) ."n w m l k l 
r=1 r r · . 

\. 

= 
1+/-l . X 

cr>'l. 

{6.16) 

1 - J.1 (r)ix 

I can derive a single recursion formula forD (x) .Then 
m 

D (x) 
1 [ l k l m-1 ( 1 

1 ) ] = "n w • ai. /-1 c r > - = 
m X r=1 r r 1 + 

)( 

'" 1-lcr> 

1 
[ .lpm-1 D ] (6.17) = -

X m-1 

=1: l. a\. #-1 <: > i where lpm "n w (6.18) 
r r 

r \. 

From this formula I have 

D (x) 
lpm-1 lpm-2 (-1 )m-2 

. ¥'f. 
+ = -- + -..... + 

m X 2 m-f. 
)( )( 

( m = 0 , 1 , ••• 4n ) (6.19) 

and 

(6.20) 
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n 

Let p (fJ) = 
2n 

~ p zn 
L 2nf..l 

j=O 
i.e. 

z· 
be the coefficient of f..l J 

in the Legendre polynomial P (fJ), 
2n 

then 
n k 

D ( ( J( ) =2 
a. 

1. 
X 

2j r ~<r>OI 
r=1 

'l?r W r l. 
1. 

1 + f..l J( 
<r> <r>OI 

(6.21) 

Since 
f..l c r > \. s are the zeros of P < f..l> 

2n 
, Equation (6.21) 

reduces to 

n 

· ~ . P D ( ( K ) = 0 ( 6. 22) 
j f

0 
2 j 2 j r < r > 01 

Substituting for ·n ( ( K ) from Equation (6.20) into 
2j r <r>OI 

Equation (6.22) I get required form of the characteristic 

equation as 

P
2 

n ( 1 - 11/N ) 

(zn K 2n + ··-······· + p = 0 
0 

r <r>OI 

where M and N are given by the equation (4.39). 

From this equation it follows that 

1 = 
( ( r K< r > 1 ( r kc r > n )

2 
(1- M/N ) P 

zn 

(6.23) 

= 
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( l.l<r>t" • • • · )
z 

~-'<r>n 
= (6.24) 

( 1 - MIN.) 

and 1.1 • 1..1 • • • • 1..1 • ( K . . . . ( K = 
<r>t .<r>Z <r>n r <r>s. r <r>n 

= ( 1 - M/N)
1

/
2 (6.25) 

which is the required relation. 
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Abs.lracl. Tl1~ ~4uation of transfer [!br interlockc? m~ltiplets. has been solv9d by th9 inetln~d of discrete 
ordmatcs, ongmally due to Chahdlasckhar, cons1dcnng nonhncar form of the Planck function to be 

B,.(T) = b, + h1 e-ll 
I I. Introduction 
I 

Woolley and Stibb~ (1953) [applied the theory of forh1ation of absorption lines by 
coherent scattering to the ca~~ of interlocking without redistribution and deduced the 
equation pf transfer in the Mjlne-Eddington model. They have also obtained a solution 
for the case of triplet:; by Eddington's approximate method. Bus bridge and Stibbs ( 1954) 
applied the principle of invafiance governing the law of diffuse reflection with a slight 
modification to soiv\: exactlylthc equation of transfer in the M-E modeL Oasgupta and 
Karanjai ( 1972) applied SoJolev's probabilistic method to solve the transfer equation 
for the case of interlocking wib10ut redistribution. Another exact solution of the equation 

I 
of transfer has been given by Dasgupta ( 1956) by his form of the Wiener-Hopftechnique. 

I 
Karanjai and Barman ( 1981) applied the extension of the method of discrete ordinates 
to find an exact solution of /he problem of line formation by interlocking in the M-E 
model. basgupta ( 1978) obiaincd an exact solution of the transfer equation for non­
coherent scattering arising rrbm interlocking of principal lines without redistribution by 
Laplace transforma~ion anctJthe Wiener-Hopf technique using a new representation of 
the H-function obtained by Dasgupta (1977). While solving the transfer equation, 

I 

Dasgup~a consider\!d the flanck function to be linear .in t (optical depth), i.e., 
B,.(T) =' B(t) = b0 + b 1 r. Karanjai and Karanjai (1985) solved the equation of transfer 

I • 
lor interlocked multiplcts with the Planck function as a nonlinear function of optical 

I 

depth following the methodiuscd by Dasgupta ( 1978). They considered two nonlinear 
. , I 

forms of B v(T), VIZ.: I 
(I) aj1 exponential atmo~phere (Delg'lnnocenti, 1979) in which 

B,,(T) ;=.- B(t) == b0 + b1 e-11
'; 

I -
•. I 

Astrophysir.·s and Spac~, >.:ience 178: 107-117, 1991. 
0 1991 Kiliwer Amd.:~.f. · Publi.rlu!n. Printed in Belgium. 
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(2) an almosphere (Busbridge, 1955) in which 

B ,.(T) = B(t) = b0 + b1 t + E 2 (t) . 

In this pap..::r, we have ob~ained the solution of the equation of transfer for interlocked 
1]1llltiplets by discrete orclinate method ih nn exponential atmosphere in which 

B,.(T) = b0 + b1 e-P•, 

Where T is the optical depth. 

2. The Equation of Transfer 

The equation of transfer considered here is of the form (Woolley and Stibbs, 1953) 

df,.( T, f.l) ( ( ) ( ) ( ) f.l = 1 + IJ,.)I,. T, f.l - I + t:IJ,. B\' T -
dT ' . 

(l) 

• I 

where r denqtes the optical depth and 1/,. = k,./ k denoting the line absorption coefficient 

for the rth line and k the continuous absorption coefficient which is assumed to be 
constant for each line. In the present case we consider that the collision constant t: and 
Planck's function remitin ·constant for cue~ line. We also consider an exponential 
at,nospherc for which Planck's function, i.e., the thermal source function is given 
(Degl'Innocenti, 1979) by 

B,.(t) = b0 + h1 e -II•, (2) 

where b0 , h1, and fJ are three positive constants. 

Now, if we use Equation (2) in Equation (I) we have the transfer equation for the rth 
interlocked line in the forrn 

dl,.( !,Jl) ( ( ) -fiT !• ---- == 1 + IJ,.)f,. T, p)- (l + t:IJ,. (b0 + b1 e ) -
dr . . _ .. _ 

+I 
II 

- W - e)a,. I 
fJ=I 

f Ip(T,/L')dp'' (3) 

-I 

where 

~., = IJ,./(1/ 1 + 172+ '"' + IJd, r= J,2, ... ,k; (4) 

so that 

'X1 + ct2 + · · · + ak = I · (5) 
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Equation (3) is to be solved subject to the boundary conditions 

fr(b, - Jl') = 0 , (0 < J1 ~ 1) 

and 

3. Solution -of Equation (3) 

Following Bus bridge (1953) and Stibbs ( 195,3), let 

· represent the solution of Equation (3 ), where 

~r(l + f:IJr) Tr = ___ _____c;_;__.-~'------

1 1 + IJr + fJ 
1-- (1- e)IJrlog -~-

2{3 I + IJr - fJ 

and 

109 

(6) 

(7) 

(8) 

(9) 

(10) 

This consists of two parts. The first part consists of ihe solution for a bounded 

atmosphere as rtends to infinity. The second part: viz., Ir*( r, Jl) represents the departure 

of the; asymptotic solution from the value Ir( r, p) as we approach the boundary. 

Now if we insert Ir( r, J1) from Equation (8) in Equation (3) and taking 

(1 - e)IJr 
w = 

r 1 + IJr ' 

( 11) 

we have the equation 
'I 

~ ·11 df:j_'.!J!l = /*( 7:, Jl) - wr __ I __ [ I IJ I 1,:'( 7:, p') dJ1' ~} ( 12) 
·' dt r 2'k p=lp -I IJ, . -I 

p=l 

together with the boundary conditions 

( 13) 

and 
(14) 



110 T. K. DEB ET AI.. 

For the sake of convenience, Equation ( 12) can be rewritten in the form 
+I 

f" d!J_/r.J.lJ =I* (t,") _ _!V,./3._ [ ~ 11 J * ( ')d J ..,,,. d (r) r k L. p /(/') T, J1 Jl' , 
r p~t I IJ, -1 

( 15) 

I'~ I 

together with the boundary conditions 

(I 6) 

and 

(I 7) 

Equation ( 15) can pe replaced by the system of 2n linear equations 

(18) 

p=J 

(i = ±I, ± 2, ... , ± n), 

where the Pcr)/s (i = ± I, ... , ± 11 and {LcrJ _, = - 11tr)) are the zeros of the Legendre 
polynomials P 2,(p) which arc dependent on the lines of iqterlockiog ar1q a;'s 
(.i = ±I, ... , ± n) and (a _1 = aj) are correspon!ling Gaussian weights. However, it is 
to be noted that there is no term with j = 0. Fqr simplicity, we write 

in Equation (18). 
The system of Equations ( 18) admits of integrals of the form 

lc~J;=K(r)ie-"', (i= ±I, ... , ±n), 

where g1, 1/s and K are constants. 
Now if we insert this form for /1~,; in Equation (18) we have 

constant 
• ·. g(r)i = IV, ----

1 + ~r!-l(r)iK 

(19) 

(20) 

(21) 

(22) 

If we insert for g1,.1; from Equation (22) back into Equation (21) we obtain the charac-

~ 

J;..'.!'\~-

~ 

'I 
:~ 

i ,, .. 

,, 
\:. 

' i 

., 

~ g 

" 

~ 
~. 

i.!. 
il 
:i 
g 
'I 

~ 
~ 

' j 

" l 

~1 
~ 

~{ 
~ 
!'· 
'1 

~·· 

.~i 
~\ 
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teristic equation in the form 

(23) 

in which a1 = a_ 1 and J.l(r) _
1 

= - J.l(r)j. 

We can rewrite the characteristic equation in the form 

1 [ k II 

1 = -k-- L ~/pWp .L 
'\' p~l ;~I 

t.... IJ" 

(24) 

p~l 

This is the characteristic equation which gives the values of K(r)· If w, < 1 
(r"' I, 2, ... , k), the characteristic equation (24) gives distinct non-zero· roots which 

occur in pairs as ± K(r)01. (<;t"' 1, 2, ... , li). 
Therefore, Equa~ion (I 8) admits the 2n independent integrals of the fqrm 

f25) 

According to Chandrasekhar ( 1960), the solutions (20) satisfying our requirements of 

the boundedncss of the solutions arc 

ll L e-K{r)x't 

I* _ b '\' (r)oc 
(r)i - W, I ,?... ----''----'-"---- • 

"= I 1 + ~rK(r)ocJ.l(r)i 
(26) 

together with the boundary condition 

at r = 0. . (27) 

4. The Elimination of the Constant and the Expression of the Law of Diffuse 
Reflection in Closed Form 

The boundary conditions and the emergent intensity can be expressed iri the form 

S,(J.lcrJ;) = 0, (i = 1, 2, ... , n) (28) 

and 

(29) 

where 

(30) 
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Next we obseu.:: that the function 

II 

( 1 -· ~,.{J{t) f1 ( 1 - ~rK('r)aJl)S,(Jl) 
a:= I 

in a polynomial of degree (n -J: !) irt Jl which vanishes for Jl = Jl;, i = 1, 2, ... , n. There 
must accordir•gly exist a relation of the forn1 

n n 

(I - ~,Pft) f1 (I - ~,Kcr>aJl)S,(Jl) - (Jl - C,) f1 (Jl - Jl;), (31) 
a= I i= I 

where C,. js a constant. . 
The constant of proportionality can be found by comparing the coefficient of the 

highest power of Jl (nameiy, Jl" + 1 
). 

So we have, from Equation (31) 

( -1)"+ 1 P( )( C) S ( ) ;: K .;: K ;: p ' Jl Jl - ,. 
,. JL = biiVr '>r (r)l · • • '>r (r)., '>r R,.(Jl) (I _ p~,Jl) ' (32) 

where 

ll 

P,.(Jl) = f1 (Jl - Jl;), (i = !, 2, ... , n) (33) 
i= 1 

and 

R,\ll) = TI (I- ~,.K(r)afl), (a= I, 2, ... , n). (34) 
a= I 

Moreover, if we combine Equations (32) and (33), we obtain 

(35) 

where 

Rlr)x(x) = f1 (I - ~,.K1 ,.) 7x) {36) 
y"' a 

and 

{J ¥- K(r)a . (37) 

The tools of the characteristic equation ( 17) can be written in the form 

"K "K (I II' ~r (r) I · · · i;,. (rln fl(r) I · · • fl(r)n = - W,) - · (38) 

-

·~ 
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Now by usc of EqJJation (38), Equation (32) becomes 

(39) 

where 
II n (ll + Jl.(r)i) 

] i =I 

H,(/l) = -------
Jlrr>J · · · Jl(r)n " TI (1 + ~rK(rJa:ll) 

(40) 

c<= l 

and the characteristic roots are evaluated from Equation (24). If we put J1. = 0 in 

Equations (30) and {40) we have 

(41) 

and we l~an next <,;Valuate r~= I L(r)X from Equation (35). Then 

(42) 

where 

II 

/,(x) = L (43) 
?<= i 

Now fJx) defiiied in this manner is a polynomial of degree n - I in x, which takes the 

values 

for 

x= 1/';,K,,,", (a= 1,2, ... ,n). 

In other words·,~ 

(I - (rf3x)f,.(x) - P,.(x) (44) 
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Therefore, we must accordingly have a relation of the form 

(45) 

wh.ere A, ~nd B, are certain constants to be determined. 
The constant A, follows from the comparison of the coefficients of x" + 1

• Thus 

(-1)"+1 
A .,_, 

' • K • K 1;,. (r)l ' '· Sr (r)n 

(46) 

Next, if we put x = ( 1;,,[3)- 1 in Equation (46) (cf. Chandrasckhar, 1960) we have 

I. C., 

(- 1)" 
B,. = + ( -I)"J.l(r)l ··· J.l(r)n X 

/;,,.{JI;,,.K(r)l , , . /;,,.K(r)n 

x fi (- _
1

) (c -_·1 
) . 

r {J(,,. r /;,,.{3 

Now if we use the relations (48), (47), and (46) we get 

I. C., 

_(,.(U) = - C,P,.(O) + B,.R,(O), 

(- I)" 
,/;('1) = - C,(- I)" Jl(rJI • • · Jl(r)n + -·--- · · ·-- · --- ·- + 

/;,,.{J(,,.K(r)l , .. (,.K(r)n 

· ( ·1)(. ·I) + ( -I)"Jl(r)l · · · J.l(r)nflr -- C,.- ~- · 
{JI;,,. {Jr;,. 

From Equation (43) using Equation (49) we have 

~ I ho (.' .I If" • {'' ho L... "(r)O< ·~ ·-··· r ( - IVr) ~ Sr J - - + 
ot=· 1 w,h 1 wrh 1 

(47) 

(48) 

(49) 

(50) 

,.. 
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Now if we use Ec!uation (50) in Equation (42) we get 

Cr = _1_· 1 -- Trbl 

~rP h ;: /3( I - w )112 H (- _I_) 
0 ~r r r p, 

~r 

(51) 

and if we combine Equation (40), the diffusely ret1ccted intensity fc~> (0, {L) 111 

Equation (29) takes the form 

This is the rc~quired solution in a closed fon1J. If we combine Equation (8) at r = 0 and 

Equation (52) we have 

(53) 

which is th(: i·equired solution of Equation (3) in the nth approximation by the discrete­

ordinates method. 

If we put Cr from Equation (51), we get the solution in the form 

(54) 

Chandrasekhar's ( 1960) equation for 1)0, J-1) in the case of coherent scattering is given 

by (B ,.(T) = b0 + h1 r) (see also Karanjai and Bannan, 1981 ), and 

1,.(0, J-1) "' bl ~)I - 1Vr)
1
i
2 pHr(J-1) + h0 ( I - 1Vr}

112 H,-(J-1) + 

(55) 

If we compare Equations (54) and (55) we sec that if we put h 1 "'0, we have the same 

solution for both cases. Moreover, for large values of j3, i.e., p--. x. The solution (54) 
takes the form 

(56) 

i.e., B ,.(T) then behaves like a constant or independent of r. This fact can also be 

explained froill the point of view that 

B.(T) = h0 + b1 e-IIT_.b0 as p--. x.. 
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To establish the relation (38) we consider . ~ ' ~ ; 

k ,, 

\~ IJ,. II',. ' - a; f.l(!J!_ = .D,(x) = .L. L, 
,. 1 I+ J.l(r)ix 

k 

= ( -- !)'" L 1/,.W,. I 
r:,;. I 

a;J.I(~J~--
1 - f.L<rJix 

we can derive a single recursion formula for D,x. Then 

.) _ __ m- 1 1 [ k ( D,(\ -X r~l IJ,.lV,. ~ a;Jl(r)i I 

[ 1/1,- I - D,- I] ' 
X 

where 

From this formula we have 

D,(x) = t/1,=-!- t/1,:!- + · · · + ( -1)"'- 2 ~ + 
X x- Xm-1 

(- !)"'-I 
+ ----- [t/10 - D0 (x)], (m = 0, I, ... , 4n) 

x"' 

and 
k 

t/Jo = 2 I IJ,.II',.. 
r=l 

Moreover, let P2i be the coefficient of f.1 2J in the Legendre polynomial P211 (f.1). 

Then 

II 

I p~jD2i(~,.K(r)"Y.) = 
i~ () 

Since ~he f.lcrJ/s are the zeros P211 (f.1). Equation (62) reduces to 

II 

I p2.iD=,(~,.K(rp) = () · 
i ~ () 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 
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't~ _,._; , ... ,: ): ;;.i .. ~-:;·+~: -.~ 
If we substitute for D2.i(~,.K<,.>") fl·6'rii}E·quation (6'IT:i1'itd Equation (63) we get the 

required form of the ch:.:·actcristic equation as 

From lhis equtltion it follows that 

and 
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COHERENT SCATTERING IN AN EXPONENTIAL 

ATMOSPHERE BY EDDINGTON'S METHOD 

S. KARANJAl 

Depl. t!/" ,\J.uhemtJiics. Nonh Bengal Universily. W.B .. India 

and 

T. K. DEB 

D<'fl/. of"Tl'i<'mllllllllllimlion.•·. M; W Swlirm, Si/iguri, W.B .. India 

(Received 7 June, !99/J) 

Abstract. An approximate solution of the transfer equation for coherent scattering in stellar atmospheres 
with Planck's function as a nonlinear function of optical depth, viz., 

B,.(T)=/>0 +b 1e 1'' 

is obtained by Eddington's method. 

I. Introduction 

Chandrasekhar ( 1960) applied the method of discrete ordinates to solve the transfer 

equation for coherent scatt..:ring in stellar atmosphere with Planck's function as a 

iinear function of optical depth, viz., B,.(T) = b0 + b 1 r. The equation of transfer for 

coherent scattering has also been solved by Eddington's method (when 'lv• the ratio of 
line to the continuum absorption coefficient, is constant) and by Stromgren's method 

(when 11,. has small but arbitrary variation with optical depth_(see \Y.ool!ey and Stibbs, 
I 953 ). Dasgupta (I 977b) applied the method of Laplace ~ransform and Wiener-Hopf 

technique to find an exact solution of the transfer equation for coherent scattering in 
stellar atmosphere with Planck's function as a sum of elementary functions 

II 

B ,.(T) == h0 + h1 T + 2:; h,.E,.("r), 
r .. 2 

by usc of a new representation of the /1-function oblained by Dasgupta ( 1977a). 

In the present paper, we have obtained an approximate solution of the equation of 

transfer for coherent isotropic scattering by the method used by Eddington (Woolley and 

Stibbs, 1953) in an exponential atmosphere (Degi'Innocenti, I 979; Karanjai and 
Karanjai, 19~5; Deb eta/., I 990), 

B,.(T) = b0 + b 1 e ·· 11 '. 

where {J. b0 , b 1 are positive constants. 

:ls!rophysics and Space Science 171J: 299-302, 1991. 
ID 1991 K lt~wc•r A cadc•mic l'uhlixlu•rs. l'rillled in IJl'iKilllll. 
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2~ Eql!illion of Tr~nsfcr 
The equation of transfer for coherent scattering can he written (cf. Woolley and Stibbs, 

I lJ53) in the limn 

cos Od/,.(0)/p dx = - (k +.1,.)1,.(0) + (I - c)i,.J,. + (k + ci,.)B,.(T). (!) 

To lind an approxiniate solution of Equation (I), we proceed as follows: let 

1,. = ( lj4n) I 1,.(0) dw, 

H,."" (lj4n) I I,.(U)cosOdll', 

K,. ,._ (lf4n) I l,.{(j) cos 2 1Jdw, 

in which the in:..::gration is made over all directions. 

(2a) 

(2b) 

(2c) 

By multiplying Equation (I) hy (dw/4rr) and (dw cos 0/4n) and integrating we obtain 

dH . .ipdx = -(k + c/,.)(1,.- B,.). 

dK,.,pdx = -(k + I,.)H,., 

(3) 

(4) 

where B ,.( T) = B , .. If we measure the optical depth in the continuous spectrum outside 

the line so that dr = -kpdx and set 1,./k = IJ,., then (3) and (4) becomes 

df/,,/dr =(I+ CIJ,.) (J,.- B,.), 

dK,./dr= (I+ IJ,.)H, .. 

(5) 

(6) 

If, moreover, we assume that 1/,. is independent of r, the equation can be readily 

integrated. Introducing Eddington's approximation 

K ,. = ( I J3 )J ,. , 

Equations (5) and (6) can be combined to give 

(7) 

where 

q~ = 3(1 + Cl/,.) (I + IJ,.), (8) 

Equ~ltion (7) is~ • be solved subject to the boundary conditions: (A)J,. = 2H,. at r = 0 
and (B) the requ.tenient that (J,.- B,.) shall not increase exponentially as r--> x. 

3. Solution of Equation _(7) 

Let 

B,. = ho + hI e - flr (9) 

.c::o. 
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Then Equation (7) can be written in the form 

d2J,.;dr2 = q;J,.-IJoCJ~[! + (b 1 /b0 )e-f~<]. 

which is a second-order differential equation. 
If we solve Equation (\'))and usc the boundary condition {B) we get 
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(10) 

( 1 I) 

where b
2 

is a constant to be determined from the boundary condition (A), where f3 =P q , .. 

From Equatilin (II) we get 

(dJ,./dr),~u = - [{Jb 1 + b2q,. + b 1 /PJ(q~ -{]2)]. 

From Equation (6) with K ,. = ( lj3)J,. we find that 

H,, = [1/3(1 + 17,.)] [(dJ,./dr)]. 

Hence. 

[
(I + 17,.) (b0 + b 1 ) + ~/3b 1 + (1 + 1],, + ~{3) }! 1fJ

2 

~] 
. q~ - {3-

h:!. = - ........ --· - ----.. --------
j + IJ,. + ~q,, 

Finally we get 

[ 
h {J2 J j. "' /) + !J l' ·fir + ____ I ... _ l' -(I< _ 

I (J I , f')~ 
q~- )-

(I+ 1/,.)(/Jo + h1) + ~b 1 {3 + (1 + IJ,. + ~fn - 1
- e-q,.r [ 

b(f] 
. . q~ - {32 
---- ----·. -------·----·--

(! + 11,. + *q,.) 

(12) 

( 13) 

(14) 

( 1 5) 

Now. J ,. (the average intensity) enables us io finq the intensi-ty witliin tl1e absorption line 
at any optical depth and in any direction by solving the fund<\mental equation of line 

formation, 

cos0d1,.(0)/d< =(I+ 11,.)1,.(0)- (1- e)IJ,.J,.­

- (I+ e17,.)B,,; (16) 

J ,. and B ,. being known funciion of r. 
The solution for 1 ,.( 0) cari be writ en down immediately since Equation ( 16) js a linear 

ditfcrential equation with co11stant coefficients. 

4. Residual Intensity 

The residual intensity in the mean contours is given (cf. Woolley and S tibbs. 1953) by 

r,. = (H,./11),.,. 1 , 
( 1 7) 
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wiH.:n: the omission or th(.: suflix I' means Oil/side !he line. By virtue or the.: boundary 
comlitilll) J,. = 2H,. at r = 0 we have 

r,. = (J,.;J)r, ". 

:\!so. ,.)ui:>idc the line 17,. = 0 and q ,. = Ji. Equation ( 15) with r = 0 gives 

h,{f 
},,(0) o= /> 11 + /J 1 + -·- · ··--

(/~- w 

I + IJ,. + ~q,. 

lienee, by Equation·; (IX). (19), and (20) we have 

~q.,(Jf- q~ )h" + ~q~(/3- q,.)h, r = .-. · · · · · ..... - · -· X 
,. 2 ,/3 ({3~- 3)h11 + 6(fi- J3)h 1 

X w2
- 3) (3 + 2 J3L_ 

1 1:
2

- if,.) (I + 11,. + ~~/ •. ) 
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Abstract. The general equation for radiative transfer in the Milne-Eddington model is considered here. The 
scattering function is assumed to be quadratically anisotropic in the cosine of the scattering angle and 
Planck's intensity function is assumed for thermal emission. Here we have taken Planck's function as a 
nonlinear function of optical depth, viz., B.(T) = b0 + b1 e-P•. The exact solution for emergent intensity 
from the bounding face is obtained by the method of the Laplace transform in combination with the 
Wiener-Hopf technique. 

I. Introduction 

Chandrasekhar (1960) has considered the problem of radiative transfer with general 
anisotropic scattering in the Milne-Eddington model to obtain the exact form of 
emergent intensity from the bounding face and nth approximate intensity at any optical 
depth by discrete ordinates procedure assuming Planck's function to be linear in the 
optical depth. Das (1979b) obtained an exact solution of this problem using the Laplace 
transform and the Wiener-Hopf technique. Wilson and Sen (1964) solved the same 
problem by a modified spherical-harmonic method. In this paper we considered the 
equation of transfer with anisotropic scattering in the M-E model with Planck's function 

~'· as a nor.linear function of optical depth viz., 

(Degl'lnnocenti, 1979), where b0 , b1, and {3 are three positive constants. 

2. Basic Equation and Boundary Conditions 

The equation of transfer in a stellar atmosphere can be written (cf. Chandrasekhar, 
1960; Das, 1979b) as 

/). d/ v(x, JJ.)fp dx = (kv + a'v)I v(x, JJ.) - (1/2)uv(l - Bv) X 

+I 

X f P(JJ., JJ.')Jv(X, /). 1
) dJJ.' - (kv + BvG'v)Bv(T), (1) 

-I 

Astrophysics and Space Science 179: 89-96, 1991. 
~ © 1991 Kluwer Academic Publishers. Printed in. Belgium. 
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where 

2 

P(p,, p,') = I W,P,(p,)PI(p,') (2) 
t~o 

is the phase function for non-conservative scattering with a three-term indicatrix; 
I.(x, p,), the specific intensity in the direction arc cosp, at a depth x; k., the absorption 
coefficient; arc cos Jl is being measured from outward drawn normal to the face x = 0; 
a v, the scattering coefficient; p, the density of the atmosphere; B .(T), Planck's function; 
T, the local temperature at a depth x; e., the collision constant; and v, the frequency. 
We define the optical depth t. in terms of the scattering and absorption coefficient and 
the optical depth -r. in terms of the absorption coefficient; 

with 

co 

t. = J (k. + a.)p dx, 

X 

co 

X 

dt. = - (k. + a.)p dx, 

d-r. = -k.pdx. 

If we follow Degl'Innocenti (1979) and Karanjai and Karanjai (1985) we adopt 

B.( 'L) = B<~) + B<;) e- "'~,., 

where B~0), B~1 ), and a are three positive constants. 
Hence, Equation (7) with Equations (5) and (6) becomes 

where 

In this model we shall assume that 

1'/v = (k. + aJ-l 

is constant with optical depth. Equation (1) with Equations (3) and (8) becomes 

Jl d!(t, p,)fdt = I(t, p,) - (1 - c0 jw0 )B(t) -

+I 

(3) • 

(4) 

(5) 

(6) 

(7) 

(8) • 

(9) 

(10) 

- (1/2) f (c0 + c1p,p,' + ~c2 (3p,2 - 1) (3p,' 2
- 1)/(t, p,') dp,' , (11) 

-l 

• 
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where c0 , c1 , and c2 are given by 

(12) 

and for convenience, we have omitted the subscript Vo For the solution of Equation ( 11) 
we have the boundary conditions 

I(O, - JL) = 0, (13a) 

and 

I(t,JL)exp(-t/JL)~o when t~oo, IJLI::;l. (13b) 

3. Solution for Emergent Intensity 

The Laplace transform of F(t) is denoted by F*(s), where F*(s) is defined by 

co 

F*(s) = s J exp( -st)F(t) dt, Res> 0; (14) 

0 

and we set 

+I 

Im(t) = (1/2) J Jlm l!(s, JL) djL, m = 0, 1, 2, (15) 

-1 

which implies that 

+ 1 

I!(s) = (1/2) J Jlm l!(s, JL) dJL, m = 0, 1, 2 0 (15) 

-I 

Equation (11) with Equation (15), takes the form 

Jl dl(t, JL)fdt = I(t, JL) - [c0 I0 (t) + c1JLI1 (t) + 

+ ic2 (3JL 2 
- 1) (3/2 (t) - I0 (t))] - (1 - c0 /w0 )B(t) 0 (17) 

Now subjecting Equation ( 17) to the Laplace transform as defined in Equation ( 14) we 
have, using the boundary conditions, 

(JLs - 1)/*(s, JL) = JLS!(O, JL) - (1 - c0 fw0 )B*(s) - (c0 IJ(s) + 

+ C 1JLft(s) + ic2 ((3JL2 
- 1) (3I:f(s) - IJ(s))) 0 (18) 

Equation (18)-gives 

I(O, JL) = (c0 IJ{1/JL) + c1JLJ{(1/JL) + ic2 (3JL2 
- 1) + 

·+ (3/i(1/JL) - IJ(1/JL)) + (1 - c0 /w0 )B·*(l!JL) 0 (19) 
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Equation (19) with Jl = s- 1
, s is complex, takes the form 

/(O,s- 1
) = (c0 - ~c2(3s- 2 - 1)/~(s) + c1s- 1Jt(s) + 

+ ~c2(3s- 2 - 1)/{(s) + (1- c0 jw0 )B*(s), 

we shall apply the operator 

+I 

(1/2) f ... Jl djJ. 

-I 

on both sides of Equation (18) to get 

I 

- (1 - c0 )s- 1 IJ(s) + Jt(s) = (1/2) J Jll(O, JJ.) djJ. -

0 

and 

I 

- (1 - !c1)s- 1Jt(s) + I{(s) = (1/2) J jl 21(0, JJ.) djJ., 

0 

we shall also apply the operator 

+I 

(1/2) f · · · dJJ.f(JlS - 1) 

-I 

on both sides of Equation (18) to get 

where 

and 

as- 1 - (1 - c0 jw0 )B*(s)t0s- I = [ 1 + c0 t0s- I - ~c2 (3t2s- 1 
-

- t0 s- I )]JJ(s) + ci t1s- 1 /f(s) + ~c2 [3t2s- 1 
- t0 s- 1 ]/{(s), 

I 

as- 1 = (1/2) J JJ.S(Jls- 1)- 1 /(0, JJ.) djJ. 

0 

+I 

tms-l = (1/2) f (JJ.S- 1)-l Jlm djJ., m = 0, 1, 2. 

-I 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) " 

(26) 

(27) 

If we follow the usual procedure for elimination of IJ(s), Jt(s), and /{(s) among 
Equations (26), (22), (23), and (25), after some lengthy calculations settings= z- 1, we 



have 

where 

where 
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I 

T(z)I(O, z) = (1/2) I x(x- z)- 1 L(x, z)I(O, x) dx + 

0 

I 

T(z) = 1 - 2z2 I 1/f(x) dx(z2
- x 2

)-
1

, 

0 

1/J(x) = (1/2) (A + Bx2 + Cx4
), 

L(x, z) =A - ~c 2x2 + (B + C + ~c2)xz- (1/3)Cz2 + Cx 2 z 2
, 

B*z- 1 = b0 + bd(l + {Jz) = (d0 + d1z)/(1 + {Jz), 
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(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

A = c0 + :;}c2 , B = c1 (1 - c0 ) - ~c2 - ~c2(1 - c0 ) (1 - cd3), (34) 

C = ~c2(1 - c0 ) (1 - cd3), (35) 

where we shall assume that 

(36) 

and 

I 

1/10 = I 1/J(x) dx < ~. (37) 

0 

~ But for 

y = k(k + a) < 1 , (38) 

B*z- 1 is analytic in (- y- \ Ol, bounded at the origin and 0 < y < 1. According to 
Busbridge (1960), the equation for T(z) possesses the following properties: T(z) is 
analytic in z for (- 1, 1Y, bounded at the origin, has a pair of zeros at z = ± K (K > 1), 
K is real and can be expressed as 

T(z) = [H(z)H(- z)]- 1 
, (39) 

where H(z) and H(- z) have the following properties: H(z) is analytic for z E (- 1, Ol, 
bounded at the origin, has a pole at z = - K. H(- z) is analytic for z E (0, 1)c, bounded 
at the origin, has a pole at z = K. 
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If we follow Busbridge (1960), Das (1979a) and Dasgupta (1977) we have for 1/10 < ~, 
I 

H(z) = 1 + zH(z) f 1/J(x)H(x) (x + z)- 1 dx (40) 

0 

or 

H(z) = (A 0 + H 0 z)/(z + K) - M(z), (41) 

where 

I 

M(z) = f P(x) dxf(x + z), (42) 

0 

P(x) = </J(x)/H(x), -­(43) 

</J(x) = n- 1 Y0(x)/[T~(x) + Y~(x)], 
I 

T0 (x) = 1 - 2x 2 f (1/J(t)- 1/J(x)) dt/(x2
- t2

)-

0 

- 1/J(x)x log(l + x)/(1 - x), 

Y0 (x) = nxljl(x), 

A 0 = (1 + P _ 1)K, 

I 

P_ 1 = f x- 1P(x)dx, 

0 

H 0 = (1 - 21/10 )- 112 • 

Equation (28) with Equation (39) takes the form 

1(0, z)/H(z) = H( -z)G(z) + (1- c0 /w0 )H( -z)B*z- 1
, 

where 

I 

G(z) = (1/2) f x(x- z)- 1 L(x, z)I(O, x) dx, 

0 

we shall assume that 

1(0, z) is regular for Rez > 0 , 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

bounded at the origin. Equation (51) with the above assumption on 1(0, z) gives the 
following properties of G(z): G(z) is regular on (0, lY, bounded at the origin O(z) when 
z~oo. 

.... 
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Equation (50) with Equations (32) and (51) gives 

1 

/(0, z)/H(z) = H(- z) [ (1/2) f x(x - z) + L(x, z)/(0, x) dx + 

0 

+ (1 - c0 /w0 ) (d0 + d1z)f(l + Pz)J. (53) 

Equation (53) can be put in the form 

1 

/(0, z)/H(z) = H(- z) [ (1/2) f x(x - z)- 1 L(x, z)/(0, x) dx + 

0 

+ (1- c0 /w0 ) (d0 /z + d1)/(z- 1 + P)]. (54) 

Therefore, the left-hand side of Equation (54) is regular for Rez > 0 and bounded at the 
origin and the right-hand side of Equation (54) is regular for z on (0, l)c and bounded 
at the origin and tends to a linear polynomial in z, say (x0 + x 1z) when z-+ oo. Hence, 
by a modified form of Liouville's theorem we have 

/(0, z) = [x0 + x 1z]H(z) (55) 

and 
1 

(1/2) f xL(x, z)/(0, x) dxf(x - z) + 

0 

Equation (55) will give emergent intensity from the bounding face if x0 and x 1 are 
determined. We shall now determine the constants x 0 and x 1 • If we set z = 0 in 
Equation (56), we have 

1 

(1/2) f L(x, 0)/(0, x) dx + d0 (1 - c0 /w0 ) = x 0 • (57) 

0 

Equation (57) with Equation (55) gives 

(58) 

where 
1 

y 1 = (1/2) f L(x, O)H(x) dx - 1 , (59) 

0 

1 

Y2 = (1/2) f xL(x, O)H(x) dx, (60) 

0 

(61) 
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As T(z) has a zero at z = K, Equation (28) gives 

I 

(1/2) J xL(x, K)I(O, x) dxf(x - K) + 
0 

+ (1 - c0 /w0 ) (d0 + d1K)/(1 + {JK) = 0, 

Equation (62) with Equation (55) gives 

where 

I 

y3 = (1/2) J xL(x, K)H(x) dxf(x - K), 

0 

I 

y4 = (1/2) J x 2L(x, K)H(x) dxf(x- K), 

0 

z2 = (1 - c0 /w0 ) (d0 + d1K)/(1 + {JK), 

Equations (58) and (68) give 

where 

Xo = (YzZz- z!y4)/(Y!Y4- Y3Yz)' 

X1 = (z!y3- Y!Zz)f(Y!Y4- Y3Yz)' 

(Y!Y4- Y3Yz) =I= 0. 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

Hence, Equation (55) with Equations (67) and (68) gives the emergent intensity from 
the bounding face of the atmosphere. 
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Abstract. The equation which commonly appears in radiative transfer problem in a finite atmosphere having 
ground reflection according to Lambert's law is considered in this paper. The Planck's function Bv(T) is 
taken in the form, 

Bv(T) = b0 + b1 e-PT. 

The exact solution of this equation is obtained for surface quantities in terms of the X - Y equations of 
Chandrasekhar by the method of Laplace transform and linear singular operators. 

1. Introduction 

Das (1978, 1980) has solved various problems of radiative transfer in finite and semi­
infinite atmosphere using a method involving Laplace transform and linear singular 
operators. 

In this paper we have considered the one-sided Laplace transform together with the 
theory of linear singular operators to solve the transport equation which arises in the 
problem of a finite atmosphere having ground reflection according to Lambert's law 
taking the Planck's function as a nonlinear function of optical depth: viz., 

B)T) = b0 + b1 e-fh, 

where b0 , b1 , and f3 are positive constants (Delg'Innocenti, 1979; Karanjai and Karanjai, 
1985; Deb eta/., 1990). 

2. Basic Equation and Boundary Conditions 

The integra-differential equation for the intensity of radiation I( r, J.l), at any optical 
depth r for the problem of diffuse reflection and transmission in a finite atmosphere can 
be written in the form (Das, 1980) as 

(1) 

-I 

Astrophysics and Space Science 181: 267-275, 1991. 
""t. © 1991 Kluwer Academic Publishers. Printed in Belgium. 
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where Iv('c, f.l) is the intensity in the direction cos- 1 f.1 at a depth r, the angle cos- 1 f.1 
is measured from outside drawn normal to the face r = 0, t/J(f.l) is the characteristic 
function for non-conservative scattering which satisfies the condition 

I 

t/10 = J t/l(f.l') df.1' < ~; t/l(f.l') is even, (2) 

0 

vis the frequency and Bv(T) is the Planck's source function at any optical depth. We 
have taken 

B)T) = b0 + b1 e-fJ-r:. 

Then Equation ( 1) becomes 

+I 

f.1 dl(r,f.1)=I(r,f.1)- J t/J(f.1')I(r,f.1')df.1'-(b0 +b1 e-P-r), 
dr 

-I 

where for convenience we have omitted the subscript v. 
The boundary conditions associated with Equation (3) are 

/(0, - f.l) = 0' 0 < f.1::;; 1' 

•o> 0' 

(3) 

(4a) 

(4b) 

where r0 is the thickness of the finite atmosphere and the bounding face r = r0 is having 
ground reflection according to Lambert's law, /g is a constant. 

3. Integral Equations for Surface Quantities 

Let us define f*(s, f.l) as the Laplace transform off( r, f.l) by 

To 

•• 

f*(s,f.l) = s J f(r,Jl)e-s-rdr, Res> 0; 

0 

,. 
(5a) 

f( r, f.l) = 0 , when r > r0 • (5b) 

Let us now apply the Laplace transform defined in Equation (5a) to Equation (3) to 
obtain the equation satisfying the boundary condition as 

(6) 

where 

+I 

S(r) = J t/J(f.l')I(r, f.1') df.1' + b0 + b1 e-P-r => (7) 

-I 
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+I 

~ S*(s) = t/I(J.L')I*('r, J.L') dJ.L' + b0 (l- e-no) + - 1
- (1- e-(s+P)-ro) 0 I 

sb 

s+f3 
-I (8) 

Let us apply the operator 

+I 

I 0 0 0 t/I(J.L) dJ.Lf(J.Ls- 1), 

-I 

on both sides of Equation (6) and we obtain, with Equation (8), 

+I 

T(1/s)S*(s) = I dJ.L J.LS t/I(J.L)I(O, J.L)f(J.Ls - 1) -

-I 

+I 

- e--ros I J.LS t/I(J.L)I('r0 , J.L) dJ.Lf(J.LS - 1) + 
-I 

where 

+I 

T(lfs) = 1 + I dJ.L t/I(J.L)/(J.Ls - 1) 0 

-I 

Equation ( 6) gives 

I(O, J.L) - e- roll' I( -r0 , J.L) = S*(l/J.L) ~ 

~ I(O, lfs) - e--ros I( -r0 , 1/s) = S*(s) 0 

(9) 

(10) 

(11) 

(12) 

(13) 

Equation (10), together with Equation (12), gives for complex z, where z = s- 1
, 

[1(0, z)- e-rofz I(r0 , z)]T(z) = 

+I +I 

=I J.Lt/I(J.L)l(O,J.L)dJ.Lf(J.L-Z)-e--r:o/z I J.LtfJ(J.L)!(-r0 ,J.L)dJ.L(J.L-z)+ 

-1 -1 

b + boO - e- To/z) + __ I - (1 - e- flro e- To/z) 0 

1 + {3z 

Let us put o:0 = p- 1
, then Equation (14) becomes 

[1(0, z) - e- ro/z I( -r0 , z)] T(z) = 

(14) 
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+I +I J Jl t/J(JL)/(0, Jl) dJLf(Jl - z) - e- To/z I Jl t/J(JL)l( -r0 , Jl) dJLf(Jl - z) + 
-I -I 

(15) 

Let us set z = - z in Equation (15) and multiply the resulting equation bye- To/z on 
both sides to obtain, for complex z, 

[/(-ra, -z)- e-TofzJ(O, -z)]T(z) = 
+I 

= I JLtfJ(JL)l(-ra,JJ.) dJLf(Jl + z)- eTo/z X 

-I 

+I 

X I JLtfJ(JL)l(O,JL)dJLf(Jl. + z) + ba(l- e-""'ofz)-

-I 

(16) 

Equations (15) and ( 16) are the linear integral equations for the surface quantities under 
consideration. 

4. Linear Singular Integral Equations 

Equations (15) and (16) are the equations defined for complex z, where z does not lie 
between - 1 and 1. When z lies between - 1 and 1, Equations (15) and (16) will give 
the linear singular integral equations by the applications of Plemelj's formulae (cf. 
Mushkelishvili, 1946) with the boundary condition (4) as 

I 

(!(0, z) - e- To/zIg] T0 (z) = P I Jl 1/J(!J.)l(O, IJ.) diJ./(iJ. - z) -

0 

I 

-e-Tofz J iJ.t/J(iJ.)l(-ra, -~J.)diJ./(iJ.+z)-
a 

I 

- e- ""<o/z P J iJ.t/J(JL)lg diJ./(Jl- z) + 

0 

+boO - e- ""<o/z) + b, eta (1 - e- ""<o(l/z+ ''"") 

z +eta 
(17) 

... 
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and 

I 

I( -r-0 , - z)T0 (z) = P f Jli/J(Jl)l( -r-0 , - Jl) dJlf(Jl - z) -

0 

I I 

- e--r:o/z f Jli/J(Jl)l(O, Jl) dJlf(Jl + z) + f Jli/J(Jl)lgdJlf(Jl + z) + 

0 0 

(18) 

where 

I I 

T0 (z) = 1- 2z2 f dJl[I/J(Jl)- ljJ(z)]/(z2
- Jl2

)- 2z2 1/J(z)P f dJlf(z2
- Jl2

), 

0 0 (19) 

in which P dneotes the Cauchy principal value of the integral. 
Equations (17) and (18) are the linear singular integral equations from which we shall 

determine the surface quantities /(0, z) and /( -r-0 , - z) by the application of the theory 
of linear singular operators. 

5. Theory of Linear Singular Operators 

If we follow Das (1978, 1980), we can write the following theorems. 

THEOREM 1 

The linear integral equations for z E (0, 1), 

where 

L+ [R(z, - x 0 )] = l(z, - x0 ), 

L (Q(z, - x0 )] = m(z, - x0 ), 

I 

(20a) 

(20b) 

L + [f(z, - x0 )] = f(z, - x0 )T0 (z) - P f Jli/J(Jl)f(Jl, - x0 ) dJlf(Jl - z) + 
0 

I 

+ e- -r:ofz f Jli/J(Jl)f(Jl, - x0 ) dJlf(Jl + z), (21a) 

0 

I 

L _ [f(z, - x0 )] = f(z, - x0 )T0 (z) - P f Jli/J(Jl)f(Jl, - x0 ) dJlf(Jl - z) -

0 
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I 

-e-~o/z f f1ifi(f1)f(f1, -Xo)df1f(f1+Z), (2lb) 

0 

X X l(z, -Xo) = _0_ [1- e-~o(I/z+I/xo)] + _0_ [e-~o/z- e-~o/Xo]' (22a) 
z + x0 z- x0 

X X 0 m(z, _ Xo) = _o_ [1 _ e- ~o(I/z+ I/xo)] ___ [e- ~o/z _ e--r:ofxo], 

z + x0 z- x0 

(22b) 

admit of solutions of the form 

R(z, - x0 ) = S(z, - x0 ) + T(z, - x0 ), (23a) 

Q(z, - x0 ) = S(z, - x0 ) - T(z, - x0 ) , (23b) 

where 

S(z, - x0 ) = x0 [X(z)X(x0 ) - Y(z)Y(x0 )]/(z + x0 ) (24) 

and 

T(z, - x0 ) = x0 [X(z)Y(x0 ) - Y(z)X(x0 )]/(x0 - z). (25) 

With constraints on X(z) and Y(z) as 
(i) when 1/10 < ~ 

I I 

1 = K f X(fl)ifi(/1) dflf(K- /1) + e- -r:o/K K f Y(f1)ifi(f1) dflf(K + /1), (26a) 

0 0 

I 1 A-

e- ~o/K = K f Y(/1)1/J(/1) dflf(K- /1) + K e-~o/K f X(/1)1/J(/1) dflf(K + /1); 
0 0 (26b) 

(ii) when 1/10 = ~ 

1 

1 = f 1/1(/1) [X(fl) + Y(fl)] dfl, (27a) 

0 

1 1 

'o s ifi(fl)Y(fl) dfl = s flifi(/1) [X(f1)- Y(fl)] dfl (27b) 

0 0 
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and K is the positive root of the function T(z), when t/10 < !, defined by 

+I 

T(z) = 1 + I zt/I(Jl) dJ1/(J1- z) (28) 

-I 

and where [X(z)- Y(z)] and [X(z) + Y(z)] are the respective solutions of 

I 

L+ [f(z)] = (1 - e- ~olz) ( 1 - I t/I(Jl)f(Jl) dJ1) (29) 

0 

and 
I 

L_[f(z)] = (1 + e-~ofz)(1- I t/J(J1)f(J1)dJ1) · (30) 

0 

THEOREM 2 

As the operators L + and L _ are linear for z E (0, 1 ), then for any constant C, we have 

L ± ( CF(z, - x0 )) = CL ± (F(z, - x0 )) 

and 
I 

L ± (zf(z)) = zL+ (f(z) - (1 + e- ~"1") I Jlt/I(Jl)f(Jl) dJ1 . 

0 

THEOREM 3 

If R(z, - x 0 ) and Q(z, - x0 ) are the solutions of 

L+[R(z, -x0 )] = l(z, -x0 ), 

L_[Q(z, -x0 )] = m(z, -x0 ), 

I 

L + (M(z)) = I t/1(- x0 )l(z, - x0 ) dx0 , 

0 

I 

L _ (N(z)) = I t/1(- x0 )m(z, - x0 ) dx0 , 

0 

admit of a solution of 

I 

M(z) = I t/1(- x 0 )R(z, - x0 ) dx0 , 

0 

(31) 

(32) 

(33a) 

(33b) 

(34) 

(35) 

(36) 
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I 

N(z) = f l/1(- x0 )Q(z, - x0 ) dx0 . (37) 

0 

6. Solution for Surface Quantities 

Linear singular integral equations (17) and (18) are the required integral equations from 
which we will have to deterrnine/(0, z) and/( -.0 , - z), the quantities under consideration, 
by the application of the theory of linear singular operators indicated in Section 5. 

Equations (17) and (18) on addition and after some rearrangement give 

L+ [/(0, z) + /(r0 , - z)- e- <o/z JR"] = 

I 

= 2b0 (l - e- <ofz) + bi l(z, - o:0 ) + Ig f l/l(p)l(z, - Jl) dJl. 

0 

Equations (17) and (18) on subtraction and after some manipulation give 

L_ [1(0, z)- /(r0 , -z)- e- <o/z Ig] = 

I 

= bim(z, - o:0)- Ig f l/I(JL)m(z, - Jl) dJl, 

0 

(38) 

(39) 

where l(z, - Jl) and m(z, - Jl) are given by Equations (22a) and (22b). Equations (38) 
and (39), with Theorems 1, 2, and 3 of Section 5, will give us the desired quantities /(0, z) 
and /( -r0 , - z). The solution of Equation (38) is given by 

[I(O,z)+I(-r0,-z)- /ge-<ofz]= 
I 

2b f = --0
- (X(z)- Y(z)) + biR(z, - o:0 ) + Ig R(z, - Jl)l/I(Jl) dJl, 

1- G0 

(40) 

0 

where 

I 

G0 = f l/I(Jl) [X(Jl)- Y(Jl)] dJl. (41) 

0 

The solution of Equation (39) is given by 

I 

= bi Q(z, - o:0 ) - Ig f l/I(JL)Q(z, - Jl) dJl. (42) 

0 

.· 
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Equations (40) and (42) on addition give I(O, z) and Equations (38) and (42) on sub­
traction give I( -c0 , - z) as 

and 

I 

I(O, z) = Ig e- To/z + Ig f 1/J(JJ.)T(z, - JJ.) djJ. + 

0 

b 
+ --0 - [X(z)- Y(z)] + b1S(z, - )J.) 

1- G0 

b 
I( r 0 , - z) = --0 - [X(z) - Y(z)] + 

1- G0 

I 

+ b1 T(z, - a0 ) + Ig J 1/!(JJ.)S(z, - JJ.) djJ., 

0 

where S(z, - JJ.) and T(z, - JJ.) are given by Equations (24) and (25). 
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Abstract. The equation of transfer for interlocked mu1tip1ets has been solved exactly by the method used 
by Busbridge and Stibbs (1954) for exponential form of the Planck function Bv(T) = b0 + b1 e-P<. 

1. Introduction 

The equation of transfer in the Milne-Eddington model for interlocking without redis­
tribution have been discussed by Woolley and Stibbs (1953), where a clear statement 
of the problem will be found. Taking the Planck function to be linear, they have obtained 
a solution by means of Eddington's approximation and calculated the residual intensi­
ties and the total absorption in the emergent flux for doublet and triplet lines. Bus bridge 
and Stibbs (1954) applied the principle of invariance governing the law of diffuse 
reflection with a slight modification to solve exactly the equation of transfer in the M-E 
model. Dasgupta and Karanjai (1972) applied Sobolev's probabilistic method to solve 
the same problem. Karanjai and Barman (1981) applied the extension of the method 
of discrete ordinates to solve the problem. Dasgupta (1978) obtained an exact solution 
of the problem by Laplace transform and Wiener-Hopftechnique using a new represen­
tation of the H-function obtained by Dasgupta (1977). The same problem has also been 
solved by Karanjai and Karanjai (1985) by the method used by Dasgupta (1978) and 
by Deb et a/. (1991) by discrete ordinate method using the Planck function as an 
exponential function of optical depth. 

In this paper we have solved the same problem by the method used by Bus bridge and 
Stibbs (1954), using the Planck function B )T) as an exponential function of optical 
depth (Degl'Innocenti, 1979) 

B)T) = b0 + b1 e-P•. 

Astrophysics and Space Science 184: 57-63, 1991. 
:;t © 1991 Kluwer Academic Publishers. Printed in Belgium. 
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z. EqmJtjoQ 9f 'fr~m~f~!r 

W ooll~y and Stibps (195~) m.~d~ c~rt.ain JlSS!.ll1.lpiioot>1 viJ.:., (i) that tbe Hn~s ~~ llP .~lo.s~ 

together that vari..~tiop,s of tbe coptjpuous aJ>sorptjon co~ffl.-eje.,nt .~ :mQ. of the :Pla.nels: 
fqnction 8y{T) with wav~let:l~b may he !le_glected- This also mearJ.s t}Hlt the low.e.r ,stat~s 
are nearlY ~!lal in excjtatiot:l p.otenti.al a.nd thm: lbeY b:;tve il+e :$.@lee ~lassjpM .dMlpi,ng 
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;associated witb tlw ,apso.rptjop js in.dep~dent J)f pQ.th fre.q!J.e.p_cy .m.d .depth. 

Jp tb.e p.r~.ent pJlpe.r, we lw.¥.e fwt.IJ .. er :;tss!Jm.ed .th.oat (.i:y} 

/Jv(T):;=,b,o+.htf!~fl:c, (1) .:i( 

wh.er.e /J is ca. coi).staiJJ Jt,n.d -r -";' J o kp dox, ~ :h!\lm~ :tJ:J.~ d€;ptb h~low tb~ st).,rf~c~ c0f t.h~ 
~tm9sph~r.~. By (j) b.QI b}, .!W<l. i-N~ m!i.ep~n.d~I).t ·9f y. 

Th~ll ¢.~ .~qJJ..~j()n pf trgns{~ .f.or mJ.erJ9-c,lq:9 :mul~jpl~,t~ -~® p~ wr;itten .Iii~ 

P./r.(~, .JL~ _ (·l _1_ ')/ ( ·) _ (1 + ~ (b + b -P:r:) _ p. .. . 0 
..,. ' .,. nr 'r' r, p. .. ' . ·. .enrJ .0 ·, .. l f! 0 

.. 4J 0 0 • 0 0 

,+-l 0-) 

-~ 1 s·· I ~[o..,.e« -·, 1-r: .d' { ). ,r .t: ·2 .t]p · .. 0 p(., p. Lp I 
p=lo . 
. ;: .1 

.(3) 

at+thf:.··t.q~~:l .. 

Jn P~JA~tioon {?) ;tl}s! ~@sg·~pt r 9~.l10t~s ~}).~ -!il!:l~I.l;~ity c~O.I":I:.€.S;PQn!;i:iP.;~ ·t5;> M~~ :Ullo~ o!)f 
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:~t m9ll!t fu!.l"¥~1}. ·:nl:9.r ~:&:~Y :t:- JF..PrntSlJ. ,§oJy#(i),n§ .pf t:.~tJ.~jlj~,n.. ,('2,) ;w,~ ,~.~!:l.~¥ f.9J:!Q.9~ :~g.t :~1.\~r 
&19 :!},§>t ,M#o~fr ~!)ll;l'~ti9.I:i l~§j,. 
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where 

and 
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Ar T = --------'-----
r 1 1 + P~r 

1 -- (1 - e)17 log --
2P r 1- P~r 

Ar = (1 + BIJr)/(1 + '1r)' 

~r = 1/(1 + '1r) · 

(r = 1, 2, ... , k), 

Then 1:' ( 1:, Jl) satisfies the equation 

dl:'(•, Jl)- (1 ) *( ) (1 ) Jl - + '1r lr 7:, Jl .. - - e rJ.r X 
d-r; 

+1 

k 1 I xp~t2 11P 1;( 1:, Jl') dJl' , (r = 1, 2, ... , k) 

-I 

together with the boundary condition 

(0 < Jl' :::;; 1 , r = 1, 2, ... , k) . 

Moreover, Ir(-r;, Jl) must be at most linear in -r; as 7:-4 oo. 

59 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Now we have the problem of a scattering atmosphere (exponential) subject to external 
~ radiation whose intensity is given by Equation (11). We want to find the emergent 

intensity Ir* (0, Jl) of frequency vr. This will be the intensity of the diffusely reflected 
radiation and can be calculated when the appropriate scattering function is known. 

In the present problem the scattering function splits up into k 2 functions 

srs(Jl, Jl 1
) (r = 1, 2, ... 'k; s = 1, 2, ... 'k) 

but it is convenient to reunite them temporarily in the function 

P(v, v')S(v, v'; Jl, Jl'), 

where v is any one of v1 , v2 , ••• , vk. 

k 

P(v, v') = rl.v L li(vp- v') 
p=l 

(12) 
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lJ denoting Dirac's <)..function, and 

S(vr, vs; Jl, p.') = SrJJl, p.'). (13) 

Then the law of diffuse reflection for the atmosphere can be written as (Stibbs, 1953; 
Busbridge, 1953), 

co I 

I:er(o, p.) = 2~ J P( v, v') d v' J S( v, v'; p., p.')/~?c(o, - p.') dp.' , (14) 

0 0 

The equivalent form in terms of the functions Srs(Jl, p.') is 

(15) ~' 

3. Scattering Function 

If we follow Bus bridge and Stibbs ( 1954) we have the scattering function from frequency 
vs and direction - p.' into frequency vr and direction Jl, in the form 

(16) 

where 

(17) 

4. H-function 

Following Busbridge and Stibbs (1954), Equation (17) can be written as 

(18) 

5. Emergent Intensity 

From Equations (11), (15), and (9) we have 

(19) 
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If we substitute from Equation (16) we get 
I 

lr*(O, Jl) = !rxrH(~pJl)Pt ~A1- Ap) I Jl' X 
~rJl + ~pJl' 

0 

If we use the relations 

1 1 [ p 1 J 
(~pPJl'- 1) (~pJl + ~pJl') = (~rPJl + 1) ~pPJl- 1- ~rJl + ~pJl' ' (21) 

we get from Equation (20) 

(22) 
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From Equation ( 6), 

/r(O, f.l) = bo + bl Tr + /r* (0, f.l). 
1 + ~rPf.l 

If we use Equations (18), (22), (23) we get 

and thus 

which is the final form of the emergent intensity in the rth line. 

(23) 

(24) 

(25) 
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Abstract. In this paper we consider the time-dependent diffuse reflection and transmission problems for a 
homogeneous anisotropically-scattering atmosphere of finite optical depth and solve it by the principle of 
invariance. Also we consider the time-dependent diffuse reflection and transmission of parallel rays by a 
slab consisting of two anisotropic homogeneous layers, whose scattering and transmission properties are 
known. It is shown how to express the time-dependent reflected and transmitted intensities in terms of their 
components. In a manner similar to that given by Tsujita (1968), we assumed that the upward-directed 
intensities of radiation at the boundary of the two layers are expressed by the sum of products of some 
auxiliary functions depending on only one argument. Then, after some analytical manipulations, three groups 
of systems of simultaneous integral equations governing the auxiliary functions are obtained. 

1. Introduction 

Sobolev (1956) dealt with the one-dimensional problem of time-dependent diffuse 
reflection and transmission by a probabilistic method. Diffuse reflection of time­
dependent parallel rays by a semi-infinite atmosphere was treated by Ueno (1962) on 
the basis of the principle of invariance. Bellman eta/. (1962) obtained an integral 
equation governing diffuse reflection of time-dependent parallel rays from the lower 
boundary of a. finite inhomogeneous atmosphere. Ueno (1965) also obtained this 
equation by probabilistic method. Matsumoto (1967a) derived functional equations in 
the integral radiation allowing for the time-dependence given by Dirac's D.-function and 
Heaviside unit step-function. Matsumoto (1967b) also derived a complete set of 
functional equations for the scattering (S) and transmission (T) functions which govern 
the laws of diffuse reflection and transmission of time-dependent parallel rays by a finite, 
inhomogeneous, plane-parallel, non-emitting, and isotropically-scattering atmosphere, 
where the dependence of the time of the incident radiation is given by Dirac's D.-function 
and Heaviside's unit step-function. A formulation of the time-dependent H-function was 
accomplished by means of the Laplace transform in the time-domain. Numerical 
evaluation of the H-function based on numerical inversion of the Laplace transform 
presented by Bellman eta/. (1966) was made. 

Recently, Karanjai and Biswas (1988) derived the time-dependent X- andY-functions 

Astrophysics and Space Science 189: 95-117, 1992. 
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for homogeneous, plane-parallel, non-emitting, and isotropic atmosphere of finite opti-
cal thickness using the integral equation method devleoped by Rybicki (1971), Biswas 
and Karanjai (1990a) have derived the time-dependent H-, X-, and Y-function in a 
homogeneous atmosphere scattering anisotropically with Dirac's &.function and 
Heaviside unit step-function type time-dependent incidence. Biswas and Karanjai 
(1990b) have also derived the solution of diffuse reflection and transmission problem 
for homogeneous isotropic atmosphere of finite optical depth. In this paper we derived 
the nonlinear integral equations for X- and Y-functions (Chandrasekhar, 1960) for 
anisotropically-scattering atmosphere. The anisotropy is represented by means of a 
phase function which can be expressed in terms of finite-order Legendre polynomials. 
The principal ofinvariance is applied to derive the functional equations for time-depen­
dent scattering and transmission functions. Next we considered the time-dependent 
diffuse reflection and transmission of plane-parallel rays by a slab consisting of two -<II( 

homogeneous anisotropically-scattering layers, whose scattering and transmission 
functions are known. The problem of the time-independent scattering and transmission 
of radiation in plane-parallel atmosphere of two layers was treated first by Van de Hulst 
(1963; also see Tsujita, 1968). Hawking (1961) dealt with the problem analytically 
starting with Milne's integral equation. Later on, Hansen (see Tsujita, 1968) formulated 
the scattering and transmission functions in a medium consisting of two optically thin 
layers by the invariant imbedding partical-counting method. Gutshabash (1957) formu­
lated the problem as solutions of simultaneous integral equations. So far as his equations 
are solvable, the scattering and transmission functions required are given exactly for two 
layers of different albedos and different large optical thickness. We have extended the 
same problem (Tsujita, 1968) for the time-dependent transfer of radiation .. 

2. Derivation of Fundamental Equations 

2.1. FORMULATION OF THE PROBLEM 

In an anisotropically-scattering medium, the intensity of radiation/( T, Jl, ¢, t) at any time _... 
t, any optical depth r, in the direction cos- 1 Jl, satisfies the equation of transfer 

~ aJ(r, Jl, ¢, t) + aJ(T, Jl, ¢, t) +I( A.. t) = J( A.. t) 
a 

Jl a T,Jl,'f', T,Jl,'f',, 
C t T 

(1) 

in which the source function J(( 1:, Jl, ¢, t) is given by 

2n + 1 

J( T, Jl, ¢, t) = L f f P(Jl, ¢; Jl
1

' ¢' )/( T, Jl
1

' ¢'' t) dJl' d¢' ' (2) 

0 -1 

where P(Jl, ¢; Jl', ¢' ), the general phase function and c represents the velocity of light. 
In the above, Jl and ¢represent, respectively, the cosine of the zenith distance and the 
azimuthal angle. We decompose the intensity of radiation field into two components for 
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two directions, viz., intensity directed towards the lower surface of the atmosphere 
(J+ ( 't, Jl, cp, t)) and intensity directed towards the upper surface of the atmosphere 
(I- ( "C, Jl, cp, t)). 

We consider the initial boundary conditions 

!("C, Jl, cp, 0) = 0' 

J+ (0, Jl, cp, l) = /inc(Jl, cp, l), 

1- ( '!1 , Jl, cp, t) = fi':.c(Jl, cp, t) . 

(3) 

(4) 

(5) 

Equations (4) and (5) asserts that the lower and the upper surfaces are illuminated. 
However, we shall restrict ourselves for the time being to the case of illumination on 
the upper surface ( "C = 0) by means of an instantaneously collimated beam of light at 

>- timet = 0. The other surface will be free from any incident radiation. We now distinguish 
between the reduced incident intensity which is incident orr-boundary surface and 
penetrates to the depth 't without suffering any collision and diffuse radiation which 
arises due to different processes (Chandrasekhar, 1960). For the total radiation field we 
have 

J+ ( 't, Jl, cp, t) = 1; ( 't, Jl, cp, t) +/inc (Jl, cp, t- c:) exp (- ~), (6) 

1-("C, Jl, cp, t) = I;J('t, Jl, cp, t) + /i~c (Jl, cp, t- 't
1c: "C) exp (- '!

1
; "C), (7) 

where the subscript 'd' represent diffuse fields. If we substitute these expression for 
J+ ( 't, Jl, cp, t) and/- ( 't, Jl, cp, t) in Equation (1) we get two separate equations of transfer 
for two components 

( c- 1 ~ + ~ + 1)1; ( 't, Jl, cp, t) = J( "C, Jl, cp, t), 
at a"C 

(8) 

( 
_ 1 a a ) -c ) c -+-+ 1 Id 't,Jl,cp,t =l('t,Jl,cp,t), 

at a"C 
(9) 

where 

2n +I 

J("C, Jl, cp, t) = 41n f f IA"C, Jl', cp'' t) x 
0 -I 

2n I 

X P(Jl, cp; Jl'' cp')Jl' dcp' + 41n f f P(Jl, cp; Jl', cp') X 

0 0 
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X P(IJ., <jJ; IJ. 1
, </J 1

) d1J. 1 d</JI . 

Let us now put in Equation (10) 

Iinc(IJ., </J, t) = FD(t)D(IJ. - /Lo)D(</J- </Jo), 

I;~c(IJ., </J, t) = 0 ; 

where F is a constant. 
Hence, we get 

2n +I 

J( r:, IJ., </J, t) = 
4

1
n J J IA r:I, /L

1

, <PI, t)P(IJ., ¢; IJ.
1

, ¢ 1

) d1J.
1 

d</J
1 + 

0 -I 

. + ~FP(IJ., ¢; IJ.o, ¢0 ) exp (- _::_) D (t- _!__) . 
llo CIJ.o 

The new set of boundary conditions are given by 

I;t(r:, IJ., </J, t) = 0, 

I;; ( r:, IJ., -¢, t) = 0 . 

(10) 

(11) 

(12) 

(13) 

(14a) 

(14b) 

This simplification of boundary conditions are the characteristic of such formulation. 
Let us n~,.g,npne the scattering and transmission function (cf. Matsumoto,_1967a) as 

S( r:, IJ., ¢; IJ.o, ¢0 , t) =I;; (0, IJ., ¢, t), (15) 

I( r:, IJ., ¢; IJ.o, ¢0, t) = I;t ( r:I, IJ., ¢, t) . (16) 

2.2. PRINCIPLE OF INVARIANCE 

We shall now derive the functional equations for these two functions. The four principles 
of invariance (Matsumoto, 1969) for this problem take the following forms: 

(A) The intensity I;; ( r:, IJ., ¢, t) in the upward direction at timet and at depth r: is given 
by 

I;; ( r:, IJ., </J, t) = FIJ.- IS (r:I - r:; IJ., ¢: IJ.o, ¢0, t- _!__) exp (- _::_) + 
CIJ.o llo 

t I 2n 

+ 4~/L J dtl J J S(r:I-r:;IJ.,</J;IJ.
1

,</J
1

,t-t
1

)/;t x 
0 0 0 

X ( r:, IL I, </J 1
, t 1

) diJ. I d</J 1 
• (17) 
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(B) The intensity I; ( -r:, Jl, ¢, t) in the downward direction at time t and at a depth 7: 

is given by 

_.. by 

t 

I; ( 7:, Jl, ¢, t) = FJl- 1 T( -r:; Jl, ¢; J10 , ¢0 ,t) + -
1
- I dt' X 

4nJ1 
0 

I 2n 

X I I S(-r:;J1,¢;J1',¢',t-t')I;t(-r:,J1',¢',t')dJ1'd¢'. 
0 0 (18) 

(C) The diffuse reflection of the incident radiation by the entire atmosphere is given 

t 

+I; (-r:, Jl, ¢, t- .!....) exp (- ~) + -
1
- I dt' x 

CJl J1 4nJ1 
0 

I 2n 

X I I T(-r:;J1,¢;J1',¢',t-t')I;t(7:,J1 1 ,¢',t')dJ1'd¢'. (19) 

0 0 

(D) The diffuse transmission of the incident radiation by the entire atmosphere is 
given by 

( 7: ) ( 7:1 - 7:) ( 7:1 - 7:) 
X exp - CJlo +I; -r:, Jl, ¢, t-----;;;- exp - -

11
- + 

t I 2n 

+ 4~11 I dt' I I T(-r:1 - -r:; Jl, ¢, J10 , ¢0 , t- t') X 

0 0 0 

X I;(-r:, Jl', ¢', t') dJ1' d¢'. (20) 

A derivation of these four equations is based on classical intuitive physical arguments 
(Ambartsumian, 1943; Chandrasekhar, 1960; Presendorfer, 1958). Although these 
equations do not provide a complete knowledge of radiation intensity at any depth (or 
neutron distribution in a given medium) but only the reflected and transmitted inten­
sities, it has some real advantages for numerical computations. 
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2.3. INTEGRAL EQUATIONS EOR THE SCATTERING AND TRANSMISSION FUNCTION 

We differentiate Equation (17)-with respect to -rand take the limit as -r~ 0 

t 

X S( ! 1 , Jl,+¢; J10 , ¢0, t) + -
1
- f dt' X 

4nJ1 
0 

21t I 

X f f S(-r,;J1,¢;J1',f,t-t')[dl,t(-r,~;¢',t') dJ1'd¢'l~o· (21) 

0 0 ~ 

From Equation (8), we get by use of Equation (14) 

1
. d/,t ( -r, Jl', ¢', t') J(O, Jl', ¢', t') 
Im = ' 
~~ 0 d-r Jl' 

(22) 

where 

27t I 

J(O, Jl', ¢', t) = _..!._ f f .£_ S( -r1 , Jl", ¢", t) dJ1" d¢" + 
4n J1" 

0 0 

+ iFl>(t')P(Jl, ¢; Jlo, ¢o) · (23) 

In deriving Equation (23) we have used the expression for J( -r, Jl, ¢, t), Equation (9) now 
yields, after use of Equations (14) and (15) 

. d/j ( -r, Jl, ¢, t) J(O, Jl, ¢, t) 
hm =- + 
~~o d-r J1 

If we substitute Equations (22) and (24) in Equation (17), after cancellation andre­
arrangements of terms, we get 

oS(-r1 ;J1,¢,J10 ,¢0 ,t) (1 1)(1 o 1) ---'---'--'--.:.....;:_--'--'-- + - + - - - + X 
8-r, J1 Jlo c ot 



I 

+ _!_ I 
4n 

0 

ANISOTROPIC TWO-LAYERED ATMOSPHERE 

27t 

P(- Ill' ¢11 - Jlo, l/Jo) __!!_ d¢1 + I d I 

Ill 
0 

101 

d I d II 
X P(- JL 1, l/J1; JL 11 , l/J 11 )S( ri; JL 11 , l/J

11
; JL0, ¢0 , t) ~ d¢1 ~~ d¢ 11 . (25) 

JL JL 

Equation (25) is the required functional equation of the time-dependent S-function. 
_.. Again, if we differentiate Equations (18), (19), and (20) with respect to rand taking the 

limit as r---> ri and r---> 0, respectively, and following the same procedure we get 

= exp (- ~) (j (t- ....!_)P(- JL, ¢; - Jlo, l/Jo) + 
Jlo CJLo 

t I 2>t I 2>t 

X P(JL, ¢; - Jlo, l/Jo) dJLI d¢1 + _1_ I dtl I I I I X 
JL 1 16n2 

0 0 0 0 0 

X S(ri; JL, ¢; JL1, l/J1, t- t1)T(ri; JL 11 , l/1 11 ; JL0 , ¢0 , t1) X 

d I d II 
X P(JL1, l/J1; - Jl 11 , l/J 11 ) __!!_ df ___!!____ dl/J 11 , 

Ill JLII 
(26) 

oS(ri; JL, ¢; Jlo, l/Jo, t) = P( m· - ,n) 
a JL, 'f'• Jlo, 't'O X 

ri 

x exp (- ri (_!_ + ~)) (j (t- ..':!.- ~) + exp (- ri) x 
Jlo JL CJL CJLo JL 
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t I 2n 

X 4~ f dt' f f T( 'ri; !l", cf/', llo• </J0 , t- t')P(/l, </J; - !l", </J") X 

0 0 0 

t I 2n 

x 3(t' _ _5_)d/l" d<fJ" +_.!_ fdt' f f T(ri;!l,</J;!l',</J',t-t')x 
C/l !l" 4n 

0 0 0 

t 

X 3 (t' -.5_) exp (- ~) P(!l', <P'; - llo• </J0) d/l' d</J' + -
1
- f dt' X 

C/l /lo !l' 16n2 

0 

I 2n I 2n 

X f f f I T(ri;!l,</J;/l',<fJ',t-t')T(ri;Il",</J";Ilo•<Po•t') x 

0 0 0 0 

(27) 

I 2n 

X I I P(- ll• <fJ; !l" • <P")S ( TI; !l", <P", llo• </J0 , t- :~) X 

0 0 

I 2n ~ 

X d/l" d<fJ" + _.!_ I I T( -ri; /l. !l', <P', t)P(- /l. <P; - llo• <Po) X 
!l" 4n 

0 0 

t I 2n I 2n 

xd/l' d</J' +-
1
- Idt' I I I I T(ri;/l,</J;/l',t-t')x 

!l' 16n2 

0 0 0 0 0 

(28) 

Equations (25), (26), (27), and (28) are the required functional equations for'S' and 'T' 

functions. Let us now introduce the Laplace transform with respect to the time-variable 
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which enabies us to eliminate (at least formally) the time-variable, 

oS(ri;f1.,¢;f1.o,cf1o,s)+(~+_!_)(1+~)s( . .+.· .+. )= 
TI' fl., 't'' flo, 't'O' S 

OTI fl. flo c 

I 2n 

= P(fl., ¢; -flo, ¢o) + 41-rr: f f P(fl., ¢;fl."'¢") x 

0 0 

d " 
X S(ri; fl.",¢"; f1.0 , ¢0 , s) _!!____ d¢" + 

fl." 

I 27t 

+__!__ f f S(ri;f1.,¢;f1.',¢',s)P(-f1.',¢'; -f1.0 ,¢0 ) dfl.' d¢' + 
4n fl.' 

0 0 

I 21t I 21t 

+ 161n2 f f f f S( TI; fl., cp, fl.'' cp'' s)S( Tl; fl."' cp" ; flo, cf1o, s) X 

0 0 0 0 

(29) 

I 27t 

= P(- fl.,¢; flo, ¢o) ~xp (- TIS)+__!__ f f T(rl; fl.",¢"; flo, ¢o, s) X 
Cfl.o 4-rr: 

0 0 

.... , 
d " 1 ( T) ( T S) x P( -fl.,¢; -fl.",¢")_!!____ d¢" +- exp -----.!.. exp --1

- x 
fl." 4-rr: flo Cfl.o 

I 21t 

X f f S( TI; fl., cp, fl.', cp', s)P(fl., fl.' ; -flo, cp0 ) ~, dcp' + 
0 0 

(30) 
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8S(-ri;J.l.,¢;J.l.o,¢o,s) ( (1 1)) ----'------'----- = exp - -r1 - + - x 
a~ J.l. J.l.o 

( .. Is ( 1 1 )) 1 ( .. I) X exp - - - + - P(J.L, ¢; - J.l.o, ¢0 ) + - exp - - x 
c J.l. J.l.o 4n J.l.o 

I 27t 

X exp (- :;) J J T( -r1 ; j.l.
11

, ¢ 11

; J.l.o, ¢0 , s)P X 

0 0 

x (J.l., ¢, - J.l. 11
, ¢ 11

) _!!:_ d¢11 +- exp - __!_ exp - - 1
- x d 

11 

1 ( -r) ( -r s) 
J.l. 11 4n J.l.o CJ.l.o 

I 21t 

X J f /(-rl; J.l., ¢, J.l.'' ¢, s)P(J.L'' ¢'; - J.l.o, ¢o) d:' d¢' + 
0 0 

I 21t I 21t 

+ 16
1
n 2 J f f f T(-r1 ;J.L,¢;J.L',¢',s)P(J.L',¢'; -J.L~~,¢ 11 )x 

0 0 0 0 

(31) 

I 21t 

S( . II ,/,II "' ) dj.J.II dmll 1 f f T( "' I A.' ) X 'rl 'J.l. ''t' 'J.l.o, 't'O• S - 't' +- 'rl; J.l., 't'; J.l. ''t' 'S X 
J.l. 11 4n 

0 0 

( 

I ,f,l ) dj.J. I d I 1 
X P - J.l. , 't' , - J.l.o, ¢o - ¢ + --

J.l.' 16n2 

I 21t I 21t 

x f f f f T(-r1 ;J.L,¢,J.l.',¢',s)P(-J.L',¢',J.l.
11 ,1J11 )X 

0 0 0 0 

d I d II 

X S( -r1 ; J.l. 11
, ¢ 11 

; J.l.o, ¢0 , s) __!!:__ d¢' _!!:_ d¢11 
• 

J.l.' J.l.ll 
(32) 
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2.4. THE REDUCTION OF THE INTEGRAL EQUATIONS 

We have 

105 

P(Jl, ¢; Jl', ¢') = I (2- <>o,m) [I w[Pi(Jl)Pi(/l')] cosm(¢' - ¢). 
m~O t~m (33) 

If we follow Chandrasekhar (1960), we obtain 

N 

S(7:1 ; Jl, ¢; Jlo• ¢0 , s) = L S(m)(7:1 ; Jl, Jlo; s) cosm(¢0 - ¢) (34) 
m~O 

N 

T( 7:1; Jl, ¢; Jl0 , ¢0 , s) = L T(m)( 7:1 ; Jl, Jl0 , s) cosm (¢0 - ¢). (35) 
m~o 

»- If we substitute these expansions of S and T in Equations (29)-(32) and after some 
rearrangements we get 

1 (1 s)r(m)( . ) ar(m)(7:1;Jl,Jlo,s)-
- + - rl ' fl, flo, s + -
il c 87:1 

= (2- Do,m) L w[ P[(Jl) + - X 
N [ ( fY+m 

t~m 2(2- Do,m) 

I 

X I s(m)(7:1;{l,{l 1 ,S)P[({l) ~']x 
0 

I 

1 I d "J + T(m)(7: . 11
11 

II s)Pm(,") __!!__ 
2(2 _ () ) I • r • r-0• I r " • 

o.m il 
0 . 

(36) 

(37) 
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as<m)(•1; J.l, J.lo, s) N 

a.1 
= (2- Do,m) L ( -1Y+mwlm X 

l~m 

X Pt(J.l) exp (- "
1 

( 1 + ~)) + 
1 

X 
J.l C 2(2- Do,m) 

1 

X I T(m)(•1;j.l,J.l 1 ,S)Pt(J1.1
) ~']x 

0 

"' 

X [Pt{J1.0 )exp[ _2!_(/+~)] + 
1 

x 
J.lo C 2(2- D0 ,m) 

; .. 
1 

X Pt(J.l•)T(m)(•1;j.l•,J.lo,s) _!!_ , I d .J 
J.l. 

(38) 

0 

_.!._ ( 1 + ~) T<m)( . . . ) + oT<m)(•1; J.l, J.lo, s) = 
•1' J.l' J.lo' s 

J.lo c o~ 

=(2-Do,m)~wt[Pt(J.l)exp(-"1 (1+~))+ 1 
x 

l~m J.l C 2(2- Do,m) 

1 

X I T(m)(•1;j.l,J.l0 ,s)Pt{J.l1
) ~']X 

0 

1 

[ ( [y+m I d •] X pm(J.l)+- pm(J.l•)s(m)(•;J.l•,J.l )_!!_. (39) 
I 0 2(2 _ D ) I 1 0, s n 

O,m 
0 

J.l 
~ 

If we now let "' 

I 

( lY+m I d I m , _ m - (m) . 1 m 1 J.l (40) t/11 ( • 1, J.l, s) - P1 (J.l) + S ( •1, J.l, J.l , s) P1 (J.l ) -~ 
2(2 - D0 m) J.l 

• 0 

and 

I{Jt(•1;J.l,S)=exp(- "1 (1+~))Pt(J1.)+ 1 
X 

J.l C 2(2 - Do, m) 

1 I d I X T(m)(•1; J.l, j.l 1
, s)Pt(J.l) : , (41) 

0 

* 
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then, in view of principle of reciprocity (Chandrasekhar, 1960) we can rewrite 
Equations (36)-(39) in the form 

c 1)(1 s)s(m)( . ) as(m)(ri;Jl,Jlo,s)_ - + - + - r 1 , Jl, J10 , s + -
J1 Jlo c 07:1 

N 

=(2-Do,m) L (-1Y+mwf't/J!"(r1 ;j1,s)t/lf'(r1 ;j10 ,s), (42) 
l=m 

1 (1 ~)r(m)( . ) + ar(m)(ri;Jl,Jlo,s) = - + r1 , Jl, J10 , s 
~ 

J1 c a~ 
/!c 

N 

= (2- Do,m) L wf' t/J!"( r1 ; Jl, s)¢!"( 7:1 ; }10 , s) (43) 
l=m 

and 

ascml(r1; Jl; Jlo, s) N 

07:1 
= (2- Do,m) L ( -1)'+mwf' 

l=nz 

X ¢!"(r1; Jl, s)¢f'(r1 ; }10 , s) (44) 

and 

__!__ ( 1 + ~) yCml(r1; Jl, Jlo, s) + (JyCml(rl; Jl, Jlo, s) = 
Jlo c 07:1 

,....., 
N 

.;, = (2 - Do, m) L wf'¢!"( r1 ; Jl, s)t/J1m( r1; Jl, s). (45) 
l=m 

Now by use of Equations (42) and (44) we get 

(;

0 

+ l) ( 1 + ~)scml(r1 ; Jl, Jlo, s) = 

N 

= (2 - D0 , m) L (- l)'+m wf' [1/1!"( r1 ; Jl, s)t/1!"( r1 ; }10 , s) -
l=m 

- ¢;"( r1 ; Jl, s)¢?'( r1 ; }10 , s)] ; (46) 

~ 
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and by use of Equations (43) and (45) 

X wt[¢[(7:1 ; fl., s)ljl[(-r:1 ; f.J-0 , s)- 1/1/(7:1 ; fl., s)¢/(7:1 ; f.J-0 , s)]. (47) 

Equations (46) and (47) are the two fundamental equations of our problem. 

3. Solution 

3.1. LEGENDRE EXPANSION OF THE PHASE FUNCTION AND THE PRINCIPLE OF 

INVARIANCE 

Let us now consider that the atmosphere consists of two different layers. Denoting the 
quantities in the upper layer by subscript '1' and the quantities in the lower by subscript 
'2' and if we use Equations (46) and (47) we have 

and 

where 

N W(m) 
S(m)(-r;.· II II s) = ~ (2- c) ) " (-f)l+m ~X 

' z' r' rO' 0, m f...J Q 
fl.+ fl-o l=m 

x 1/1/( 7:;; fl., s)l/1/( 7:;; f.J-0 , s) - ¢/( 7:;; fl., s) - ¢1( 7:;; fl., s)¢/( 7:;; f.J-0 , s), 
(48) 

I 

( 1)/+m I d I m . m - (m) • 1 m 1 fl. 1/11 (-r:;, fl., s) = P1 (fl.)+ S; (-r:;, fl., fl., s)P1 (fl.) -
2(2- Do m) f.J-

1 

• 0 

(50) 

(51) 

s 
Q = 1 + - and i = 1, 2 . (52) 

c 



ANISOTROPIC TWO-LAYERED ATMOSPHERE 109 

If we use the above representations and again if we use Equations (34) and (35) we can 
write the scattering and transmission function in each layer as 

N 

S;(-r:;; f.l, ¢; f.lo, ¢0 , s) =.I s~m)(-r:;; f.L, f.L0 , s) cosm(¢0 - ¢); (53) 

N 

T;(-r:;; f.l, ¢; JL0 , ¢0 , s) = I T}m)(-r:;; f.L, f.L0 , s) cosm(¢0 - ¢) 
m~O 

(i= 1,2). (54) 

In what follows we inquire into how represent the scattering and transmission functions 
in the whole atmosphere. If we follow Tsujita, we introduce diffuse radiation intensities 
/ 1 ( -r:;; f.L, ¢; JL0 , ¢0 , s) and / 2( 7:;, f.L, ¢; f.L0 , ¢0 ; s) which leave the upper and lower layers 

• .~ in the direction (JL, ¢)with respect to the boundary between the two layes, where (JL0 , ¢0 ) 

denotes the direction of the incident radiation at the upper surface 1: = 0 

must satisfy the conditions 

/1(-r:1,f.L,¢;JL0 ,¢0 ,s)=O for 0<JL<1, 

/2(1:1; f.L, ¢; JL0 , ¢0 , s) = 0 for -1 < f.L < 0. 

(55) 

(56) 

Then from the principle of in variances (A)-(B) we have after the Laplace transform with 
respect to time variable 

I (m)(· )-F-1S(m)(· ) ( Q-r:1)+ 2 7:1 ' f.l, f.lo, s - f.l 2 7:2' f.L, f.lo, s exp - f.lo 

1 

+ 1 f s(m)(1: 'II 11
1 S)f(m)(7: '11

1 
II S) d11' d.f.' (57) 

2(2 s;. _ s;. ) 2 2' ~"'' f"' ' I 1 ' t"' ' t"'O• t"' 't' ' 
u uo m f.l , 0 

1 

X f S\m)(-r:1,f.L,f.L',s)I~m)(7:1 ,f.L',f.Lo,s)df.L' d¢'. (58) 

From (C)-(D), 0 

FJL- 1 S ( 7:o; f.L, ¢; f.lo, ¢o, s) = FJL- 1 S 1 ( 7:1; f.L, ¢; f.lo, ¢o, s) + 

(59) 
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and 
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I 2n 

+ -
1
- I I T2 (r2 ; f.l, ¢; f.l 1

, ¢1
, s) X 

41tf.l 
0 0 

(60) 

where r0 , r 1 , and r2 are the optical thickness of the whole atmosphere, the upper and .. the lower layer, respectively. Furthermore, we assume that I;( r1 , f.l, cp, f.l 1
, ¢', s) can be 

expanded in the form 

N 

I;(r1 ; f.l, ¢; f.l 1
, ¢ 1

, s) = L /}ml(r1 ; f.l, f.l 1
, s) cosm(¢1 

- ¢), 

(i=1,2)o (61) 

If we substitute this expansion in Equations (58) and (57) and taking account of 
Equations (53) and (54) and allowing for 

2n I cosm(¢" - ¢) cosn(¢1 
- ¢") d¢" = Dm,n1t cosm(¢1 

- cp)(m # 0, n # 0) = 
0 

= 2n (m = n = 0), (62) 

we obtain 

I 

1 I s(m) ( 0 I )J(m) ( 0 I ) d + 1 !1 ' f.l, f.l , s 2 !1 , f.l , f.lo, s f.l ' 
2(2- Do m)f.l 

• 0 

(63) 

I (m)( 0 )-F -ls(ml( o , ) ( riQ)+ 
2 rl ' f.l, f.lo, s - f.l 2 rl ' f.l, f.lo• s exp - f.lo 

I 

+ 
1 I s(m)(r 0 f.l f.l 1 ·s)J(m)(ro f.l 1 f.l s) df.l 1 

2(2 _ {) ) 2 2 • • • I • • O• 
0 

O,m 
0 

(64) 

3020 AUXILIARY FUNCTIONS AND THEIR FUNCTIONAL RELATIONS 

Let us now consider some auxiliary functions- .in terms of which / 1 ( r 1 ; f.l, ¢; f.lo, ¢0 , s) 
and / 2 ( T1 ; f.l, ¢; f.lo, ¢0 , s) are formed. If we ·assume that they depend on only one 
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argument, we seek functional relations satisfied by them and then solve the system of 
equations. For convenience, we put 

N 

I (m)( )-F Jlo ~ (m)A(m)( ) 
1 7:1, Jl, Jlo, s - -- L., wl,l 1 Jl, Jlo, s ' (65) 

Jl- Jlo l=m 
N 

I (m)( . ) _ F Jlo ~ (m)B(m)( ) 
2 '1:1, Jl, Jlo, s - -- L., W2,1 1 Jl, Jlo, s · (66) 

Jl+Jlo l=m 

If we insert Equations (65), (66), (48), and (49) into Equations (63) and (64) and 
.. rearrange them approximately, we have 

N N W~ 

L W~":}A)m)(Jl,Jl0,s)=(2-c\,m) L ~ ¢~m)(-r:1 ,Jl,S)X 
l=m l=m Q 

(67) 

I 

X exp - - 1
- +- L (- IY+m __3.,_!_ X 

( 
7: Q) 1 I { N w<m) 

Jlo 2 l=m Q 
0 

x [ t/1/( 7:2 , Jl, s)t/1/( r2 , Jl', s) - ¢;''( r2 , Jl, s)¢t( 7:2 , Jl', s)]} X 

X [ ~ w~":J A)m)(Jl, Jlo, s)] [-Jl-, + , Jl J dJl' , 
I= m Jl + Jl Jl - Jlo 

(68) 

we rewrite Equation (67) as 
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[ 

m ( -lY+m II 
X (2 - D0 , m)¢1 ( 1:, Jl0 , s) + 

2 
Jlo t/1!" ( 7:1, Jl', s) X 

0 

I 

x[J 
0 

t/1!"( -r:1, Jl, s)t/1!"( -r:1, Jl', s) - ¢;"( 7:1 , Jl, s)¢!"( 7:1 , Jl', s)J x 
Jl + Jl' 

(69) 

If we take account of Equation ( 48), we write the third term of the right-hand side of 
the above equation as 

Then we put 

(m)( ) (2 s: )mm( ) ( -l)l+m l/.2,1 Jlo, s = - uo,m 'f'l 7:1, Jlo, s + 
2 

Jlo X 

N 

I ~ w(m) Bm(u' II s) 

f 
L... 2, I I r- • r-0 • 

X t/1;"(-r:I,Jl',s) l=m dJl'. 
Jl' + Jlo 

0 

(70) 

(72) 
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If we make use of Equations (70), (71 ), (72) and rewrite Equation ( 69) once more, we 

have 

X m 1: S + 2, I X 
1 (W(m) ) 

t/11 
( I• /l, ) 2(2- Do,m) wtJ Q 

I 

I S (m) ( 1 )B(m) ( 1 ) d/l
1 

X I 1:1,/l•/l ,S I /l ,/lo,S -. 
Ill 

(73) 

0 

On the other hand, by rewriting Equation (68), we have 

N 

L wtJ A)m) (!1 1

' llo• s) 

Ill - !lo J 1 
d + X 

!l 2(2 - D0 , m) 

l~m 

X--------

I 

I [ N Jd 1 

(m) • 1 (m) (m) 1 /l 
X s2 (1:2, /l, !l, s) L wl,IB I (/l , /lo, s) -1 • 

0 
l~m /l 

(74) 
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N 

I L w\",'J A)m) (Jl', Jlo, s) 

+ Jl2o f t/Jim(7:2,Jl',s) l~m ' dJl'' 
Jl - Jlo 

(75) 

0 

rx~":J (Jl0 , s) = (2 - D0 , m)¢1m ( 7:2 , Jlo, s) exp (- 7:~~) + 

(76) 

If we make use of Equations (75) and (76) and rewrite Equation (74) once more, we have 

B~m)(Jl,Jl0 ,s) = rx~":J(Jl0 ,s)t/Jf'(7:2 ,Jl,S)- rxtJ X 

(77) 

From Equations (73) and (77) we get 

A)m)(Jl,Jl0 ,s) = rx\":J(Jl0 ,s)¢f'(7:I,Jl,S)- rx~":J(Jl0 ,s) X 

I 

X f S\m) ( 7:I; Jl, Jl'' s)¢!"( 7:2, Jl'' s)- rx~":J<Jlo, s) 2(2 _\o, m) X 

0 

I 

X (:~:)Q f S\m)(7:I;Jl,Jlo,s)¢'('(7:2,Jl',s) ~, + 
I, I O 

I I 

+ 1 f s(m)(7: 0 II II' s) f s(m)(7: 0 II II" s)A(m) X 
4(2 - () )2 I I ' ,.., r ' 2 I ' ,.., r ' I 

O,m 
0 0 

(78) 
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and 

I 

X s<m)(r . ,, ,, s)B(m)(," II s) _!!:_ __!!_ f 
d II d I 

I I ' r~-r ' 1 r ' ,.-o, · 
Jl" Jl' 

0 

Again, from Equations (78) and (79), if we use Equations (73) and (77) we get 

ASm)(Jl,Jl0 ,s)·= a~",'}(JL0 ,s)/)~",'}(JL,S)- at'J(JL0 ,s) x 

X P~",'}(JL,S) + 
2

(
2 

_\,o.m) (:~~)QatJ(JL0 ,s) X 

>« /)~",'J'(Jl, s) - a~",'} (JL0 , s)PtJ (Jl, s), 

1 (w(m)) 
B.<"')(" " s) = . . ____I_,_!_ QIX(m)(" s) X 

I ,.,, rO• •w2 _ D ) w<m) I,/ rO• 
"-\ 0, m 2,/ 

"' (m).( ) (m)( ) (m)( ) + (m)( ) X "'' 1'1J f.!.,.s - a2.1 Jlo, s Y2.1 Jl, s a3,1 Jlo, s 
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(79) 

(80) 

(81) 

(82) 
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1 
{J (m) ( 11 s) = ,J,(m) (1: 11 s) + X 

2,1 ,.,, '1'1 I>,.,, 4(2- () )2 
O,m 

I 

I S(m)( 1 ) (m)( 1 ) dJ.L' 
X I 'LI,J.l,J.l ,s Y2,1 J.l ,s 7' (83) 

0 

(84) 

(85) 

"" 
... 

I 

(m) _ (m) • 1 (m) 1 J.l I 
d' 

Yl,l (J.L, s)- s2 (1:2, J.l, J.l 's)fJI,I (J.L 's) 7 ' (86) 

0 

I 

(m) _ (m) • 1 (m) 1 J.l I 
d' 

Y2,1 (J.L, s)- S2 C•2, J.L, J.l, s)fJ2,t (J.L, s) 7 , (87) 

0 

1 
Y(m)(ll s)= ,J,(m)(• II s)+ X 

3,/ ,.,, '1'1 2> ,.,, 4(2- () )2 
O,m 

(88) 

I 

X S(m)('L • II 11 1 s){J(m)(111 S) ____!!____ I 
d' 

2 2 ' ,.,...., r- ' 4, I r- ' · (89) • 
J.L' 

0 

If we combine Equation (82) with Equation (86), Equation (83) with Equation (87), 
Equation (84) with Equation (88), and Equation (85) with Equation (89). We can deter­
mine fJ?.'P(J.L, s) and y~"l)(J.L, s) (i = 1, 2, 3, 4) numerically. From Equations (71), (72), 
(75), (76), (80), and (81) (:tt'P(J.L0 , s), A)m)(J.L, J.L0 , s), and B~m)(J.L, J.lo, s) can be calculated 
and then from Equations (65) and (66), /~m)('Lp J.L, J.L0 , s) and I~m)(1:2 , J.L, J.L0 , s) are deter­
mined. Thus we obtained S(1:0, J.L, ¢, J.L0 , ¢0, s) and T(1:0 , J.L, ¢; J.lo, ¢0, s) from 
Equations (59) and (60). 
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Abstract. An exact solution of the transfer equation for coherent scattering in stellar atmospheres with 
Planck's function as a nonlinear function of optical depth, of the form 

Bv(T) = b0 + b1 e-fh, 

is obtained by the method of the Laplace transform and Wiener-Hopf technique. 

1. Introduction 

Chandrasekhar (1960) applied the method of discrete ordinates to solve the transfer 
equation for coherent scattering in stellar atmosphere with Planck's function as a linear 
function of optical depth, viz., B vCT) = b0 + b1 r. The equation of transfer for coherent 
scattering has also been solved by Eddington's method (when 1'Jv, the ratio of line to the 
continuum absorption coefficient, is constant) and by Stromgren's method (when 1'/vhas 
small but arbitrary variation with optical depth) (see Woolley and Stibbs, 1953). 
Dasgupta (1977b) applied the method of the Laplace transform and Wiener-Hopf 

...._, technique to find an exact solution of the transfer equation for coherent scattering in 
stellar atmosphere with Planck's function as a sum of elementary functions, viz., 

n 

\!t Bv(T) = b0 + b1r + L b,E,(r), 
··~ r= 2 

/1.' by use of a new representation of the H-function obtained by Dasgupta (1977a). 
' Recently, Karanjai and Deb (1990) solved the equation of transfer for coherent isotropic 

scattering in an exponential atmosphere by Eddington's method. 
In this paper, we have obtained an exact solution of the equation of transfer for 

coherent isotropic scattering by the method of the Laplace transform and Wiener-Hopf 
technique in an exponential atmosphere (Degl'Innocenti, 1979; Karanjai and Karanjai, 
1985; and Karanjai and Deb, 1990), where 

Bv(T) = b0 + b1 e-fJT, 

where b0 , b1, and f3 are positive constants. 

Astrophysics and Space Science 189: 119-122, 1992. 
© 1992 Kluwer Academic Publishers. Printed in Belgium. 
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2. Equation of Transfer 

The equation of transfer considered here is of the form 

dlv( r, J-L)/dr = Iv( r, J-L) - wlv( r) - (1 - w)Bv(T), 

where we have taken Planck's function B vCT) as 

Bv(T) = b0 + b1 e-PT, 

0 < (1 - Bv)/(1 + 1Jv) = W < 1 , 

/vfk = 1Jv' 0 < Bv< 1; 

(1) 

(2) 

(2a) 

(2b) 

I., k being the line and continuous absorption coefficient; r, the optical depth in the total 
absorption coefficient; e., the collision constant; and I.(r, Jl) is the intensity in the 
frequency, in the direction cos- 1 J-L, J v ( r) is the average intensity 

+I 

Jv(r)=(1/2) f Iv(r,J-L)dJ-L. 

-I 

For the solution of Equation (1) we have the boundary conditions 

(i) I.(O,-Jl)=O, 0<f-L<1, 

3. Solution for Emergent Intensity 

The Laplace transform ofF( r) is denoted by F*(s), where F*(s) is defined by 

co 

F*(s) =sf exp( -sr)F(r) dr, 

0 

Rls > 0. 

The formal solution of Equation (1) (Dasgupta, 1977b) is 

I.(O, Jl) = wJ~(1/J-L) + (1- w)B~(l/J-L). 

(2c) 

(3) 

(4) 

The Laplace transformation of Equation (1) with necessary re-arangement 
(Dasgupta, 1977b) yields 

T(z)I.(O, z) = wGv(z) + (1 - w)B~(l/z), (5) 

where 

T(z) = 1 - (w/2)z log[(z + 1)/(z- 1)], (6) 

and 
I 

G.(z) = (1/2) J xi.(O, x) dxf(x- z). (7) 

0 
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T(z) has its roots ± k, real for 0 < w ::$; 1 

k(>1)-oo as w-1. 

According to Dasgupta (1974) we have 

H(z)- H0 + H _ 1/z + · · · as z- oo , 

where 

Ho = (1- w)-1/2 

and 
I 

H _ 1 = - (wH~/2) J xH(x) dx. 

0 

By-the well-known relation (Busbridge, 1960) 

1/T(z) = H(z)H(- z) on [- 1, 1]c, 

we rewrite Equation (5) as 

Iv(O, z)/H(z) = H( -z) [wGv(z) + (1 - w)B;(l/z)]. 

If we use the Laplace transformation of Equation (2) by Equation (3) we have 

B;(s) = b0 + sbd(s + {3). 

For s = z- 1 

B;(1/z) = b0 + h1/(1 + {3z) = (d0 + d1z)/(1 + {3z) (say), 

where 

di = b0 {3 and d0 = b0 + b1 • 

If we insert Equation (14) in Equation (12) we have 
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(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

I v(O, z)JH(z) = H(- z) [ wG v(z) + (1 - w) (d0 + d1 z)/(1 + {3z)] (15) 

which can be rewriten as 

/~(0, z)/H(z) = H( -z) [wG(z) + (1- w) (d0 jz + d1)/(1/z + {3)]. (16) 

Now as z - oo, G vCz) - 0(1/z), since we seek solution I v(O, z) regular for Rez > 0 and 
continuous on [0, 1]c and since H(z) is regular on [- 1, O]c/[- k], - k is a simple pole 
of H(z), 1/H(z) being regular on [ - 1, O]c. 

We see that the left-hand side of Equation (16) is regular at least for Rez > 0 except 
perhaps at oo, and the right-hand side of Equation (16) is regular at on [0, 1]c except 
at oo, both sides being bounded at the origin. 

The right-hand side of Equation (16) is 

C0 as z-oo, (17) 
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where 

(18) 

Hence, by a modified Liouville's theorem both sides of Equation (16) can be equated 
to C0 , so that the left-hand side of (16) is 

C0 as z-> oo, (19) 

the right-hand side of (16) is 

C0 as z-> oo. (20) 

Equation (16) can be put in the form 

1(0, z)/H(z) = C0 == H0 (1 - w)d1 /3. (21) ., 

If we use the relationship d1 == b0 f3 in (21) we get when z 

/(0, z) = H(z) (1 - w)H0 b0 . 

Since we have H0 = (1 - w)- 112 • 

Hence, fr~m Equation (22) we get 

/(0, z) = H(z) (1 - w)112 b0 , 

which is the same as deducted by Karanjai and Karanjai (1985). 
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Abstract. A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck's 
function as a nonlinear function of optical depth, viz. 

B.(T) = b0 + b1 e-li< 

is obtained by the method developed by Busbridge (1953). 

1. Introduction 

Chandrasekhar (1960) applied the method of discrete ordinates to solve the transfer 
equation for coherent scattering in stellar atmosphere with Planck's function as a linear 
function of optical depth, viz., 

The equation of transfer for coherent scattering has also been solved by Eddington's 
method (when IJv, the ratio ofline to the continuum absorption coefficient is constant) 
and by Stromgren's method (when 1'/v has small but arbitrary variation with optical 

·depth; see Woolley and Stibbs, 1953). Busbridge (1953) solved the same problem by 
a new method using Chandrasekhar's ideas. Dasgupta (1977b) applied the method of 
Laplace transform and Wiener-Hopftechnique to find an exact solution of the transfer 

. equation for coherent scattering in the stellar atmosphere with Planck's function as a 
sum of elementary functions, viz., 

n 

Bv(T) = bo + bl 'r + L brEr(-r), 
r=2 

using a new representation of the H-function obtained by Dasgupta (1977a). Recently, 
Karanjai and Deb (1991a, b) solved the equation of transfer for coherent isotropic 
scattering in an exponential atmosphere by Eddington's method and the method of 
Laplace transform and Wiener-Hopf technique. In this paper, we have obtained a 
solution of the equation of transfer for coherent scattering in an exponential atmosphere, 

Astrophysics and Space Science 192: 127-132, 1992. 
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i.e., 

Bv(T) = b0 + b1 e-f3T; 

where b0 , b1, and /hre three positive constants, by the method used by Bus bridge (1953). 

2. Equation of Transfer 

With the usual notation of transfer for the Milne-Eddington model can be written 
(Bus bridge, 1953; Chandrasekhar, 1960) as 

+I 

J1. dlv = (kv + av)Iv -1av J lvdJ1. 1 
- kvBv(T), 

pdz 
-I 

(1) 

where z is the depth below the surface; kv, the continuous absorption coefficient; and 
avis the line-scattering coefficient. We assume that kv and av are independent of depth 
and we write 

Then 

and 

z 

t = J p(kv + aJ dz, 

0 

z 

r= J pkvdz, 

0 

av 
IJv = k' 

1 kv 
Av=--=--. 

1 + '1v kv + av v 

where B v(T) is the Planck's function. 
Substituting into Equation (1), we get 

+I 

. . d/ v - . ( ) - l ( 1 - , ) J I ( I) d I - , (b b - f3J.. ,t) jl-.--fvf,Jl. 2 Av vf,Jl. J1. Avo+ le . 
drv 

-I 

Equation (5) has to be solved subject to the boundary conditions 

Iv(O, - J1. 1
) = 0, (0 < J1. 1 < 1) 

(2a) 

(2b) 

(3) 

(4) 

(5) 

(6a) 
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and 

(6b) 

3. Solution for Emergent Intensity 

For convenience we suppress the subscript v to the various quantities and consider a 
particular solution of Equation (5), which does not satisfy Equation (6a) in the form 
(Busbridge, 1953) 

Tb 
1(t,fl)=bo+ 1 1 e-PA.t, 

1 + /3Afl 

where 

). 
T----------

1 - 1 1 + ;.p 
1- -(1- ).)log--

2 ;.p 1 - ;.p 

as readily verified by substitution. We, therefore, write (cf. Busbridge, 1953) 

Tb 
1(t, fl) = b0 + 1 1 e-PA.t + 1*(t, fl). 

1 + fJ).fl 

Then 1*(t, fl) satisfied the integro-differential equation 

+ 1 

fl d1*(t, fl) = 1*(t, fl) - f(l - ).) I 1*(t, fl') dfl' ' 
dt 

-I 

together with the boundary conditions 

and 

1*(t, fl) e- tfJ.L-> 0 as t-> oo , 

(7) 

(8) 

(9) 

(10) 

(lla) 

(llb) 

we require the emergent intensity 1*(0, fl). This is the sum of r{(O, fl), where r{(t, fl) is 
the solution of Equation (10). 

Subject to the boundary condition 

(12) 

and 1{(0, J.l) which is the diffusely reflected intensity corresponding to the incident 
intensity given by Equation (11). It can be shown that unless)..= 0 (which is not so), 

Jt(t, J.l) = 0 0 (13) 



_;.. 

130 T. K. DEB AND S. KARANJAI 

Hence, 

I 

I*(O, Jl) = f!(O, Jl) = _.!._ I S(Jl, ll') ( Tl bl - bo) dfl' ' 
211 PA.11- 1 

(14) 

0 

where (cf. Chandrasekhar, 1960) 

S(fl, Jl') = (1- A.)~H(Jl)H(Jl') 
ll + Jl' 

(15) 

and H(Jl) is the solution of 

I 
.... 

H(Jl) = 1 +HI- A)JlH(Jl) I H(Jl') dfl' . 
ll + ll' 

(16) 

0 

From Equations (14) and (15), we have 

I 

I(O, Jl) = i(l- I.)H(Jl) I ( T1 b1 
- b0 ) __l!:j:_H(Jl') dfl' = 

Pl.fl - 1 11' + 11 
0 

I 

= 1(1 - I.)H(Jl)T b I ll' H(Jl') dfl' -
2 

I I (/l' + fl)(PA.fl' - 1) 
0 

I 

- i(l- I.)H(Jl)b0 I -11-'-H(Jl') dfl' = 
Jl' + ll ,+ 0 

I 

= i(l- I.)H(Jl) Tlbl I H(Jl') dfl' + 
p;. ll + ll' 

0 

I 

+ i(l- I.)H(Jl) Tlbl I H(Jl') dfl' -
pt. (11' + 11) CPA.11- 1) 

0 

I 

- i(l - I.)H(Jl)b0 I ( 1 - - 11
-) H(Jl') dfl' . (17) 

ll + ll' 
0 

.-.,.;. 



SOLUTION OF EQUATION OF TRANSFER BY BUSBRIDGE'S METHOD 

After some rearrangement and with Equation (16), this gives 

I*(O, Jl) = H(Jl)T1 b1 1 _ T1 b1 + 
1 + PA.Jl H(- 1/PA.) 1 + PA.Jl 

+ (H(Jl) - 1) b0 - ~(1 - A.)H(Jl)b0 r:t.o 

where 

0 

Following Chandrasekhar (1960) 

1- H1- A.)rxo = ;..r;2, 

we have from Equations (9) and (18) 

which represents our solution. 

We have to show that 

Jt(t, Jl) = 0 . 

Appendix 

For this, with the usual notation (cf. Chandrasekhar, 1960), we have 

-<r- where the constants La are determined by the equations 

n 

I La/(1 - /l;kJ = 0 , (i = 1, 2, 3, ... , n) . 
a= I 

Since 

n n n (1 - Jlka) I La/(1 - Jlka) 
a= 1 a= 1 

is a polynomial in 11 of degree (n - 1) with n distinct zero, it is identically zero. 
Hence, every La = 0, and in the limit, as n--+ oo 

Jt(t, Jl) = 0 . 

131 

(18) 

(19) 

(20) 

(21) 

(A.1) 

(A.2) 

(A.3) 
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Abstract. A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck's 
function as a nonlinear function of optical depth, viz., 

B.(T) = b0 + b1 e-P• 

is obtained by the method of discrete ordinates originally due to Chandrasekhar. 

1. Introduction 

Busbridge (1953) solved the transfer equation for coherent scattering in stellar atmos­
phere with Planck's function as a linear function of optical depth, viz. B v(T) = b0 + b1 1: 

by a modified principle of invariance method. Chandrasekhar {1960) solved the same 
problem by the method of discrete ordinates. The same problem has also been solved 
by Eddington's method {when IJv, the ratio of line to the continuum absorption 
coefficient is constant) and by Stromgren's method (when IJv, has small but arbitrary 
variation with optical depth) (see Woolley and Stibbs, 1953). 

Dasgupta (1977b) applied the method of Laplace transform and Wiener-Hopf 
~ technique to find an exact solution of the transfer equation for coherent scattering in 

stellar atmosphere with Planck's function as a sum of elementary functions, viz., 

n 

Bv(T)=bo+bi'L+ L brE/o), 
r= 2 

using a new representation of the H-function obtained by Dasgupta (1977a). Recently, 
Karanjai and Deb (1991, 1992a) solved the equation of transfer for coherent isotropic 
scattering in an exponential atmosphere by Eddington's method and by the method of 
Laplace transform and Wiener-Hopf technique. 

By use of a method developed by Bus bridge (1953), Karanjai and Deb (1992b) solved 
the same problem. 

In this paper, we have obtained a solution of the equation of transfer for coherent 
isotropic scattering in an exponential atmosphere by the method of discrete ordinates, 
where B vCT) = b0 + b1 e- P-r and b0 , b1 and f3 are three positive constants. 

Astrophysics and Space Science 192: 209-217, 1992. 
© 1992 Kluwer Academic Publishers. Printed in Belgium. 
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2. Equation of Transfer 

The equation of transfer considered here is of the form 

+I 

/l d/v = (kv + (Jv)Jv- -!(Jv I fvd/l'- kj3v(T) 
pdz 

-I 

(1) 

(Bus bridge, 1953; and Chandrasekhar, 1960) where z is the depth below the surface; 
kv, the continuous absorption coefficient; and CJv, the line-scattering coefficient. We 
assume that kv and CJ" are ind~pendent of depth and we write 

z 

t = I p(kv + CJ.) dz , 

0 

Then r = A.J and 

i.e., 

If we substitute in Equation (1) we get 

+I 

ll d!v(t, !l) = Iv(t, /l)- -!(1- A.\') I Iv(t, !l') dll' - Av(bo + bi e-IJ)..t) 
dt 

-I 

Equation (5) has to be solved subject to the boundary conditions 

Iv(O, -11) = 0, (0 < W~ 1) 
and 

(2a) 

(2b) 

(3) 

(4a) 

(4b) 

(5) 

(6a) 

(6b) 

Now a particular solution of Equation (5), which does not satisfy Equation (6a) is 

Tb I (t 11) = b + v I e- oc,.t 
v 'r 0 ' 

1 + !Xv/l 
(7) 
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where 

Av Tv= -----'------- (8a) 

1 - 1 (1 - A. ) log l + cxv 
2 v l-ex 

v and 
(8b) 

as readily verified by substitution. 
If we follow Busbridge (1953) we write 

T 
Iv(t, Jl) = bo + b, v e-rx,.t + It(t, Jl) 

1 + CXvJl 
(9) 

_.. Then It(t, Jl) satisfies the integra-differential equation 

+I 

dit(t, Jl) - I*( ) 1(1 , ) I I*( ') d , J1 - v t, J1 - 2 - ILv v t, J1 J1 ' 
dt 

(10) 

-I 

together with the boundary conditions 

(lla) 

and 

(llb) 

3. Solution for Emergent Intensity 

For convenience we suppress the subscript v to the various quantities and in the nth 
approximation, we replace Equation (10) by the system of 2n linear equations 

dft - I* 1(1 ,) " * . - 1 2 . Jl;-- ; - 2 - 11. L,., ajij , 1 - ± , ± , ... , ± n, 
dt j 

(12) 

where the 11/s (i = ± 1, ± 2, ... , ± n and Jl-; = - J1;) are the zeros of the Legendre 
polynomial P2,(Jl). a'js U = ± 1, ... , ±nand a_j =a) are corresponding Gaussian 
weights. However, it is to be noted that there is no term with j = 0. For simplicity, in 
Equation (12) we write 

Ij for If(t, Jl;) (13) 

The system of Equations (12) admits of integral of the form 

(14) 

where the g;'s and k are constants. 
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Now if we insert this form for It in Equation (12) we have 

g;ll + l1;kl = 1(1- .A) I ajgj , 
j 

. . = (1 _ 1 ) constant . . g, II. • 

1 + l1;k 

(15) 

(16) 

If we insert for g; from Equation (16) back into Equation (15) we obtain the charac­
teristic equation in the form 

1 = 1CI - A.) I ~ . 
j 1 + 11jk 

(17) 

If we remember that aj = a_ j and 11-j = - 11j we can rewrite the characteristic 
equation in the form 

(18) 

This is the characteristic equation which gives the values of k. If A. > 0, the characteristic 
Equation (18) gives distinct non-zero roots which occur in pairs as ± k, (r = 1, 2, ... , 
n). 

Therefore, Equation (12) admits the 2n independent integrals of the form 

Ij = (l _.A) constant e±k,, . 

1 ± 11A 
(19) 

According to Chandrasekhar (1960), the solutions (14) satisfying our requirements that 
the solutions are bounded by 

(20) 

together with the boundary condition 

b1 T 
I*_; = - - b0 at t = 0 . 

1- C/..11-i 
(21) 

4. The Elemination of the Constants and the Expression of the Law of Diffuse 
Reflection in Closed Form 

The boundary condition and the emergent intensity can be expressed in the form 

S(ll;) = 0 (i = 1, 2, ... , n) (22) 
and 

[ 
T/(1 - A.) b0 J 1*(0, 11) = (1 - A.)b1 S( -11) - - , 

1 + C/.11 (1 - A.)b, 
(23) 
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where 

( ) 
~ Lr T/(1 - .J.) bo s J1 = L. --+ + ----=--
r~ I 1 - krJl 1 - CI.Jl (1 - .J.)b, 

(24) 

Next we observe that the function 

11 
(1 - CI.Jl) Il (1 - krJl) S(Jl) 

r~ I 

is a polynomial of degree n + 1 in J1 which vanishes for J1 = Jl;, i = 1, 2, ... , n. There must 
accordingly exist a relation of the form 

11 n 

(1- CI.Jl) fl (1- krJl)S(Jl) oc (Jl- C) fl (Jl- Jl;) , (25) 
r~ I i~ I 

where C is a constant. 
The constant of proportionality can be found by comparing the coefficients of the 

highest power of J1 (viz. Jl"+ 1
). 

Thus, from Equation (25) we have 

S()
=(-1)11

+
1 b0 k k P(Jl){Jl-C) 

J1 I . . . ,a ' 
b1 (1 - .J.) R(J1)(1 - CI.Jl) 

where 
n 

P(Jl) = fl (Jl - Jl;) i = 1, i, ... , n , 
i=I 

and 
n 

R(Jl) = fl (1 - krJl) r = 1, r, ... , n . 
r= 1 

Moreover, combining Equations (26) and (27) we obtain 

where 
Rr(x) = fl (1 - khx) 

h#r 
and 

Cl. =/= kr . 

The roots of the characteristic equation (18) can be written in the form 

k, k2 ... k,J1IJ12 ... J111 = .J_I/2 . 

Now by use of Equation (32), Equation (26) becomes 

S(Jl) = - boa.J.'/2 H(- Jl){Jl- C) ' 
(1 - .J.)b, (1 - CI.Jl) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 
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where 
11 n (Jl + Jl;) 

;~I 

H(Jl) = --- ---- (34) 
Jl1Jl2 ... Jln 11 n c1 + k,.Jl) 

r~ I 

and the characteristic roots are evaluated from Equation (24 ). 
If we put Jl = 0 in Equations (24) and (34) we have 

" T b L L,.+--+ 0 
r ~ I 1 - A ( 1 - A )b 1 

(35) 

We can next evaluate I:~~ 1 L,. from Equation (29). Then 

(36) 

where 

(37) 

Now f(x) defined in this manner is a polynomial of degree (n - 1) in x which takes the 
values 

for 

P(1/k,.)(1/k,.- C) 

(1- ajk,.) 

x = 1/k,. (r = 1, 2, ... , n) . 

In other words, 

(1 - ax)f(x) - P(x)(x - C) = 0 

Therefore, we must accordingly have a relation of the form 

(1- ax)f(x)- P(x)(x- C)= R(x)(Ax +B) , 

(38) 

(39) 

where A and B are certain constants to be determined. The constant A follows from 
the comparison of the coefficient of X

11 + 1
• Thus 

(40) 

Next, if we put x = a- 1 in Equation (40) we have 

B = ( -1t + (C -1/a)P(a- 1
) 

ak1k2 ••• k, R(a- 1) ' 
(41) 
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i.e., 

(42) 

Now by use of the relations (42), (41), and (40) we get 

f(O) = - CP(O) + BR(O) = - C(- 1 t Jl1Jl2 ... Jln + 

( - 1 )n ( 1 )n H( - I) (C - I) + + - Jl1Jl2 · · · Jln -IX - IX . 
cxklk2 ... kn 

(43) 

From the Equation (37) using Equation (43) we have 

(44) 

By use of Equation (44) in Equation (38) we get 

(45) 

If, moreover, we combine Equation (44), the diffusely reflected intensity 1*(0, Jl) in 
Equation (23) takes the form 

I*(O, Jl) = b0 cxA. 
1
;
2 
H(Jl) [Jl + C] _ Tb0 _ bo . 
1 + IXJl 1 + CI.Jl 

(46) 

This is the required solution in closed form. If we combine Equation (9) at t = 0 and 
Equation (46) we have 

(47) 

which is the required solution of Equation (5) in the nth approximation by the discrete 
ordinate method. 

On putting C from Equation (45) we get the solution in the form 

(48) 

Chandrasekhar's (1960) solution for /(0, Jl) in the case of coherent scattering is given 
by (for B vCT) = bo + bl T) 

/(0, Jl) = b0 A. 112 H(Jl) + b1 )..
31

2 H(Jl)Jl + 1h1 A.(1 - A.)H(J.!)ct.1 , (49) 
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where 
I 

an = I H(JJ.)JJ." djJ. . (50) 

0 

If we compare Equations (48) and (49) we see that by putting b1 = 0 we have the same 
solution for both the cases. Moreover for large values of f3 (i.e., f3---+ oo) the solutions 
(48) takes the form 

(51) 

i.e., f3 then behaves like a constant or independent of T. This fact can also be explained 
from the point of view that 

Bv(T) = b0 + b1e-f3r,.---+b0 as /3---+oo. 

Also the result obtained by Karanjai and Deb (1992b) is the same as obtained here. 

Appendix 

To establish the relation (32) we consider 

Dm(x) = (1- 2) L: a;JJ.'/' = (- 1r0- 2) I a;JJ.'/' , 
i 1 + /).;X i 1 - /).;X 

(m = 0, 1, ... , 4n) . 

We can derive a single recursion formula for Dm(x). Then 

Dm(x) = _!_ [c1- 2) I a;JJ.;"- 1 (1- -'-)] = 
X i 1 +/).;X 

where 

t/1111 = (1 - 2) - I a;JJ.7' 

From this formula we have 

· ,/, ,/, ,/, ( _ 1 )m- I 
Dm(x) = ~- 'f'm-2 + ... + ( -l)m-2_'1'1_ + X 

X X2 Xm-1 Xm 

x [t/10 - D0(x)] (m = 0, 1, ... , 4n) 

and 

t/10 = 2(1- 2) . 

(52) 

(53) ,~ 

(54) 

(55) 

(56) 
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Moreover, let P2j be the coefficient of J1. 2j in the Legendre polynomial P3n(Jl), then 

Since the Ji./S are the zeros of P zn(Jl). Equation (57) reduces to 

n 

L PzjDzikz) = 0 . 
j~O 

(57) 

(58) 

If we substitute for D 2ikr) from Equation (56) into Equation (58) we get the required 
form of the characteristic equation as 

From this equation it follows that 

1 (-1)nPo (JliJlz···Jlnf 

(klkz ... knf A.Pzn A 
i.e., 
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Abstract. The application of the Wiener-Hopf technique to the coupled linear integral equation of time­
dependent X- and Y-functions gives rise to the Fredholm equations with simpler kernels. The time­
dependent X-function is expressed in terms of time-dependent Y-function and vice versa. These are unique 
in representation with respect to coupled linear constraints. 

1. Introduction 

In the theory of radiative transfer for homogeneous plane-parallel stratified finite atmos­
phere the X- and Y-functions of Chandrasekhar (1960) play a central role. These 
equations satisfy a system of coupled nonlinear integral equations. Bus bridge (1960) has 
demonstrated the existence of the solutions of these coupled nonlinear integral equations 
in terms of a particular solution of an auxilliary equation. Bus bridge ( 1960) has obtained 
two coupled linear integral equations for X(z) and Y(z) which defined the meromorphic 
extension to the complex domain I Z I of the real valued solution of the coupled nonlinear 
integral equations of X- and Y-functions. Busbridge (1960) concludes that all solutions 

· of nonlinear coupled integral equations for X- and Y-functions are the solutions of the 
coupled linear integral equations to the extended complex plane but all solutions of the 
coupled linear integral equations are not solutions of the coupled nonlinear integral 
equations. Mullikin (1964) has proved that all solutions of coupled nonlinear integral 
equations are solutions of the coupled linear integral equations but there exist a unique 
solution of the coupled linear integral equations with some linear constraints. Finally 
he has obtained the Fredholm equation of X- and Y-functions which are easy for iterative 
computations. Das (1979) has obtained a pair of the Fredholm equations with the 
Wiener-Hopftechnique from the coupled linear integral equations with coupled linear 
constraints. 

In this paper we have considered the time-dependent X- andY-functions (Biswas and 
Karanjai, 1990) which give rise to a pair of the Fredholm equations with the application 
of the Wiener-Hopf technique. These Fredholm equations define time-dependent 
X-functions in terms of time-dependent Y-functions and vice versa. These represen­
tations are unique with respect to the coupled linear constraints defined by Mullikin 
(1964). 

Astrophysics and Space Science 196: 223-229, 1992. 
© 1992 Kluwer Academic Publishers. Printed in Belgium. 
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2. Basic Equation 

The coupled nonlinear integral equations satisfied by the time-dependent X- and 
Y-functions (Biswas and Karanjai, 1990) are of the form 

0 ~ f.l < 1' (1) 

I 

( ( 
-r1Q) w J Y(-r1 ,fJ.,s)X(-r1,x,s)X(-r1 ,fJ.,S)Y(-r1,x,s) d 

Y -r1 , f.l, s) = exp - ---;; + 
2

Q f.l --'-'---____:; __ f.l ___ x______ x, 

where 

s 
Q=l+-, 

c 

0 

0 ~ f.l < 1' (2) 

(3) 

-r1 is the thickness of the atmosphere; c, the velocity of light; and s, Laplace transform 
parameter. 

If we follow Chandrasekhar (1960) Equations (1) and (2) can be written as 

I 

f.l J 1/t(x) X(-r1 , f.l, s) = 1 +- -- [X(-r1 , f.l, s)X(-r1 , x, s)-
Q X +Jl 

0 

-Y(-r1 ,fJ.,s)Y(-r1,x,s)]dx, O~J1.<1, (4) 

- X(-r1 , x, s)Y(-r1, f.l, s)] dx, 0 ~ f.l < 1; (5) 

where 1/t(x), the characteristic function satisfying the Holder condition on 0 ~ x ~ 1, is 
non-negative and satisfies the condition 

I 

1/10 = J 1/t(x) dx ~!. (6) 

0 

The atmosphere is said to be conservative when !/to = ! and non-conservative otherwise. 

4. 

•' 
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The dispersion function T(z, s), z E (- I, IY can be defined by 

and 

where 

1 

2z
2 f T(z, s) = 1 - Q ljl(x) dxT(z 2 

- x 2
) 

0 

T(z, s) = (H(z, s)H(- z, s))- 1 , 

1 

H(z, s) = 1 + zH(z, s) f 
0 

ljl(x)H(x, s) dx 

x+z 
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(6a) 

(6b) 

(7) 

According to Busbridge (1960), the only zeros of T(z, s) are at z = ± K, K > 1, when 

1/10 < ! and K---+ oo when 1/10 = ! . 
Following Busbridge (I960), Dasgupta (1977), and Das (1978) H(z, s) is mero­

morphic on (- 1, O)c having a simple pole at z = - K and tend to 1 as z---+ 0 +. It can 
be represented by 

where 

1 

H(z, s) = A 0 + H0 z _ f P(x, s) dx , 
K+z x+z 

0 

1 

f P(x, s) dx 
H(z,s) = h1z + h0 - , 

x+z 
K---+ oo, 1/!o = L 

0 

1 

P _ 1 = f P(x, s) dxfx, 

0 

1 

( f )-1/2 

H0 = 1 - 2 ljl(x) dx 

0 

1 

h1 = 2 x 2 1jf(x) dx , ( f ) -1/2 

0 

h0 = ( I + P _ 1 ) , 

P(x, s) = ¢(x, s)/H(x, s), 

(8) 

(9) 

(10) 
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I 

2x
2 f T0 (x, s) = I- Q (1/t(t)- ljt(x)) dt/(x 2

- t2
)-

0 

xljt(x) 
- -- log((I + x)f(I - x)), 

Q 

where ¢(x, s) is non-negative and continuous on (0, I), tends to ljt(O)x as x -4 0 +, tends 
to O((log(I- x)- 2

)) when X-41_, and I/H(z,s) is regular on (-I, oy. 
If we follow Bus bridge (I960) and Mullikin (I964) we find that the coupled linear 

equations satisfied by X(z, s) and Y(z, s) for z E (- I, IY are of the form 

X(z, s)T(z, s) = I+ zU(X) (z, s)- z exp(- (cdz)Q)V(Y) (z, s), (II) 41. • 

Y(z, s)T(z, s) = (exp(- ( 'LI/z)Q) + zU(Y)(z, s))-

- z exp(- ( cdz)Q) V(X) (z, s), (12) 

with constraints for 1/to < ~. 

0 = I + KU(X) (K, s)- K exp(- ( ci/K)Q) V(Y) (K, s), (13a) 

0 = (exp(- ( rdK)Q) + KU(Y) (K, s))- K exp(- (cdK)V(X)(K, s), (13b) 

for l/t0 = ~. 
I 

I = f 1/t(x)(X(x, s) + Y(x, s)) dx, (I4a) 

0 

1 1 

'L1 f Y(x, s)ljt(x) dx = f xljt(x) (X(x, s)- Y(x, s)) dx. (I4b) .·~ 

0 0 

The other conditions for which X(z, s) and Y(z, s) hold are 

X(z, s) -4 H(z, s) when 'L1 -4 oo , (I5a) 

Y(z, s) -4 u when 'L1 -4 oo , (15b) 

where for M = X or Y 

1 

V(M) (z, s) = f ljt(x)M(x, s) dxf(x + z) (I6) 

0 
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is analytic for z E (- 1, oy bounded at the origin O(z- I) when z-+ oo and 

I 

U(M) (z, s) = J t/J(x)M(x, s) dxf(x - z) 

0 

is analytic for z E (0, 1 y, bounded at the origin O(z- I) when z-+ oo. 

3. Fredholm Equations 

Equations (11) and (12) with Equations (6b) can be written in the form 

X(z, s)/H(z, s) = H(- z, s) (1 + zU(X) (z, s))- z exp(- (-r:Ifz)Q) X 

x H(- z, s) V(Y) (z, s), 

Y(z, s)JH(z, s) = H(- z, s) ((exp(- -r:Ijz)Q) + zU(Y) (z, s)­

- z exp(- ( -r:Ifz)Q)H(- z, s) V(X) (z, s). 
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(17) 

(18) 

(19) 

We shall assume that X(z, s) and Y(z, s) are regular for Rez > 0 and bounded at the 
origin. Equation (8) gives 

Hence 

where 

and 

where 

I 

H( -z, s) = Ao- Hoz- J P(x, s) dx fi ,/, I or 'Po< 2. 
(K- z) x- z 

0 

I 

J 
P(x, s) 

V(M) (z, s) -- dx = D(M, P0 ) (z, s) + D(P, M 0 ) (z, s), 
x-z 

0 

I 

D(M, P0 ) (z, s) = J t/J(x)M(x, s)P0 (x, s) dx 

x+z 
0 

I 

D(P, M 0 ) (z, s) = J t/J(x)P(x, s)M0 (x, s) d 
X, 

x-z 
0 

I 

Po(z, s) = J P(x, s) dx 
x+z 

0 

(20) 

(21) 

(22) 

(23) 

(24) 
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is regular on (- 1, oy, bounded at the origin O(z- I) when z ~ oo, 

I 

( ) _ I 1/J(x)M(x, s) dx 
M 0 z,s - , 

x+z 
(25) 

0 

is regular on (- 1, oy, bounded at the origin O(z- 1
) when z-+ oo and D(M, P0 ) (z, s) 

is regular for z on (- 1, oy, bounded at the origin and O(z- 1
) when z-+ oo and 

D(P, M 0 ) (z, s) is regular for z, on (0, 1Y bounded at the origin, and O(z- 1
) when z ~ oo. 

Hence, Equations (18) and (19) can for l/10 <~be written in the form 

X(z, s)/H(z, s) + z exp(- (r1/z)Q) X 

x (Ao- Hoz V(Y)(z, s)- D(Y, P
0
)(z, s)) = -4i. ~ 

K- z 

= H( -z, s) (1 + zU(X) (z,s) + zexp( -(r1 /z)Q)D(P, Y0 ) (z, s)), (26) 

Y(z, s)/H(z, s) + z exp(- ( r 1/z)Q) X 

x 0 0 V(X) (z, s) - D(X, P0 ) (z, s) = (
A -Hz ) 

K- z 

= H(- z, s) (exp(- (r1/z)z) + zU(Y) (z, s)) + 

+ z exp(- ( ri fz)Q)D(P, X0 ) (z, s) . (27) 

The left-hand side of Equations (26) and (27) are regular for Rez > 0 and bounded at 
the origin; the right-hand side of Equations (26) and (27) are regular for z, on (0, 1Y, 
bounded at the origin and tends to constants, say, A and B, respectively, when z ~ oo. 

Hence, by a modified form of Liouville's theorem we have 

X(z, s) = H(z, s) [ z exp(- ( r1/z)Q) ( D(Y, P0 ) (z, s) -

-
0 0 V(Y)(z, s) +A , A -Hz ) J 
K-z 

Y(z, s) = H(z, s) [z exp(- (r1/z)Q) (n(X, P0 ) (z, s)­

- Ao - Hoz V(X) (z, s)) + BJ' 
K-z 

Equations (28) and (29) together with Equations (15a) and (15b) gives 

A= 1, B = 0. 

(28) 

(29) 

(30) 
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Hence for 1/10 = !, the expression of X(z, s) and Y(z, s) are 

X(z, s) = H(z, s) [ 1 + z exp(- ( -cdz)Q) (D(Y, P0 ) (z, s) -

- ( -h 1z + h0 )V(Y) (z, s))], 

Y(z, s) = H(z, s)z exp(- (-c1/z)Q) (D(X, P0 ) (z, s))­

- ( -h1z + h0 )V(X) (z,s)). 

229 

(31) 

(32) 

Hence, following Mullikin (1964) Equations (28) and (29) together with Equations (13a) 
and ( 13b) give unique representations of time-dependent X- and Y-functions for 1/10 < k 
and Equations (31) and (32) together with Equations (14a) and (14b) give unique 
representations of X- and Y-functions for 1/10 = !. 
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Abstract. We have considered the transport equation for radiative transfer to a problem in semi­
infinite atmosphere with no incident radiation and scattering according to planetary phase function 
w(1 + x cos 0). Using Laplace transform and the Wiener-Hopf technique, we have determined the 
emergent intensity and the intensity at any optical depth. The emergent intensity is in agreement with 
that of Chandrasekhar (1960). 

1. Introduction 

The transport equation for the intensity of radiation in a semi-infinite atmosphere 
with no incident radiation and scattering according to the phase function 
w(1 + x cos 0) has been considered. This equation has been solved by Chandrasek­
har (1960) using his principle of invariance to get the emergent radiation. The 
singular eigen function approach of Case (1960) is also applied to get the intensity 
of radiation at any optical depth. Boffi (1970) has also applied the two sided 
Laplace transform to get the emergent intensity and the intensity at any optical 
depth. Das (1979) solved exactly the equation of transfer for scattering albedo 
w < 1 using the Laplace transform and the Wiener-Hopf technique and also 

..- deduced the intensity at any optical depth by inversion. 
In this paper we have solved the above problem exactly by a method based on 

the use of the Laplace transforlll and the Wiener-Hopf technique. The intensity 
( at any optical depth is also deri.ved by inversion. 

2. Basic Equation and its Solution 

The equation of transfer appropriate to the problem (Chandrasekhar, 1960) is 

( ) J
+l dlr,p., 1 

JL = I( T' JL) - - w I( T' p.,')(1 + XJLJL 1
) dp.,' ' 

dr 2 -1 

(1) 

where the symbols have their usual meaning. 
We shall have the following boundary conditions 

Earth, Moon and Planets 59: 1-10, 1992. 
]· © 1992 Kluwer Academic Publishers. Printed in the Netherlands. 
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1(0, - f.L) = 0, 0 < f.L < 1 ; (2a) 

I( ) L (k ) 
1 + x(1- w)(f.L/k) 

T, f.L ---;. 0 exp T , as T ---;. oo ; 
1 - kf.L 

(2b) 

where L 0 is a constant and k is the positive root, less than 1, of the transcendental 
equation. 

1 = ~ [1 + x(1 - w)] lo (~) -
zk e g1-k 

Let us define 

1 
--zxw(1- w). 

k 

f*(s)=s 1= exp(-sT)f(T)dT, R11s>O. 

Let us set 

wherem = 0,1, 

which gives 

1 I+1 

I6(s) =- I*(s, f.L') df.L' 
2 -1 

and 

1 I+1 

Ii(s) = 2 _
1 

/*(s, f.L')f.L' df.L' , 

Equation (1) with Equation (5) takes the form 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Now, subjecting Equation (8) to the Laplace transform as define in Equation (4), 
we have, using the boundary conditions, 

( f.LS - 1)/*(s, f.L) = f.LS/(0, f.L) - wl6(s) 

-xwf.Lii(s) . 

Equation (9) gives (on putting s = 11 f.L) 

/(0, f.L) = w/6(11 f.L) + XWf.Ll[(lf f.L). 

(9) 

(10) 
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Equation (10) with JL =lis, sis complex, takes the form 

1(0, lis)= wl6(s) + xws-1Ii(s), 

we apply the operator 

1 J+1 

- ... djL 
2 -1 

on both sides of Equation (9) to get 

1 f1 

Ii(s)- (1 ~ w)s- 1 I6(s) =- J-Ll(O, JL) dJL 
2 0 

we apply the operator . 

1J+1 

- ... dJLI(JLS- 1), 
2 -1 

a(1/s) = 1 + wto(1/s) + xwt1(lls)Ii(s) , 

where 

111 

a(1/s) =- JLS(JLS- 1)-1!(0, JL) dJL 
2 0 . 

and 

3 

(11) 

(12) 

(13) 

(14) 

(15) 

•(16) 

(17) 

Eliminating I6(s), It(s) among Equations (11), (13) and (15) and settings= liz, 
we have 

where 

where 

w JL f
1 

T(z)I(O, z) =- .--
2 o-JL-z 

X [1 + JLX(1 - w)z]/(0, JL) dJL, 

T(z) = 1 + wx(1 - w)z_2 + w[1 + x(1 - w)z 2]t0(z) , 

. ( ) - z djL J
+1 

toz -- --. 
2 -1 JL- z 

(18) 

(19) 

(20) 

Following Chandrasekhar (1960) and considering Equation (3), we see that T(z) 
has a pair of roots at z = ±k- 1 and 
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T(z)= 
1 

, zE(-1,1t, 
H(z)H( -z) 

(21) 

where H(z) is Chandrasekhar's H-function for planetary scattering. Equation (18) 
with Equation (21) takes the form 

I(O, z) = H( -z) ~ t ____!!:___ x 
H(z) 2 Jo JL- z 

x [1 + JLX(1 - w)z]I(O, JL) df.L, (22) 

Equation (22) can be written as 

I~Cz;) = H(- z)wG(z) , 

where 

G(z) =- ____!!:___ [1 + JLX(1 - w)z]I(O, JL) df.L. 1 fl 
2 o JL-z 

(23) 

Let us seek solution /(0, z) of Equation (22) by Wiener-Hopf technique on the 
assumption that /(0, z) is regular for Rl z > 0 and bounded at the origin. 

Equation (23) with the above assumption on I(O, z) gives the following proper­
ties of G(z): G(z) is regular on (0, 1t, bounded at the origin and a constant as 
z ~ oo. Equation (23) then gives 

(
1

- ~1~(0, z) = w(1- kz)H( -z)G(z), (24) 

where H( -z), H(z), l!H(z) has the following properties: H(z) is regular for 
z E ( -1, Ot, uniformly bounded at the origin has a simple pole at z = -(1/k), 
k < 1; k is real on the negative real axis and bounded at infinity and tends to 
Ho + H-1Z- 1 + H_2z-2 + ···when z ~oo. 

Hence, l!H(z) is regular for z in (-1, Ot and bounded at the origin. Similarly, 
H(-z) is regular for z E (0, 1t uniformly bounded at the origin has a simple pole 
at z = llk, k < 1; k is real, on the positive side of the real axis and bounded at 
infinity and tends to H 0 - H_1z-1 + H_2z-2

- ···when z ~oo. 
Following the properties of H(z), l!H(z), H( -z) (Busbridge, 1960) the left 

hand side of Equation (24) is regular for Rl z > 0, bounded at the origin and the 
right hand side of Equation (24) is regular for z E (0, 1t and bounded at the 
origin and tends to a polynomial say A + Bz, as z ~ oo. 

Hence by a modified form of Liouville's theorem 
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(1 - kz)I(O, z) =A + B when z E (-1, O)c 
ll(z) z, 

(25) 

and 

A+ Bz = w(1- kz)ll( -z)G(z), when z E (0, 1Y. (26) 

Equation (25) gives the emergent radiation as 

I(O z) = (A + Bz)ll(z) 
' 1- kz ' 

(27) 

where the constants A and B are two arbitrary constants to be determined later 
on. 

3. Intensity at Any Optical Depth 

The radiation intensity at an optical depth T is given by the inversion integral as 

J(T, f.L) = (lf27Ti) ~r:i: exp(sT) X 

x I*(s, f.L) ds/s, c > 0. (28) 

Equation (9) with Equation (11) takes the form 

I*(s, f.L)/s = cp(s, f.L)/(s- 1/f.L), (29) 

where 

w(s- 1/s) 
cp(s, f.L) = 1(0, f.L)- 1(0, 1/s) + /~(s). (30) 

s 

But 

lim (s -1/f.L)/*(s, f.L) exp(sT)/s~o. (31) 
S--->1/ iJ-

Hence the integrand of Equations (28) is regular for s E ( -oo, -1Y and has simple 
pole at s = ±k, k < 1. 

Hence by Cauchy's residue theorem, Equation (28) gives 

l(T, f.L) = RP + lim (1127Ti) j /*(s, f.L)esr ds/s, 
R-+oo Jr (32) 

where RP is the sum of the residues of the poles at s = ±k and r = 
r 1 U CD U v U EF U r 2 . [r 1 and r 2 are arcs of the circle of radius R having centre 
at s = 0 (clockwise) and v is an arc of a small circle of radius r having centre at 
s = - 1 (anticlockwise) and CD and EF are the lower edge and upper edge of 
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i-axis 

B(c+ i5) 

Real axis 

s-plane 

Fig. 1. 

the singular line (-R, -1)] (Figure 1). Hence, following Kourganoff (1963) we 
have -

( I*(s, f.L) exp(sr) ds/s __,.o, whenR __,.oo 
Jr1urz 

(33) 

and 

F I*(s, f.L) exp(sr) ds/s __,. 0, when r __,. 0. (33a) 

Hence in the limit of R __,. oo, r __,. 0, Equation (32) with Equations (33) and (33a) 
becomes 

I(r, f.L) = Rp + (1127Ti) f. I*(s, f.LV.,. dsls + 
CD 

+ (1!27Ti) I I*(s, f.L)e•.,. ds/s. 
EF 

(34) 

Here on CD and EF, 

s = -v, u;:;.1 (34a) 
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and on CD, 

H(1ls) = X(11v) + i?TY(11v) 
H(11v)Z(11v) 

(35) 

and on EF, 

H(1ls) = X(11v)- i?TY(11v). 
H(1/u)Z(1/u) ' 

(36) 

where 

. X(11v) = 1 + wx(1 - w)v-2
- w[1 + x(1 - w)v-2

] x 

~ 1 (u + 1) (37) _., x-log -- , 
2v v -1 

Y(11v) = (w/2)u-1
; (38) 

Z(11v) = (X2(11v) + ?T2Y\11v, JL)) . (39) 

Therefore on CD 

¢(s, JL) = V(1/v, JL)- i?TW(11v, JL) (40) 

and on EF, 

¢(s, JL) = V (1/v, JL) + i '7T W (11v, /.L) , (41) 

where 

V(11v ) = /(0 ) - [ (B- vA)(11v) J x 
'JL 'JL (v + k)H(11k)Z(11v) 

,_.._ { 1 v + 11JL } (u + 11JL)wa1/2 
X + + ' 

1 + x(1- w)lv2 1 + x(1 - w)lv2 
(42) 

W 11v = [ (B- vA)Y(11v) ][1 + v + 1/J.L J 
( 'JL) (v + k)H(11k)Z(11v) 1 + x(1- w)lv2 

• 

Now, Equation (33) with Equations (29), (34a), (40) and (41) gives 

I( ) R 1 f' {u(1/v, JL)- i?TW(11v, JL)} -u..- d TJL= -- e u+ 
' p 2'7Ti 1 v + 11 JL 

1 f' V(11v, JL) + i?TW(11v, JL) -u..- d (44) +- e u. 
2'7Ti 1 v + 11 JL 

Hence when JL > 0, Equation ( 44) give 

)' 
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(45) 

where fL < 0, we shall assume that (V(llv, fL) ± i7TW(llv, IL) e-"T satisfies HOlder 
condition on (1, oo) and we have by Plemelj's formula (Muskhelishvili, 1946) 

~ f"" V(1/v, !L) ± i7TW(l!v, IL) e-uT dv = ±! (V( -fL, IL) ± 
2m 1 v + llfL 2 

0 W( )) TIJ.L 1 p f"" V(llv, fL) ± i7TW(llv,JL) ±l7T -fL,fL e +-X X 
27Ti 1 v + 1/fL 0 

(46) 

where P denotes the Cauchy principal value of the integral. Hence Equation ( 44) ..-4 

with Equation ( 46) for fL < 0 gives 

l(T, !L) = RP + V( -fL, !L) eT'J.L + P J"" W(1/v, IL) e-uT dv, (47) 
1 v+li!L 

where 

(48) 

where, R±k is the residue of the integral in Equation (32) at s = ± k, and Rk is 
given by 

Rk =lim (s- k)I*(s, !L) es"ls 
S--->k 

li H(lls)(As + B)s [1 (1 )/ ] sT = m 
2 

+x -w se 
s--->k{s + x(1- w)}(1- SfL) 

H(llk)(Ak + B)k [1 + x(1- w)lk] ekT 0 

[e + x(1 - w)](1 - k!L) 

Similarly, R-k is given by 

R-k = lim (s + k)I*(s, IL) esT/s 
s--->(-k) 

= lim (s + k)H(1/s)(As + B)s X 

s--->(-k) (s- k){s2 + x(1 - w)}(1 - SfL) 

X [1 + x(1 - w)!s] esT 

_ (B- Ak)k[1 -ox(1- w)!k] e-kT 

2k{e + x(1 - w)}(1 + kfL) 
lim (s + k)IT(lls) 

s--->(-k) 

= (B- Ak)[1- x(1- w)k]e-kT [dT(lls)lds];2-_k 
2{e + x(1 - w)}(1 + kfL) 

(49) 

(50) 
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4. Determination of constants A and B 

When z ~ 0, from Equation (26) we get 

A= (w/2) I: 1(0, !L) d11-. (51) 

From Equation (51) and Equation (25) we get after simplification 

A[1 - ~ Jl H(P-) d/LJ = wB [-ao + Jl H(P-) dP-J = m' (52) 
2 0 1 - kP- 2k 0 1 - kP-

~ where 

' 

ao = J: H(P-) d11-, m = constant . 

H(z) has a simple pole at z = -(1/k) where 

l!H(z) = 1- zH(z) J1 

1/J(z)H(P-) d11-, 
o 11-+z 

where 

w 
1/J(P-) =- [1 + x(1 - w)P-2

] • 
2 

Equation (53) has a zero at z = -(1/k) and so 

1 + .!_ Jl 1/J(P-)H(P-) d/L = 0 . 
k o 1L- llk 

(53) 

(54) 

(55) 

In Equation (55) putting the value of 1/J(P-) and simplifying and using Equation 
(52) we get 

Putting 

where 

A = 2mN/ (x(1 - w) _ c) 
kQ k ' 

B= 2mN ' 
Q(k +c) 

xw(1- w)a1 c= 
Q 

N=~+x(1-w), Q =2- wao, 

2mN2 

11- = llkwegetkA + B = -­
QkR 

(56) 

(57) 

(58) 
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(59) 

If we use Equations (58) and (59) we get from Equation (27) 

l(O, "-) = (kA + B)k [(1 + £) + {x(1 - w) _ c}"-] H(J.L) ' 
r- lC + x(1 - w) k k r- 1 - kJ.L (60) 

when 7~oo from Equations (47), (48) and (49) we get 

l(T, J.L) ~ H(llk)(Ak + B)k X [1 + x(1- w)!k]ek,.. 
[JC + x(1 - w)](1- kJ.L) 

(61) 

Hence Equation (61) with Equation (2b) gives 

(Ak + B)k La 
JC + x(1- w) = H(1/k)' 

(62) 

I(O ) = ~{1 + £ + [x(1- w)- c]} H(J.L) . 
,J.L H(1/k) k J.L k 1-kf..L' 

(63) 

which is the expression obtained by Chandrasekhar (1960). 
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Abstract. We discuss a simple method of linearization and decoupling of the integral equations 
satisfied by time-dependent X- and Y -functions which play an important role in the study of non­
stationary radiative transfer problems. 

1. Introduction 

In the study of the time-dependent radiative transfer problems in finite homoge­
neous plane-parallel atmospheres, it is convenient to introduce X- andY -functions 
(Chandrasekhar, 1960). These functions satisfy non-linear coupled integral equa­
tions. Due to their important role in. solving transport problems, it is advantageous 
to simplify the equations satisfied by them, and, if possible, do so in an exact 
manner. Lahoz (1989) did this and obtained exact linear and decoupled integral 
equations satisfied by the time- independent X- andY -functions. 

In this paper we have extended the same method to the time-dependent radiative 
transfer problem. However, the equations obtained, although linear, are singular 
and not solvable by the standard methods applicable to Fredholm equations; instead 
they have to be solved by the theory of singular integral equations (Muskhelishvili, 
1946). 

2. Analysis 

The integral equations incorporating the various in variances of the time-dependent 
problem of diffuse refelection and transmission can be reduced to one or more 
pairs of integral equations of the following form (Biswas and Karanjai, 1990). 

I 
X( ) _ 1 l¥ 1-l Jd ,X(tt,s)X(J.t',s)- Y(J.t,s)Y(tt',s) 

fL, 8 - + 2 Q fl + I ' 

0 1-l 1-l 
(1) 

Astrophysics and Space Science 203: 135-138, 1993. 
© 1993 Kluwer Academic Publishers. Printed in Belgium. 
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Y( ) - {(- I )Q} w !I d I Y(!-L, s) X(p/, s)- X(!-L, s) Y(!-L
1

' s) (2) 
/-L, s - exp TI p + ZQ 1-L 1 ' 

!-L-1-L 
0 

Following Chandrasekhar (1960), we can write the above equations in the form: 

X( ) _ 1 1-L !I d 1• 1.( 1)X(p,s)X(!-L
1
,s)- Y(!-L,s)Y(!-L1,s) 

/-L, S - + Q /-L 'f/ /-L + 1 l 

0 1-L 1-L 

. Y(!-L,s) 

I 

exp{( -rr/ 1-L)Q} + ~ j d!-L1 x 
0 

·'·( 1) Y (!-L, s )X (!-L1
, s) - X (!-L, s )Y (!-L1

, s) 
X'f/Jl I ' p,-p, 

(3) 

(4) ~ 

where TI is the optical thickness of the atmosphere and Q = 1 + sf c, where c 
is the velocity of light, s is the Laplace invariant of the time variable and the 
characteristic function '1/J(p,) is an even polynomial in p, satisfying 

I 

'1/Jo = j '1/J (p,) dp, S: ~ , (5) 

0 

where '1/Jo = ! holds, '1/J(p,) is said to be conservative; and non-conservative other­
wise. 

Clearly, Eqs. (3) and (4) are non-linear and coupled. These equations have been 
. linearized in an exact manner (Mullikin, 1964). The results are 

and 

I I 

X (!-L, s )K (p, s) = 1 + QI-L j dp1 'lj;(p1
) X ~1-L ' 8

) 
1-L - 1-L 

0 
I I 

- exp{(-rrf p,) Q} QI-L j dp,1 '1/J (p,1
) y ~fl ' 8

) 

1-L + 1-L 
0 

(6) 

(7) 
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where ]( (p, s) is defined by 

1 

137 

K(p, s) = 1 - 1:!:_ j dp' '1/J(tt) [-I - - _I-] , (8) 
Q p' + f.L p' - f.L 

0 

We now proceed to decouple Eqs. ( 4) and (5) in an exact manner (Lahoz, I989). 
We introduce the following singular integral equation, which is linear in I IT(p, s ): 

1 

I - I - f.L J d ' '1/J(p') _I -
T(p, s) - Q f.L T(p', s )K (p', s) p' - f.L. 

0 

(9) 

which, in principle, is solvable for T(p, s) as '1/J(p) and ]( (p, s) are known func­
~ tions. 

Next, we multiply Eq. (6) by 

(p' I Q )'1/J(Il) 
T(p, s )K (tt, s )(Jt' - p) ' 

which we assume is well defined in p E [0, I] and integrate with respect top from 
0 to I to obtain 

f.L j1 dp' [W(p')X(p',s)] =I- T(-p,s)x 
Q p' + f.L 

[

0 
1 1 l (10) 

x I- P( )l!:.jd 1 '1/J(tt')Y(p',s) + f.L jd 1 '1/J(p')Y(p',s)P(p',s) 
f.L, s Q f.L p' - f.L Q f.L p' - f.L ' 

0 0 

where we have used Eq. (9) and defined the function P(p, s) (in principle known) 
by 

1 ' P(Jt, 8 ) = f.L j dp' '1/J(p ) exp( -rr/ Jl) _I_. 
Q T(p', s )K(p', s) p' + f.L 

0 

(11) 

If we substitute Eq. (10) in Eq. (5) we get the decoupled equation for Y(p, s) as 
follows: 

Y(p,s)K(p,s) = 

= T(-Jt,s)exp{(-r1lp)Q}+ 

I 

+ T( -p, s)P(Jt, s)[l - exp{( -rtf p)Q}] Qf.L j dp' '1/J(p'~Y(p', s) + 
p - f.L 

0 
1 

+ T( -p, s) exp{ ( -r
1 
I p )Q} Qp j dp' '1/J((Jt', 8 ))~(p'' 8 )P(p'' 8 ). 

f.L - f.L 
0 

(12) 
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A similar analysis yields the decoupled equation for X (J-t, s ): 

X(J-t, s)K(J-t, s) = [1- T( -J-t, s)P(J-t, s) exp{( -rl/ J-t)Q}] X 

X [1 + J-t jl·dj.tl 7/J(J-ti)X(J-tl, s)] + 
Q Ill - J-t 

0 . . . 
. l I I 

+T( -J-t, s) exp{( -rr/ J-t)Q} QJ-t j dj.t1 7/J(J-t '~)X(J-t 's). 
J-t - J-t 

0 

(13) 

Eqs. (12) and (13) are linear, singular and decoupled and, in principle, solvable 
by the theory of singular integral equations (Muskhelisvili, 1946). 
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ABSTRACT : 

Chandrasekhar (1960), has considered the problem, b~ his 

discrete ordinate procedure, of the basic non-conservative matrix 
~ 

equation of radiative transfer for diffuse reflection for . a 

combination of Rayleigh and isotropic scattering in a semi-infinite 

atmosphere. Schnatz and Siewert ( 1970) have obtained the exact 

solution of the basic transport equation for non-~onservative 

rayleigh phase matrix by the eigenfunction approach of Case(1960). 

Bond and Siewert(1971) have obtained a rigorous general solution of 

a non-conservative matrix equation of transfer, which appears for 

consideration of polarization by the eigen function approach of 

Case( 1960). Das .( 1979a) solved the basic integra-differential ·~~ 

equ~tion for radiative transfer in diffuse reflection in a 

combination of Rayleigh and isotropic scattering for a 

semi-infinite atmosphere exactly for the emergent intensity matrix 

by use of the Laplace transform and Wiener-Hopf technique. 

In this paper, we shall consider the Laplace' transform and 

Wiener-Hopf techr,ique to solve the matrix transport equation for a 

scattering which scatters radiation in accordance with the phase 

matrix obtained from a combination of Rayleigh and isotropic 

scattering in a semi-infinite atmosphere. The basic matrix equation 

is subject to the Laplace transform to obtain an integral equation~-

for the emergent intensity matrix. On application of the 

Wiener-Hopf technique this matrix integral equation· gives the 

emergent intensity matrix in terms of a singular H-matrix and an 

7 1 
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unknown matrix. The unknown matrix has been ob,tained by. equating 

the asymptotic solution of the boundary condition at infinity. 

1. INTRODUCTION 

The method of Laplace Transform and Wiener-Hopf Technique has 

been applied to solve problems of radiative transfer by Dasgupta 

(1977), Das (1979b) Karanjai and Karanjai (1985) 'and others. 

Recently Karanjai and Islam •(1993) solved radiative transfer 

problems with anisotropic scattering by the same method. We lil<e to 

solve have a particular anisotropically scattering problem where 

the phase matrix consists of contributions from isotropic and 

Rayleigh scattereing. 

2. BASIC MATRIX TRANSPORT EQUATION AND BOUNDARY CONDITIONS : 

The basic integra-differential equation for infinity matrix I (1:,~) 

can be written in the form 

dl("C,p) 
d't = I(-r,p} - + w K(p,p') dp' ( 1 ) 

where 1: is the optical thickness of the atmosphere, ~ is the 

direction parameter, I('t,JJ) is a (2x1) matrix , w (0 < w < 1) is 

the albedo for single scattering. According to Burniston and 

Siewert (1970), 

K(/-1,~), a (2x2) matrix·, can be written as 

K(~,~·) = Q(p) QT (JJ') ( 2 ) 
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where Q(~), a (2x2) matrix, can be defined by 

Q(~) = 3(c+2) 112 

c+2 [ 
c~ ~ - 2 ( 1 - c) 

1 3 . 
3 (c + 2) 

(2c) 112 
(1 

0 ( 3 ) 

QT (~) is the transpose of Q (~), and cis aparameter (0 < c < 1 ) 

A solution of Equation (1) is required with the following boundary 

conditions 

I ( 0 I -Jj 

1 and I ( -r 1IJ) --+ 2 

= 01 

w L o [ --,-__:..;I<__ ] 
k - p e 

(4a) 

't'/k 
Q(Jl) as -r--+ Q.l 

I (4b) 

where K is a positive root greater than one and real of the 

equation T (z) = det D {z) ( 5) 

where D (z) = E + 
dp . ( 6) 

~ - z 

~ (IJ) is a (2x1) matrix and~ (p) is defined by 

1p (IJ) : (1/2)W Q
1 (~J) Q(~J) (7) 

and 

E is a unit matrix 1 D(z) is a (2x2) matrix and L
0 

is a specified 

(2x1) matrix.· 

3. SOLUTION FOR EMERGENT INTENSITY MATRIX : 

The Laplace transform of the intensity matrix is defined by 

r* (s,p) 
CJ:) 

I 
-a'C = s 0 e I ('t'IJl) 

Let us set Iu(-r) , a (2x1) matrix as 
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~ 

+1 

lu ('t) = (1/2) I QT ( IJ' ) I ( 't,IJ') diJ' ( 9) 
-1 

+1 
I* Iu ( s) = (1/2) J_1 QT ( IJ' ) (s,IJ') diJ' ( 10) 

we subject the Laplace transform as defined in Equation (8) to 

Equation (1) to get (Using Equations (4a), (9, (10)) 

* * (IJS- 1) I (s, IJ) = /JS I(o, IJ)- ~ Q(iJ) Iu (s) ( 11 ) 

The solution for the emergent intensity matrix arrived from 

Equation (11) 

I (O,IJ) = c.> Q(IJ) (1/IJ) 

Equation (12) gives for iJ = 1/s , s is complex 

* I (0,1/s) = w Q(1/s) Iu (s) 

we now apply the (2x2) matrix operator 

to Equation (11) to get * D (1/s) Iu (s) = a(1/s) 

( 1 2 ) 

( 1 3 ) 

( 14) 

( 15) 

where D (1/s) is a (2x2) matrix and a(1/s) is (2x1) matrix defined 

by 

and 

+1 
D(1/s) = E + J_

1 

1 

a(1/s) = (1/2) f
0 

respectively where 

p ( 11) dJ.l 
-(IJS - 1 ) 

., (IJ) is given by Equation (7) , is a (2x2) unit matrix . 

(16) 

(17) 

Eliminating I~ (a) between Equations (13) and (15) we get a matrix 

integral equation as 
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D{z) I(O,z) = w Q(z) a(z), where s = 1/z 

Following Bond a Siewert ("1971) 1 we have 

T(z)= det D(z) = -i c T
1 

(z) T2 (z) + 

[(1-c) + ~ c (1-w) z 2]T 0 (z) 

and 

2 3(1-w)z , 

+1 
I_, 

n = 1 or 2 

dll 
JJ - z 

(18) 

( 19) 

(20) 

(21) 

where T(z) is analytic in the complex plane cut from -1 to +1 along 

the real axis with two zeros at z = ± k , k is real (k > 1 ). 

We consider the (2x2) H-matrix equation (cf. Abhyankar and 

Fyrriat, 1970) as 
1 

H(z) : E + zH(z) J
0 

Ht (J.l) VJ (!l) d~-i / (J.l +z ) (22) 

where 11J(IJ) is given by Equation (7). 

We shall assume that the (2x.2) H(z) matrix is analytic. in the 

complex plane cut from -1 to 0 1 bounded at the origin 1 has a pole 

at z = -k ., k is real (k > 1) and similarly the H(-z) matrix is 

ana 1 yt i c in the comp 1 ex p 1 ane cut from 0 to 1 , bounded at the 
- 1. origin, has a pole at z = k , k is real , (k >1). Hence , H (z), 

the inverse of the H··lllatr-ix, is analytic in the complex plane cut 

from -1 to 0 and bounded at the origin. If the (2x2) H-matrix is a 

symmetric matrix, it can be proved that 

1 Z € (-1,1) 0 
. ( 23) 

• 
Now Equation (18) togethet· with Equation (23) takes the form 
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H- 1 (z) a· 1 (z) I(O,z) [ k k z ] 

:: w [ · k ~ z ] H(-z) a(z) (24) 

where the left hand side of Equation (24) is regular for. Re z > o ·, 

bounded at the origin and the ~ight hand side of Equation (24) is 

analytic in (0,1) 0 
, bounded at the origin and tends to a constant 

matrix (2x1) say A, when z --+ a>subject to the assumption that 

I(O,z) is analytic for Re i>O and bounded at the origin. Hence, by 

a modified for;n of Liouville's theorem, Equation (24) gives· the 

emergent intensity matrix I (O,z) as 

I (O,z) = [ -.,.-k-:.~..:....-z-] Q(z). H(z) A (25) 

We now determine the matrix A. The inversion integral gives the 

intensity matrix I(~,p) as 

a+SV 
I(~.~) = (1/2n i) lim I I(s,p) 

0~ 
e ds/s , 

&.>-+ a> a- 1 v 

where 

* I (s,p) can be obtained as 

* [ -1 -1 1 ( s, p) Is = 1 ( o ,IJ) - ( ps) Q • ( 1 Is) Q ( P) 

I(O,#-l)]/ (s - 1/IJ) 

r*cs,p)/s = [I(O,P)I (s- 1/2) - Q(p) 

H(1/s)A/(s- 1/k)p(s-1/P)] 

a >O (26) 

(27) 

(28) 

The integral of' Equation (26) is analytic for s in (-a>,-1 )c , has 

poles at s = ± 1/k , k is real k >1 ., where s = 1/JJ is not a pole 

as 
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* ). • t I lim (s- 1/~) I (s,~ e s 0 (29) 
s--+1/~ 

<'· 

The contribution fo pole at s = 1/k will give the asymptot-ic ~· 

solution of Equation (1) as 

I(1:,~) --+ [ k~ll] Q(jJ} H(k) es/k A when 1: --t <0 

Equation (4b) with Equation (30) gives the matrix A as 

A= (1/2) [ w H-
1
(K)] La 

(30) 

( 31 ) 

l:quation (25) with l:quation (31) gives the emergent intensity in 

the form 

I(O,z) = (1/2) w La H-
1
(k) H(Z) Q(z) ( k ~ z] (32) 

4. CONCLUSIONS : 

Here we a11ow the values c (0 < c < 1) and w (0< w <1) to 

study the.general mixture of Rayleigh and isotropic scattering. 

a. When w = 1 and c (O< c <1) the basic matrix transport equation 

yields a conservative model for a mixture of Rayleigh and 

isotropic scattering. 

b. When w ( O< w < 1 ) and c= t we obtain the general Rayleigh · 

scattering problem. 

c. When c = and w = 1 , the problem yields Chandrasekhar's (1960) 

Rayleigh scattering model and Q(~) reduces to Sekera's (1963) 

form for factorising the Rayleigh scattering phase matrix (Das,1979c)r. ,.,. 
d. In this problem there exists some possibilities for future 

development such as determination of the H-matrix expr~ssion 

and the values of the D(z) matrix on both sides of the cut etc. 
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e. There exists some possibilities to determine a characteristic 

func~ion which is an even function having polynomial expression 

but has a transcendenta1 form . 
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