APPENDIX I

6.1 The relation (3.66) of chapter 3

I have to show that (equation (3.66) chapter 3)

$$
\begin{equation*}
I_{1}(t, \mu)=0 \tag{6.1}
\end{equation*}
$$

For this , with usual notation (vide, Chandrasekhar, 1960) I have

$$
\begin{equation*}
I_{1}^{*}(t, \mu) \simeq \frac{1}{2}(1-\lambda) \sum_{\alpha=1}^{n}\left\{L_{\alpha} e^{-k \alpha^{2}} /\left\{1+\mu k_{\alpha}\right\rangle\right\} \tag{6.2}
\end{equation*}
$$

where the constants L_{α} are determined by the equations

$$
\begin{equation*}
\sum_{\alpha=1}^{n}\left\{L_{a} /\left(1-\mu_{i} k_{a}\right)\right\}=0,(i=1,2,3 \ldots n) \tag{6.3}
\end{equation*}
$$

Since

$$
\begin{equation*}
\prod_{\alpha=1}^{n}\left(1-\mu k_{\alpha}\right) \sum_{\alpha=1}^{n} L_{\alpha} /\left(1-\mu k_{\alpha}\right) \tag{6.4}
\end{equation*}
$$

is a polynomial of degree (n - 1) with n distinct zero, it is identically zero.

Hence, every $L_{\alpha}=0$, and in the limit, as $n \longrightarrow \alpha$

$$
\begin{equation*}
I_{1}^{*}(t, \mu)=0 \tag{6.5}
\end{equation*}
$$

which is the required relation-

