
CHAPTER- 5 

SOLUTION OF RADIATIVE TRANSFER 
PROBLEMS IN A FINITE ATMOSP-HERE 
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5.1. Introduction. 

Das (1978, 1980) has solved various problems of radiative 

transfer in finite and semi-infinite atmosphere using a 

method involving Laplace transform and linear singular 

-operators. 

In the present work the one sided Laplace transform 

together with the theory of linear singular .operators has 

been applied to solve the transport equation which arises in 

the problem of a finite atmosphere having ground reflection 

according to Lambert·s Law taking the Planck·s function as 

an exponential function of optical depth (Sec-5.2). 

In the theory of radiative transfer for homogeneous 

plane-parallel stratified finite atmosphere the X- and V­

functions-of Chandrasekhar (1960) play a central role-. The 

equations satisfy a system of coupled nonlinear integral 

equations. Busbridge (1960) has demonstrated the existence 

of the solution of these coupled non-linear __ integral 

equations in terms of a particular solution of an auxiliary 

equation. Busbridge (1960) has obtained two coupled linear 

integral equations for X(z) and Y(z) which defined the 

meromorfic extensions to the complex domain jZf of the real 

valued solution of the coupled non-linear equations of X-
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and Y- ~unctions. 

Busbridge (1960) concluded that all solutions of non-linear 

coupled integral equations for X- and V- functions are the 

solutions of the coupled linear integral equations to the 

extended complex plane but all solutions of the coupled 

linear integral equations are not solutions of . the coupled 

non-linear integral equations. Mullikin (1964) has proved 

that all solution of coupled non-linear integral equations 

are solut-ions of the coupled 1 inear integral, equations but 

there exists a unique solution of the coupled linear 

integral equations with some linear constraints. Finally he 

has obtained the Fredholm equations of X- and Y- functions 

which are easy for iterative computations. Das (1979) has 

obtained a pair of Fredholm equations with the 

Wiener~Hopf technique from the c~upl~ linear integral 

equations with coupled linear constraints .• _ 

In the present work, the time-dependent X- and V- functions 

( Biswas and Karanjai, 1990) which gives rise to a pair of 

the Fredholm equations with the application of the 

Wiener-Hopf technique has been obtained (Sec-5.3.). These 

Fredholm equations define time-dependent X-functions _ in 

terms of time-dependent V-functions and vice-versa. These 
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representations are unique with respect to the coupled 

linear constraints defined by Mullikin (1964). 

In the study of time-dependent radiative transfer problems 

in finite homogeneou~ plane-parallel atmospheres it is conv­

enient to introduce X- and Y- functions (vide, Chandrasekhar 

, 1960). These functions satisfy non-linear coupled integral 

equations. Due to their important role in solving transport 

problems, it is advantageous to simplify the equations 

satisfied by them. Lahoz (1989) did this and obtained exact 

linear and decoupled integral equations satisfied by the 

time-independent X- and Y- functions. 

In the· present work, the same method has extended to the 

time-dependent radiative transfer 

However, the equations obtained , 

problem 

although 

(Sec-5.4). 

linear, are 

singular and not solvable by the standard methods applicable 

to Fredholm equations instead they have to be solvable by 

the theory of singular integral equations ( vide, 

Muskhelishvili, 1946). 
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5.2. Exact Solution of the Equation of Transfer in a Finite 

Exponential Atmosphere by the. Method of Laplace 

Transform and Linear Singular Operator. 

5.21. Basic Equation and Boundary Conditions. 

The integra-differential equation for the intensity of 

radiation I (T ,J..l), at an optical depth T for the problem of 

diffuse reflection and transmission .in a finite atmosphere 

can be written in the form (vide, Das, 1980) as 

+1 

= IJ.) (T ,,., .) - I 
-1 

V' (#-1' ) I (T ,1-1' )dj..t' v 
B (T) 

J.) 

-t where I (T ,,., ) is the intensity in the direction cos 1-1 at a 
J.) 

-t depth T ,.the angle cos J..l is measured from outside drawn 

normal to the face T = 0 , is the characteristic 

function for non-conservative scattering which satisfies the 

condition 
1 

V'o =I V'(l-l') d1-1' ; VJ(#-1') is even, 

0 

(5.2) 

v is the frequency and B (T) is the Planck function at any 
v 

depth (form is same as in equation (1.11)). Then equation 

(5.1) becomes 



-t--
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dl (T ,J,J) 
v 

J.l -. -dr-:----

+1 

where for convenience I have omitted the subscript v. 
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(5.3) 

The boundary conditions associated with the equation (5.3) 

are 

I(O, 1-1) = O, O< J.J :$1 (5.4) 

I(T .,J.J ) = I , O< J.J :s 1 , T >O (5-5) 
0 9 0 

where T is the thickness of the finite atmosphere and the 
0 

bounding face T = T is having ground reflection according 
0 

to Lambert·s law is a constant. 

5.22. Integral Equations for Surface Quantities. 

Let us define 

t: -- sfTO f ( s,p) 

0 

f (T 11J.J ) 
-sT e 

f(T ~J.J) = 0 , when 

Re s>O 

T ) T 
0 

(5.6) 

(5.7) 

Let us now apply the Laplace transform defined in equation 

(5.6) to equation (5.7) to obtain the equation satisfying 
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_ the boundary condition as 
J -T0 e J 

where 

i.e., 

(J.l s - 1 ) I ( s ,,_, ) = 1-1 s I ( 0 ,_, ) - 1-1. se - S ( s ) 

S(T) = I 

s*(s) = 

+S. 

V' (J.l' ) I (T ,,_,. ) c4J, + (b 
0 

-j, 

+:l 

J 
+ 

* V' (p' ) I (T ,/-1' )cfl.l' + b (1 
0 

Let us apply the operator 

+1 

J 
-s. 
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(5.8) 

(5.9) 

(5.10) 

(5.11) 

on both sides of· equation ( 5.8) and I obtain , with 

equation (5~10) 

+1 

T(1/s) s*(s) = J 
-1 

+1 

-1 

J.lS!p(J.l)l(O,p)4J/(J.lS- 1) + b (1 0 

+ 
sb 

1 
s +~ (1-

-<s+f3>T ) e o 

e-eTO) + 

(5 .. 12) 
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+:l 

where T ( 11 s ) = 1 + I V' (iJ ) dj.ll (iJ s - 1 ) " 

-1· 

Equation (5.8) gives 

I(O,.lls) - e 
-T s 

0 l(T .,11s) 
o· 

= s*<s> 
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(5.13) 

(5.14) 

(5.15) 

Equation (5.12) ,. together with equation (5.14) , gives for 

complex z , where z = 11s, 

+1 

-T /z I 
[I (0, z) - e 

0 I (T 
0

,. z)] T( z) = iJV' (J.l ) I ( 0 ,J.l ) $ I (iJ - z ) -

-1 

+1 

J.IVJ{J.l )I(T ,J.l )ct.JI(J.l - z) + b (1 - e-To/z) + 
0 0 

b 
--,..--1---,.- - ( 1/Z +~) T ) 

+ 1 . + f3 z ( 1 - e o 
(5.16) 

Let us put 01 
0 

-1 = f3 , then equation (16) becomes 

-T /:z 

[I (0, z) - e 
0 

I(T 
0

, z)] T( z) 

+1 

= J J.IV' (J.l )I (O,J.l )4t I (J.l - z) 

-:l 
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+1 
-'T /Z J 0 . 

e 

-1 

+ 
ba 

1 0 

z +a 
0 

(1 -
-<.t/z + 1/01 >'T 

0 0 ) e· 
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(5.17) 

Let. us put. ;z = -:z in equation (5.17) and multiply the 

-'T /z 
0 resulting equation by e on both sides to obtain , for 

complex z~ 

+1 
-'T /Z 

0 [I ('T 
0 

, -z) - e 1(0,-z)JT(z) =J J.J'V' (J.J ) I ('T ,p ) qu / (J.J + z) -
0 

-1 

/-I'll' .(J.l ) I ( 0 ~J.l )4J / (J.J + z .) + b ( 1 
0 

ba 
1 0 

01 - z 
0 

-'T /z -'T /01 
(e o e o o) 

-T /Z 
0 e ) 

(5.18) 

Equations (5.17) and (5.18) are the linear integral 

equations for the surface quantities under consideration. 

5.2~. Linear Singular Integral Equations. 

Equation (5.17) and (5.18) are the equations defined for 

complex z ~ where does not lie between -1 and 1 When z 
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lies between -1 and 1 , equation (5.17) and (5.18) will give 

the linear singular integral equations by the application of 

Plemelj·s formulae (~ide, Mushkelishvili,l946) with boundary 

conditions (4.4) and (5.5) as 

-T /Z 

[I(O,z) - e 0 I ] T (z) 
g 0 

f.llp (f.J )I ( 0 ,p ) d/.1 / (f.J - z ) -

and 

0 

0 

1-l'IJ' (J.I )I (T , 1-1 ) 41 I (J.I + z) -
0 

--T /z f 
e 

0 
P 1-JV'(I-J )I 4J/(1-J - z) + + b (1 

g 0 

0 

+ 
bet 

f. 0 

z + Ct 
0 

-(t/z + t/Ot >T 
(1 - e o o ) (5.19) 

I (T 
0 

,; -z) T
0 

( z ) = PI 
0 

/-IV' {p )I (T , ""1-/ ) 4J / (f.J - Z ) -
0 

f. 

e
-To/z I 

. J .. llp(J..l )I(O,J-1 )4t/(p + Z) + 

+. e --To/z I 
0 

1 

0 

b Ct T /z 
__ t_o_(e o 
Ct - z 

0 

-T /Ct 

e 0 0 ) (5.20) 
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where 
1 

T (Z) = 1 
0 

2 2 
d~ [~(~) - p(z)] I (z - p ) -

0 

1 

- 2z 2 p(z) PJ dpf(z
2

- p
2

) 

0 

(5.21) 

in which P ·denotes the Cauchy principal value of the 

integral. 

Equations (5.19) and (5.20) are the linear singular integral 

equations from which I shall determine the surface 

quanti ties I-(0, z) and I ( -r , -z) by the application of the 
0 

theory of linear singular operators. 

5.24. Theory of Linear Singular Operators. 

Following Das (1978,1980] I can write the following 

theorems. 

THEOREM 1. 

The linear integral equations tor z & (0,1) , 

L (R(z,-x )] = l(z,-x ) , 
+ 0 0 

(5.22) 

L [R(z,-x )3 = m(z,-x ) 
- 0 0 , 

(5.23) 

where 
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>6-
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L [f(z~-x ) = f(~~-x )T (z) 
+ 0 0 0 

I-IV' <1-1 ) t (J.l , -x ) dp I (J.l - z ) + 
0 

L 

+ e '"""l"o/z J 
0 

~Y' {1.1) f (~ ~-x )411(1-1 + z) 
0 

1 

(f(z~-x ) = 
0 

f (~ ~ ->: ) T ( z } 
0 0 . 

0 

py1 (p ) f (~ ~ -x ) 411 (J..l + z) 
0 

where 

X - < 1./z + 1./X >T 

l(z,-x ) 
0 [1 

0 

= e 
0 z + X 

0 

X -T /z -T /X 

+ 0 
(e 

0 0 0] e 
z - X 

0 

0 

X -<1/z + 1/X >T 

m(z,-x ) 
0 [1 

0 0 
= - e 

0 z + X 
0 

X -T /z -T /X 
0 [e 

0 0 OJ e 
z - X 

0 

admit of solutions of the 'form 

R(z,.-x ) = S(z,.-x ) + T(z~-x ) 
0 0 0 

G(z,-x ) = S(z,-x ) + T(z~-x ) 
0 0 0 

(5.24) 

(5.25) 

] + 

(5.26) 

] + 

(5.27) 

(5.28) 

(5.29) 

:: 
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where 

S(z,-x ) = x [X(z)X(x ) - Y(z) Y(x )]/(z + x ) 
0 0 . 0 .0 0 

T(z,-x ) = x [X(z)Y(x ) - Y(z) X(x )]/(x - Z) 
0 0 0 0 0 

With constraints on X(z) and Y(z) as 

( i) when 'I' <112 
0 

s 

1 _= 1 X (J.I )lJ' (/-1 )4J/ (I< - f..l-) + 

0 

s 

+ e -r-0 ./K ·1 V(p )lJ' (J.l )4i I ( K. + 1-l) 

0 

e 0 = K Y(p )lJI(J.I )41/(K- J.l) + """"l" ./K J 
""""l" 0./K ,f 

+ e . "J 
0 

0 

X(J.I )lp(p )4J/(K + f..l) 

(ii) when -lp
0 

= 1/2 

i 

1 = J [X(J.I) + Y(J.I)}p(J.J)4t 

0 

+ -r
0
J Y(J.J ~{J..I )41 = J [X(p) - Y(p )::{ulp(p )41 

0 0 

and K is the positive root of the function T(z), when 

V' <112 , defined by 
0 . 
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(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 
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+1 

T(z) = 1 + I z ~(~)d~/(~ - z) 

-i 
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(5.36) 

and where [X(~) - Y(~)] and [X (1-J) + Y(~)] are the respective 

solutions of 

i 
-'l" /Z 

( 1 - J ) L [f(z) J = (1 -
0 

) f(~)~(~)d~ (5.37) e 
+ 

0 

1. 
-'l" /Z 

( 1- J ) L [f ( z}] (1 + 
0 ) "f ( I.J) ~( 1-l) d!.J (5.38} = e 

0 

THEOREM 2 . 
. As the operators L and L are linear for z & {Osl), then 

+ 

for any constant C, I have 

and 

1 

L± ( zf ( z)) 
""""T /Z J 

- zL±(f(z) ~ (1 ~ e · 
0 

) 1-J~(p)f(I.J)dp 

0 

THEOREM 3. 

If R(z,-x ) and 9(z,-x ) are the solutions of 
0 . 0 

L (R(z ,-x ) ] 
+ o· 

L (R(z,.-x )] 
- 0 

then 

= l(z,-x ) 
0 ' 

= m(z,-x ) 
0 ' 

(5.39) 

(5.40) 

(5.41) 

(5.42) 
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1 

L [M(z)] = I w£-x ) 1 ( z ,.->: ) d>: 
" + . 0 0 0 

(5.43) 

0 

1. 

L (N(z)] = J V'( -:X ) m(z,.-x ) dx , 
'0 0 0 

(5 .. 44) 

0 

admit the solution of 

1 

M(z) = I ~(-x ) R(z,-x ) dx , 
0 0 0 

(5.45) 

0 

1 

N(z) = f lp(-x ) Q(z,-x ) dx , 
0 0 0 

(5.46) 

0 

5.25. Solution for Surface Quantities. 

Linear singular integral equations (5.19) and (5.20) are the 

required integral equations from which l will have to 

determine I (0,~) and I (T ,-z) ,. 
·0 

the quantities under 

consideration, by the application of the theory of linear 

singular operators indicated in section 5.2.4. Equations 

(5.19) and (5.20) on addition and after some rearrangement 

give 

-r /z 

L [l(O,z) + l(T ,. -z) - e 0 I ] = 
+ 0 g 

2b (1 - e 
0 

-r /z 
0 ) + 
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1 

+ b
1
l(z, -a

0
) + 1

9 
J V'<J.I) l(z, ;.dcJt..l 

0 

Equations (5.19) and (5.20) on subtraction 

manipulation give 

L [l(O,z) l(T , -z) 
0 

1 

e 
--r /z 

0 I ] = 
g 

= b
1
m(z, -a

0
) + 1

9 
I VJ(/..l) m(z, -:1-t)d/..t 

0 

where 1 ( z , -p ) and m(z , -p) are given 
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(5.47) 

and after 

(5.48) 

by equations 

(5.26) and (5.27). Equations (5.47} and (5.48) with Theorems 

1,2 ·and 3 of section 5.2.4. will give us the desired 

quantities I(O,z) and l(T ,-z). The 
0 

(5.47} is given by 

solution of equation 

-T /Z 
0 

[ I ( 0, z ) + I (T , -z ) - e I ] -

2b 
0 

1 - 6 
0 

[X(z) - V(z.)) + 

where 

0 g 

1 

+ b
1 

R(z , -o.
0

) + 1
9 
J VJ{J..l) R(z , f..l )q.., 

0 

1 

6
0 

= J (X(p) - V(J..l )}p(J..l )q.t 

0 

The solution of equation (5.48) is given by 

(5.49) 

(5.50) 
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.. [l(O,z) + l(T ~ -z) 
0 . 

~ 

e 
,-z- /z 

0 
I ] = 

g 

= b G( z -oc ) 
~ , 0 1

9 
J VJ(J.J) G(z , -;.t)c:tJ 

0 
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(5.51) 

Equation·. (5.50) and (5.51) on addition give I(O,z) and 

equations (5.47) and (5.51) on subtraction give 1(-r ,-z) as 
- 0 . 

I(O,z) 

+ 

and 

+ 

--r /z 

= I e 
9 

b 
0 

l. 6 
0 

I (T -z) o' -

0 

(X(z) 

:t 

I + I 
9 

V' (J.J) T(z , -;.t)q.I 

0 

- Y(z)) + b S(z 
~ 

, -;.t) 

VJ(~) S(z , -;.t)qu + 

b 
0 

l. _ 
6 

[X(z) - Y(z)] + bs. T(z , -:a
0

) 

0 

+ 

(5.52) 

(5.53) 

where S(z, -~) and T(z, -~) are given by equations (5.30) 

and (5.31). 

5.3. The Time-Depend•nt X- and Y- Functions. 

5.31~ Be~ic Equation. 

The coupled nonlinear integral equations satisfied by the 
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time-dependent x- and Y- function (vide, Biswas and 

Karanjai, ~990) are of the form 

(a) 
X (T 

1 
,,_,, s) = 1 + 

29 
/-1 X 

1 . 

I 
X(T ,p ,s)X(T ,.x,s)-Y(T ,p ,s)Y(T ,x,s) 

X 1 ' 1 1 
p + 'X 

dx (5 ... 54) 

0 

O~p-5. 1 

( - T~,G-) <a> Y(T 
1 

,p ,s) = exp ,.. + 29 p X 

1 

I 
Y(T ,p ,s)X(T ,x.s-)-X(T ,p .s)Y(T ,x,s) 

X 1. 1 · 1 - 1 

. /-1 X 
dx (5.55) 

0 ,.. -

0 s J..l 5. 1 

where G = 1 + s/c (5.56) 

T is the thickness of the atmosphere ; c, the velocity of 
1 

light. ; a_nd s, Laplace transform parameter. 

Following Chandrasekhar (1960) equations (5.54) and (5.55) 

can be written as 

X (T 
1 

,p, s) = 1 + ~ X 

xJ 
1 

X (T ,,., "s) X (T "X" s) -Y (T ,_, , s) y (T , X, s) 
1 1 1 1 

J..l_+ X 
Y'(x)dx (5.57) 

0 

0 5. J..l s 1 
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T a 
Y(T

1 
11p 11 s) = exp (- ·~ ) + ~ _x 

:( 

I 
Y(T ,IJ ,s)X(T ,x,s)-X(T ,J.-1 ,s)Y(T ,.x,s) 

X 1 1 1 1 · lp(IJ)dx 
. p-x 

(5.58) 

0 

where lp(:X), the characteristic function satisfying the 

Holder condition on 0 5x ~ 1 11 is non-negative and-satisfies 

the condition 

1 

lJI(X) dx ~ 1/2 (5.59) 

0 

The atmosphere is said to be conservative when 

~o = 1/2 and non-negative otherwise 

The dispersion function T(z,s) 11 z & (~l,l)c can be defined 

by 

and 

t':'here 

T(z,s) = 1 - 2z
2 J -a 

0 

V'(X)dx 
2 2 

Z - X 

T(z,s) -:t: = (H(z,s)H(-z,s)) 

H(z,s) = 1 + zH(z,s) J 
0 

.t 

lp(x)H(x 11 s)dx 
)( + z 

(5.60) 

(5.61) 

(5.62) 



_,}_ 

Chapter-5 229 

According to Busbridge (1960) , the only zeros of T(z,s) are 

at z = ±K, K>1, when V' <112 
0 

and when V'o = 1/2. 

Following Busbridge (1960), Dasgupta (1977), and ·nas (1978) 

H(z,s). is meromorfic on (-1,0)c 

z = - K and tend to 1 as z----4 

where 

A +Hz 
0 0 

H ( z , s ) = -=-=------­K + z 

H(z,s) = h z + h 
1 0 

-J 
0 

-I 
0 

.t 

.t 

having a simp~e pole at 

0 . It can be represented by 
+ 

P(x,s)dx (5.63) 
X + Z 

K >1, V'o <l./2 

P(x,s)dx (5.64) 
X + Z 

K 0( ' '~'o = 1/2 , 

~ 

A = (1 + P )K, p = J P(x.,s) ~x/x, (5.65) 
0 -.1 -.1 

0 

1 

f 1 - 2 I ) -.1/2. 

H = VJ(X) dx 
0 

(5.66) 

0 

1 

(2 J )-~/2 
h 

2 dx = X VJ( X) 
t 

(5.67) 

0 

h = (1 + 'P ) 
0 -1 

(5.68) 
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P(x,s) =·¢(x,s)/H(x,s) 

-2 2 2 2 ¢(x,s) = >Y(x)/( 1. (x,s) + n x V' (x)) 
0 

T (x,s) = 1 -
0 

2~2J 
0 

1 

Y'(t) - lp(X) 

x2 - t2 

- xy.r(x)log( (1 + x)/(1 - x)) 
G 
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(5.69) 

(5.70) 

(5.71) 

where ¢(x,s) is non-negative and continuous on (0,1), tends 

to Y'(O), as x ---+ 0 , tends to 0((log(1 - x)-2
) when 

+· 

X 1 , and 1/H(z~s) is regular on (-1,0)c. 

Following Busbridge (1960) and Mullikin (1964) I find that 

the coupled linear equations satisfied by X(z~s) and Y(z,s) 

c for z & (-1-,1) .. are of the form 

X(z,s)T(z,s) = 1 + zU(X)(z,s) 

- exp(-(T /z)G)V(Y)(z,s) 
. 1 

Y(z,s)T(z,s) = exp(r(~ /z)Q) + zU(Y)(z,s) 
1 

- z exp(-(T /z)G)V(Y)(z,s) 
1 

with constraints for Y' < 1/2 , 
0 

(5.72) 

(5.73) 

0 = 1 + KU(X)(K,s) - K exp(-(T 
1 

/K)GV(Y)(K,s) (5.74) 

0 = (exp(-(T /K)Q) + KU(V)(K,s)) -
1 

for Y' = 1/2 
0 

- K exp(-(T /K)V(X)(K.s) 
1 

(5.75) 
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1 

~ 

1 = J p(~){X(x,s) + Y(x,s) dx 

0 

1 
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(5.76) 

T
1 
J Y(x,s)p(x) dx = J Xp(x)(X(x,s) - Y(x,s))dx (5.77) 

0 0 

The other conditions for which X(z,s)· and Y(x,s) hold are 

H(z!'s) 

Y(z,s) 0 when 

where for M = X or Y 

1 

when T 
1 

T 
1 

ex 

V(M)(z,s) = J ~(x)M(x,s)dx/(x + z) 

0 

(5.78) 

(5.79) 

(5.80) 

is analytic for z & (-1,1) bounded at the origin O(z- 1
) 

when z . ----+ oc and 

1 

U(M)(z,s) = J ~(x)M(x,s)dx/(x - z) 

0 

(5.81) 

is analytic for z & (O,l)e , bounded at the origin O(z-
1

) . 

• 
when z oc. 

5.32. Fredholm equations_. 

Equations. (5.72)and (5.73) with equation (5.61) can be 

written in the form 
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X(z,s)/H(z,s) = H{-z,s)(l + zU(X)(z,s) 

exp(-(T /z)U)H(-z,s)V(Y)(z,s) 
1 

232 

(5.82) 

Y(z,s)/H(z,s) = H(-z,s)(exp(-(T /z)Q) + zU(Y)(z,s) -
. 1 

- z exp(-(T /z)Q)H(-z,s)V(Y)(z,s) 
1 

(5.83) 

I shall assume that X(z,s) and Y(z,s) are regular for 

Re z>O and bounded at the origin. Equation (5.63) gives 

Hence 

A Hz 
0 0 H(-z,s) = ........,~--­K z -I 

0 

1 

P(x,s)dx 
X - Z 

for VJ
0 

< 1/2 

1 

V(H)(z,s)J P(x,s)dx = D(M,P )(z,s) + D(P,M )(z,s) 
. X - Z 0 . 0 

. 0 
1 

where --I VJ(X)M(x,s)P0 (x,s)dx 
D(M,P

0
) (z,s) x + z 

and 

D(P,M )(z,s) 
0 

where 
0 

0 

I 
1 VJ(X)P(x,s)M (x,s)dx 

0 . - . 

X - Z 

0 

1 

- f P(x ,s) dx 
X + Z 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

(5.88) 
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c -i is regular on (-1,0) , bounded at the origin and O(z ) when 

z ----+ex and D(M,P )(z ,s) 
0 

is regular -for z on c (-1.,0) , 

-i bounded at the origin and O(z ) when z,~--~ ex • and D(P,M ) 
~ 

c . 
(z,s) is regular for z, on (0,1) bounded at the origin , 

and O(z- 1
) when z ex. 

Hence , equation (5.82) and (5.83) can for~ <112 be written 
0 

in the form 

X(z,s)/H(:z,s) 

A - H :z 
+ exp(-(T2:h:)G)( ~ _ 

2
° V(Y)(z,s) - D(Y,P

0 
)(z,s)) = 

= H(-z,s)(~ + zU(X){z,s) + exp(-(T /z)G)(P,Y )(z,s)) (5.89) 
i 0 

A - H z 
Y(z,s)/H(z,s) + z exp(-(T

1
/z)tl)( ~ 

2
° V(X)(z,s) 

D(X,P
0 

)(z,s)J = ~(-z,s) (exp(-(T 
1 

/z)z) + zU(Y) (z,s) + 

+ z exp(-(T /:z)Q)D(P,X )(z,s)) 
.I 0 

(5.90) 

The left-hand side of equation (5.89) and (5.90) are 

regular for Re z>O and bounded at the origin; the 

right-hand side of equations (5.89) and (5.90) are regular 

c for z, on (0,1) , bounded at the origin· and tends to 

constants , say A and B, respectiv~ly, when z ex • 

Hence, -by modified form of Liouville·s theorem I have 
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X(z,s) = H(z,s) [ z exp(-(T~ /z)G (n<Y,P
0

< z,s) 

A Hz 
---:~~--2°-V(X)(z,s)) +A], (5.91) 

Y(z,s) = H(z,s)[ z exp(-(T~ /z)Q (n<X,P
0

< z,s) -

A -Hz 
~ _; 

2
° V(X)(z,s)) + B ] , (5.92) 

~quations (5.91) and (5.92) together with Equations (5.78) 

and (5.79) give~ 

A = ~, B = 0 (5.93) 

Hence, for '~'o = 1/2, the expression.of X(:z,s) and Y(:z,s) 

are 

X(z,s) = H(z,s)[1 + z exp(-(T /z)G)(D(Y,P )(z,s) 
~ 0 

( h z + h ) V(Y)(z,s))] 
1 0 

( 5.94) 

Y(z,s) = H(z,s) z exp(-(T /z)G)(D(Y,P )(z,s)) 
1 0 

- ( h z + h ) V(Y)(z,s)) 
1 0 

( 5.95) 

Hence, following Mullikin (1964) equations (5.91) and (5.92) 

together with equations (5.74) and (5.75) give unique 

representation of time-dependent X- and Y- functions for 

Y' <112 and 
0 

equations (5.94) and (5.95) together with 

equations (5.76) and (5.77) give unique representations of 

X- and Y- functions for Y' = 1/2. 
0 
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5.4. An Exact Linearization and D•coupling of the Integral 

'Equations Satisfied by Time-Dependent X- and 

Y-Functions. 

5.41. Analysis. 

The integral equations incorporating the various invariances 

of the time-dependent problem of diffuse reflection and 

transmission can be reduced to one or more pairs of integral 

.equations of the following form (vide, Biswas and Karanjai, 

1990) 

X(J.l,S) = 1 + 

1 

X(J.l ,s)X(J.l' ,s) - V(J-1 ,s)V(J.l' ,s) ..~. .• 
J.l + J.l' ~ 

(5 .. 96) 

Y(J.l,S) = exp[(-1-
1

/J-1)] + 

1 

Y(l-l ,s)X(p' ,s) - X(p ,s)Y(I-l' ,s) 
J.l - J.l' 

(5 .. 97) 

Following Chandrasekhar (1960) , I can write the above 

equations in the form 

X(p,s) = 1 + 
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+~I X(p ,s)X(,t.~' ,.s) - Y(tJ ,s)Y(tJ' ,s) (J.l' ) ctJ' 
1-l + 1-l' VI 

0 

Y(JJ,s) = exp[(-r /J..l)] + 
1 

1 

+~I 
0 
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(5.98) 

(5.99) 

where T is the optical thickness of the atmosphere and G = 
1 

1 + s/c , where c is the velocity of light, s is the Laplace 

invariant of the time variable and the characteristic 

function V'(J..l) is an even polynomial in 1-1 satisfying 

1 

VJO = J VJ(J..l) dJ..l ~ 1/2 

0 

where VI = 1/2 holds, VJ(J..l) is said to be conservative ; and 
0 . 

non-conservative otherwise. 

Clearly , equations (5.98) and (5.99) are non-linear and 

coupled. These equations have been linearized in an exact 

manner (vide, Mullikin, 1964) • The results are 

X(/-l ,s)K(J.t ,s) =l+~J 

- exp( ( -r /J.l )G 
1 

0 

1 

0 

Y(JJ' ,s) 
J.l + 1-l. 

VI (J.l' ) ctJ' -

VI (J.l, ) dJ.l , (5.101) 
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and 

- ex.p[ (-r 
1

11-1 )G ~I 
0 

where K(~,s) is defined by 

K(J.I,S) _ 1 -~J [ J1 ! JJ' 
0 

1 

237 

f. 

YCp! ,s) 
1-1 - ~-~· 

0 

X(iJ' ,s)_ mt •• •) _..., •• 
1.1 + 1.1' y """ ....,... 

(5.102) 

J1 -,-;--=-~-~- ] Y' (J.I' ) '*"I ( 5.103) 

I now proceed to decouple equations (5.101) and (5.102) in 

an exact manner (vide, Lahoz, 1989). I introduce the 

following singular integral equation, which is linear in 

1/T(J.I, s_): 

1 

1 
= 1 -~I [ T (p, s) 

(5.104) 

0 

which _in pr-:inciple 11 is solvable for T(p ,s) as Y' (J.I) and 

K(J.I,s) are known functions. 

Next, I multiply equation (5.101) by 

T(J.I ,s) K(J.I ,s) (J.I' 1-1) 
(5.105) 

which I assume is well defined in 
·c 

p & (0,1] and integrate 

with respect to 1-1 from 0 to 1 to obtain 
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0 

1 

X (J.f' , s) 

J.l + J.l' 

238 

V' (p' ) 4-t' = 1 -

1 

T ( 1.1 ' s) [ 1 - p (IJ ., s ) ~ I Y(I-J' , s) 

1-1' - 1-1 
V' (1-J' ) 4J' + 

0 

1 " I Y("' ~s) ] + 1f J.l'; _~J.l P(p' ,s) VJ(p') 41' (5.106) 

0 

where l have used equation (5.104) and defined ·the function 

P(J..l,s) (in principle known) by 

P(J.l ,s) _ ~I 
0 

1 
ex p ( --r 11-1 ) 

1 (5.107) 

Substituting equation (5.106) in equation (5.102) I get the 

decoupled equation for Y~,s) as follows: 

Y(#-1 ,.s)K(/-1 ,s) = T(-,.,,.s) exp[(--r- 11-1 )G ] + T(f.~,.S) P(#-1 ,s) 
1 . 

1 

(1' - exp[ ( --r 
1 

lp )G]] ~ I Y(/-1' ,.s) 
,_,. - J.l 

V' (J.l' ) q.,• 

0 

T(f.l ,s) exp((-'t" 
1 

/J.f )Q i{r J 
. 0 

1 

Y(J.l' ,.s) X 
,_,. - 1.1 

+ 

(5 .. 108) 
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A similar_analysis yields the decoupled equation for X(1-f,s): 

X(J.l,s)K(p,s) = [1- T(tJ,s) P(J.l,s)exp[(-r 1 11-l)Q ]] X 

1 

x(J..l• ,s) 
~-~· - 1-1 

0 

T(f.l ,s) exp[ (-r-
1 

lp )Q i!g J 
0 

X Vf(p• ,s) dp• 

1 

x(J.l· ,s) 
p• -. 1-l X 

(5.109) 


