CHAPTER - 5

SOLUTION OF RADIATIVE TRANSFER
PROBLEMS IN A FINITE ATMOSPHERE



5.1. Introduction.

‘Das (1978, 1980) has solved various problems of radiative
transfer in finite and semi—infinite atmosphere using a
method invelving Laplace transform and 1linear singular

operators.

In the present work ., the one sided Laplace transform
together with the theory of linear singular .operators has
been applied to solve the transpori equatian thch arises in
the problem of a finite atﬁosphere having ground reflgcticn
according to Lambert’'s Law taking the Planck’s function as

an exponential function of optical depth (Sec-3.2).

In the theory of radiative transfer for homogeneocus
plane-parallel stratified finite atmosphere the X- and Y-
- functions of Chandrasekhar (1960) play a central role . The
equations satisfy'a system of coupled nonlinear integral
equations. Busbridge (1960) has demonstrated the existence
of the solution of these coupled non—linear  integral
equations in terms of a particular solution of an auxiliary
equation. Busbridge (19460) has obtained two coupled linear
integral equations for X(z) and ‘Y(z) which defined the
meromorfic extensions to the complex domain |Z| of the real

valued solution of the coupled non-linear equations of X-
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and Y- functions.

Busbridge (1960) concluded that all solutions of non-linear
coupled integral equations for X— and Y— functions are the
solutions of the coupled linear integral eguations to the
extended complex plane but all solutions of the coupled
linear integral equations are not solutions of  the coupled
non—-linear integral eéuations. Mullikin (1964} has proved
that 211 soclution of coupled non—linear integral equafions
are soalutions of tﬁe coupled linear integral eguations but
there exisfs a unique solution of the coupled linear
integral equations with some linear constraints. Finally he
has obtained the Fredholm equations of X- and Y- functions
which are easy for iterative computations. Das (1979) hés
obtained a pair ‘of F?edholm equations with tﬁe
Wiener—Hopf technique from the qq;pleq linear integral
eguations with coupled linear constraints,..

In the present work, the time—dependent X— and Y— functions
{ Biswas and karanjai, 1990) which gives rise to a pair of -
the Fredholm equations with the application of the |
Wiener—Hopf technique has been obtained’ (Séc—5.3.). These
Fredﬁolm equations define time—dependent X—functions _ in

terms of time—dependent Y-functions and vice-versa. These
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representations are unique with respect to the coupled

linear constraints defined by Mullikin (19464).

In the study of time—dependent radiative transfer problems
in finite humogenepug plane—parallel atmospheres it is conv-
enient to introduce X— and Y- functions {(vide, Chandrasekhar
s 1960). These functions satisfy non-linear coupled integral
equations. Due to their important role in solving transport
problems, it is advantageous to simplify the equations
satisfied by them. Lahoz (198%) did this and obtained .exact
linear and decoupled integral equations satisfied by the

time—independent X— and Y— functions.

In the present work, the same method has extended to the
time—dependent radiative transfer problem (Sec~-5.4).
‘However, fhe equations aobtained , alihough linear, ‘are
singular and not sclvable by the standard methods applicable
to Fredholm equations instead they have to be solvable by
the theory of singular integral equations ( vide,

Muskhelishvili, 1946).
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9.2. Exact Solution of the Equation of Transfer in a Finite
Exponential Atmosphere by the Method of Laplace

Transform and Linear Singular Operator.
5.21. Basic Equation and Boundary Conditions.

~ The integro—differential equation for the intensity of
radiation I{(r,u), at an optical depth T for the problem of
diffuse reflection and transmission in a finite atmosphere

can be written in the form (vide, Das, 1980} as

dI_ (7 ,ut) + ' | _
Mg = I (T ,1t) —I YW L, @ Je' =B (T} (5.1)

-1
where Iv(T,y) is the intensity in the direction cos—‘p at a
depth v ,. the angle cns_iy is measured from outside drawn

normal to the facer = O s ywu) is the characteristic

function for non—conservative scattering which satisfies the

condition

py = J w(u’) du’ 3 y(u’) is even , (5.2)

v is the frequency and Bu(T) is the Planck function at any
depth (form is same as in equation (1.11}). Then eguation

{(3.1) becomes
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dIv(T,H)
“_7757—_—

- (b + bie—m) (5.3)

where for convenience I have omitted the subscript v.

The boundary conditioﬁs associated with the equation (5.3)
are
1(0, 1) = 0, O<p <1 (5.4
I(To,u) = Ig, o< u =1 s T >0 ‘ {5.5)
where To is the thickness of the finite atmosphere and the
bounding face T = T, is having ground reflection according

to Lambert’s law is a constant.

S5.22. Integral Equations for Surface Quantities.

fLet us define

x To
f (s,u) = sf flr,u) e °

Lo ]

T & , Re s3>0 (5.6)
(T 1) =0, when 7 > T, (5.7)

tet us now apply the tLaplace transform defined in equation

(5.6) to equation (5.7) to obtain the equation satisfying
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 the boundary condition as
-T

(us — 1) I¥(su) = usI(0u) ~ pse o _ g% (5.8)
where
+41
S(x) = I wilp’ YI(T o ddu’ * (ﬁo + b1e_ﬁ1) (5.9}
-1
i.€.,
+1
k . . . , -8TO
S(S)=j wu’ 3T (T 1’ Y +bo(1- e ]+
-1
sb‘ —($+6>T
+ -5 e °o ) (5.10)
Let us apply the aperator
+4
f wlpldu/(us — 1) (5.11)
-1
on both sides of; equation (5.8) and I ocbtain , with

equation (5.10)

+1
T(1/s} s¥(s) =I w () IO )dus/(us — 1) —
-1

+ 1
T 8

-e® I pep ()10 )due/(us — 1) + B (1 = e ®7°%) +

e—-(s+f3)’t° ) (5.12)
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+ 4
where T(i/s) = 1 + I wuddus/(us — 1) (S5.13)
P
Equation (5.8) gives
-T 7 H t
I(O,u) — € I(To,u) =5 (1/u4) = - (5.14)
-T 8 %
- 1(0,1/s) — e ° I(r_,1/8) =S (s} (5.15)

Equation (5.12) . together with equation (5.14) , gives for

complex z , where z = 1/s,
+ 1
-T2
{1(o,=z) — e I(To,z)] T(z) = [ pp (e Y I (0 )du /(4 — z) —
-2
+4

-T /'Z . -t sz
- e 'I AWQ”IWOW)W/W —z)+tLU.-e o ") +

-d .

b1 —(1/z2+{DT
Let us pﬂt a, = B~’ , then equation (16) becomes

+i
-T /Z
[1(0,2) — e ° I_(TO,Z)J T(z) =J Hy (UYI(Ou)du /(. — =) —

-1
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T * " | -T 2
- e I uw(y)l('ro,u)dy/(y - z) +b°(1—e o ) +

-1

b o -(1sz + 1/ 0T
—212 - e ) (5-17)
zZ +a :
o
Let us put z = -z in equation (5.17) and multiply the
-T 7=

resulting equation by e ° on both sides to obtain , for

complex =z,

+1
1(0,;2)]T(z) = j »uw(y)I(To,p)qy/(y + z) —

~1

: _ -T2
CI(TO,—z) - e

—T 2
- e I pp QIO ddu /(e + z) + bo(l - e } -

b1d° —To/z —Toxao
- —a—_—z— {e - e ) {5.18)

Equations (5.17) and (5.18) are the linear integral

equations for the surface quantities under consideration.
5.23. Linear Singular Integral Equations.

Equation (5.17) and (5.18) are the equations defined for

complex z , where does not lie between -1 and 1 . When =2
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lies between -1 and 1 , equation (35.17) and (5.18) will give
the linear singular integral equations by the application of

Plemelj’ s formulae (vide, Mushkelishvili,1946) with boundary

conditions {(4.4) and {(5.5) as

1
-T 7z

[I(G,z}) — e ° Ig] To('z) = PI IO, ddu /e — =2} —
(s ]

1
-T /2

-e ° I Hy e I(T s ddu /(e + z) -

O

1

“!‘o/z
- e Pj p I dufGu - 2) €+ B (1 - e 0 %) +

b!ao -(1/2 + s/aorz'o
¢ —— (1 - e ) {(5.19)

and I(i‘o,'—z) To(z) = P‘( pw(p)l(‘ro,—p)d,u/(u - z) -

o]

-T 7z

~-e ° J- EEURTTR RS TR L. TR (TIN5 I

[¢]

T /= 1 ’
+ e I MY @O du/u + z) ¢ b (L - e 07%) —
‘ o

- — 1% (?® -e %9 (5.20)
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where
1

T (z) =1~ 2z I du fyiu) — wlz)l /7 (2% - u°) -
2]

1
- 222w(2) PI dp/(zz~ uz) : {5.21)

o]

in which P “denotes the Cauchy principal value of the

integral.

Equations (5.19) and (5.20) are the linear singular integral
equations from which 1 shall determine the surface
quantities I1(0,z) and I(To, ~-z) by the application of the

théory of linear singular operators;
5.24. Theory of Linear Singular Operators.

Following Das {[1978,1980]1 1 can write the following

theorems.

THEOREM 1.

The linear integral equations for z £ (0,1} ,
L_[R(z,—xo)3 = m(z,—xo) s {5.23)

where
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1
L+ [f(z,—xo) = f(u,—xo)To(z) - P‘[ uvl(u)f(u,-xo Ydu/Z(u — z) +
° .

—'l'o/z 1 : -
+ e J pw«(y)f(u,—xo Ydu/(u + 2) (5.24)

o

1

L [f(»z,—xo) = f(u,—;:o )To(f:) - PI ;.lw(p)f(p,—xo)t#.t/(u - z) -

o
1
Tz -
+ e j wau)fQJ,—%o)QU/Qu + z) (5.23)
. o 4
where
‘ xb -(1sz + 1/x°>r
l(z,—xo) = =3 % f1- e 1+
©
xo -T5 /z -—To/x
+ —
— {e e ] {5.26)
o .
X =tz 4 AUX DT
m(z,—xo) = 3% [1 - e ] +
o
Xo '-To /z —‘l'o/xo
- T’:To {e - e 3 - (9.27)

admit of solutions of the form
4

R(z,—xo) = S(z,—xo) + T(z’—.xo) {3.28)

Gl(z,—xo) = S(z,—xo) + T(Z,—xo) (5.29)
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where

S(z,—xo) = xOCX(z?X(xo) - Y(z) Y!xo)]/(z + xo)

T(z,—%o) = %)[X(Z)Y(%D) - Y{(z) X(%o)]/(go— z)

With constraints on X{(z) and Y(z) as
(i} when ¥, {1/2

1
1= Kj X (dde /(K — ) +

3]

-T /K

+ e ° Kj Y (u)du/(K + )
] .
1 .
e ° =Kj Y{udp(uldu /(K —u) +

[ o]

-T /K
]

+ e - Kj Xy (udade 7(K + 1)
[+]

' (ii) when 'y = 1/2

1
1=I [X() + Y(u) Iy addu
o
1 1
+T0J' Y Ry @) =I [XQu) ~ Y ) ly )
o o

and K is the positive root of the function T(z), when

v, <172 , defined by

222

(5.30)

(3.31)

(S.32)

{(5.33)

(35.34)

(5.358)




Chapter—3 223

+41

S T(z) = 1 + I z y(uddu/(u — 2}

-1

{5.36)

and where [X{(p) — Y{u)1 and [X{(u) + Y{(u)] are the respective

sglutions of

-‘to/z r- 1
L trmi= - e 2 [1- fw(de | (5-37)

o]

1

Fluyyp(uddu ] (5.38}

"'t'o/z r
L [fiz)1 = (1 + e )[1—
"o
THEOREM 2.

As the operators L+ and L are iinear for z £ (0,1), then

for any constant C, I have

Ly (CF{z,—%)) = cL, (F(z,—xo) {5.39)
ana
4
_ _ ) ' A T, Z
L, (zf(z)) = 2L (f(z) — (1 F e’ )I pyp () ) du (5.40)
O
THEOREM 3.
If R(z,—xo) and Q(z,—xo) are the solutions of
L [R(z,~x )1 = Hzs—x ) (5.41)
L_[R(z,4xo)] = m(z,x_) s (5.42)

then
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1

4 L;[M(Z)] = J_ w(—xo) ;(z,—xo) dxo ’ (S.43)

)
1
L_[N(z)] = I w(fxo) m(z,—xol dxo . (5.44)
° .
admit the solution of
1
M{z}) = I v(—xo) R(z,—xo) dxo., » {5.43)
o
1
N(z) = I w(—xo) G(z,—xo) dxo . (5.46)
° ’ :

z s

5.25. Solution for Surface Guantities.

t inear singular integral equations {(3.19) and (5.20) are the
required integrai equations from which I will have to
determine I(O,u) - and I(to,—z) s the qggntities “under
caﬁsideration, by the application of the fheory af linear
singular operators indicated .in .section S5.2.4. Equations
(5.19) and (35.2Q0) on addition and after same ;earrangement

give
Fos

T /z T sz

L,LX(0,2) + I(7 , —2) — e ° 1.3

i
N
(=3

)
”~

[

{
m
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1
+ bil(z . '-cto) + Igj' pyu) 1(z , TR L: 1]

o

(5.47)

Equations (5.19) and (5.20) on subtraction and aftter

manipulation give

L [1{0,z) — {7, —=Z

1
= b m{z , -ao) + Igj wiu) m{z 5 —pddu

1

(5.48)

o

where 1(z , -u) and m(z 1) are given by equations

(5.26) and (3.271}. Equations (3.47) and (5.48) with Theorems

1,2 and 3 of section 5.2.4. will give us the desired

quantities 1{0,z) and I('ro,—z). The splution of equation
(5.47) is given by
-T rz 2b°
fI(0,z) + I('ro, -z) — e Ig] = 4= Bo £x¢z) — Y{z)} +

1

+ b‘R(z . -ao) + Ig .{ viu) R(z , —pddu
o

(5.49)

1
=I CX() — YQu) Iy (e ddu

[

where Go (S5.50)

The solution of equation (5.48) is given by
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T /z

n'[I(O,z)-+ I(r , —2) — e ° 1 ]l =
(o] . ]

. - 1
= bi(;l(i R ER) I wip) Glz 5, —p)du (5.51)
. _

Equation- (5.90) and (5.5951) on addition give I(O,z) and

equations (5.47) and (5.51) on subtraction give I(To,—z) as

"To/z .
1(0,z) = I_ e + L I wiud) Tz , udde +

o]

q) : , .

+ —I—:fgg £X(z) — Y(z})) + bis(z . ) (5.52)
1
and I(To,—z) = Ig [- pwlu) S{z , —ul)de +
° 4

qb )

* T1-§, [X¢z) = V(z)1 + B T(z 5 =) (5.53)

where 5(z, -u) and T{(z, —u) are given by équatiuns (5.30)

and (5.31).
9.3. The Time-Dependent X— and Y- Functions.
5.31, Basic Equation.

The coupled nonlinear integqral equations satisfied by the
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time—dependent X- and Y— function {vide, Biswas and

Karanjai, 1990) are of the form
T’. s"’! . 2G U
TX(T 1 SIXT 5%,8)-Y (T 4uaSIVE 4x,5)

P'Y J T dx {5.54)

0

O p= 1yt .

T @

) _ T, .

‘Y(Ti,p,s) = exp [ o _] +-2G H X

‘Y(ri,p,s)XCri,x,s)—X(Ti,u,s)Yéri,x,s)
x I : dx (5.55)

y - x
(o] Com
o< u<1 .

where Q=1+ s/c (5.56})

T, is the thickness of the atmosphere ;3 c, the velocity of

light ; and s, Laplace transform parameter.

Follbwing Chandrasekhar (1960) equations (3.54) and (5.33)

can be written as

X(r spt,8) = 1 +‘GL X

y I . X(r  1o8IX@  4%,8)-Y(T sus8)Y(T ,%,5)

T wix)dx _A (5.57)

o

<
1A
r

1A
b
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T Q

1
Y(T!,u,s) = erxp [ »~-~ v] *-g—‘x

wipddx (5.58)

YT aS)XT i, s)NT . 8)V T 43,8)
x| =
o
o< u=<11 .
where wywi(x), the characteristic function Asatisfying the

Hélder condition on 0 <x £ 1 , is non—negative and satisfies

the condition

1

v, = f wix} dx < 1/2 (5.359)
o .
The atmosphere is said to be canservative when
Yo = 1/2 and non-negative otherwise .

The dispersion f&néiion T(z,8), z & (—1,1)° can be defined

by
2 8
T(z,8) = 1 — 2; I -—ﬂ§539§; (5.60)
- z - ¥
and
T(z,5) = (H(z,s)H(—z,s))'f (5.61)
where
4
H(z,s) = 1 + zH(z,s) I w‘”;"ix;S)dx (5.62)

(o]
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According to Busbridge (1960) , the only zeros of T(z,s) are

at z = tK, K>1, when y_ <1/2 and when y_ = 1/2.

Following Busbridge (1960), Dasgupta (1977), and Das (1978)
H{z,s) is meromorftic on (—1,0)c having a simple pole at

z = - K and tend to 1 as z—— 0+. It can be represented by

1

A + H= . '
- = _© [ _ Fix,s)dx -
H(z,8) = —p—p—— J' el (5.63)
o
> K>1, w <1/2
s _
’ - = P(x,s)dx
H(z,s) = h z + h J e | (5.64)
o
s K — x , 9, = 1/2
where ‘
. - . ’ -
AB_= (1 + FL’)K, PL, = I P(x,s) dx/x, (5.65)
o _

-41/72
H = [ 1 -2 I wix) dx ] (5.66)
[s]
1
2 -~-4/2
h, = [2 I xZpix) dx ]  (5.87)
- (o]
h o= (1 +FP ) (5.68)
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P(x,8) = ¢(x,8)/H(x,s) (5.69)

P(x,s) = xw(x)/(Ti(x,s) + 12 ¥ y® (%)) (5.70)

8
22 w(t) — pilx) _
Q ) 2

T (%,8) =1 —
o w2 — ¢2

o]

- “Vé“’xag((1 € x)7(1 — %)) : (5.71)

where ¢{x,s) is non—negative and continuous on (0,1), tends
to w(0), as % -—— 0 , tends to O({leg(l - x)"2) when

X — 1_ s and 1/H{z,s) is regular on (—1,0)°.

Followihg Busbriége (1960) and Mullikin (1964) 1 find that
the ccupie& iinear equations satisfied by X(z,s) and Y(z,s)
for z (—1,1)?-are of the fqrm

ﬁté,s)T(z,s) =1 + zH{X){(z,5) -

- expl—{z_/z)@)V(Y)(z,s) - {5.72)

Y(z,s)T(z,s).= exp(rff fz)a) + zU(Y)(z,s) -
-z exp(—(Tilz)G)V(Y)(z,S) {S5.73)
with constraints for v, <12,
0 = 1 + KU(X)(K,s) —.K, exp(—(r1/K)GV(Y)(_K,s) (3.74)
0 = (exp(-(r_/K}@) + KU(Y)(K,5)) -
— K exp(-{t /KIV(X)(K,s) (5.75)

for v, = 1/2
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1 .
1= j pO I {X{x,s) + Y{x,s8) dx (5.76)
° _
1 1
T, [ Y(x,s}w(k)'dx = J Xp(){(X{x,s) — Y{x,8}))dxn - {(S.77)
o o ' ‘

The other conditions for which X(z,s) and Y{x,s) hold are
¥(S,8) ———» H(z.s) when T ——— x  (5.78)
Y{z45) — © when T, — « (5.79)

where for M = X or Y
- 1
ViM)(z,s) = I plixdM{xs,s)dx/{x + z) (5.80)

4]
1

)

is analytic for z € (-1,1) bounded at the origin Oz

when z_——;———+ x and
1 -
UiM){(z,s) = I w(xIM{x,s)dx/(x — z}). {5.81)
o

is analytic for z ¢ (0,1)° + bounded at the origin O(z_’l
e : . . .
when 2z —— .

9.32. Fredholm equations.

Equations {5.72)and (5.73) with equation (5.61) can be

written in the form
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X(z,s)/H(z,s) = H(—z,s)il + zU(X)(z.5) —

- exp(—(rilz)G)H(—z,sW(Y) (z,s8)

232

(5.82)

Y(z,s)/H(z,s5) = H(—z,s)(exp(—tr1/z)9) + zU(Y)(z,8) —

-z exp(—(rilz)Q)H(—z,SJV(Y)(Z,S)

I shall assume that X{(z,s) and Y(z,s) are reqular for

Re z>0 and bounded at the origin. Equation (5.63) gives

Hence

1

A —H =z

2]

for v, € 1/2

1

B

V(Mi(z,s)f w_%)dx = D(M,P_}(z,5) + D(P,M_)(z,5)

where

and

o
’w(x)M(x,s)Po(x,s)dx

X + z

D(M,Po }(z,8) = I

o]

1W(N)P(X,S)Mo(x,s)dx

X — Z2

D(P,M(') J{z,s5) = I

(3]

1.
P(x,8) ,
[ s,

ll

c

whereo P (z._]s)
o

€3.84)

{5.85)

(3.86)

{2.87)

(5.68)
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is regular on (—1,0)°, bounded at the origin and G(z !) whén
Z ————>x and. D(M,Po)(z,s) is regular for 2z on (—l,O)C,
bounded at the origin and O(z ') when z=——— o« . and D(P,H )
(z,s8) is regular for z, on (0,.1.)c bounded at the origin ,

and O(z ') when z—— x .

Hence , equation (5.82) and (3.83) can for v, <1/2 be written
in the farm

X(z,s.')/H(z,s)

A —H =z
+ e:«cp(—('rI /z}G){ -—‘:—:-——;?—— V(Y)(z,s) — D(Y,Po )(z,s)] =

= H{—z2,5){1 + zU(X}{z,s) + EXP(—(T’.IZ)G)(P,YO Y{z,8}} (53.87)

a —H z
) o

Y(z,5)/M(z,8) + z exp(-r rn@| V(X)(z,8) —

- D(X,Po)(z,s)] = H(—z,s)(exp(—(71 /z)z)l + zU(Y)(z,s}) +

+ z exp(—('z"/z)G)D(P,Xo)(z,s)) _ {(5.90)
The left—hand side of eguation {5.89) and (35.90) are
regular for Re z>0 and bounded at the origin; the

right—-hand side of equations (3.89) and (5.90) are regular
for =z, on (0,1)c s bounded at the origin- and tends to

constants , say 8 and B, respectively, when z—— « .

Hence, by modified form of Licuville’'s theorem I have
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X{z,8) = H(z,s)‘[ z exp(—trilz)ﬂ (D(Y,ﬁ)(:,s) ~

Ab - q,z
- > V(X)(z,S)] + A ] . (5.91)

Y{z,s) = H(z,s)[ z exp(—trllz)ﬂ (D(X,ﬁbcz,s) -

A —H:=z
_ °F — z" V(X)(z,s)] + B] . {5.92)

Equatidns {(S.91) and (5.92) together with Equations (5.78)
aﬁd (9.79) giveg |
A=1, B =20 ' {3.93)
Hence., for ¥y = 172 , tﬁe expression of X(i,s) and Y{z,s}
are
X{z,8) = H{(z,s}[1 + = exp(—¢r1/z)G)(D(Y,ﬁ3)(z,s) -

-t - h‘Z + ﬁo)'V(Y)(Z,S))] (5.94)

Y(z,s) = H(z,s) 2 exp(—(r’/z)a)(n(v,Po)kz,s)) -
e | —-taz + q)) V(Y)(z,5)) | (3.95)
Hence, following Mullikin (1964) equations (3.91) and (5.92)
together with equagions (3.74) and (5.73) give unique
representation of time—dependent X— and Y- functions for
wo <1/2 and equations (5.94) and (5.93)  together with

equations (5.76) and (5.77) give unique representafions of

X—- and Y- functions for ¥, = 1/2.
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S5.4. An Exact Linearization and Decoupling of the Integral
‘Equations Satisfied by Time—Dependent X— and

Y-Functions.

5.41. Analysis.

The integral equations incorporating the various invariances
of the time—deﬁendent prﬁblgm of diffuse réflection -and
transmission can be reduced toc one or more pairs of integral
_equations of the following form (vide, BRiswas and Karanjai,

1990)

X{p,s) = 1 +

1
+'% _%_J X ,5)X (' ,5) — Y{u,s)Y{u' ,5) A’ (5.96)

TR
(2]

Y{u,s) = fexpi(—'-r1 /u)l +

1
Ty %J V,83X0 55) = XQ@,SIVGr ,8) (5.97)

H - H
o]

Following Chandrasekhar (1960) , I can write the above

equations in the form

X{ptss) = 1 +
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F 3
p X(u,s)X(' ,S) ~ Y@, SIYQ' ,8) 0
. 5.[ - v ) du (5.98)

[ ]

Y{i.s) = exp[(—rlﬂu)] +

b §
. %I Y .s)X "—T';: = :l(.u,s)v(#', +5) v ) dut (5.99)

(]

where T, is the optical thickness of the atmosphere and G =
1l + s/c , where c is the velocity of light, s is the Laplace
invariant of the time variable and the characteristic

function yl{u) is an even polynomial in p satisfying
1

v, = I win) du < 172 (5.100)

o

where v, = 1/2 holds, y(u) is said to be conservative ;3 and

non—conservative otherwise.

Clearly , eqhations (5.98) and (5.99) are non-linear and
coupled. These equations have been linearized in an exact

manner (vide,_Nullikin, 1964) . The results are

1
X(u,s)K(u,s) = 1 +'—5—I -)-(g(y:"pio)—’#’(l-") A’ =
2]

1
Y’ .5)

’ ’ (8.101
e ) ¢ )

- expC(—'r1 e ]%—I

o
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and

Es
Y ,5)K(u,s) = expl{— /u)@ ] +%I RACHIFL) S Sy

H —
)
. 1
- ex X' +8) . .
o
where K(u,s) is defined by
1
H 1 1 4 ¢
Kigysd = 1 - & - =3 ) (5.103)
(552 GI {u*“u y__“]w(.udu
o

I now proceed to decouple equations (5.101) and {5.102) in
an exact manner (vide, Lahoz, 198?). I introduce the
following singular integral equation, which is linear in

I/T{t,8):

1
1 - - 1 vl ) o,
T(H !5) 1 Q J’ [ T(“a ,S)K(IJ' ,5) ] ”. — C#J {3.104)

O

which in principle , is solvable for T(u,s) as y(u) and

K{us,s) are known functions.
Next, 1 multiply equation (5.101) by

(' /7Qx (u)
T4,s) Ku,s @ ) ° (3.105)

which I assume is well defined in u & {0,11° and integrate

with respect to gy from 0 to 1 to obtain



Chapter->5 238

i

X(u’' .s) . R
EQ—I l‘(‘“-i-’p"— wie' ) &' =1 —
o

: 1

1

* %‘j —'——"—Y,E"J'_’j) Plu' 58) (' ) v ] (5.106)

o

where I have used equation (5.104) and defined the function

P{u,s) (in principle known) by

exp(—‘r /1)
Plu,s) = —[ 7 +u I 7Y ,s)k(u'

=) w( ydu! (5.107)

Substituting equation (5.106) in equation (5.102} 1 gét the

decoupled equation for Y(u,s) as follows:

Y s8)Kes) = T(p,s) exb[(—fr-’/y G 1 + T(q,5) Pu,s}

1

[1 ~ expL(~t /u)G1] —[ TER) oy @+

1

Y ,s)
T{-u,s) EXDC(-‘tilu)G %[ —-’:-,—_-—I_T- X
) o

X i 48) w(pu') du’ ' _ {5.108)
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A similar analysis yields the decoupled equation for X(u,s):

X{uo5)K(u,s) = [1 = T(u,s) P(u,s)expf(-r,/p 3@ 11 X

<[ 1] v ]

i

‘ X' .5)
T(—u,s) expl{—T, /11)a l%-f TR X
[0}

X wlu’ ,s) dy’ {(5.109)




