
CHAPTER 6 

Physical properties of liquid. crystals : Theory and experimental 
methods. 



5.1 THEORIES OF LIQUID CRYSTALLINE PHASES 

The study of liquid crystalline behaviour provides a major 

challenge for contemporary theoretians. To some extent liquid 

crystals can be understood on the basis of the simplest of theories. 
1 The early work of Maier and Saupe provided a convenient · molecular 

field rationale for the existence of the nematic phase which depends 

on anisotropic dispersion forces. Landau-de Gennes theory on the 

other hand treats liquid crystalline behaviour as perturbation of 

the isotropic phase by expanding the free energy density in terms of 

the order parameter and its spatial derivatives2' 3• Prior to this 

Onsager had predicted that a system of hard rods could exhibit a 

first order transition from an isotropic liquid to an orientatioally 
4 ordered phase without the need for attractive forces .In this case 

the driving force for molecular alignment is provided by the 

orientational entropy. Despite the success of these theories, the 

need still remains for a more detailed description of liquid 

crystalline phase behaviour. 

The theories of liquid crystalline phases have been described in 

detail in several books5- 8
• The salient features of the mean field 

theories of nematic and smecticA phases in a nutshell as developed 
1 9 10 by Maier-Saupe and Me Millan ' are given below. 

5.1.a Maier~saupe theory for nematic phase : 

The rod like molecules of a liquid crystalline substance tend 

to align their long axis along a preffered direction, called the 

director n, in a mesophase. The distribution of the molecular long 

axes about the director is given by an orientational distribution 

function /(case) asssuming cylindrical symmetry of the mesophase, 

where 8 is the angle between the director the molecular long 

If the molecules have no head to tail asymmetry, than n = -n 

/(case) is an even function of cose. The distribution function 
11 also be written as 
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I ( cos8 ) = l ( 2 L + 1 ) / 2 < P L < cose) > P L cos8 < 5. 1 ) 

L even 

th 
Where PL(Cos8) are the L . even order Legendre polynomials, and 

<PL(Cos8)> are the statistical average given by 

1 1 

0 0 (5.2) 

<PL> are called the orientational order parameters of which the 

first member, i.e., <P2> is commonly called the order parameter. 

<P
2

> is equal to one for perfectly oriented sample and is equal to 

zero for randomly oriented i.e., isotropic liquid. 

The angular part of the generalised mean-field potential as felt 

by a rigid rod like molecule can be written as, 

V(Cos$) = l ul <PL> PL(Cos9) 

L even 

(5.3) 

Where UL are functions of distance between the central molecule 

and its neighbours only. Maier and Saupe assumed that the potential 

can be taken to be the leading term only of the serei.s (6.3) i.e., 

(5.4) 

Hence, the ·ori entat i ona 1 d i st ri but ion function I (Cos$) and the 

partition function Z are given by 

f (Cos$) = Z - 1 exp [ - V (Cos$)/ K T ] 

( K being the Boltzmann constant ). 
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1 

Z = I exp [ -. V(Cos8) / K T ] d(Cos8) 

0 

(5.6) 

Substituting the value of /(CosB) as in equation (5.5) to 

equation (5.2), we get for L = 2 

-1 
<P > = Z 2 . 

* 

1 

I P
2

(cose) exp [<P
2
> P

2
(cos8)/ 1*] .d(Cos8) 

0 

Where T = V/KT 

·(5. 7) 

<P
2
> at different temperatures can be detenmined by solving this 

self consistent equation. For many liquid crystals the Ma1er-Saupe 

<P
2
> values agree quite well with those found experimentally. 

5.1.b Me Millan's theQry for SmecticA phase. 

In SmecticA phase, there is a periodic density variation along 

the layer normal ( Z -direction ) in addition to the orientational 

distribution of the molecular axes. Hence the nonmalised 

distribution function can be written, in this case, as, 

1 < cose , z ) = l \ A PL(Cos8) Cos(2rrnz/d) l L,n 

i 

with J 
-1 

L even n 

d 
J l ( Cos$ , z ) dzd (Cos$) = 1 

0 

as nonmalising condition, d being layer thickness. 

9 10 12 13 McMillan ' following Kobayashi ' assumed a model 

potential of the following form, 
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Vm(cos8,z)= -v [oaT Cos(2nz/d) + {t> +act cos(2trz/d)} P2(cose)] 

(5.10) 

Where a and 6 are constants which depends on the characteristics of 

the molecules. 

n = <P2(cosS)>, T = <Cos9(2nz/d)> and ct = <P2(cos9)Cos(2nz/d)> are 

the orientational, transitional and mixed order parameters 

respectively, and < > denotes statistical average of the quantities 

inside. 

The distribution function can be written as 

I M(cose, z) = z - 1 
exp [- VM (Cos8, z) / KT ] 

where the partition function 

1 d 

Z = J J exp [ - VM (CosS ,z)/ KT ] d(CosS) dz 

0 0 

(5.11) 

(5.12) 

Once again, three self consistency equation containing n, T and ct 

can be writ.ten and solved iteratively. 

Out of several solutions, the equilibrium state is identified by 

the minimum value of free energy. 

In general, we get the following three cases : 

Case I : n = o, T = 0, 6 = 0, 

Case II: n 1 o, T = 0, 6 = 0, 

Case III : n J!' o, ' "F o, 6 ~ 0, 

5.2 Experimetal Observation 

5.2a Texture Studies : 

isotropic liquid. 

nematic liquid crystal 

smectic liquid crystal. 

The texture are the complex optical patterns of ,·liquid 

crystalline samples observed microscopically, usually in polarised 

light. These are nothing but the defects of the phase structure 
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which are generated by the combined action of the phase structure 

and the surrounding glass plates. Change in texture at particular 

temperature indicates the occurance of phase transition. For the 

detenmination of transition temperatures and the identification of 

different mesomorphic phases, observation of textures is an 

important tool for the scientists dealing with liquid crystals. 

Again for a given structure, different textures can exist, depending 

on the spacial conditions in preparation of the sample. 

It is seen that, homeotropic textures are observed only in phases 

of nematic, smecticA and smecticB ( both orthogonal smectic phases). 

In smecticC, smecticF and smectici ·phases (all tilted smectic 

phases) broken focal conic texture are observed. The inlayer ordered 

smectic phases show mosaic texture. Classification of different 

liquid crystalline phases by the texture study alone is often 

ambiguous, and therefore other methods are needed to support it. 

5.2b X-ray diffaction from mesophases : 

X-ray diffraction from mesomorphic phases has been reviewed by 
14-20 

many workers , specially by Vainshtein and Leadbetter. 

The x-ray diffraction patterns of the nematic and smectic 

mesophase are shown in figure 5.1 (a) & (b). In the nematic phase, 

the d_iffraction pattern consists of two different rings. The inner 

ring at small Bragg angle, appears along n and outer ring 

corresponding to the average intenmolecular distance D appears along 

the direction perpendicular to n . The diffuse rings of unoriented 

nematic change into cresent-shaped spots in aligned samples as shown 

in figure 5.1. In the smectic phases, the diffuse inner x-ray 

diffraction spot changes into a sharp reflection, demonstrating that 

these phases posses one dimens1onal transitional order. However, the 

diffraction peaks are not infinitely sharp delta function 

characteristics of true crystalline structure. 

The angular distribution of the x-ray intensity around the outer 
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Figure 5.1 Schematic representation of x-ray diffraction 
patterns of the (a) Nematic and (b) Smectic A phase. 
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halo (figure 5.1 ) also gives the orientational distribution 

function f(cose) and order parameters <P2>. 

Orientational Distribution Functions and Order Parameter& : 

For a system of cylindrically symmetric molecules one can define 

an orientational distribution function/(~), which gives an average 

state of orientation of the long axis of the molecules relative to 

the director14• From the x-ray diffraction photographs we get 

intensities averaged over a relatively long time and over a 

macroscopic volume so that it can be assumed that the molecules have 

an averaged cylindrical symmetry even if they do not rotate about 
15 

their long axis • The order parameters <Pl> for a system of rigid 

rods in a uniaxial phase as defined in section 5.1a. can be written 

as, 
Tl/2 

f Pl(Co~) /(~) 8i~ ~ 
0 

fl/2 

J /(~) 8i~ ~ 
0 

(5.13) 

Where Pl(Co~) is well known Legendre polynomial of order L. Putting 

L = 2 and L = 4 we get <P
2
> and <P4> from equation (5.13). In 

relating the x-ray intensities· I(tp) around the diffuse equatorial 

arc ( Fig. 5.1 ) with the orientational distribution function, 

Leadbetter and Norries15 assumed the molecules as ri~1d rods 

perfectly aligned in clusters of a small number of molecules and· 

obtained 

Tr/2 -1/2 

I{VJ) = C J I i~> sec
2

VJ [ tan2~ - tan
2

¥J ] S1n.6 ~ 
~=Vl 
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where fd(~) describes the distribution function of the clusters in 

which the molecules are perfectly aligned. Moreover, they assumed 

that for a perfectly aligned. sample [/d(~)=6(~)1, the scattering is 

zero except for the directions of the scattering vector 

perpendicular to the.cluster axis. They have calculated the effects 

showning that the deviations are negligible except for highly 

ordered phases (<P2> ~0.8). Comparing the values of /d(~) with/(~) 

of the same sample obtained by other methods it has been seen that 

/d(~) can be replaced by /(~) values, the true distribution 

function. Because of centro-symmetric molecular distribution in 

nematic phase, the orientational distribution function can be 

expanded in the form 

r 

I(lf) = l 
n=O 

r 

2n 
a2n Cos lf 

\ 2n 
/(~) = l b2n Cos ~ 

n=O 

Substituting Si~ =Co~ Seclf in equation (5.14) we get 

rr/2 

l(lf) = c J I 1 (ct) Sinct del 

0 

From equations (5.15), (5.16) and (5.17) we have 

Tr/2 

l a2n Cos2nlf = J 
0 

r 

r 

\ b c 2n Si 2n+1 ..... ,. £ 2n os VJ n ct uu 

n=O 

1!/2 

2 b2n Cos 2n J Sin2n+1 ctclct = VJ 

n=O 0 
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2n 
Since~ is arbitrary, the coefficient of Cos ~ must be equal. Now, 

Tr/2 .jn (n 1 )2 

J Sin2
"+

1o ~ = ------------
0 (2n + 1) 

( 2n + 1) I 
and so b2n = a . 2n 

(5.19) 

The series in equations (5.15) and (5.16) converge rapidly. 

Retaining eight terms in the truncated series, a least square 

fitting was made to obtain the coefficients from equations(5.15) 

with corrected intensity values. The calculated intensity values in 

all cases were found to be in good agreement with the observed 

intensities. This values of a
2
n were then used to calculate the 

coefficients of b
2
n. Then, /(f') values were calculated using eight 

terms in the series in equation (5.16). 

By calculating the integral, 

Tr/2 

J /(~) Si~ ~ = A (say), 

0 

and then dividing all the b
2 

values by A we obtained the normalised . n 
values of the orientational distribution function. 

Substituting equation (5.16) in equation (5.13) we get 

1 r 

0 n=O <P 2> = 1/2 ------1-r ___________ __ 

· 2n 
b2n Cos ~ d(Co~) 

0 n=O 

This can be written in the form of standard integrals and 
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can be calculated. Similarly, <P
4
> can also be calculated. 

Vainshtein obtained a fairly good approximation for the order 

parameter by replacing /(~) values with I(~) values at a certain 

Bragg angle in equation (5.13). 

Molecular parameters for x-ray studies : 

The average lateral distance between the neighbouring molecules 

(D) was calculated from the x-ray diffraction photographs by a 

formula given by21 

2D sine = IQ.. (5.21) 

K is a constant which comes from the cylindrical symmetry . of the 
22 . 

system. Recent calculations have shown that the value of K depends 

on the order parameter of the sample under consideration. For 
. 23 

perfectly ordered state K = 1.117 as given by de Vries However, 

since the variation of K with .<P
2
> is small, we have used the value 

K = 1.117 for all our calculations. 

For both oriented and unoriented samples the Bragg equation was 

used ( 2dSine = A ) to calculate the apparent molecular length or 

layer thickness, where e i~ the Bragg angle for inner diffraction 

maxima. 

Experimental technique and data analysis : 

X-ray diffraction photographs were obtained with the apparatus 

described below using nickel filtered CuKa radiation in the 

transimission geometry on a film, using a flat plate camera designed 
24 in our laboratory by Jha et al .( Figure 5.2 ). X-ray diffraction 

photographs were taken at different temperatures in the presence of 

a magnetic field. The sample was taken in thin walled lithium glass 

capillary of 1mm diameter. The capillary containing sample was 

placed in a brass block. The temperature of the block was controlled 
0 within ~0.5 C by a temperature controller ( Indotherm MD 401 ). The 

sample was first heated to the isotropic phase and magnetic field 

89 



; -- _.._ 
I 

nl 

: F~ 
U I I 

~- •• -J 

, I 

I 

(- •• .!1 

:--- ., 
0 I 

,_-- .1, 
I I<' -----l r'l ------• r~· 

rtA-;).,...-....IJ,~-" : 1 u 

"'-- -J 

n 
\6-. 

;---"! 
I 

I 

I I 

I , '-'5 15 -~ 
I I I I 

~ .... ~ l,. - . -:1 
I o o 

rj--·~:- f ~ i··-':...~ 
'o.~ •• --.~·..:BTrnrrrmzoorzuzrrTTTimrrrrr rr~.:~. __ _;...; 

o o 1 

: : ' 112 : : 

tff!!!l!!lf11lllllf!LWZZOT!ll7ll1J1lllll1lllTif!7TOul!du,zm 
...1...:.. • • 

t J [;,;_J..,_l3 
..ni:i?LtUIIlll I II II III Zll!l"" t4 ~Z.-lflll !III I 1 zznzzz tJ 

Figure 5.2 : Sectional diagram of the x-ray diffraction 
camera. 1 -X-ray, 2- Collimator, 3- Brass ring, -4- Ring 
of sindanyo board, 5 - Brass ring, 6 ~ Cylindrical brass 
chamber, 7 - Asbestos insulation and heater winding, 8 
Specimen holder and thermocouple, 9 Sample, 10 - Film 
cassette, 11 - Film cassette holder, 12- Base plate, 13 
Levelling screw, 14- Brass plates over the coils of the 
electromagnet, 15 - Removable spacer, 16 - supporting brass 
stand, 17 - Pole pieces, 18 - Asbestos insulation. 

90 



was applied parallel to the capillary axis. The substance was 

allowed to cool to the desired temperature in presence of the 

magneti~ field. The strength of the magnetic field was measured 

previously by a gaussmeter ( ECIL model GH867 ). X-ray beam was 

collimated by a collimater of aperture O.Bmm. A Ni-filter of 

thickness 0.009mm was used to obtain predominant Cu~ radiation of 

wavelength 1.542~. When the temperature reached equilibrium then the 

x-ray tube was switched on. Photographs were taken at various 

constant temperatures. In case of the detenmination of orientational 

order parameters the sample to film distance was maintained at'about 

7cm .• 

·For the determination of the exact distance between the sample 

and the film, an aluminium photograph was taken. Measuring the 

diameter of the diffraction rings corresponding ( 111 ) and ( 200 ) 

reflections and values of Bragg angles, the actual distance between 

sample and the film can be calculated. 

(a) Conversion of optical density to x-ray intensity : 

The optical density of the x-ray photographs were measured by 

microdensitometer ( Carl Zeiss MD 100 ) which has a potentiometric 

recording ( K200 ) faciliy ·for linear scanning. X-ray intensity 

values are then obtained from the conversion of the corresponding 

optical density values from a graph as shown in figure 5.3 .Using 

multiple film technique as given by Klug and Alexander25 an 

intensity scale was prepared for this purpose. 

(b) Circular Scaning of X-ray Photographs. 

A rotating stage was fabricated 1n our laboratory to facilitate 

360° scanning of the photographs. Photographs were scanned to 

measure the angular intensity-distribution I(e) which was used to 
, 

calculate the orientational distribution function /(~) and order 

parameters <P2> and <P4>. The circular scans of the outer 

diffraction arc taken from 'IJ.I 
0 0 = 0 to 'IJ.I = 360 at about 1 intervals 
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near the peak and at larger intervals elsewhere. The optical density 

values obtained from the densitometric circular. scan where converted 

to x-ray intensity.with the help of calibration curve. Intensity 

values were then corrected for background values arising due to the 

air scattering. The peak intensity position which corresponds to~ = 
0 was determined from angle vs intensity curve (figure 5.4 ). Taking 

0 0 
nineteen I(~) values from VJ = 0 to VJ = 90 at 5 intervals from the 

smoothed I(~) vs VJ curve, /(~), <P2> and <P4> were· calculated by 

using Leadbetter's expression. A computer program has been devEfloped 

for these calculations. 

(c) Linear Scaning of X-ray Photographs. 

The diameter of the diffraction rings were determined from the 

peak positions obtained by linear scanning using a chart drive and 

corresponding values were calculated. 

5.2c OPTICAL BIREFRINGENCE STUDY. 

Theoretical considerations : 

The birefringence of liquid crystals is the visible manifestation 

of their long-range order and it is defined only for a uniformly 

ordered domain. In a uniaxial liquid crystal, the ordinary 

refractive index n is perpendicular to the optic axis or director 
0 . 

and represented as n and extra-ordinary refractive .L . 

parallel to the director which· is denoted as n
11 

index n 
e 

From· 

is 

the 

measurement of n and n , we can estimate ordering in the liquid 
o e · 

crystal at different temperatures. 

In a liquid crystal the polarisation P is given by, 
-
P = N < a.Ei > (5.22) 

where the brackets denote the average over the orientations of 

all molecules. a is the mole6ular p6larizability. N is the number of 
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molecules per unit volume and Ei is the internal field, the average 

field that acts on a molecule. 

The internal field is a linear function of the macroscopic field· 

and can be represented by 

Ei = K • E (5.23) 

Where K is an ordinary second rank tensor. The introduction of 

this tensor makes it possible to write P = N < a.K >E. 

Refractive index is related to polarizability by the following 

relation 

n ~ - n ~ = N ( < "'. K > 
11 

- <a • K > .J.. ) (5.24) 

So if we want to calculate molecular polarizability we must know 

the internal field tensor K which was ususually valid for isotropic 

medium.Because of anisotropy of the internal field, Lorentz-Lorentz 

formula can not be applied to liquid crystals. We follow, therefore, 

Neugebauer's relation or Vuk's formula to calculate the 

polarizabilities. Saupe and Maier also applied a more elabOrate form 

of internal field suggested by Neugebauer. 

(a) Neugebauer's method : 
26 Neugabauer extended Lorentz-Lorentz equations for an isotropic 

system to an anisotropic system. The effective polarizabilit1es a e 
and ·a

0 
of the liquid crystals are given by 

2 
4 n N Cl ( 1 ) -1 n - 1 = Nar e e e e (5.25) 

2 
1 4 n N a. ( 1 - N a. oro ) -1 (5.26) n - = 0 0 

Where N is the number of molecules per cc and ri's are internal 

field constants, n and n the extra-ordinary and ordinary e o 
refractive indices respectively. The equations for calculating the 
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a and a obtained from equations (5.25) and (5.26) are 
o e 

and 

where, 

1 
a 

e 

+ _2_ 
a 

0 

a + 2a = e o 

2 
= .4ITN [ _ne + 2 1 + [ 

3 l n2 - 1 J l 

9 
4nN 

e 

[ 
~ - 1 ] 

n 
2 + 2 

2 ( 2 2 ) n = 1/3 ne + 2n
0 

(5.27) 

(5.28) 

Solving equations (5.27) and (5.28) a and a can be obtained. o a 
(b) Vuk's method. 

27 Vuks has derived another formula for polarizabilities associated 

with anisotropric organic molecules. The principal polarizab111ties 

and refractive indices can be expressed as, 

where 2 n = 

So we find, 

2 
n - 1 

i 
2 

n + 2 

1/3 2 n~ 
i 

2 1 n -
0 

2 n + 2 

2 
1 n -e 

2 + 2 n 

= i= x,y,z (5.29) 

4rrN 
= --a 3 0 (5.30) 

41IN (5.31) 
= a 3 e 

2 2 2 
where n = 1/3 ( 2n

0 
+ n ) ; n being mean refractive index. a and e e 

a can be cal~ulated directly from the refractive index values. 
0 

Additive Rule of Bond Polarizability. 
28 Denbigh - Le Fevre established a simple sum rules for the 
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calculation of molecular polar1zab111ty 1n terms of mean bond 

polarizab111ty. Molecular polarizabilities for all the substances 

have been calculated from this additive rule and compared with the 

values obtained from Vuk's and Neugebauer's methods. 

Calculation of order parameters from polarizab111ties : 

The principal polarisabilities (a ,a ) have been calculated by 
o e 

using Vuk's ( isotropic model )and Neugebauer's relations 

(anisotropic model). It can be shown that 

(5.32) 

(5.33) 

Where a = ( 2a + a )/3 1s the mean polarizability. a = (a
11
-a ) is 

o e a .L 

the molecular polarizab11ity anisotropy where a 11 and a.L are the 

principal polarizabilities, parallel and perpendicular to the long 

axes of the molecules in the crystalline state. 

To get the values of (a 11 - a), when solid phase data is not 
.L 29 

available, the widely used method of Haller et. al was adopted. A 

graph was plotted with log(a -a ) VS log.(T- T), e o c where T c 
corresponded to the nematic isotropic transition temperature. The 

plot which is found to be a straight line is extrapolated to T=O 

giving (a -a )T 0 = (a 0 -a ) • For each case a set of values of a , a eo= J.. eo 
and (a 11 -a.L) were obtained (figure 5.5) and then from the relation 

a -a e o 
(5.34) 

Order parameter <P
2
> was calculated. 
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Measurement of refractive indices : 

The refractive indices n and n fa extra-ordinary and ordinary. 
e a . 

. ray were measured by a thin prims technique. The refracting angle of 

the prism was less than 2°. The details of the preparation of the 

prism and the experimental procedure have already been reported by 
30 Zeminder et al • For -the preparation of ~ prism two clean optically 

plane glass plates were used. One surface of each of the glass 

plates was rubbed parallel to the direction of one of their edges. 

The plates were then treated with a dilute solution of polyvinyl 

alcohol and then dried. The prefered direction on the substrate can 

be obtained· by rubbing the same surface in the same direction again 

·by a tissue paper. The prism was then formed by placing the treated 

surfaces inside and the rubbing direction parallel to the refracting 

edge of the prism. The sides of the prism were sealed with a high 

temperature adhesive. Now the liquid crystal sample was allowed to 

flow inside the prism by melting a few crystals at the top. The 

sample was heated to the isotropic state and then cooled down very 

slowly to the desired temperature. This process was repeated several 

times. No magnat1c field was applied. Repeated heating and cooling 

produced a homogeneous namatic sample with optic axis parallel to 

the refracting edge of the prism. The prism was then placed in a 

brass chamber, whose temperature could be maintained by a 

temperature controller ( Indotherm model 401 ) at any desired value 
0 

to an accuracy of: 0.5 C by means of an electric heater. The 

refractive indices were measured for three wave-lengths ( A = 
6907~ , 5890~ , 5461~ ) from a murcury lamp by means of a precision 

spectrometer, a wavelength selector and a Nicol prism~ 

5.2d Measurement of Densities : 

The densitias of the liquid crystals were measured with the 

help a dilatometer of the capillary type. A weighed sample of the 

liquid crystal was introduced inside the capillary tube of the 
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dilatometer and it was placed in a thermostated water bath. 

Sufficient time was allowed for equilibrium at the desired 

temperature before taking each reading. The length of the liquid 

crystal column was measured at different temperatures with a 

travelling microscope. The densities were calculated after 

correction for the expansion of the glass. The accuracy of the 

measurement of the densities were within 0.1%. 

6,2e. THEORETICAL CALCULATION OF ELECTRIC DIPOLE MOMENT. 
31 Guggenheim showed a simpler way of calculating electric 

dipole moment of a polar solute dissolved in a non-polar solvent at 

a temperature T. Provided the solution is suffficiently dilute for 

mutual interaction between solute molecules to be negligible, 

partial molar volume v1 of solv_ent and p~rtial molar volune v2 of 

solute are constants. According to Debye the basic formulae for the 

determination of electric dipole moment ~ from the measurements of£ 

and n are 

£ - 1 
£ + 2 

2 
n - 1 

2 
n + 2 

-v = 

2 
n - 1 

o + 4nN Y X V = ---::
2
--V

1
( 1- X) a e 

n + 2 
0 

The notations used in the above equations are, 

x = Mole fraction of solute. 

C = Concentration of solute expressed as moles/volume 

V = Mean molar volume. 

£ = Dielectric constant of solution. 

c. = Dielectric constant of pure solvent. 
0 

n = Refractive index of solution. 
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n = Refractive index of pure solvent. 
0 

r = Electronic contribution to polar1zabil1ty of solute 
e 

molecule 

r = Atomic contribution to polarizability of 
a 

molecule. 

K = Boltzmann's constant 

N = Avogadro's number. 

v
1 

and v
2 

are related with v as 

v = ( 1 - x )V
1 

+ x v
2 

and c = x/V 

From equation (1) and (2) we can write, 

[ 
£ - 1 -
£ + 2 ]v =[c o 1 

s + 2 
0 

2 n - 1 

-
0
-- ] v

1 
( 1 - x ) 

n 2+ 2 
0 

2 

solute 

4nN 
+--

3 ra+ ~T ]x (5.37) 

For no atomic contribution to the polarizabil1ty of either 
2 

solvent or solute molecules , we can write s
0 

= n
0 

and ra= 0 and 

equation (5.37) can be written as, 

2 2 / 

[ 
.s - 1 _ n - 1 ] = 4~N _I:!_ c 
s + 2 n 2+ 2 3KT 

(5.38) 

According to equation (5.38) if the experimental quantity, 

- 1 
+ 2 

2 
3(s-n ) 

2 
(.c+2) (n +2) 

(5. 39). 

were plotted against·c , then a straight line is obtained through 
2 

the origin having a slope equal to 4nN~ /9KT. 

But due-to the atomic polarizability of the solvent, c = 
0 

Guggenheim then defined a fictitious atomic polarizability 

expressed by the equation, 

1 01 

2 

.I 
I· 
I 



[ 

4nN y' a 
3 

Now from equations (5.37) and (5.40) we obta1n 

2 
2 

] [ 
s - 1 n - 1 

] c - 1 n - 1 0 0 
= £ + 2 n2+ 2 

c + 2 n2 + 2 0 
0 

2 

(5.40) 

+ 4nN r a-l'
1

a + ~KT ]c (5.41) 
3 

According to equation (5.41), if the experimental quantity 
2 2 

3(s-n )/(£+2)(n +2) is plotted against C , the curve has an 

initial height 

41rN and an initial slope 
3 

(5.42) 

Since it is only the initial slope that is of interest so it was 

further simplified by equating the denominator of equations 

and (5.42) we then have 

(c +2)(n + 2) r -r. ~ ~ c 2 [ 1 

2 
] 

o o a a 3KT . 

(5.39) 

(5.43) 

2 . 
Thus plotting the experimental quantity (e-n ) against C , a 

2 
curve is obtained havi~g an initial height (c -n ) and an 

0 0 
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initial slope, 

2 
(s +2)(n +2) 

0 0 

3 
4ITN 

3 

2 

[ r -/ - L] a a 3KT 

For polar solute molecules , at least those having ~ greater than 
2 

one debye, r is itself usually small compared with~ /3KT. It is e 
found that r is always less than one-tenth of r . a e Hence an 

accurate estimate of r is not needed. Under these circumstances, . . a 
I the simplest assumption can be made as r = r a a 

Thus equation (5.44) can be written as, 

2 
27KT [<c - n

2 
)-(c 

0
- n!)J 

or, ~ = -----------------------. 2 
4ITNC (s + 2)(n + 2) 

0 0 

4nN 
3 

-------------(5.45) 

This simplified equation was used for the detenmination of dipole 

moments of polar compounds which is given in detail in chapter 8. 
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