SUMMARY.

The research work being reported in this thesis has been divided into four parts.

PART-I

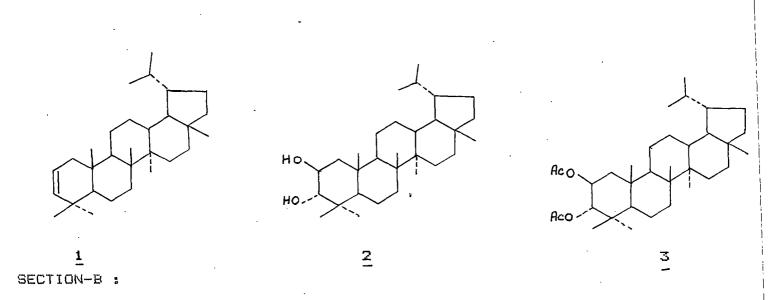
OXIDATION OF PENTACYCLIC TRITERPENDIDS HAVING DOUBLE BONDS AT C-2 AND C-3 POSITIONS WITH SELENIUM DIOXIDE IN TERTIARY BUTANOL CONTAINING HYDROGEN PEROXIDE.

Part-I has been divided into three chapters

CHAPTER-I

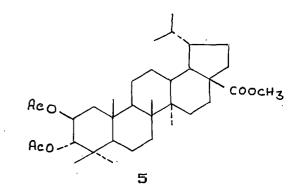
This chapter comprises a short review of oxidations with selenium dioxide in presence of hydrogen peroxide.

CHAPTER-II


This chapter contains the discussion part on oxidation of Lup-2(3)-ene $(\underline{1})$, 2,3 dehydro methyl dihydro betulinate $(\underline{4})$, Friedel-3(4)-ene $(\underline{6})$, and 3,4 dehydro friedel 27 \rightarrow 15-olide $(\underline{7})$, in tertiary butanol containing hydrogen peroxide.

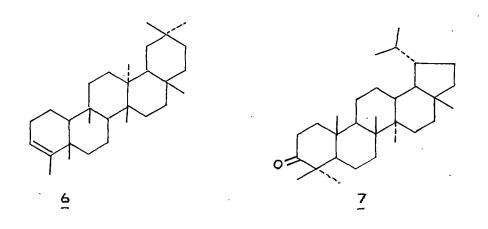
SECTION -A :

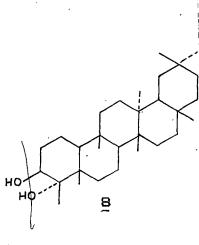
Lup-2(3)-ene 1, on refluxing with selenium dioxide in tertiary butanol containing hydrogen peroxide afforded a single product characterised as lupan 2β , 3α -diol 2, M.P. 245- 6° C, which was isolated after acetylation as lupan 2β , 3α -diyl acetate 3, M.P. 221- 2° C; molecular formula $C_{34}H_{56}O_4$; IR : 1750, 1270 and 1250 cm⁻¹ (-CO-CH₃); Mass : m/e 528 (M⁺, 86%);


The structure 3, is established from spectral studies (1 H NMR , Mass and IR). The mode of reaction mechanism and formation of 2 and 3 has also been discussed.

Ι

In this section the oxidation product of 2,3 dehydro methyl dihydro betulinate (4), is discussed. 4 on oxidation with selenium dioxide in tertiary butanol containing hydrogen peroxide furnished a single product isolated after acetylation as 2β ,3 α -diacetoxy methyl dihydro betulinate 5, molecular formula $C_{35}H_{56}O_6$, M.P. 209-10 $^{\circ}C$; IR : 1730, 1710 and 1230 cm⁻¹ (-CO-CH₃ and -COOCH₃); Mass : m/e 572 (M⁺, 4%); The structure 5 is based on spectral analysis (¹H NMR, IR and Mass)

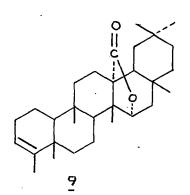


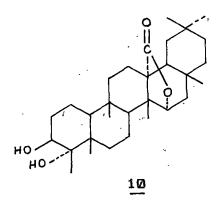


SECTION-C :

Friedel-3(4)-ene (<u>6</u>) on prolong heating with selenium dioxide in tertiary butanol containing hydrogen peroxide furnished two products isolated and characterised as lupanone $Z_{30}C_{30}H_{50}D_{50}D_{50}$, M.P.207-8^OC; IR : 1715 cm⁻¹(-CD); Mass :m/e 426 (M⁺,14%) and friedelan-3 β ,4 α -diol <u>8</u>, $C_{30}H_{52}D_{2}$, M.P. 235-6^OC, IR : 3340 and 3380 cm⁻¹ (-OH), Mass : m/e 444 (M⁺,72%), from ¹H NMR, Mass and IR spectral studies.

11





Their formation and probable mechanism are also suggested in this section.

SECTION-D :

3(4)-dehydro friedelan $27 \rightarrow 15$ -olide (**9**),on similar treatment under identical condition afforded a single product isolated and characterised as friedelan 3β , 4α -dihydroxy $27 \rightarrow 15$ -olide **10**, $C_{30}H_{48}O_4$, M.P. $270-1^{\circ}C$; IR : 3500, 3440 (-OH) and 1760 cm⁻¹ (γ -lactone), Mass : 472 (M⁺, 22%).

The structure $\underline{10}$ is based on Mass, IR, 1 H NMR, and 13 C NMR spectral analysis.

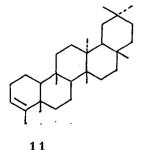
CHAPTER-III

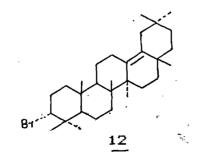
This chapter describes the experimental details of the work discussed in CHAPTER-II

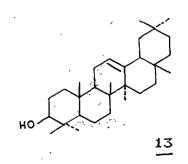
ACTION OF N-BROMOSUCCINIMIDE ON PENTACYCLIC TRITERPENDIDS OF LUPANE AND FRIEDELANE SKELETON IN DIMETHYL SULFOXIDE.

Part-II has been divided into three chapters.

CHAPTER-I.

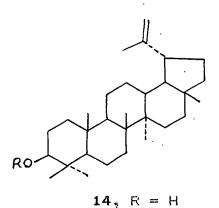

This chapter constitutes a brief review of previous related works done with N-bromosuccinimide.

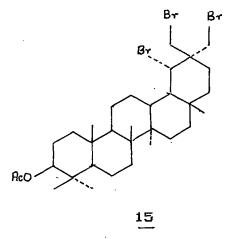

CHAPTER-II


Studies on the action of N-bromosuccinimide on friedel-3(4)-ene (11), 30-bromolupenyl acetate (14), lupan 20(27)-ene,3 β ,28-diol (16), lupan 20(27)-ene,3 β ,28-diyl acetate(18) and lupan 20(27)-ene,3 β ,30-diyl acetate (21) taken in dimethyl sulfoxide.

SECTION-A :

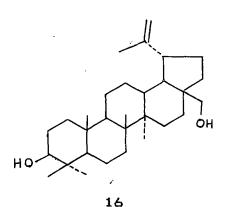
Friedel-3(4)-ene (11) was taken in dimethyl sulfoxide and kept in dark for 24 hours with N-bromosuccinimide. After the reaction two products were isolated and characterised as 3α -bromo olean-13(18)-ene 12, molecular formula $C_{30}H_{49}Br$, M.P. $200-1^{\circ}C$; responded to Beilstein test for halogen and gave yellow colouration with tetranitromethane (TNM), Mass : m/e 490 (M₁⁺, Br⁷⁹,) and 488 (M₂⁺, Br⁷⁷) and 30-hydroxy olean-12(13)-ene 13, $C_{30}H_{50}O$, M.P. 229-30°C, TNM test positive but Beilstein test for halogen negetive, IR : 3380 cm⁻¹ (-OH), Mass : m/e 411 (M⁺, 11%).

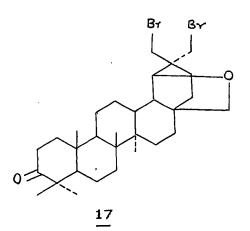



IV

SECTION-B :

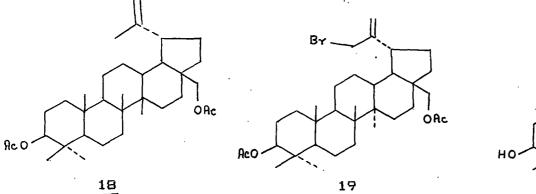
Lupenyl acetate (14a), (prepared from lupeol,14 see Experimental) was dissolved in acetic acid cooled at $0^{\circ}(-5)^{\circ}C$ and bromine was added. After the reaction a single product was isolated which was identified as 3β -acetyl 190,29,30 tribromo oleanane 15, molecular formula $C_{32}H_{51}O_2Br_3$, M.P. 225-6°C, IR :1690 and 1255 cm⁻¹ (-COCH₃), Beilstein test for halogen was positive but did not respond to TNM test, Mass : m/e 710 (M_1^+ , Br⁷⁹) and 708 (M_2^+ , Br⁷⁷).

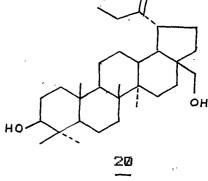



14a, R = Ac

SECTION-C :

Lupan 20(29)-en,3 β ,28-diol (<u>16</u>),on similar treatment under identical condition furnished a product isolated and identified as 3-keto oleanan 28-19-oxo,29,30 dibromide <u>17</u>, $C_{30}H_{46}O_2Br_2$, M.F. 232-3°C IR : 1720 cm⁻¹ (-C=O) ; Beilstein test for halogen was positive but TNM test negetive ; Mass : m/e 599 (M⁺₁,Br⁷⁹, 2%) and 597 (M⁺₂,Br⁷⁷,6%);





ν

SECTION-D :

Lupan 20(29)-en,3 β ,28-diyl acetate (18), on similar treatment under identical condition afforded two compounds 19 and 20. They were identified as 30-bromo lupan 20(29)-en-3 β ,28-diyl acetate 19, $C_{34}H_{53}O_4Br$, M.P. 169-70°C ; IR : 1730 and 1240 cm⁻¹(-COCH₃),Mass : m/e 606 (M₁⁺, Br⁷⁹,0.8%) and 604 (M₂⁺, Br⁷⁷,1.6%) and 30-bromo lupan 20(29)-en-3 β ,28-diol 20, $C_{30}H_{50}O_2Br$, M.P. 202-3°C ; Beilstein test was positive and produced yellow colouration with TNM, IR : 3390 cm⁻¹ (b,-OH); Mass : m/e 442(M₁⁺) or 440 (M₂⁺) which was less than actual molecular ion mass probably due to loss of one HBr⁷⁹ or HBr⁷⁷ unit.



SECTION-E :

lupan 20(29)-en,3 β ,30-diyl acetate (21), on similar treatment with N-bromosuccinimide in dimethyl sulfoxide furnished a compound identified as lupan 20(29)-en,30-al,3 β -yl acetate 22, $C_{32}H_{50}O_3$, M.P. 224-5°C, Beilstein test for halogen was negetive but produced yellow colouration with TNM indicating presence of double bond. IR :1730 cm⁻¹ (-CHO) and 1700, 1255 cm⁻¹ (-COCH₃), Mass : m/e 482 (M⁺,24%).

VE,

All the above structures are established from Mass, IR, 1 H NMR and 13 C NMR spectral analysis.

CHAPTER-III

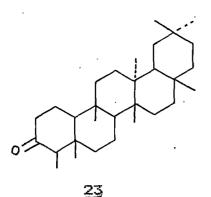
This chapter constitutes the experimental details of research work described in CHAPTER-II.

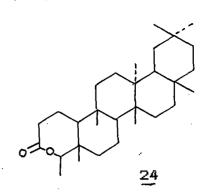
PART-III

OXIDATION OF PENTACYCLIC TRITERPENOID KETONE, LACTONE AND ESTER WITH META CHLOROPERBENZOIC ACID IN CHLOROFORM.

Part-III has been divided into three chapters.

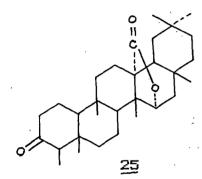
CHAPTER-I

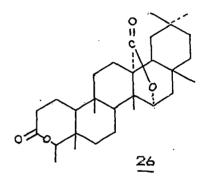

It contains a brief review of oxidation of triterpenoids with metachloroperbenzoic acid in different solvents.


CHAPTER-II

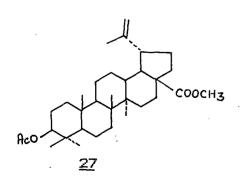
This chapter contains the discussion on oxidation of friedelin (23), 3-oxo friedelan $27 \rightarrow 15$ -olide (25) and acetyl methyl betulinate (27) with meta-chloroperbenzoic acid.

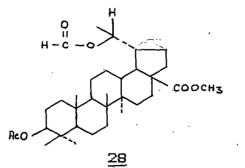
SECTION-A :

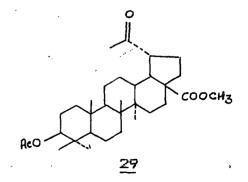

Friedelin (23), was refluxed with meta-chloroperbenzoic acid in chloroform for 6 hours and after the reaction the single product obtained was identified as 3,4 seco friedelan $3 \rightarrow 4$ -olide 24, $C_{30}H_{50}O_2$, M.P. 271-2°C, IR : 1720 cm⁻¹ (*e*-lactone) ; Mass : m/e 442 (M⁺, 30%). by comparing with authentic sample (M.M.P. and Co-IR)



SECTION-B :


 $3-\infty \circ$ friedelan $3 \rightarrow 4-$ olide (25), (odolactone) on similar treatment afforded a single product, which was identified as friedelan $3 \rightarrow 4,27 \rightarrow 15-$ diolide 26, $C_{30}H_{46}O_4$, M.P.> $300^{\circ}C$, IR : 1760 and 1730 cm⁻¹ (ε and γ -lactone); Mass : 470 (M⁺).





SECTION-C :

Acetyl methyl betulinate (<u>27</u>) on similar treatment under identical condition furnished two products characterised as $29-nor-3\beta-0-acetyl-lupan-20-0-formyl 28 methyl carboxylate <u>28</u>, <math>C_{33}H_{54}O_6$, M.P. $151-2^{\circ}C_7$, did not respond to TNM test, IR : 1740, 1250 cm⁻¹ (-COCH₃); Mass : m/e 544 (M⁺) and 29-nor acetyl methyl 20-oxo-betulinate <u>29</u>, $C_{32}H_{50}O_5$, M.P. 211-2°C; IR : 1730, 1260 cm⁻¹ (-COCH₃), did not produce yellow colouration with TNM. Mass : m/e 514 (M⁺).

VIII

All the 24, 26, 28 and 29 structures are based on 1 H NMR, Mass and IR spectral studies.

CHAPTER-III

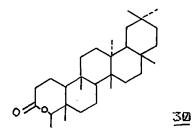
Experimental details of work described in CHAPTER-II.

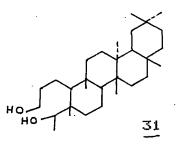
PART-IV

REDUCTIVE CLEAVAGE OF SEVEN MEMBERED LACTONE RING WITH LITHIUM IN ETHYLENEDIAMINE.

This part is also divided in three chapters

CHAPTER-I

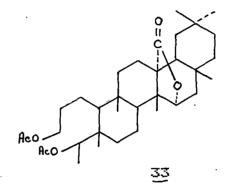

It constitutes a short review of lithium ethylenediamine as a reducing agent.


CHAPTER-II

This chapter contains studies on reductive cleavage of 3,4 seco friedelan $3 \rightarrow 4$ -olide (30) and friedelan $3 \rightarrow 4$, $27 \rightarrow 15$ -diolide (32) with lithium in ethylenediamine.

SECTION A :

3,4 seco friedelan $3 \rightarrow 4$ -olide (30) was refluxed with lithium metal dissolved in dry ethylenediamine for 2 hours over heating mentle. After reaction the product obtained was identified as 3,4 seco friedelan 3,4 diol 31, $C_{30}H_{50}O_2$, M.P. 173-4 $^{\circ}C$, IR : 3420 cm⁻¹ (broad) (-OH); Mass : m/e 428 (M-H₂O)⁺.



IX

Friedelan $3 \rightarrow 4,27 \rightarrow 15$ diolide (32) was reduced with lithium metal dissolved in dry ethylenediamine at room temperature and the product obtained was isolated after acetylation. It was identified as friedelan 3,4 diacetoxy $27 \rightarrow 15$ -olide 33, $C_{34}H_{54}O_6$, M.P.241-2^OC , IR : 1750 cm⁻¹ (-COCH₃); Mass : m/e 558 (M⁺, 7%).

Both the structures 31 and 33 are established from ¹H NMR, Mass and IR spectral analysis.

CHAPTER-III

The experimental details of the above two lactone cleavage are described in this chapter.

 \mathbf{X}