
* CHAPTER V 

TWO GLUil't'O BOUND STATES 

* A part of the contents of this chapter has already been 

published in Ref.(97}. 



V. 1. I nlroduc ti on : 

Super-symmetric QCD gives a simple method of studying the 

two gluino gg l bound states. The production and decay rates of 

~~ states have already been studied by a number of authors. 58 Th~ 

gluinos are e>:pected to have a lc::mg li-fe and can, therefore, -form 

bound statei which may be detected. The study of gg states is 

expected to provide a simple method of detecting a sparticle. 

However, there are considerable uncertainties in the theoretical 

predictions for the gg states, ·!oo~hich stem from the uncertainties 

in the gluino mass as v1ell as in the two 

potential, v~~~~ • The speculations about the gluino mass have been 
gg 

centred around 5 GeV ( light gluino > or 60 GeV (heavy gluino ), 

with the experimental bias shifting towards a heavier gluino. 101 

For these gluino masses, non-relativistic bound state model is 

adequate to predict wave-functions and binding energies of gg 

states. The potential for the gg system is only partially known. A 

simple minded application of super-symmetric QCD to the gluino 

sector suggests that the shor-t-distance part of the gg potential 

is rei ated to the short-distance par·t of the quark-antiquark 

potential by the colour- factor 9/4. There is, no such 

relation for the long-range part of the potentials. Some 

58 59 
authors ' have assumed the same proportionality constant 9/4 

bet\o'leen the two potentials"~ even for the 

long-range part, just because it makes the total 
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non-perturbative 

v~~·- potential 
gg 



propo~tional to the QQ potential, Vg5· Since the~e is a qua~k in 

each of the mass ranges presently considered for the gluino, it is 

indeed convenient to study the gg states by compa~ing with the 

qua~l:onium.states 7 which are rathe~ well-studied. In the hadron 

colliders, gg states may be p~oduced via the gg ~ gg and QQ~ gg 

subprocesses. Goldman and Haber 102 discussed the method of 

detection of the gluinonium states· v1hich may be produced in hadron 

collider and in quarkonium decay. A convenient method of detecting 

the~~ states will be to look fo~ a radiative decay, (tt> ... y + 

""r~ 1 
gg( Sr>, if permitted kinematically. To estimate this and 

~) 
other 

decay widths and production cr·osssection, one needs the particle 

density at the origin, Jvr::..-..(0} t 2 of the gg states. The uncertainty 
gg 

in the contribution of the long-range potential ma~~es any 

theoretical prediction for 
..., 

l"'l""~r~(O) 1.._ unreliable. We shall show 
gg . 

by 

considering a particular potential model that there is a 

significant dependence of the theoretical results on the 

long-range potential. Given this situation, it seems reasonable to 

look for model independent results or bounds. The observation that 

heavy quarkonia can be described by a Schr~dinger equation with a 

non-relativistic QQ potential has led to considerable activities 

in the study of general properties of the Schrodinger equation 

with confining potentials. The scaling properties of the 

6 
Schr~dinger equation for power-law potentials have been found to 

be very useful in deriving results of this nature. Rigorous 

results on level ordering for more general potentials have been 

obtained by· Grosse and Martin.
98 

The value of the S-states 
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wave-function at the origin ~<O> has a ~pecial significance in 

quarl~onium spectroscopy as this quantity occurs in the 

e>:pressions for various decay widths of the state. Nartin has 

obtained rigorous results for the relative magnitudes of the 

wave-function at the origin for 19 and 25 states for the usual 

. t t" 1 M t" 103 
quarkon~um po en 1a s. ar 1n has, in particular, shown that 

for convex <concave> QQ potentials, > 

< lvs
15

<0) I) which was found useful in comparing the 

leptonic decay widths of the quarkonia. Some of the techniques 

used by Nartin are now familiar· and we shall use them to derive 

some inequalities relevant for t~e study of gg states. The purpose 

of this chapter is to point out that the results can be 

generalised further to obtain some .useful information about the 

two gluino bound states. 

The presentation in the remaining par·t of this chapter is as 

follows. In section V.7, the two gluino bound state ~otential is 

briefly reviewed. In section V.3, we consider a class of 

potentials to study the effect of the long-range part of the 

potential on the spectroscopy of the two gluino system, using some 

general properties of the Schrodinger equation.· The results may 

provide bounds on decay width~. The 1 ast section gives our 

cone I usi ons. 

V.2. Two gluino hound st.at.e s 

Gluinos are a self-conjugate majorana spinor, transformi~g 
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as an octet of col our SU (3} and a1~e supersymmetri c partners of 

gluons. It would be e~actly massless at the tree level if 

super-symmetry were an unbroken symmetry. The gluino-gluino bound 

states are known to follow the general decomposition rule 

* 8 x 8 = 1 +. 8S + SA + 10 + 10 + 27 . 

We 7 however- 7 need consider only the singlet sector. Starting 

from an octet QCD action, Zuk et at.
58· followed the method of 

. 104 
Br1nk et at. to extend the original QCD lagrangian to the 

super-symmetric sector. The action is given by 

s == 
:i r-a 
- g ·.v.D 
2 

\f~h:ich describes the interaction bet~t~een the SLH3} gauge vector 

boson ~~11d its supet·par·tner gluino fields. 

derivative,. D = 
/-J 

~~ . Ta Aa v + 1g • 
J-1 /-J 

D is a covariant 
J-1 

the 

Yang-Mi 11 s ·fields constructed from the adjoint representation of 

gluon field. Ta are colour matrices. The gluino (major-ana) field 

.-..a NaT 
ga satisfies the condition g = cg which is necessary to ~alve 

the number of fermionic degrees of freedom to match the number of 

bosonic degrees of freldom. The majorana_constraint is SU(3) gauge 

invariant. The interaction lagrangian term of gluino and gluon is 

obtai ned as. 
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is a gluino current~ written as J~(M) 
<;I 

= 
1 
2 

and g is the strong QCD coupling constant. The matrix elements of 

the gluino current is 

g )- == 

where k and s denote the momentum and spin of the free gluino 

states. We now consider gg. sc:attE·ri ng at the one .. ~gl uon-e>:change 

level. The relevant diagram gives the matrix element 

2 = g 

Comparing this matrix element with that for e e scattering with 

one-photon-e>:change ,, v~e see that 

. .., 
C~CG)g~ v - - I 2 

L e e e =1 

Considering a similar graph for QQ ~ OQ, 

relation 

= ::: 9/4 

The above relation is valid for large· 
'"J 

Q.L-

v~e note the sealing 

v -­QQ 

' 
in the 

(5. 1} 

region of 

'T 

perturbative QCD. But at small Q~f we have no knowledge of QCD 

pqtential and the scaling relation need not hold for the long 

distance part of the potential. In the ne>:t !:-ect ion, we show the 

dependence of the theoretical results on the undetermined long-
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range part of the potential •. 

V. 3. Long-range potential and results : 

To study the effec~ of the long-range part of the 

potential, we.conside~ a simple parametrization by assuming that 

v - = QQ 

V··-··- == gg 

' 
(5.2) 

(5.3) 

ar·e real parameters. is the short-range 

potential, which is attractive and dominant near r = 0. The long-

range part, VL (r) becomes positive and divergent as r ~ ro. We 

first consider a particular non-relativistic potential VQ5 = v
5 

+ 

·- f ( r ) V ~~~ {r- ) 

( 1 + 
and f<r> = 

(1 - f (r->) 

-a/s 
e ) 

\.) (I'. } 
M 

(5.4) 

where v5 is estimated from the two-loop QCD calculations, given by 

the Eq. <2.3). We choose AMS = 0.200 Ge'-1 and Nf = 4. 

VM is a Martin-type power-law potential given by 

8 08
,- 0. 1 VM<r> = -7.392 + • 0r 

8 ""'! ·-· 

In (5.4}, 

(5.5) 



with r in fm. The choice is motivated so that 

VQCD<r~al = VM<r=a) (5.6) 

We have chosen' the parameters in the pqtentials v5 and VL so that 

the condition (5.6) is satisfied. Because of this condition, the 

calculated spin-averaged results are not very sensitive to the 

' 66 
choice of the values of a and s. We have chosen a == 0.0723 fm 

and s = 0.01 fm in the following calculations. The singularity of 

~;<2> ( } at 
-1 

should be ignored in calculating vs<r>. One QeD r r· -- AMS 

< -1 
may truncate v5 <r> for r )· r o' where one chooses r AMS so 

0 

that <r -a} /s >> 1. The results are then insensitive to the value 
0 

of r chosen. 
0 

\IJe now assume = 9/4 

binding energies and the values of 

+ and calculate 

"'} 

I 'lj.Jrw~~ ((l) 1-<- of the gg system 
gg 

the 

for 

a range of ~values < 0.5 5 ~ 5 3 )and with different gluino mass. 

Our results are shown in Figs.5.1-5.4. We do not e>:pect a large 

deviation for these results for any other acceptable potential 

2 model. We note, in particular, that f~(O) I for both light and 

heavy gluinos show a significant dependence on ~- It is obvious 

that the long-range part needs more attention. 

The decay rates of gluinonium are given by e):pressions similar 

to those of the corresponding quarkonia, apart from the group 

factors 

1 
2 

8 2 ...,.. I c '1 (G) I c .... ( R) l = 27 I 4 
_, "'- .L.. 

Thus the decay width of two gluino bound state is given by 
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1'-Jo~... -+ 
l ( gg { 0 ) ~ gg) = 27 8 2 2 2 

- :::;:- a lll'r~ ..... < (l} I .I M • 4 . .:_, s gg 
(5.7) 

The standard formula for gg production cross-section in hadron 

collisions is 

f'(gg -i' gg) 1 

0 -- C2.J _._ 1) 

....., 

---- ., 
>: 

f ():) 
g 

f {·Tl>:) 
I] 

= 

\5.8) 

where T = ML/S 7 M 7 the gluinonium mass and 3 ( 1->:} ..s /;: is 

assums-d to gi \IE' the di stl~i buti on function fo1r gl uons. We have 

consider-ed only the cr·oss-secti on foF- pseudo!:::.cal ar production. We 

have shown in Fig.5.5, the cross-section versus pr~ for two 
g 

different beam energies <-J/S) considering tvm different values of 

~- An increase in ~ decreases the cross-section for a given gluino 

mass. Our calculated results agree with those of l<uhn and Ono
58 

but differ slightly from the results of Kane and Leveille105 at a 

higher beam energy. 

A study of the general features of the potentials (5.2) and 

(5.3) provides some information ~Jhich may be obtained in the form 

of inequalities. The proof of the. inequality ma,{es use of the 

techniques developed by Martin. that both the 

short-range and the long-range parts of the potential are 

monotonically increasing. The assumption is true for almost all 

the potential models considered for the QQ systems. Thus v
8 

and VL 

in (5.2} and (5.3) satisfy 

dVc 
.~ 

err > 0 ' 
> (t (5.9) 

89 



-30 
10-

N 

'E 
(.) 

c 
0 

-31 
10 

·;::. -32 
~10 
!/) 

!/) 
I/) 
0 .... 
L) 

-33 
10 

-34 
10 

Fig.5.5. 

Vs = 540 GeV 

I 
I 
I 

I 
I 
I 
I 
I 
I 

-I 
I 
I 
I 
I 
I 
I 
I 
\ 
I 
I 

10 

The values of 

20 30 40 50 
,ug (GeV) 

cross-section Co) for pseudoscalar 

production \.'S. J-1~~. The solid line corresponds to ()':=2.25 
g 

and the·broken line to (Y=3 • 

90 



2 d v~~~~ 
gg 

and < 0 concave ·downwards } (5. 10} 

but are otherwise arbitrary. We can derive the following results: 

(a) If J-1~/ J-Ig 1/a and 

we have for the 1 S stat·es 

Min~ a,~ } C JJ-Ip
0

> g . 

f?J > J-1 I p~~ 
Q g 

where Min( <-'t.-,{~ ) is the smaller of the two parameters. 

(b} If 1/ct and (~ ·- < I I I I·~~ 
',....Q ,....g ' 

2 
llf'gg <o> I •, 

' 

(5. 11) 

<5.12) 

Let y.,.....~~ = v(r}/r 
gg 

'IJ' -·<r) = u (r) /r QQ be the iS radial 

r~-

SOlutiOnS for the gg and QQ systems respectively. Both u abd v are 

chosen positive. To prove the inequality (5. u}' ~;o~e . follow the 

steps outlined bel O\'l: 

(i} For r ~ oo, we can make use of the large r behavior of the 

radial equations to show that 

<i i > It can be sho~m that 2 2 v - u has a unique zero. Consider t~e 

WronsJd an 

I (r} = (v'u u'v)(r}· 

r 
1 

f [ (a J-Jo>vs (~ J-lg>VL. = ---;::;- uv p~~ - + pr~ -
h.L. g g 

(I 

-- ( E' J-lN - E J-1 } ] dr 
g Q 

(5.13} 

Since I (oo} = 0, we may also wri'te th·e following representation 
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I <r) = 

(5.14> 

From (5.13), it follows that for r o, the integrand is - (~ p~.. -
9 

p
0

>v
9 

and negative and hence l(r) < 0. For r ~ oo, one finds that 

the integrand is (5.14>, it 

follows that l(r} is also negative at large r. Since both vs and 

v 
L 

are monotonic ' u and v are nonzero and positive. It has, 

therefore, only one zero, say at r = r . For r < r o' we use 
0 

the 

relation (5.13) and for r > we use the relation (5.14> to show 

that l(r) < 0 for all r. We can now show that v- u vanishes only 

once, say at r = r
1

• The relation (5.13) gives 

(5. 15} 

Thus ( v'- u'} < 0, since u > 0. 
r=r

1 
The uniqueness of the 

zero of v - u and hence of 

(iii) Si nee 2 2 
v - u < 0 for 

unique zero, we conclude that 

2 2 v - u ) follows from above. 

r -> oo and since 2 
v 

2 
v 

2 
u > 0, for r o. 

2 
u has a 

(i v) In the 1 a=-t step, we make use of the well-known relations 

like 

'I 
u' .... ((l} = dV dr 

dr 

92 

(5.16) 



·we consider, wih ~ ~ a , 

2 
lv""~~~ < o > I gg 

J.r~ 
g 

~ llf' --{0) 12 
J..lg QQ 

= 
., 

v, .... ((I) - ~~ 

v~ 
g 

== ~~ 
h.L. f dr <v 

J dr 

> 0 ' 
since 

2 d v~~~ 
gg 

< 0 

For f"Y > a , !.ole can show that 

p~~ 

g 

J.l' Q 

.., 

.... : 

2 
Ll' ((I) 

d\.lr~r~ 

""') gg 
u..._}--

dr 

2 u ) 

p·-~ 

dV8 g 
2 

f dr + --;:;- u ~C1 ~)-
·h.L. dr 

{5~17} 

1s positive definite. This completes the proof of the inequality 

( 5. 11) . For 

steps to derive an 

~ < p
0

1p- , we may . g 

upper bound for 

foll o~~ · the same 

viz. the 

inequality (5.12). Our results are sho~m e>:plicitly in Fig.5.6 for 

a = 9/4. We cannot mal'e any prediction ·for- the str-iped r-egions. We· 

note the following: 

~i} For quarl~onium states, an useful inequalit.y for two QQ states 
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with masses ~Q and ~Q' 

, 
)// J... -· ( 0} 
""Q' Q' 

J.lQ, 

l-lg 

100 
was considered by Rosner et al. 

> J.Jo (5.18} 

lhe inequality has been shown to be valid for power-law'potentials 

and also for a potential satisfying conditions like (5.9) and 

(5.10) in the WKB approxim~tion. Our results, with a = p = 1 

provide a rigorous proof of this inequality for a large class of 

potentials. 

( i i ) For p- ~ 
g 

-4 
~ J-lt we have the equality ..,,..~~~ ~ (I ) = 'I' - ( 0} 

gg tt for P = 

9 I 4 • F Ol'- a sm a l l er {:Y, ¥' t t ('..) ) > }~'gg ( 0 ) 1 ~--ihi 1 e for a 1 arger {~, 

the situation is reversed. The variation of v~i th f) is 

expected to be smooth, as has also been seen in our model 

calculations. 

(iii) The results may be useful for estimating bounds on decay 

widths. As an example, consider the two gluon decay width (5. 7). 

Suppose p 9/4 and J-1 = 45 GeV. 1 f p~-
t g 

=: 20 GeV, 

N~~ -+ 
rcgg<o > ~ gg> ~ 190 MeV, (5.19) . 

l-~her-e \o-le have used the result 

seen from calculations with the potential (5.4). This may be 

compared with the two gluon width of the 15 toponium stat~ for J..lt 

45 GeV which is about 5 MeV. The latter estimate is in general 

59 agreement with the results of Nanopoulos 9t al., who consider a 

particular QQ potential. Combining the inequalities"· of Fig.5.6 

with the results (5.19>, we can now derive some crude bounds on 
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the decay widths. The kQowledge of ~~ ~ or some strict constraints 

on f-J~- } 'lo'~i 11 help 
g 

in making the predictions sharper. If f-J-If-J > g t 

1, the inequalities become valid for larger ranges of~-

~i··.;) For the cla=.s of potentials considered, Martin has proved 

that { - } 
Y'2s ' 0 > ~18 (0}. Thus we can obtain a weak inequality if 

v~e replace for state in the 

r e J at i on ( 5 . 11 ) . 

V.4-. Conclusions: 

·we have shown that the long-range part of the gg potential may 

affect significantly the theoretical prediction fot- jtp:-~- ~(l} 12-
gg 

\.>le have also studi eq the dependence of the binding energy 

difference and the value of the wave-function at the origin on the 

gluino mas=- for variou!:. values of~ (0.5 S ~ S 3}. Although, the 

long-range part of the gg potential is not known, it is 

interesting to note· that by using Martin's technique, one can 

derive useful inequalities relevant for the study of gg states. 

The inequality holds for a range of values ·of-~ and f-J~If-JQ as 

in the absence of any definite shown in Fig.5.6. In fact, 

information about either J.r- or [~, the theoretical predictions will 
g 

perhaps be no better than the predictions of the inequalities 

shown in Fig.5.6. 
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