* CHAFTER V

TWO GLUINO BOUND STATES

* A part of the contents of this chapter has xlready been

published in Ref. {(?7).



Y.1. Introduction :

Supereymmetric 2ED giwves & =imple method of studying the
two gluino 55 } bound states. The production ané decay rates of
ES states have already been studied by & number of authors.se The
gluinps are expected to bave & long life and can, therefore, form
bound states which may be detected. The study of ES states is
erxpected to provide a simple method of detecting a2 sparticle.
However, there are considerable uncertaintie=s in  the theoretical

mregdictions for the 55 states, which stem from the uncertainties

in the gluinc mass pg as well =14 in the two gluino

potential Qgg . The speculatianslabout the gluiﬁn‘mass have been
centred around S BeY ( light gluino ) or 60 GeVY { heavy gluinc ),
with the experimental bias shifting towards a heavier gluinn.lﬂl
For these gluino m35595,4n5n~relativi5tic bound =tate model is

LY

adequate to predict wave-functions and binding energies of gg

ora

states. The potential for the gg system is only partially known. A
simple minded application of supersymmetric 8CD to the gluino
sector suggests that the short-distance part of the Ea potential
is related +to the short-distance part of the gquark—antiquark
’pctential by the colow factor 9/4. There is, however, no such
relation for the long-range part of the potentials., Some

= =
58,59
authors™ ?

have assumed the same proportionality constant 9/4
between the two potentials, even for the non—perturbative

long-range part, 3just because it makes the totsl Vaa potential
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proportional to the gQ potential, Uaé. Since there is a guark in

each of the mass ranges presently considered for the gluine, it is
indeed convenient teo study the 55 states by comparing with the
guarhonium states, which are rather well-studied. In the hadron

~.

calliders, aa states may be produced via the gg » gg and 26 Ea
subprocesses.,  Goldman and Haberlaz discussed the method of
gdetection of the gldinonium states'which may be produced in hadion
collider and in guarkonium decay. A convenient method of detecting

the aa states will be to look for a radiative decay, {(tt) » » +
EE{ISO), i1f permitted kinematically. To estimate this and other
deca? widths and production crosssection, one needs the particle
density at the origin, )wga(@)iz of the 65 states. The uncertainty
in the contribution of the long-range pctential makes any
theéretica} pred;ction for iwagtﬂ)lz unreliablg. be shall show by
considering =& particular potential model that there is a
cignificant dependence of the theureticél results on the
long-range potentizl. Given this situation, it seems reasonable to
l1pock for model independent results or bounds. The observation that
heavy guarkonia can be descrited by a Schrﬁdinger‘equation with a
non-relativistic Q& potential has led ta considerable activities
in the study of general properties of the Gohrddinger eqguation
with confinping potentials. The scaling properties of the
Schrodinger eguation for power—law potentials have been foundé to
be wery usefnl  in deriving results of this natwre. Rigorous
results op level ordering for more general potentials have béen

obtained by Grosse and Martin.ga The wvalue of the S-states
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wave—function at the origin w(Q) bas & épecial‘ significance in
guarkoniwn sSpectroscopy as - thi=s guantity cocurs in the
expressions for various decay widths of the state. Martin has
obtained rigorous results for the relative magnitudes of the

wave-function at the origin for 15 and 28 states for the usuaal

quarkonium potentizals. Martinlg* has, in particular, shpown that
for convex {(concave) @ potentials, 1wq8(0)} > !w15(0)}

(;w2810>; < 1w}5(0)}) which was found useful in comparing the
leptonic decay widths of the guarkonia. Some of the techni gues
used by Martin are now familiar and we shall uvuse them to derive
some inequalities relevant for the study of 55 states. The purpose
of thi=s rchapter is to point out that the results can be
generalised further to obtain some useful information about the
"two gluino bound stateé.'

The presentation in the remaining part of this chapter is as
foliows. In section V.2, the two gluino bound state thential ’is
briefly reviewed. In section WV.3IX; we consider a class of
potentials to 5tﬁdy the effect agf the long-range part of the
potential on the spectroscopy of the two gluino system, gsing snme'
general propert;es of the Schrédinger equatios.' The results may
provide bounds on decay widths. The last section gives our
conclusions.

¥.2. Two gluino bound state H

Gluinos are a self-conjugate majorana spinor, transforming

a8aQ



as an octet of colour SU(R) and are supersymmeltiric partners of
gluons. It would be exactly massless at the tree level if
supersymmetry were ann unbrolken symmetry. The gluino—gluinc bound

states are known to follow the general decomposition rule

8 x8=1+8,+8, +10+ 10%+ 27 .

be, however, need consider only the singlet sector. Starting

from an cctet QCD action, Zuk et al.dB'fol}Dwed the method of

1
Brink et al.lt4 to extend the wmiginal @CD lagrangtan to the

supersymmetric sector. The asction is giwvern by

4 1 _a _pv i ~a s
S = - — Fd -

f g n f 7 vaFa *+ 59 y.Dg, 3
which de=scribes the interaction between the BU{3! gauge vector
bosmy and i1ts  superpartner gluinog fields. DH i= & covariant

. . ) . a ,.a a

derivative, . D = @8 + ig T .A and F g = 1,2,~———-8) are the

H H H e

Yang-Mills fields cornstructed from the adjoint representation of
gluon field. T® are colour matrices. The gluince (mzxijorana) field
- .. . ~a ~aT . . . )

S catisfie= the rcondition g = cg which = necessary to ‘halve
the number of fermionic deg}ees of freedom toc mstch the number of
bpsonic degrees of freéﬁom. The majorans constraint is SU{3) gauge

ipvariant. The interaction laegrangian term of gluaino and gluon is

obtained ac

2

- H
g Ja Qp

int
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TZ iz = gluinoe current, written as Jeix) =
=

S(x)ypT_E(x)
(=]

k3] v

and g is the stromg BCD coupling coenstant. The matrix elements of
the gluine current is

. 2 ~ &

<ogfil: JT40) 2 Y o= TR (k= )y ulks)
gl » | g p

where k and é denote the momentum and =spin of the free gluino

L

staterse. We now consider gg. scattering‘at the one-gluon-exchange

level. The relevant diagram gives the matrix element

2 i &, 241 - |7’ =
= el Pl £l f Y - 3, ¢ t -
My g [ 5 Tr L (T ] o uikLsl)y utkzsg)utﬁlsl)yputklsl) .
a q
Comparing thiz matrix element with that for e e =cattering with

one-photon—erxchange, we see that

]
fowrs = o O RV )
e C,(8Yg" ¥_—-_~ |

Considering a similar graph for 28 - g8, we note the scaling

relation

i

Vesrs = LR — 1 - =

Jgg CE(G)/CE(R) JQQ 2?/4 JQQ . {5.1)
, e

The above relation is valid for large: &°, in the region of

. .
perturbative BCD. But at small 87, we have no knowiedge of 8CD
potential and the scxling relation need not hold for the long
distance part of the potential. In the next section, we show the

dependence of the theoretical results on the undetermined long-—
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range part of the potential..

¥.3. Long-range potential and results :

To study the effect of the long—range part of the

potential, we conzsider & simple parametrization by sssuming that

5 = + { : 2.2

VQQ Vsir) VL r} , ' {S.22

e = 4 ML \ =5 X

Vgg ot JS.r) + £ JL(r) s (5.3}
where o, 3 are real parameters. ¥Y_ 4ir} is the short-range

s
potential, which . is attractive and dominant near r = 0. The tong-
range part, VL(r) becomes positive and divergent as 1 » . We
first consider s particular non—relativistic potential Vaé =-US +
VL s with
Votrd = £0m) VIR () Vote = (1~ ) Ve (S.4)
’ L : ™ )

= {CcD

( L+ e( - oa /s )

and firy =

where VS ic estimated from the two—-loop 8CD calculations, given by
the Eq. (2.3). We choose Aﬁg = 0,200 GeYVY and Nf = 4, In (5.4},

V., is s Martin—type power-law potential given by

S
VH(F) = =F.392 + 8.080r
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with v in fm. The choice is mpotivated so that

VQCD(r=a) = VM<r=a) . {5.86)

We have chosen the parameters in the potentials US and VL so that

the condition (5.6) is satisfied. Because of this condition, the

ca}culafed spin—averaged results are not very sensitive to  the

bb

choice of the values of a and s=. We have chosen & = 0.0723 §m

and s = 0.01 fm in the following calculations. The singularity of
{2) -1 . . .

5 ol — =4 -

}QCD(r) at r AMS should be ignored in Cm}culaﬁang VS(F) One
: N , W1

may truncate Vstr) for r > ot where one chooses rp < Aﬁg 50

>,

that (rD—a)/s *» 1. The fesults are then insensitive to the value
of r _chosen.

o

We now assumg Vo~ = Q@/4 V) + 5N and calculate the

gg 5 L
'j hal i)

binding energies and the values of ]WEECO)}‘ of the gg system for
a range of 3 values ( 0.5 < = 3 dand with different gluinc mass.
Our results are shown in Figs.5.1-5.4. We do not expect a large
deviation for these results for any other acceptable potential
mpdel . We note, in particular, that {wtc)fL for both 1ight and
heavy gluines show a significant dependence on 3. It is obvious
that the long-—range part needs more attention.

The decay rates of gluinonium are given by expressions similar

“to those of the corresponding quarkonia, apart from the group

factors

@

e
| €46 / c, iRy |7 = 27/4 .

b e

Thus the decay width of two gluino bound state is given by
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A 27
I'{ggo s gg} = P

L

< } ‘C)}z/ﬁz {S.7)
ot eaes { y . P
= ng

The standarg formulz for gg production cross—-section in hadiron

collisions is
—— 1
-~ tgg » gg) d:
o o= {23 + 1) A - §oom o £ ) £ T (5.8
am” * 4 3

.l
\

where T = M /5, M, the gluinpnium mass and 311—x)5/x is
sssuned to give the gistribution Ffunction for gluons. We have
ccnsideredlonly the crosse-section for pseudoscalar production. be
have shown in §fig.3.%, the cross-section versus pa for two
different beam energies (¥S) considering two different wvalues of
3. An increase in 3 decreases the cross—-section for & given gleino

mass. Our calculated results agree with those of Kuhn o and Dnada

but differ slightly from the results of Kane and Leveillelos at a
higher beam energy.

A study of the general feature=s of the potentiasls (5.2) and
15.3) provides some information wﬁich may be obtained in the fors
of inegqualities. The proof of the ineguality makes use of  the
techniqués dEVE}DpEd' by Martin. We assume that koth the
short-range and the long-range parts of the potential are

monctonically increasing. The assumption i=s true for almost  all

the potential modelzs considered for the oD systems. Thus V

g arsg VL
in 2.2 and (5.3} =atisfy
- dV o av
= >0 L s (5.9)

ar : L , oo
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2
™ e
gg )
and —— {0 { concave downwards ) {5.10)

dyr

but are otherwizse arbitrary. We can derive the following results:

{a) If pafpa ¥ /o and 3 }, pQ/pS s
we have for the 18 states
2 ) . 2 : '
!waatO)i FOMindt o,f3 2K pg/pa) iwgétG): . {%.11)

where Min{ o, ) is the smaller of the two parameters.

; o 9 ’ 3 <« o
.<b) If - pg/ya < 1/ and f3 . ,pa/pg 5
2, fen 4 2 e ¢
Wg'g““" ! < wgg i . {5.12)
Let y~- = vir}/r and w.={r) = uérd/r be the 18 radial
gg nin]

salutions for the EE and 28 systems respectively. Hoth u abd v are
chosen positive. To prove the ineguality (5.11), we follow the

steps outlined below:

(1) For v » w, we can make use of the large + behavior of the

~ o
radial egquations to show that v© < u° for r » o s if 35 palpa.
e =
tii) It carn be shown that v - u° has = unigue zeroc. Consider the
hronskian
Iir) = (v'u — a'vitr)-
T
= 1 - -
= ;f f w [t Hy HQ'Vg + 4B Hy AT
G
- {E’ pg - E pa) ] dr . (S.l;)
Since If{w) = 0, we may alsc write the following representation
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) :
Ity = - ;2 f uv [ (o pa - NQ)VS + {3 pa -pQ)UL
? r
- 1 E' NE - E pg) ] dr . {5.14)

From (5.13), it follows that for + ~ @, the integrand is ~ {« pa -
”Q)VS and negative andlhence I¢r) & Q. For r » w, one finds that
the integrand is -~ {3 pa - Hg'V, and hence from {(S.14), it
follows that I4{r} i=s slso nmegative at large r. Since both VS and
UL are monotaﬁic s v and v are ponzerc and positive. It has,
therefore, only one zeroc, say at + = e For r < rD, we use the

relation (5.13) and for = > r,s we use the relation (5.14) to show

that () < 0 for a1l r. We can now show that v - u vanishes only

once, say at r = e The relation {35.13) gives
ot — . <0 . 5,15
utr D[ viirp u iy ] (5.15)
Thus { v — u')r—r < 0 , since uw > O. The unigueness of the
1
2 2 '
zero of v —u and hence of { v —u ) follows from above.
< s . 2 2 . 2 2
{311} Since v - v < O for r -» o and since v - uw - has a
. 2 2 -
unigure zero, we conclude that v~ - u™ » O, for r ~ Q.

{iv) In the last step, we make use opf  the well-known relations

like

3 3
ut o = ~2 Juogpar . (5.16)



‘We consider, wih 3 £ a ,
. l_}"o
Q) 2 ? ) 2
peors {2 - —_ = {{)

pw..
2 9 2
=  v'7Q) - 73 _ (U RO D
He
e o — .
g - o gg  Hg o Vg
= o f dirr {vT - }EFw + = f dr u {a ~ ﬁ)aF
1 H
L dirers At eure
g 2 2 gg g
z =5 f dr (v© - u") [ o - g lr—r ]
h 3
L R I
since
g5 Yeurs
g - .
— <0 . {5.17)
ar

For A » o , we can show that

. - : 2
;ygaccn;‘ — e Gn/ug) e (o) ]

is positive definite. This completes the proof of the ineguality
= - & D (: ~ 2 . -
(q.ll).’For Hg/”Q_‘ Yooy 3 ua/pg s we may follow - the same

v
steps to derive an upper bound for ]ng(O)j‘, viz. the

2

inequality (S5.12). Dur results are shown explicitliy in Fig.5.46 for
a = 274, We cannpt make any prediction for the striped regions. e
note the folliowing:

{1} For gquarkonium states, an useful ineguality for two BB states
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There i=s no prediction for the striped region.
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) 100
with masses .

Hg and Hpe wWas conzidered by Rosner et al.

v Hge 2 :
— > — — ] > . o,

W ,Qﬁu) = o wmatd) 5 Hge * Hg _ {%.18)

The inequality has been shown to be valid for power-—law potentials
and alsoc for- a potential =satisfying conditions like 45.9) and
13.10) in the WKB approximation. Dur resalts, with o = B =
provide & rigorous proof of this ineqﬁa}ity for & large class of
potentials,

Hy we have the eguality wgaiO) =y, —4Q) for 3 =

.. 4
{ ~ =
{11} For pg ~ g i T

/4 . For a smalley 3, =iy & wgaiﬁ), while for a larger f3,

Fex
the situation is reversed. The 'variation of wiQ) with 3 is
ex#ected to be smooth, a&as has alsc been seen in our  model
calculations.

f1i1) The results may be useful for estimating bounds on  decay

=

widths., As an example, consider the two gluon decay width (S.7).

Suppose 3 ~ 9/4 and Hy = 45 GeV. If pa = 20 GeV,
Figgia ) » gg) = 190 MeV, (5.19)
2 =
where we have used the result lwt€(0)118 = 350 GeVY™, as can be

=

seen from calcnlations with the potentiasl {5.4). TtThis may be
compared with the two gluon width of the 15 toponium state for Hy

~ 45 GeV which is about 5 MeV. The latter estimate is in general

59

agreement with the resultis of Nasnopowlos =t al., »ho consider a
particular B@ potential. Combining the inegualities’ of Fig.S.6
with the results (5.1%), we can now derive some crude bounds on
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the decay widths. The knowledge of ua { or some strict constraints
on pa Y will help :n making the predictions sharper. If pg/pt z
1, the inegualitie= become valid for larger ranges of 5.

iiw) For the cla=ss of potentials considered, Martin has proved
that

10} * Q). Thus we can obiain s weal inegquslity i

¥og ¥ig

we replace WSE(O) of 18 state by wggt@) forr 2B state in  the

relation (S.1i).
Y. 4. Conclusions:

"We have shown that the.lmng—range part of the 35 pbtential may
affect significantly the theoretical prediction for nggtO);z.
e have alsc studied the dependence of the binding energy
difference and the value of the wave—function at the origin on the
gluino mass for various values of B (0.5 = 5 = 3y, Alithough, the
long~-vange part of the 53 potential 3i1= not known, 1t is
interesting to note that by using Martin’=z technigue, one can
derive useful inegualities relevant for the study of BE states.
The itnequality holds for a range of values-éf-ﬁ and pg/pa as
shown in Fig.S.é. In fact, in the absence of any definite
information about either pg or 3, the theoretical predictions will

perhap=s be no better thap the predictions of the inegualities

shown in Fig.S5.6.
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