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1.1. Introduction: 

The aim of the dielectric investigation in this thesis is to provide the reader a very simplified 

and significant approach to grasp the dielectric relaxation phenomena in both pure polar liquid and 

polar liquid molecules in non-polar solvent under low and high frequency electric fields. In order to 

reach the goal, the central idea of the work is concentrated to measure both the macroscopic and 

microscopic entities like relative pennittivity & and dipole moment 11 respectively of the molecule. 

The electric dipole moment J1 is not only significant as a reflection of the electronic structure of the 

molecules. But it is of prime importance in our understanding of molecular interactions. It also 

partly controls the transition between solid, liquid and gaseous states of a substance. The electric 

behaviour of dielectric molecule has wide applications in different fields. Scientists are mainly 

interested to predict shape, size, structure, molecular interactions and change of phase of the polar 

molecules. Technologists, on the other hand, find its important applications in the field of electrical 

engineering. 

1.2. Dielectric Relaxation : 

Dielectric relaxation phenomena are related to some form of disorder present in the system 

under study. There can be no relaxation in a perfectly ordered system, because nothing can relax 

from perfection. In the case of polar liquid molecules, even if for a perfectly ordered spatial array of 

dipoles, their orientation distribution would need to be random for the isotropic behaviour in the 

electric field. 

If a dielectropolar substance is. placed under the application of the alternati~g electric field, 

the molecuie becomes polarised. There exist various types of polarisations. Each type of polarisation 

takes some .finite time to respond the applied alternating electric field. Thus there is a considerable 

lag in the attainment of the equilibrium. This lag in response to the alternation of the applied electric 

field is commonly known as dielectric relaxation. When the external electric field is removed, all 

types of polarisation including the orientation polarisation decay exponentially with time. The time 

in which the orientation polarisation is reduced to lie times the initial value is called the relaxation 

time r of a dielectropolar liquid molecule. In the case of static or low frequency electric field, all the 

polarisations are operative. When the frequency of the alternating electric field becomes high, all the 

polarisations are not able to attain the equilibrium before the applied electric field is reversed. The 

relaxation time r is an important molecular parameter, which is usually used to determine dipole 

moment Jl of a polar substance. 
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1.3. Relative Dielectric Permittivity : 

Permittivity is a parameter of a dielectric medium. It arises in the calculation of force 

exerted on each of the electric charges placed in a medium. If two charges are placed in a· 

homogeneous or isotropic dielectric medium, the forces on each of them is reduced by a 

dimensionless scalar factor &r called the relative dielectric permittivity which is the ratio of the 

capacitances of the condenser when two charged plates of opposite signs are filled up with dielectric 

medium and vacuum respectively. Thus &r is given by: 

em 
& =­

r C 
" 

where C's are the capacitance of the condenser having dielectric medium and vacuum respectively. 

If the relative permittivity of the material is higher the greater is the p<)larisability of the molecule. 

So the polar molecule usually has higher permittivities than the non-polar one. 

1.4. Dielectric Polarisation : 

Under the application of the electric field E the centres of the positive and negative charges 

of each molecule of dielectric material are displaced in opposite directions. This sort of relative 

displacement of charges is called polarisation and the dielectric is said to be polarised. 

In a homogeneous or isotropic dielectric, the dielectric polarisation P per unit electric field 

of E is called the molecular polarisability a. The polarisability in a non-polar molecule arises from 

. two effects. The displacement of the electrons relative to the nucleus in each atom is called the 
' 

electronic polarisation and that of the atomic nuclei relative to one another is called the atomic 

polarisation. For a polar molecule the permanent dipole aligns along the applied electric ·field 

direction, although they have thermal motions, is called the orientation polarisation. 

Therefore the total polarisability ar of the molecule is: 

.... (1.1) 

where ae, aa and ao are the electronic, atomic and the orientation polarisa:bilities respectively. aa is 

called the distortion polarisability. Each of three types of polarisabilities is obviously a function of 

frequency of the applied electric· field. As the electric field alters and reverses its sign both their 

distortion and average orientation polarisations must change. When the frequency is higher, this 

affect the orientation pola~sation which takes some time of the order of 1 o-12 ·to 1 o-10 sec to reach the 

equilibrium in the cases of liquids and solids. In such frequency the distortion polarisation takes 

much less time than the orientation polarisation to reach equilibrium. 
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1.5. Clausius-Mossotti Equation and Lorentz-Lorentz Formula : 

When an electric field E is applied between two plates of the condenser, the field is 

modified to E1oc by a linear liquid dielectric. The total polarisation of the molecules is given by: 

..... (1.2) 

where 'n' is the number of molecules per unit volume of the dielectric medium and aa is the 

distortion polarisability of the non-polar dielectric. 

Hence, the dielectric displacement vector D is : 

fJ = s .E = .E + 4trP r 

For a simple cubic crystal or an isotropic liquid dielectri~ it can be shown that 

- - 4 -
Ezoc = E +-n:P 

3 

From Eqs.(l.4) and (1.5) one gets, 

& -1 4 
_r_=-1lllaa 
Er +2 3 

Multiplying both sides by molar volume.M/ pthe above Eq.(l.6) becomes 

Er -1M =±7rNaa 
Er +2 p 3 

..... ( 1.3) 

..... (1.4) 

..... ( 1.5) 

..... ( 1.6) 

..... ( 1.7) 

where N is the Avogadro's number. The Eq.(l.7) is known as the Clausius-Mossotti equation [1.1-

1.2]. 

The electronic polarisation occurs at frequencies corresponding to the electric transitions 

between different energy levels in the atom i.e, mostly at visible and ultra-violet frequencies. In such 

case the relative pennittivity Er is replaced by the square of the refractive index n~ measured at that 

frequency according to Maxwell's electromagnetic theory. The above relation now becomes: 

n~ -1M =i7rNa 
n}; +2 p 3 e 

..... ( 1.8) 

and is called Lorentz-Lorentz formula [1.3-1:4]. 
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1.6. Debye Equation Under Static Electric Field : 

For a non-polar molecule the molecular polarisability aa due to distortion polarisation does 

not depend on temperature while for a polar molecule the orientation polarisation of the molecule 

depends on temperature unlike distortion polarisation. The polar molecule also possesses a 

permanent dipole moment jt P which is randomly directed due to thermal agitation prevailing in the 

system such that net moment is zero. 

Under the application of the electric field the permanent dipoles are forced to orient along 

the field direction and equilibrium is set up to yield the resulting orientation polarisation P0 which 

is inversely proportional to the absolute temperature T K. It can be shown [1.5] that: 

where a 0 = J.l; j3k8 T is defined as the effective orientation polarisability. 

Thus the total polarisability in case of polar liquid molecule, is 

2 
J.lp 

ar=a +a+--
a e 3k T 

B 

..... ( 1.9) 

..... (1.10) 

where aa is the polarisability due to distortion polarisation. Hence the Clausius-Mossotti equation 

(1.7) becomes; 

..... (1.11) 

The Eq.(l.ll) is the well known Debye equation [1.6] for a polar molecule which relates a 

macroscopic quantity like relative permittivity at the L.H.S of the equation to the microscopic 

quantity like polarisability at the R.H.S. 

1.7. Onsager Equation: 

The failure of Debye equation (1.11) to assume that the field due to molecules in the 

spherical region is equal to zero led Onsager [1.7] to develop the following model. The molecule is 

treated as a point dipole at the centre of a spherical cavity of molecular dimension in a continuous 

medium. The radius 'a' ofthe cavity is defined by: 
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4 3 
-7f(J N 1 = 1 
3 

..... (1.12) 

where N1= no. of dipoles per unit volume. In case of spherical molecule Onsager neglected the short 

range dipolar interaction among the molecules unlike long range interaction. The internal field in the 

spherical cavity consists of the cavity field G and the reaction field R due to external applied 

electric field and the polarisation by the dipole respectively. The cavity field alone orients the 

molecule whereas the reaction field only increases their electric moment and always remains parallel 

to the dipole. A relation between relative permittivity and dipole moment of nearly non-spherical 

polar liquid molecule is obtained by Onsager (I. 7] in a continuous medium of static permittivity e0 

and refractive index nv by: 

..... ( 1.13) 

This theory gives a successful account of the general behaviour of pure polar liquid. The validity of 

Onsager's equation is limited by the assumption that molecules are point dipoles and embeded in a 

sphere of isotropic polarisable material. In general real molecules are non-spherical and have 

anisotropic polarisabilities. They have quadrupole and higher moments which may be neglected at 

macroscopic distances. To take such effects into account a theory would need to contain a 

prohitively large parameter. Later on a large number of workers [1.8-1.11] modified Debye and 

Onsager equations to obtain f.J of a highly non-spherical polar liquid molecules. 

1.8. Debye's Diffusive Model ofRel~ation Phenomena: 

On the basis of Einstein's theory of the Brownian motion Debye (1.6] supposed that the 

rotation of a polar molecule under an alternating electric field is constantly interrupted by collisions 

with the neighbouring molecules. The collisions among molecules may produce a resistive couple 

proportional to the angular frequency OJ of the dielectropolar molecule. This model is applicable 

only to liquid molecules and helped Debye to yield the frequency dependence of the permittivity of 

a polar molecule. 

• 2 
e -nv 1 
---=-=---
Eo-n~ 1 +}cor 

..... (1.14) 

where nv is the refractive index and macroscopic relaxation time r is related to microscopic 

relaxation time r'by : 

..... (1.15) 
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1.9. Kirkwood Model of Relaxation Phenomena: 

Kirkwood [1.12], however, imagined a specimen of the material containing a number of 

dipoles each of moment J.l confined in a spherical volume. When such volume is situated in a 

uniform external electric field the moment of the specimen can be separated into two parts: 

(i) The molecule somewhere within the specimen is fixed but the others take up all 

possible configurations and 

(ii) The moment induced in a homogenous specimen of the fixed molecule, and the 

molecule itself plus local ordering of the molecules immediately round it. 

The Kirkwood's equation for a dipolar liquid is given by: 

(&0 -1)(2&0 +1) = 4'/!N(a+ gp
2 J 

3&0 V 3kBT 
..... (1.16) 

where the correlation parameter g is a measure of the local ordering in the material. 

1.10. Frohlich's Model: 

Frohlich, on the other hand, assumes a spherical region of microscopic dimensions in an 

infinite continuous medium. The spherical region is not assumed to be an exact sphere but modified 

slightly. Then the equation for non polarisable dipole is deduced by Frolilich (1.13]: 

(&
0 

-1)(2&
0 

+ 1) 47rN (m.m) 
3&0 V 3kBT 

..... (1.17) 

where < mm > is the weighted average of electric dipole moment m . 

1.11. The Barrier Model of Dielectric Relaxation: 

The molecules are assumed to change the orientations of a polar molecule by a series of 

small steps. This model is applicable to polar-nonpolar liquid mixture. A molecule in solid, may, 

interact with its neighbors, creating a number of " equilibrium positions". This corresponds to a 

minimum potential energy separated by potential barriers. This type of process was first considered 

by Debye [1.6]. 

1.12. Bauer's Theoretical Model of Dielectric Relaxation: 

Bauer's [1.14] model of dielectric relaxation is closely similar to Eyring's [1.15] reaction 

rate tl1eory. It explicitly refers to dipole rotation. The orientational coordinate ( 0, t/i) of a dipole in a 

system can be represented by a point on a unit sphere. The unit sphere can be divided into two 
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domains separated by a potential barrier of height H. The minimum potential energies of dipoles in 

two domains are 0 and U respectively. 

1.13. Real and Imaginary Parts of The Relative Permittivity : 

Under static electric field there is no absorption of electric energy by the dielectric material 

and the dielectric displacement vector i5 is simply related to the applied electric field E by the 

relation iJ = eE . 
When the dielectric material is placed between the plates under an alternating electric field 

like E = E 
0 

cos aJt there· is always a dissipation of energy due to absorption of electromagnetic 

waves. This is called "dielectric loss" over a broad band of frequencies. Molecular forces impeding 

the dipole rotation dominate if the direction of the applied electric field changes sufficiently fast. 

The dipoles become unable to follow the changes and the orientation of permanent dipoles no longer 

contributes to the dielectric relaxation at such frequencies. A phase difference between D and E 
develops, and energy is drawn from the electrical sources by the material which is due to 

(i) electrical conduction 

(ii) the relaxation effect due to permanent dipoles and 

(iii) the resonance effect due to rotation or vibration of atoms, ions, or electrons of the 

dielectric material. 

Thus it is useful to describe the relationship between E and D by 

E = E ejtd and D = i5 ej(mt-S) 
0 0 

where 0 is the phase difference and OJ= 2 rif, f being the frequency of the applied electric field. j = 

complex number =v-1. 
The dielectric response of a system is described by the complex representation of the 

relative permittivity &~ ( aJ) at frequency ( w): 

e * (w) = ~ = ~o (cos£5- }sino) 
E Eo 

e*(w) =e'(w)-e"(w) ..... (1.18) 

where e'( OJ) and e'r w) are the real and imaginary parts of the complex relative permittivity e*( w). 

In the low frequency, e'r w)~O, e'( w) -M0 • In the high frequency i.e infrared region e'( w) ---+&co 

Kramers and Kronig [1.16-1.17] developed the mutual transformation relation between the 

two parts, dispersion and absorption of the dielectric relaxation: 
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e'(f) - & = 2 ooJ f'&" (f) dif' . 
00 /'2 !2 ' 1! 0 -

. .... (1.19) 

The frequency f must have been supplemented by a further frequency variable f over which 

integration is made. 

1.14. Debye Equations Under High Frequency Electric Field: 

The rotation of a dipolar molecule due to an applied alternating electric tield is constantly 

interrupted by collisions with the neighbours. These collisions may be described by a resistive 

couple proportional to the angular velocity of the molecule. The dipole moment 11 of the molecule 

on which the orienting couple acts is given in terms of complex relative permittivitiy &~ [1.6] 

..... ( 1.20) 

In the low frequency range Debye expression for the static permittivity is: 

..... ( 1.21 ) 

In the high frequency limit, i.e in the far infra red or visible region (&00 = n'5) all types of 

distortion polarisation make full contribution except dipolar polarisation which is zero. In this 

regton,: 

&00 -1M 47!N 
=--ad 

&00 +2 p 3 
..... ( 1.22) 

On substitution ofEqs.(l.21) and (1.22) in Eq.(l.20) it can be written as 

&*-1 & -1 (& -1 - 00 + __....::0 __ 

& * +2 &00 + 2 &0 + 2 
& -1) 1 &: + 2 l + jwr' ..... ( 1.23) 

The Eq.(l.23) can be rearranged to give 

• & -&a) 1 
---=-=--- ..... ( 1.24) 
&0-&a) 1+jOJ'! 

Separating real and imaginary parts one can obtain 

..... ( 1.25) 

..... ( 1.26) 
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&o +2 1 
where x = (fff = (1)'f 0 

&oo +2 

Eqso(l.25) and (1.26) are known as Debye equations under hf electric field. 

1.15. Murphy-Morgan Conductivity Relation : 

Under the application of an alternating electric field E=Eodmt the conductivity of a 

dielectropolar liquid due to displacement current is: 

Again 

1 dq 
a=--

E dt 

V D 
D = 41771 = E + 4rcP and E =-=- we have ., d & ' 

dq =_I_ dD = _!__ dV =I (say) 
dt 4n dt 47Id dt 

ooo .. ( 1.27) 

where Vis the applied alternating potential V=V odmt. The expression for the displacement current I 

is given by: 

&* dV 
I=--

47lli dt 

I 

000 .. ( 1.28) 

Introducing c·=c'-j&" and V=Vodmt in Eqo(l.28), the current I can be written as according to 

Murphy and Morgan [1.18] : 

I = --+ j- E
0
e111i 

(
OJ&" OJ&') 0 

47! 47! 
000 00 ( 1.29) 

When eqo (1.29) is compared to Ohm's law i.e. I=a*Eadwt, one gets a* where u* is called the hf 

complex conductivity which is: 

a*= u' + ju" 000°00 ( 1.30) 

Thus, a-'= the real part of hf complex conductivity =OJ&"/47! and u'' = the imaginary part of hf 

complex conductivity =OJ&'147! 

However, it was assumed that the conduction current due to free molecular ions and 

electrons in pure liquids or polar-nonpolar liquid mixtures is neglected. 

The magnitude ofthe total hfconductivity ais given by: 

00000(1.31) 
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=to 

J 

-on ----.(i)'t: 

Figure 1.1: Variation of &//with OYr Figure 1.2: Variation of &'with OYr 

1.16. Macroscopic and Microscopic Relaxation Time : 

The gradual increase of polarisation in a dielectric medium with time to its equilibrium 

value under the alternating electric field is described by the decay function f (t) where 

f(t) oc e-tlr 
ooo o• ( 1.32) 

The relaxation time r is independent of time but may depend on temperature. With a time 

dependant electric field E{t), a field E(u) which is applied during a time interval between u and 

u +du; the corresponding electric displacement D(t) is written as: 

t 

D(t)=&a,E(t)+ J E(u)f(t-u)du ooo •• ( 1.33) 
-a, 

On differentiating Eq.(l.33) with respect to time and multiplying both sides by rone gets: 

,dD(t) =&a,rdE(t) +if(o)E(t)- fE(u)f(t-u)du 
dt dt -<Xl 

Adding Eqs.(1.33) and (1.34) yields: 

d 
r d/D-sa,E)+(D-sa,E)=if(o)E 

In a static electric field D=coE 

Hence from Eq.(1.35) we get 

if(o) = &o -&w 

Therefore Eq.(l.35) becomes: 

d 
r dt (D-&a,E)+(D-ca,E) = (&0 -&a,)E 

In the alternating electric field Ecx:e·:iOJL_ The dielectric permittivity c* is complex. Hence 

dE = -icoE D = c· E. 
dt ' . 

Introducing this in Eq.(1.37) we get, 

dD =-iOJ&E 
dt 

oOO 00 ( 1.34) 

oOO •• ( 1.35) 

ooo 00 ( 1.36) 

000 •• ( 1.37) 

000 •• ( 1.38) 
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E -E 
c*=c + o oo 

· oo 1+jarr 
..... ( 1.39) 

Separating the real and imaginary parts one gets 

c'-c 1 
__ _:00~ = ---
Eo-Eoo l+m2r 2 ..... (1.40) 

..... ( 1.41) 

Although the polarisation may show a characteristic exponential decay with characteristic 

time r, it does not follow that the orientation of an individual dipole decays with the same 

characteristic time. It is clear from (1.41) that c:"has a maximum value for mr =I and approaches 

zero both for small and large values of mr as shown in Fig.l.l. The variation of c' with arr is shown 

in Fig.1.2. The Eqs.(l.40) and (1.41) differ from Debye Eqs.{l.25) and (1.26) which contain the 

quantity rtc:o+2)/(c:ro+2) instead of 'r. Comparing the two equations a relation between 

macroscopic relaxation time rand the microscopic relaxation time r'is obtained by: 

..... ( 1.42) 

On eliminating the parameter arr and rearranging Eqs.(l.40) and ( 1.41) one gets : 

(&·- &. :&~ r +&"2 =( &. ;&~ r 
A plot of c:" is drawn against c' 

representing the semicircle of radius ( C:0 -

Ero)1 2 and the center lying on the abscissa 

at a distance ( E0 + C:co)/ 2 from the origin as 

illustrated in Fig.1.3. This semi-circular 

arc intersecting the abscissa at c'=c:ro and 

c:'=Eo, is known as Debye semi-circle 

[1.6]. 

Powles [1.19] and Glarum [1.20], 

however, found a relation between r and 

t 

..... ( 1.43) 

(sa: +s0)/2 
--- -------~ (c:a:-&

0
)12 

~-------
; 

&' 
Figure 1.3: Variation of c:" with c:' for 
different angular frequency m 
(Debye semi-circle) 

r'by introducing a factor of approximately 3/2 given by ; 

3&0 , r= r 
2£0 +£00 

..... ( 1.44) 
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Another relation of macroscopic and microscopic relaxation time was given by O'Dwyer 

and Sack [1.21]: 

..... (1.45) 

1.17. Distribution of Relaxation Times : 

For a dielectropolar liquid mixtures or solutions, it is found that some dipoles relax with one 

characteristic rate, some with another. It is impossible to study the dielectric relaxation phenomena 

in terms of a single Debye equation or sum of two or three Debye terms. Cole-Cole [1.22] and 

Davidson-Cole [1.23-1.24] relations were found to be satisfied by experimental results. But the 

theoretical explanation behind them has not yet been given. For most of the liquids, the experimental 

curve deviates from the simple normal Debye curve. In addition to Debye semi-circular behaviour, a 

number of distributions of relaxation times were found for different liquid dielectrics. The circular 

arc of Cole-Cole [1.22] plot with center lying below the abscissa as shown in Fig.1.4 exhibits 

symmetric distribution of relaxation time. A skewed arc, on the other hand, proposed by Cole­

Davidson [ 1.23-1.24] is obtained to indicate an asymmetric distribution of relaxation times as shown 

in Fig.1.5. 

Debye equation can thus be written for such a distribution of relaxation time : 

( )
a)G(r)dr 

&*=&a)+ &0 -&a) J . 
o 1 + j(J}T 

. .... ( 1.46) 

Here, G( r)<h is the distribution function for fraction of the molecules associated with relaxation 

times between rand r + dr such that the normalization condition for G( r) is: 

<:/) 

fG(r)dr = 1 ..... ( 1.47) 
0 

Separating the real and imaginary parts ofEq.(l.46) one gets : 

, a) G(r)dr 
& = &<:L) +(&0 -&<:L))J 2 2 

ol+m' 
..... ( 1.48) 

and 

, _ ( )roJ onG(r)dr 
& - Eo -Ero 2 2 . 

o l+m r 
..... ( 1.49) 

as Debye equations. 



14 

1.18. Cole-Cole Distribution: 

The dielectric dispersion and absorption of many systems can not be described by a single 

relaxation time. For a large number of liquid dielectrics the experimental curve deviates from Debye 

curve of Fig.1.3. The broader dispersion 

and lower maximum loss are shown in 

Fig.l.4. Cole-Cole (1.22], on the other 

hand, found that the plot of c" against c' ~ 
Y.) 

for a dielectric material at different 

frequencies in a complex plane having a 1 
distribution of relaxation time is generally 

a semi-circular arc intersecting the 

abscissa axis at two points Ero and &0 . The 

center of semi-circle lies below the 

&' 
Figure 1.4: Cole-Cole Plot. 

abscissa axis as found in Fig.l.4. The radius of the semi-circle makes an angle yw2 with c' axis 

where r is called the symmetric distribution parameter for 0 ~ r ~ 1. Cole and Cole modified the 

empirical formula ofDebye by: 

E -& 
c*=c + 0 

oo 
ro 1 U )l-r + OJ'['s 

where 'l's = symmetric relaxation time. 

1.19. Davidson--Cole Distribution: 

A skewed arc was, however, 

obtained by Davidson and Cole [1.23-1.24] 

by plotting c" against c' in order to analyse 

asymmetrical relaxation spectra for certain 

dielectric materials like glycerol as 

sketched in Fig.1.5. The arc is obtained 

from a series of continuous relaxation 

mechanism of decreasing importance 

extending to the high frequency side of the 

... ... 
V,J 

..... ( 1.50) 

I 
& 

Figure 1.5: Davidson- Cole plot 

main dispersion. The behaviour is represented by empirical relation: 

..... ( 1.51 ) 
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where o is asymmetric distribution parameter ( 0< o ~I ) related to characteristic relaxation time 

'res of the polar molecule. This 

behaviour seems to be applicable in 

representing the behaviour of 

substance at low temperature. These 

were well discussed by Powles m 

recent years [ 1.25]. A curve ts 

supposed to be made up of a number 

of Debye semi-circular arcs with 

multiple relaxation times. This is 

displayed in Fig.1.6 to understand the 

asymmetric relaxation behaviour. 

-to 

1 

Figure 1.6: Plot of£' against E for a number of 
Debye semicircular arc with multiple relaxation. 

1.20. Havriliak-Negami (liN) Distribution : 

Dielectric relaxation behaviour of some dipolar material!) is not often explained by either 

Cole-Cole or Davidson-Cole distribution. The most widely used distribution for the 

phenomenological description of dielectric experiments is the Havriliak-Negami distribution [1.26] 

that describes an asymmetric and broadened profile as compared to the Debye curve. The expression 

of the complex relative permittivity is now: 

..... ( 1.52) 

Eq.(1.52) reduces to Cole-Cole distribution when o=l and Davidson-Cole when y=O. Since H-N 

distribution is the generalization of Cole-Cole and Davidson-Cole distribution it can explain the 

relaxation phenomena of a wider variety of materials with different values of yand o parameters. 

1.21. Kohlrausch-Williams-Watts (KWW) Distribution: 

Under certain circumstances, the dielectric parameters are describable in the time domain by 

the well known stretched exponential or Kohlrausch-Williams-Watts (J(WW) function [1.27 -1.28] 

in terms of macroscopic decay function ¢(t) by: 

t/J(t) = exp[ -(t/ T KWW )p] ..... ( 1.53) 

where 'rKWW is the effective relaxation time in time domain, p is the shape parameter of the time 

relaxation function such that 0< p ~ 1. In the frequency domain, the complex dielectric constant E* 

is written for a pure Debye process as a function of angular frequency OJ and temperature T. Hence 

\Sq~ijC) 

2 8 AUG 2003 
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the relationship between &*( OJ,t) and t/J(t,T) is given by one side Fourier or pure imaginary Laplace 

transformation of the form: 

&• (w,T)- & 00 _ ooJ( d¢) ( . )d --'----'--__:.:_ - -- exp -1 mt t 
&'

0 
-&

00 0 dt 

..... ( 1.54) 

where£ is the Laplace transformation of -dt/J(t)ldt. 

Eq.(l.54) gives the single exponential Debye like distribution for f3 = 1. KWW distribution 

has been widely used to describe the relaxation behaviour of glass forming liquids and complex 

polymeric systems. 

1.22. Distribution Function of Relaxation Times : 

The experimental results can satisfactorily be explained by Gaussian probability distribution 

function made by Wagner [1.29] and Yager [1.30] and is given by: 

b 
G('r )d -r = .J; exp( -b 2 y 2 )dy ..... ( 1.55) 

Here b is the breadth of the distribution andy is defined as: 

where To is the most probable relaxation time 

In long chain polar molecules, like alcohols and polymers there are many possibilities of 

internal rotations, bending and twisting about the bond axis of the molecule each with a 

corresponding characteristic relaxation time. Kirkwood and Fuoss [1.31], on the other hand, defined 

a distribution function G( -r) in averaging to the macroscopic conditions of distribution of relaxation 

times for long chain polymeric dielectric molecules. 

1 
G(-r)=----

2coshy+2 

wherey =ln('lf-ro)-

..... ( 1.56) 

The experimental results were not in accord with this formula. So Fuoss and Kirkwood 

[1.32] further suggested that the empirical relation should represent the experimental data: 

c• ~c:,sech[Pin :..J forO<~ <I ..... ( 1.57) 
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where p is a distribution parameter and ~ is the angular frequency corresponding to the maximum 

value &m "of£'~ The corresponding distribution function is given by: 

G(~) = p cos{p7l"/2)cosh(py) 

7l" cos 2 (p7l" /2) +sinh 2 (J3y) 

where y =log( ai ~). 

Another distribution function of Cole-Cole [1.22] is given by: 

G(~) = smpr [cosh {(1- y)ln(~ I ~0 ) }-cos 'Y7l" J1 

27l" 

The distribution function F(y) based on Havriliak-Nigami [1.26] function is: 

F(y) = (~ )y<t-r)o (sin£50)&2(1-r) + 2y1-r cos7!(1-y) + t)- ~ 

In this expression,y =71~0 and 

B = arctan[--sin_7l"_('--l---"-y-'-)-] 
y 1-r +cos 7!(1- y) 

..... ( 1.58) 

..... ( 1.59) 

..... ( 1.60) 

..... ( 1.61) 

Frohlich [1.13] derived the distribution function for a molecular mechanism which leads to a 

distribution of relaxation time between two limiting values ~I and r2 such that ~2>r1. The 

distribution function is: 

= 0 ..... ( 1.62) 

Davidson and Cole [ 1.23-1.24] also gave another distribution function : 

G(~) = sinfi1!(-~-Jp for 0< r< ~o 
~7[ ~0- ~ 

=0 ..... ( 1.63) 

Similar to that of Frohlich, Higasi et a/ [1.33] gave another distribution function y( ~) for a 

number of n-alkyl bromides at different temperatures which may be represented by : 

1 
y(~)=-

A~ 

= 0 ..... ( 1.64) 

where ~I is the relaxation time of the rotational orientation of the CH2Br group about its bond to the 

rest of the molecule, while upper limit ~2 . is th~ relaxation time of the largest orienting unit, usually 

the molecule as a whole. 
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Matsumoto and Higasi [ 1.34] also suggested a more general distribution function y( T) in 

order to explain the dielectric properties of some non rigid alkyl halides at lower temperature from 

the same principle which describes the dielectric properties of the same substance at higher 

temperature like: 

1 
y(T)=­

A Tn 

= 0 

and O<n<oc. 

1.23. Debye Equation in Solution: 

..... ( 1.65) 

In pure polar liquids, one polar molecule is surrounded by a large number of similar 

molecules and eventually polar-polar interaction occurs. In order to avoid the polar-polar interaction 

it is better to study the relaxation phenomena of dipolar liquiqs dissolved in non-polar solvents. In 

such case one polar unit is assumed to be far apart from the others and remains in the quasi-isolated 

state to eliminate polar-polar interactions almost completely. 

Let a polar liquid (J) is dissolved in a non-polar solvent (z). Let a; and Uj are the 

polarisabilities of solvent and solute of molecular weights M; and Mi respectively. If the relative 

permittivitiy of the liquid mixture is &if then Debye equation [1.6] for polar-nonpolar liquid mixture 

IS: 

2 
47iNa; + 47dV _&__f. 

3 3 3k8T 1 
..... (1.66) 

Here/; and.£ are the mole fractions of the solvent and solute defined by f;=n/(n;+nj);.IJ=nj(n;+nj), 

where n; and ni are the number of molecules per unit volume of the respective liquids and a;=Uj 

Eq.(1.66) is written as : 

£ .. -1 c -1 4-AT 11 
2 

lJ V.. = _"_i -V. + _,_uv_,.-_s_J. 
&if+2 IJ &;+2 

1 
3 3k8 T 1 

..... ( 1.67) 

Vi and ViJ are the specific volumes of the solvent and solution respectively. 
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In case of neutral dielectrics & if = n'bif' where nvif is the refractive index. The equation can 

be written as: 

2 1 2 nvif - _ n0 ; -l 
2 vif- 2 vi 

nm1 +2 n0 i +2 
..... ( 1.68) 

Eqs.(l.67) and (1.68) can, however, be used to measure the dipole moment of any dipolar liquid 

treated as a solute in a solution. 

From Eqs.(l.67) and (1.68) one gets : 

[
&ij-1 nv/-IJ (&;-1 n0/-1)~ 4tiN Jls

2 
/ 1 

Ey·+2- nv/+2 = &;+2- nv/+2 vi]. +-3-3kBTVij 
..... ( 1.69) 

Introducing molar concentration c1 ie c1=jj IV if and for extremely dilute solution (ViNij)-+ 1 

Eq.(l.69) is given by: 

..... ( 1.70) 

The Eq.(l.70) is a simple, straightforward and useful one to determine Jls of a dipolar liquid 

molecule at infinite dilution. It is the well-known Debye equation [1.6] for a polar-nonpolar liquid 

mixture. 

1.24. Extrapolation Technique and Guggenheim Equation : 

In order to measure Jls of a dipolar liquid molecule at infinite dilution a large number of 

workers used the extrapolation technique of different dielectric relaxation parameters. The methods 

suggested by Hedestrand [1.35], Cohen Henrique (1.36] and Le Fevre [1.37] had some inherent 

uncertainties in the calculation of (apif Jax 1} and (an0 .. jax
1
.) by graphical 

x1-+0 IJ x1~o 

extrapolation technique. 

Higasi [1.38] measured Jls of different polar-nonpolar liquid mixtures from the empirical 

formula: 

..... ( 1.71 ) 

where tu =&if-&i and the constant f3 depends upon the solvent used. Guggenheim [1.8], on the other 

hand, introduced a fictitious atomic polarisability to make the solution free from atomic polarisation. 

The simpler method suggested is to calculate J.ls in which the need for measuring densities of liquid 

mixtures was not necessary. The slope of the curve drawn through the experimental parameters of I:!. 
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where /). = 3(&u· -nbiJ)j (Eu· + 2)(nbu· + 2) against mole fraction Cj gave f.ls of a dielectropolar 

liquid molecule dissolved in a non-polar solvent. The quantity /). = [(Eu·- nbu.) -(&;- nb;)] was 

found from the extrapolated value of/). /cj at infinite dilution to calculate f.ls from the relation : 

..... ( 1.72) 

In the meantime many workers [1.39-1.41] suggested different modified formulations to 

calculate f.ls by smoothing the experimental data extrapolated to infinite dilution. Smith [1.39] 

following Guggenheim [1.8] subsequently introduced the idea of weight fraction Wj instead of Cj 

where, 

PiJ c. =--w. 
J M. J 

J 

. .... ( 1.73) 

Guggenheim [1.42], later on, accepted the view of extrapolation technique of other workers 

[1.39-1.41] to modify the Eq.(l.72) for f.ls: 

f.l 2 _ 9k8 T 3 Mj (~) 
s 41lN (E; + 2)2 Pi WJ wJ-Xl 

..... ( 1.74) 

where 

..... ( 1.75) 

Mj is the molecular weight of the dipolar liquid and p;is the density of the solvent. 

Palit and Banetjee [1.43] made ruurialysis of the error involved in the Guggenheiin-Smith 

approximate equation to find how far solution density measurement are necessary for calculation of 

f.ls of a polar molecule in a non-polar solvent. Botcher [1.44], however, calculated Ps for a large 

number of polar-nonpolar liquid mixture using different extrapolation techniques and found 

different f.Ls's. Later on, Krishna and Srivastava [1.45] used the following relation: 

..... ( 1.76) 

to calculate lls of some dielectropolar solute in liquid state. 

Srivastava and Charandas [1.46] found the constant p was different. for different polar 

liquids. A question, therefore, arises tegarding the validity of Higasi's method [1.38]. Prakash 

[1.47], however, showed that Eq.(l.76) is a special case ofDebye equation (1.70) when Eij is very 
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nearly equal to unity. Since &if ::1 is not true for any polar-nonpolar liquid mixture, Higasi's [1.38] 

method can not be regarded as a universal one to compute P.s at all concentrations of the polar liquid. 

The Eq.( 1. 72) was modified to calculate f.ls at wr~O. 

112 =21M jk8 T (OX if J 
s 4trNp- 8w. 

' J wi=O 

..... ( 1.77) 

Here, 

..... ( 1.78) 

Eq.(l.77) is the famous Guggenheim Eq.(1.74) when &; = n~;. Thus one can conclude that 

Guggenheim equation is a special case of Debye formula if & ; = n ~; . Therefore one should know 

the extrapolated values at wr~O from the measured relaxation ·parameters of different W/ s to 

estimate p/s of dipolar liquids. LeFevre and Smyth [1.41] and Guggenheim [1.42] obtained two 

different values of f.ls i,e 0.91 D and 0.83 D for trimethylamine in benzene at 25 °C using different 

extrapolation technique. Therefore in order to calculate f.ls accurately one should choose what type 

of extrapolation technique is needed to be used. 

Guha et a/ [1.48] and Ghosh and Acharyya [1.49] tried to develop the dielectric theory 

within the frame work ofDebye model [1.6] by introducing a new concept ofwj instead of Cjwhere 

Cj=pifwjfM.j and w;+wj= 1. But the density of solution Pif is a function ofwj 

_ P; 
pif -~ -rwj 

where y=(l-p; I pj), p;, and fJ.j are the densities of solvent and solute used. 

Here Eq .( 1. 70) can now be written as 

8 if -n~j = &; -n~; + 47rNJ.L;P; wj 

(eif+2)(n~if+2) (e;+2)(n~;+2) 21k8 1Nfj 1-rwj 

xij = a+bwj +cw} 

..... ( 1.79) 

..... ( 1.80) 

..... ( 1.81 ) 

where Xif and X; are the experimentally measured static or low frequency parameters and J.ls is the 

dipole moment of the polar liquid under static electric field. 
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The Eq.(l.81) is .highly converging in nature in the low concentration region of the polar­

nonpolar liquid mixture and J.ls can easily be calculated from the derived equation 

= [21kB'JM jb)~ 
J.ls 4n:Npi 

..... ( 1.82) 

The theory mentioned above is applied for a large number of polar-nonpolar liquid mixtures [1.48-

1.50] in order to calculate J.ls· 

Suryavanshi and Mehrotra (1.51 ], on the other hand, suggested the least squares 

extrapolation technique to calculate J.l of a dipolar liquid from the Eq.(l.82) of Acharyya et al 

[1.48]. The results were in excellent agreement with the reported values. One may, therefore, 

conclude that the least squares extrapolation [1.44] is one of the accurate techniques to study the 

dielectric relaxation of polar-nonpolar liquid mixture. 

· 1.25~ Eyring's Rate Theory in Dielectric Relaxation: 

Eyring [1.15] treated dipole rotation in analogy with chemical rate process. He considered 

the chemical reaction of the type A+ B -JC. The reaction takes place in the following way: A and B 

first fonn an 'activated complex' AB. The activated complex must acquire a certain amount of 

electric energy to fonn it which will react 

to form C later. When this model is 

applied to dipole rotation in angular 

coordinates, the two states 'A+B' and 'C' 

are considered to have two different 

equilibrium of the orientations of the 

dipole while the activated state AB as the 

state in which the dipole has sufficient 

energy to pass from one equilibrium 

position to the other over a potential 

barrier as shown in Fig.1.7. Applying this 

A+B AB c 

Reaction Co-ordinate 

Figure 1. 7: Variation of activation energy 
eith reaction co-ordinate 

theory to the case of dipole rotation, Eyring identified that a dipole requires sufficient energy to pass 

over the potential barrier from one equilibrium position to the other with relaxation time z-by: 

h 
=-exp(-ASrfR)exp(MlrfRT) 

k8 T 
..... ( 1.83) 



where, 

M' r= molar free energy of activation 

llS r= molar entropy of activation 

M-1 r= molar enthalpy of activation 
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Eyring has also obtained an expression for the viscosity flow of a dipolar liquid in terms of 

reaction rates as: 

T/ = Nh exp(- MTJ I R )exp(Llli 
11

1 RT) 
v 

where Vis the molar volume of the liquid. Eyring thus arrives at the equation: 

rT oc qV 

only if the enthalpies of activation are the same for both the processes. 

..... ( 1.84) 

..... ( 1.85) 

Kauzmann [1.52] critically analysed Eyring's rate theory and gave a general theory of 

dielectric relaxation in terms of the frequency of discontinuous molecular reorientations called 

'jumps'. Assuming the relaxation process as a chemical reaction he defined the relaxation time 

r= l!1c0 such that in this time the polarisation will fall to lie th of its initial value. Here ko is the rate 

constant for the activation of dipoles and is known as the dielectric relaxation rate. The reaction rate 

ts: 

..... ( 1.86) 

The main importance of the above formulations is that one can know the thermodynamics of the 

normal arid the activated states from the observed reaction rate. 

1.26. Brief Review of Relaxation Phenomena : 

A large number of workers [1. i -1.4, 1.53-1.58] studied the relaxation phenomena of dipolar 

gases and liquids from dielectric polarisation. The observations are found in good agreement with 

the gas kinetic values except for substances having high dielectric constants [1.55-1.59] due to the 

presence of the substituent polar groups like -OH or -NH2 in them. The anomalous behaviour of 

dispersion for liquids having -OH or -NH2 groups was first observed by Drude . [1.56) under 

relatively longer wavelength electric fields. Debye [1.6] explained this anomalous dispersion due to 

dielectric relaxation under rf electric field of the polar molecules. The radii of molecules of some 

ketones and glycerine were found to be smaller than the gas kinetic values as measured by 

Mizushima [1.60-1.61] based on Debye theory. The dipole moment p for methyl, ethyl and amyl 

alcohols in benzene were measured by Stranathan [1.62] and found to be temperature independent in 

accordance with Debye theory. Rocard [1.63] modified Debye's theory by considering the influence 
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of moment of inertia of the molecules on the relaxation process. Fischer and Frank [1.64], however, 

measured e" under 4.3 metre wavelength electric field in order to estimate r of aromatic halides. 

The shorter rs were claimed for the rotation ofCHz-X group around their bond ring. But the theory 

could not explain the behaviour of alcohols for the strong interaction of -OH groups due to 

formation of hydrogen bonding. Budo [1.65] proposed the theory of dielectric relaxation considering 

the intra-molecular and inter -molecular rotations of the molecule. The analyses of dielectric 

relaxations of some non-spherical polar liquid molecules in non-polar solvent were made by Gross 

[1.66] to show the solvent effect under an isotropic electric field. 

Onsagar [1.67] ,Plumley [1.68] and Pao [1.69] interpreted the origin of ionic conduction in 

dielectric liquids even in the purest hydrocarbons like hexane. Ryhel [1.70] and Eck [1.71] showed 

that ionic conduction occurs due to existence of ionic clusters in the liquids. Whiffen and Thompson 

[1.72] obtained relaxation time, dipole moment and different energy parameters of toluene, o­

xylene, p-cymene chloroform etc. in non-polar solvent from -70 °C to +80 °C to predict the 

limitations of different rate processes in solutions. Jackson and Powles [1.73] estimated r of polar 

molecules in benzene and paraffin only to show their dependence on the viscosity of solvents. The 

relaxation phenomena of polar liquid molecules under rf electric field were studied by Schallamach 

[1.74] in order to facilitate the rearrangement under single relaxation process. Macke and Reuter 

[1.75] measured relative permittivities of normal alcohols and phenols in benzene, carbon 

tetrachloride and cyclohexane at different temperatures to infer the molecular associations. The 

absorption of high frequency electric energy in dipolar aliphatic chlorides and alcohols were 

performed by Kremmling [1.76]. It was found difficult to sort out the effects of molecular 

association due to H-bond formation to change the shape of molecules. Further, the internal rotation, 

multiple relaxation times etc. could, however, be predicted. 

Curties et al [1.77] observed that t's were different in different solutions of pure polar or 

polar-nonpolar liquid mixtures of almost same viscosity. Methyl and ethyl alcoholic solutions of 

electrolytes have been studied by Lane and Saxton [1.78] who clearly established that the presence 

of ions reduces the permittivities of the media more markedly than that of water. Smyth eta/ [1.79] 

made a systematic studies on relaxation phenomena of some flexible polar molecules (alkyl halides) 

in liquid state in which dipole can reorient and play a significant role in the observed relaxation 

time. Jaffe and Lemay [1.80] concluded that dielectric liquids gave conduction current under 

breakdown voltage. The presence of positive ions is noticed by Green [1.81] in dielectric liquids due 

to dissociation of impurity molecules by external cosmic rays. Poley [1.82] estimated T from 

measured e' and e" for mono substituted benzene. The increase of T occurs with molecular size. 

Miiller [1.83], however, calculated the low molecular radii in comparison to other methods. 

Dielectric measurements of relaxation parameters on pure normal propyl to decay} alcohols were 
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·carried out by Garg and Smyth [1.84] to show three different T 's which are associated with 

polymeric cluster formation by the strong H-bonding between OR-groups. The intermediate T's 

were attributed to the rotation of free aloohol molecules. 

Simultaneous determination of T and Jl of polar-nonpolar liquid miA1ures was made by 

Gopalakrishna [1.85]. The advantage of this method is to know only the density ofthe pure solvent. 

Different molecular associations in saturated dielectric liquids were studied by Schellman [1.86]. 

Srivastava and Vershri [1.87] explained the variation of&' with concentration and temperature for 

binary polar mixtures of methyl and butyl alcohols with water. 

Bergmann et al [1.88] gave a graphical method in complex plane to estimate T1 (smaller) and 

T2(larger) that interpreted the intramolecular and molecular rotations of polar molecule respectively. 

Higasi et al [1.33] analysed the experimental data of liquid n-alkyl bromide in terms of distribution 

of T 's between two limiting T values. 

The T's of alkyl cyanides and alkythiols increase with the size of the molecules as observed 

by Krishnaji and Mansingh [1.89] from the dielectric relaxation measurement. Froster [1.90] 

explained the conduction in aliphatic hydrocarbons by the presence of impurities of trace polar or 

trapped electrons at the electrode surfaces. Experimental evidences showed electronic conduction in 

unsaturated hydrocarbons. Dielectric relaxation studies of ionic solutes in non-hydroxylic solutions 

[1.91-1.92] over a wide range of frequency established the simultaneous presence of conduction and 

dipole dispersion. Sinha et al [1.93-1.94] predicted the temperature dependence ofT and Jl of polar 

molecule in non-polar solvent. The dependence of T· on T is, however predicted. Temperature 

dependence of conductivity for organic liquids were studied by Adamezewski and Jachym [1.95]. 

Jayprakash [1.96] estimated T of some spherical polar molecules in non-polar solvents in excellent 

agreement with Gopalakrishna [1.85]. Bhattacharyya et al [1.97] modified Bergmann equations 

[1.88] in order to obtain molecular and intra-molecular T2 and T1 of phenetole, aniline and 

orthochloro aniline. Non-rigid molecules having two T's and average T could, however, be obtained 

by Higasi et al [1.98] based on single frequency measurement technique. A crude estimation of -r1 

and -r2 can be had with a suitable equation derived from Debye model. 

Lohneysen and Nageral [1.99] found the existence of natural charge earners in liquids of 

two kinds of mobilities. The direct evidence of ionic conduction in polar dielectrics was found by 

Gaspared and Gosse [1.100] when the electrodes were membraned by teflon. The s' and &"of 

aliphatic alcohols in non-polar solvents at different concentrations under hf electric field were 

measured by various workers [1.101-1.103]. Other group of workers [1.104-1.113] measured 

.relative· perinittivities &~ &'~ &0 and &<e=nD
2 of some substituted toiuidines, para-compounds, 
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diphenylene oxide, chloral, ethyltrichloroacetate, trifluoroethanol, trifluoroacetic acid and a large 

number of monosubstituted and disubstituted benzenes and anilines in different non-polar solvents at 

various W/s and fc under nearly 3 em. wavelength electric field to estimate T, J.l and 

thermodynamic energy parameters. The observed results were explained in terms of molecular 

associations of the polar liquid molecules. Rajyam et al (1.114] studied the dielectric dispersion of 

glycerol and diethylene glycol under rf, mw and uhf electric fields at 80°C and confirmed the 

Davidson-Cole type of dispersion. Mulechi et a/ (1.115] observed the self association of tertiary 

butyl alcohol and developed a method for simultaneous determination of three independent values of 

free energy of self association from experimental data. 

A number of workers [1.116-1.120] estimated r from the number density 'n' of free ions, 

radius 'a' of the rotating units for some straight chain alcohols, anilines, benzyl chlorides, acetone 

under if electric field at different temperatures. rs are observed to increase as the number ofC-atom 

of dipolar molecules increases. The relaxation parameters from the if conductivity CT has been used 

to study the structure of liquids. 

Dhull, Sharma and Gill (1.121-1.125] measured c'and c"ofNMA, DMF, DMA in benzene, 

dioxane and carbon tetrachloride in order to obtain the different relaxation parameters. Acharyya 

and Chatterjee [1.126] and Acharyya eta/ [1.127] estimated r, J.l and different energy parameters 

!1 H r , !JSr and !1 F r of some interesting polar liquid· molecules in benzene and carbon tetrachloride. 

Hf conductivity u in o-1.cm -I of a polar-nonpolar concentrated liquid mixture is liable to yield J.l of 

dimer formation. Low concentration region u in n-1.cm·1 gives J.l for monomer formation. The 

estimated J.ltheo 's from the available bond angles and bond moments reveal the structural 

conformations. c' and c" of n-butyl chloride, chlorobenzene and tertiary butyl alcohol in benzene 

were measured by Agarwal [1.128] at 32°C under 9.96 GHz electric field to estimate t: It is 

observed that r is influenced by structural conformation in the following manner 'Ciinear > 'l"planer > 

!"spherical· The experimental and theoretical r 's were found in agreement in case of thiophenone, 

acetone, benzophenone and their mixture in mw electric field over a wide range of temperature as 

observed by Madan [1.129]. Vyas and Vashisth [1.130] explained the variation of tant5 (==c'1c) 

curve against weight fraction Wj of solute in case of four aliphatic alcohols, their binary mixtures 

and the mixtures of alcohols with DMF and 2-fluoroaniline in benzene under 3 em. wavelength 

electric field. The alcohols +DMF mixtures showed complex formations at a very low concentration. 

The study of alcohol+2-fluoro aniline, however, indicates dissociation effects. Gandhi and Sharma 

[ 1.131] determined 'r0 , 'rt and Tz, distribution parameters of isobutyl-methacrylate and allyl-
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methacrylate and their mixtures in benzene. The observed results reveal the existence of intra­

molecular and molecular rotations. 

Murthy et a/ [1.132] however, modified the work of Acharyya et a/ [1.126] and gave a new 

dimension in the theoretical formulation of dielectric relaxation in which simultaneous 

determination of T and JL of a polar-nonpolar liquid mixture can be obtained. Makosz [1.11] 

calculated JL of some ellipsoidal dipolar liquids in non-polar solvents at 25°C from the formula 

derived from Onsager's equation. Sharma and Sharma [1.133] and Sharma et al {1.134] measured 

&;/ and &ij" of dilute solution of DMSO and DMF+DMSO mixture in benzene and carbon 

tetrachloride in the temperature region of 25°C to 40°C under 9.17 4 GHz electric field. T, f.l, (). H, 

and !1S r of dielectric relaxation and ().. H, !1S 71 and ().. F 71 for viscous flow were obtained. 

A series of relaxation parameters were calculated by Saha and Acharyya [1.135-1.136] from 

the measured relative permittivities based on newly developed methodology. Higher and lower 

values of f.1 arise due to the monomer and dimer formations. Jltheo's from the available bond angles 

and bond moments of substituted polar groups attached to the parent molecules were estimated. The 

excellent agreement of f.ltheo's with measured hf f.1 's shed much light on the inductive, electromeric 

and mesomeric moments of polar groups. The concentration variation of the measured [1.1 08-1.112] 

&ij~ &ij'~ &oij and &ociJ = nD/ of a large number of disubstituted benzenes, anilines and 

monosubstituted anilines in benzene and carbon tetrachloride under hf electric field were analysed 

by Saha eta/ [1.137] and Sit eta/ [1.138-1.139] to estimate TJ, T2 and f.ll and f-12 due to the rotation 

of the flexible polar groups attached to the parent molecules and the whole molecules themselves. 

The dielectric relaxation phenomena of acetophenone, DMSO and their mixtures in benzene were 

done by Singh and Sharma [1.140] under 9.33 GHz electric field in the temperature range of20°C to 

40°C. Nonlinear behaviour of T reveals the presence of solute-solvent and solute-solute molecular 

associations. Jangid et a/ [1.141] made extensive study on four pure nicotinades. and their · 

quartarnary mixtures. The sufficient information about intra-molecular and inter-molecular rotations 

was obtained in terms of solute-solvent {monomer) and solute-solute (dimer) formations. 

Measurement of c~ c'~ and taflf5 of polar liquids in non-polar solvents under different GHz electric 

fieled were made by a number of workers. The results are well explained by the rotation of -OH 

group about the whole molecular rotation. The molecular shapes, sizes and structures by H-bonding, 

and various molecular associations were interpreted by the dipole-dipole interactions. 

Sengwa and Kaur [1.142] determined Kirkwood correlation factor 'g', average T0 , M',. of 

ortho-hydroxy benzaldehyde in benzene at different experimental temperatures under GHz electric 

field. Molecular associations hinder the intra-molecular rotations of -CHO and -OH groups in the 

compound to affect T. Temperature variation of dielectric relaxation of ethylene glycol-water 
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mixture was carried out by Saha and Ghosh [1.143] under 1 MHz electric field. High values of T 

were explained by the polymeric cluster formation of molecular association. Formation of H­

bonding between two polar molecules in non-polar solvent was investigated by Dash et al (1.144] in 

some alcohols. Thakur and Sharma [1.145] measured the thermodynamic energy parameters due to 

dielectric relaxation and viscous flow for acetonitrile and DMF in benzene to explain the solute­

solvent molecular association. 
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