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I N T R 0 D U C T I 0 N 

The study of wave and vibration phenomena in elastic solids 

has a distinguished history of more than hundred years. Some 

• pioneer workers in the field of .wave.propagation in elastic medium 

and vibrating bodies are Cauchy, Rayleigh, Love, Poisson, -

Ostrogadsky, Green, Lame, Stokes~ Kelvin. 

Seismology has made a tremendous progress during the last 

three decades, mainly because of the· technological developments, 

which have enabled seismologist to make measurements with far 

greater precision and sophistication than was previously possible. 

Here, some of the major progress in the field of wave 

propagation are given in chronological order. 

1678 Robert Hooke (Engl d) · an establ1shed the stress-strain 

relation. for elastic bodies. 

1821 Louis Nevier (France) derived the differential equations 
.. 

of the theory of elasticity. 

1822 Cauchy developed most of the aspects of the pure theory 

of elasticity including the dynamical equations of 

motion for a solid. 

1828 Simeo-Denis Poisson (France) predicted theoretically the 

existance of longitudinal and tranver.se elastic waves. 



1849 George Gabriel Stokes (England) conceived the first 

mathematical model of an earthquake source. 

1857 First systematic attempt to apply physical principles to 

earthquake effects by Robert Mallet (Ireland). 

1862 Clebsch found the general theory for the free vibration 

of solid bodies using normal modes. 

1872 J. Hopkinson performed the first experiments on plastic 

waves propagation in wires. 

1883 saint Venant summarized the work on impact of earlier 

investigators and presented his results on transverse 

impact. 

1883 Rosi-Forel scale for earthquake effects published. 

1885 C. Somigliana (Italy) produced formal solutions to Navier 

equations for a wide class of sources and boundary 

conditions. 

1887 Lord Rayleigh (England) predicted the existance of 

elastic surface waves. 

1899 C. G. Knott (England) derived the general equations for 

the reflection and refraction of plane seismic waves at 

pl~ne boundaries. 

1903 A. E. H. Love (England) developed the fundamental theory 

of point sources in an infinite elastic space. 

1904 Horance Lamb (England) made the first investigation of 

pulse propagation in a semi-infinite solid. 
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1911 

1949 

Love developed the theory of waves in a thin layer 

overlying a solid and showed that such waves accounted 

for certain anomalies in seismogram records. 

Devies published an extensive theoretical and 

experimental study on waves in bars. 

1959 Ari Ben-Menahem (Israel) discovered that the energy 

release in earthquakes takes place through a propagating 

rupture over the causative fault. 

1967 Global seismicity patterns and earthquake generation 

linked to plate motions. 

During the first two decades of this century the subject was 

not given so much importance by Mathematicians or Physicists. But 

later, interest in the study of waves in elastic· solids attracted 

the attention of the researchers because of applications in· the 

field of geophysics and engineering constructions. Since that time 

in seismology the wave propagation has remained an interesting area 

because of the need for details information on earthquake 

phenomena, prospecting techniques and the detection of nuclear 

explosions. Bullen [1963], Ewing et al [1957], Cagniard [1962], 

Pilant [1979] and Aki and Richards [1980] have discussed about 

seismic waves in their books. 

During last 30-40 years the development of theory of wave 

propagation in el·asticity has been characterized by a detailed 

investigation of the classical ·methods of mathematical analysis and 
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the trends to obtain specific results. The solution of many of the 

problems in elastodynamics, which are frequently encoun~ered in 

practice need advance level of mathematical technique, which may 

roughly be grouped into the f_ollowing categories: 

(a) Theory of analytic function 

(b) The Fredholm integral equation 

(c) The singular integral equation 

(d) Integral transforms and Representations 

(e) Dual integral and series equations 

(f) Harmonic function. Potential theory 

(g) The Drichlet and Neumann problems 

(h) Green's functions 

(i) The Cauchy problem 

(j) Cagniard-deHoop technique 

(k) Wiener - Hopf technique 

(1) Riemann- Hilbert problem 

(m) The method of Matched Asymptotic expansions 

(n) Perturbation technique 

(o) Variational method, The Ritz method 

(p) The method of finite element 

(q) The method of boundary element 

and others. 

While earlier investigation in the theory of elasticity was 

essentially reduced to the construction of particular solution; the 
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invention of computer technology has led to the development of 

general and quite universal methods of solving the problems of this 

theory, namely, the boundary value problems and initial boundary 

value problems for systems of differential equations having partial 

derivatives of a definite structure. 

Most of the experimental works carried out on the wave 

propagation are concerned with studying propagation in specimens of 

comparatively simple geometrical shape. The results of this 

experiment could be compared directly with exact or approximate 

theoretical predictions. The agreement, with experimental results 

and theoretical predictions, inspires confidence in taking up 

complicated problems and makes possible theoretical predictions and 

interpretations of observations. 

The propagation of waves through homogeneous isotropic elastic 

materials of unbounded extension is not a subject of very 

complexity. The waves are either dilatiational or distortional or a 

combination there of. The picture changes radically as soon as 

there is a boundary. Interaction of two types of waves occurs, when 

boundary is present and this interaction presents an inherent 

difficulty in the solution of elastodynamic problems. 

More over the effect of a free surface on the generation and 

propagation of waves in elastic medium has been the subject of many 

investigations ever since the discovery of existance of surface 

waves by LORD RAYLEIGH. 
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In general, problems which mostly attract the researchers both 

theoretical and experimental, in relation to the generation and 

propagation of waves in an elastic medium may be classified as 

follows; 

(i) diffraction of propagating waves through the medium due 

to any obstacle, cavity or a crack of any shape situated 

some where in the medium; 

(ii) reflection, refraction and diffraction of propagating 

waves due to mixed boundary conditions; 

(iii) wave motion generated due to a punch on some bounded 

region of the medium; 

(iv) radiation of waves i.e. the wave motions generated due 

to some fixed external disturbance and propagating away 

from the source of disturbance; 

(v) wave motion generated in a medium when a source of 

disturbance moves along the medium. 

Depending o~ the nature of th~ source of disturbance, shape of 

the punch or normal loading on the free surface and the presence of 

discontinuities in the medium, different complicated problems 

arise. The solution of these problems need an advance level of 

sophisticated mathematical techniques some of which have been 

mentioned earlier. 

The dynamic response of an elastic half space due to an 

external load or punch on the free surface and also the scattering 
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of elastic waves by a finite crack or a strip inside an elastic 

medium may be investigated by the use of integral transform

technique. 

The propagation of waves due to the application of loads 'at 

the boundary of a semi-infinite medium was first considered by Lamb 

[1904], who studied the axisymmetric propagation of a pulse created 

by transient normal point load on the surface of the half-space. ey 

means of Fourier Synthesis of steady state solutions, Lamb showed 

the predominant character of the Rayleigh wave response. Later, 

Sauter [195b] derived a closed form solution by means of an 

integral superposition of plane harmonic waves. Many authors have 

subsequently viewed and reviewed the problems which deal with the 

disturbance produced by a point or line source acting on the 

surface or buried in an elastic half-space by means of Laplace 

transform. Pekeris [1955] derived the exact expression for the 

vertical and horizontal components of the displacement on the 

surface of a uniform elastic half-space due to a point load with 

step function time variation, situated on the surface and also at a 

finite depth be1ow the surface. Thiruvenkatachar [1955] derived the 

exact expression for the Laplace transform of the displacement over 

a circular region which is more realistic physically. Knopoff and 

Gilbert [1959] and Lang [1961] derived the wave front approximation 

by the application of saddle point method to the Laplace 

transformed solution and limit theorems of Tauberian type. While ' 
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Cagniard [1962] developed powerful technique of finding the 

Laplace inversion for this class of problems. Mitra [1964] 

investigated this type of problem in detail, verified Pekaris's 

result and pointed out that Cagniard's method can be applied more 

widely than either Pekaris's or Chao's method. This type of problem 

was then investigated by Eason [1964, 1966], Mitra [1964]' 

Chakraborty and De [1971], Gakenheimer [1971], Ghosh [1971] and 

many others. All these are axisymmetric problems. 

Very few wave propagation problems of non-axisymmetric type 

have been solved. Chao [1960] derived the exact solution for the 

half-space problem in which the disturbance is due to a tangential 

surface point load. Pekeris and Longman [1958] investigated the 

motion of the surface of a uniform elastic half-space produced by 

the application of torque pulse at a point below the surface. Using 

a modification of Cagniard's method, Gakenheimer and Miklowitz 

[1969] analysed transient excitation of the elastic half-space by a 

point load travelling on the surface. A 11 these non-axisymmetric 

problems deal with the point load. 

For the problems dealing with the ring load we refer Maiti 

[1978]' Ghosh [1980-81] and others. Maiti [1978] treated the 

problem of asymmetric finite source, examined the effect of a 

half-space of impulsive shearing traction over a circular portion 

of the surface. The formal solution is obtained by expressing the 

displacement components in terms of scalar and vector potentials, 
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and using Laplace and double Fourier transforms. The inverse 

transforms are evaluated by modified Cagniard's techinque which 

yields the solution within and on the half-space in a closed 

integral form. Ghosh [1980-81] treated the problem of disturbance 

in an elastic semi-infinite medium due to the torsonal motion of a 

circular ring source on the free surface of homogeneous and 

inhomogeneous medium. Using Laplace transform and the Hankel 

transform and the Laplace inversion by Cagniard's method the 

integrals for displacement are evaluated numerically. 

On the other hand Pal and Ghosh [1987] considered the elliptic 

ring load propagating over the free surface of a semi-infinite 

medium. The expression for displacement at points on the free 

surface has been derived in integral form by the application of 

Cagniard-de-Hoop technique for different .values of the rate of 

increase of the major and minor axes of the elliptic ring source 

The displacement jumps across the different wave fronts have also 

been derived. A comprehensive survey of the field due to extended 

source problems has been given by Scott and Miklowitz [1964]. 

The problems relating to the propagation of elastic waves, due 

to applied boundary tractions, in semi-infinite media containing 

internal boundaries are of immense importance in seismology and 

geophysics rather than of point source problems in homogeneous 

semi-infinite medium. This type of problem was first considered by 

Johnson and Parnes [1977]. The problem, they treated, is that of a 
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semi-infinite elastic body containing a rigid lubricted inclusion 

whose axis is perpendicular to the plane surface subjected to an 

axisymmetric concentric line load applied dynamically as a step 

function in time at the plane surface. The dynamic problem was 

formulated interms of two potential functions which satisfy 

uncoupled two dimensional wave equations with coupled boundary 

conditions. Using Laplace transform, the integral solution for the 

transformed stress and displacement fields throughout the medium 

are obtained. The behaviour near the wave fronts was analyzed and 

singularities at the load were determined. 

This type of work has been treated by Pal, Ghosh and Chowdhuri 

[1985]. They solved the probl~m of SH-type of elastic wave 

propagating in the semi-infinite medium due to a ring source 

producing SH-waves in presence of circular cylindrical cavity as 

well as circular cylindrical inclusion in the semi-infinite medium. 

The diffraction of elastic waves by cracks is the most 

interesting branch of elastodynamics. Normally cracks are present 

in all structural materials, either as natural defects or as a 

result of fabrication processes. In many cases, the cracks are 

sufficiently small so that their presence does not significantly 

reduce the strength of the material. In other cases, however, the 

cracks are large enough, or they may become large enough through 

fatigue, stress corrosion cracking, etc., so that they must be 

taken into account in determining the strength. The body of 
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knowledge which has been developed for the analysis o~ stresses in 

cracked solids is known generally as fracture mechanics. In recent 

years problems of diffraction of el~stic waves by cracks are of 

considerable importance in view of their application in seismology 

and geophysics. Indeed in geophysical stratifications, faults occur 

at the interfa6es while in manufactured laminates imperfections 

occur at the interface of the adjoining layers. This stress 

singularity near the edge of finite crack at the bimaterial 

interface is important in view of its practical application. Also 

the results of research on dynamic crack propagation. are relevent 

in n~merous applications. For example, a primary objective in 

engineering structures is to avoid a running fracture, or at least 

to arrest a running crack once i~ is initiated. Indeed there are 

several kinds of large engineering structures in which rapid crack 

growth is a definite possibility. In earth science, study of the 

eiastic field near about the propagating fault is also important 

from the stand point of earthquake engineering. 

Whithin the framework of a continuum model, such as the 

homogeneous, isotropic linearly elastic continuum, the classic 

analytical problem of fracture mechanics consists of the 

computation of the fields of stress and deformation in the vicinity 

of the tip of a crack, together with the application of a fracture 

criterion. In a conventional analysis inertia (or dynamic) effects 

are n~glected and the analytical work is quasi-static in nature. 
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Because of loading conditions and material characteristics, 

however, there are many fracture mechanics problems which can not 

be viewed as being quasi-static and for which the inertia of the 

material must be taken into account. Also inertia effects become of 

importance if the propagation of the crack is so fast, as for 

example in essentially brittle fracture, that rapid motions are 

generated in the medium. The label "dynamic loading" is attached to 

the effects of inertia on fracture due to rapidly applied loads. 

There are two broad classes of fracture mechanics problems 

that have to be treated as dynamic problems. These are concerned 

with 

1. cracked bodies subjected to rapidly varying loads, 

2. bodies containing rapidly propagating cracks. 

In both the cases the crack tip is an environment disturbed: by 

wave motion. 

Impact and vibration problems fall into the first class of 

dynamic problems. In the analysis of such. problems it is often 

found that at inhomogeneities in a body the dyn~mic stresses are 

higher than the stresses computed· from the corresponding problem of 

static equilibrium. This effect occurs when a propagating 

mechanical disturbance strikes a cavity. The dynamic stress 

"overshoot" is especially pronounced if the cavity contains a sharp: 

edge. For a crack the intensity of the stress field in the vicinity 

of the crack tip can be significantly affected by dynamic effects. 
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In view of the d~namic amplification, it is conceivable that there 

are cases for which fracture at a crack tip does not occur under a 

gradually applied system of loads, but where a crack does indeed 

propagate when the same system of loads is rapidly applied, and 

gives rise to wave which strike the crack tip. 

The second class of problems is equally important. Indeed, 

there are several kinds of large engineering structure in which 

rapid crack growth is a definite possibility. Examples are gas 

transmission pipelines, ship hulls·, aircraft fuselages and nueclear 

reactor components. Dynamic effects affect the stress fields near 

rapidl.Y propagating cracks, and hence the conditions for further 

unstable crack propagation or for crack arrest. Another area to 

which the analysis of rapidly propagating cracks is relevant is the 

study of earthquake mechanisims. 

There have been a number of comprehensive review articles in 

the general area of elastodynamic fracture mechanics. some of them 

are Achenbach [1972], Freund [1975], Achenbach [1976], Freund 

[1976] and Kanninen [1978]. 

At present, dynamic fracture mechanics solutions are largely 

confined to conditions where Linear Elastic Fracture Mechanics 

(LEFM) is valid. These are appropriate when the plastic deformation 

atte~ding the crack tip is small enough to be dominated by the 

elastic field surrounding it. Problems of crack growth initiation 

under impact loads and of rapid ~nstable crack propagation and 
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arrest can be treated with LEFM by using dynamically computed 

fields of stress and deformation. Engineering structures requring 

protection against the possibility of large-scale catastropic crack 

propagation are, however, generally constructed of ductile, tough 

materials. For the initiation of crack growth, LEFM procedures can 

give only approximately correct predictions for such materials. The 

elastic-plastic treatments required to give precise results have 

not yet been developed in a completely acceptable manner, even 

under static conditions. 

The shapes of the cracks which have been studied uptil now are 

as follows : 

(i) Semi-infinite plane cracks; 

(ii) Finite Griffith cracks; 

(iii) Penny shaped and annular cracks; 

(iv) Non-planar cracks. 

A transient problem involving the sudden appearance of a 

semi-infinite crack in a stretched elastic plate was considered by 

Maue [1954]. Baker [1962] studied the problem of a semi-infinite 

crack suddenly appearing and growing at constant velocity in a 

stretched elastic body. The mixed boundary value problem is solved 

by transform methods including the Weiner-Hopf and Cagniard 

techniques. Atkinson and List [1978] considered the ·steady state 

semi-infinite crack propagation into media with spatially varying 

elastic properties. The quasi-static problem of an infinite elastic 
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medium weakened by an infinite number of semi-infinite, 

rectilinear, parallel and equally spaced cracks which are 

subjected to identical loads satisfying the conditions of amtiplane 

state of strain was solved by Matczynski [1973]. Sarkar, Ghosh and 

Mandal [1991] studieq the problem of scattering of horizontally 
.. 

polarized shear wave by a semi-infinite crack running with uniform 

velocity along the interface of two dissimilar semi-infinite 

elastic media. 

The powerful technique to solve the diffraction problem of 

semi-infinite crack is the Wiener-Hopf [Noble 1958] technique. 

The in-plane problem of finite Griffith crack propagating at a 

constant velocity under a uniform load was first solved by Yoffe 

[1951]. Sih [1968] has also provided a Riemann-Hilbert formulation 

of the same problem where both in-plane extensional and antiplane 

shear loads were considered. 

Other references treating elastodynamic problem involving a 

single finite Griffith crack are Loeber and Sih [1967]. Ang and 

Knopoff [1964]. Mal [1970, 1972], Chang [1971], Kassir and 

Bandyopadhyay [1983], Kassir and Tse [1983]. Loeber and Sih [1967] 

solved the problem of diffraction of antiplane shear waves by a r 

finite crack· by using integral transform method. Kassir and 

Bondyopadhyay [1983] considered the problem of impact response of a 

cracked orthotropic medium. Laplace and Fourier transforms were 

employed to reduce the transient problem to the solution of 
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standard integral equation in the Laplace transform plane and was 

solved by Laplace inversion technique [Krylov et al, 1957]; Miller 

and Guy [1966]. 

The problems of finite Griffith crack lying at the interface 

of two dissimilar elastic media have bean studied by Srivastav~, 

Palaiya and Karaulia [1980], Nishida, Shindo and Atsumi [1984] and 

Bostrom [1987]. Bostrom [1987] used the method of Krenk and Schmidt 

[1982] to solve the two-dimensional scalar problem of scattering of 

elastic waves under antiplane strain from an interface crack 

between two elastic half-spaces. Sih and Chen [1980] analyzed the 

dynamic response of a layered composite containing a Griffith crack 

under normal and shear impact. 

The problems of diffraction of elastic waves become more 

complicated when boundaries are present in the medium. Chen [1978] 

considered the problem of dynamic response of a central crack in a 

finite elastic strip. The crack was assumed to appear suddenly when 

the strip is being stretched at its two ends. The problem was 

solved by Laplace and Fourier transform technique. Some other 

references are Srivastava, Gupta and Palaiya [1981], Srivastava, 

Palaiya and Karaulia [1983], Shindo, Nozaki and Higaki [1986], De 

and Patra [1990]. 

High frequency solution of the diffraction of elastic waves by 

a crack of finite size is interesting in view of the fact that 

transient solution close to the wave front can be represented by an 
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integral of the high frequency componant of the solution. Green's 

function method together with a function-~heoretic technique based 

upon an extended Wiener-Hopf argument has been developed by ·Keogh 

[1985 a, 1985 b] for solving the problem of high frequency 

scattering of elastic waves by a Griffith crack situated in an 

infinite homogeneous elastic medium. Pal and Ghosh '[1990] 

considered the problem of diffraction of normally incident 

antiplane shear waves by a crack of finite length situated at the 

interface of two bonded dissimilar elastic half-spaces. The problem 

is reduced to the solution of a Wiener-Hopf problem. The 

expressions for the stress intensity factor and the crack opening 

displacement have been derived for the case of wave-lengths short 

compared to the length of the crack. Recently Pal and Ghosh [1993) 

have investigated the high frequency solution of the problem of 

diffraction of horitontally polarized shear waves by~ finite crack 

moving on a bimaterial interface. Following the method of Chang 

[1971], the problem has been formulated as an extended Wiener-Hopf 

equation and the asymptotic soluiions for high frequencies or for 

wave lengths which are short compared to the length of the crack 

have been derived. Expressions for the dynamic stress intensity 

factor at the crack tip and the crack opening displacement have 

been derived. 

Vibratory motion of a body on an elastic half~plane was 

treated by Karasudhi, Keer and Lee [1968]. They considered the 

·1 7 
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vertical, horizontal and rocking vibrations of a body on the 

surface of an otherwise unloaded half-plane. The problem was 

formulated so that shearing stress vanishes over the entire 

surface, and an oscillating displacement is prescribed in the 

loaded region. The problems were mixed with respect to the 

prescribed displacement and the remaining stress. Each case led to 

a mixed boundary value problem represented by dual integral 

equations which were reduced to a single Fredholm 

equation. 

integral 

Wickham [1977] studied the problem of the forced two 

dimensional oscillations of a rigid strip in smooth contact with a 

semi-infinite elastic solid. He reduced the mixed boundary value 

problem with the help of Green's function to Fredholm integral 

equation of the first kind involving displacement boundary 

conditions. Using Noble's [1962] method, this equation was reduced 

to Fredholm integral equation of the second kind with a kernel 

which was small in the low frequency limit. Then applying the 

method of iteration, a simple explicit long-wave asymptotic formula 

for the normal stress in terms of the prescribed displacement and. 

dimensionless wave number K was rigorously der{ved. 

Rocking motion of, a rigid strip on a semi-infinite elastic 

medium has been studied by Ghosh and Ghosh [1985] by using a 

different technique. The forced rocking of the strip about the 

horizontal axis has been reduced to a solution of a dual integral 
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' 
equation. Following Tranter's [1968] method the dual integral 

equation was solved for low frequency oscillations by reducing the 

equation to a system of linear algebraic equations. 

Studies of single Griffith crack as well as two parallel and 

coplanar Griffith cracks have been made by Mal [1970], Jain and 

Kanwal [1972] and Itou [1978, 1980 a, 1980 b]. The coresponding 

problems of diffraction by a single and two parallel rigid strips 

have been solved by Wickham [1977], Jain and Kanwal [1972] and 

Mandal and Ghosh [1992] respectively. And three dimensional problem 

of moving crack was considered by Itou [1979]. In most of the cases 

the problems were solved by integral equation technique. 

The problem involving single Griffith crack in orthotropic 

medium was investigated by Kassir and Bandopadhyay [1983], Shindo 

et al [1986] and De and Patr~ [1990]. Sindo et al [1991] have 

investigated the impact response of symmetric edge cracks in an 

orthotropic strip. Mandal and Ghosh [1994] considered the problem 

of interaction of elastic waves with a periodic array of coplanar 

Griffith cracks in an orthotropic elastic medium. 

Recently Mandal, Pal and Ghosh [1996 a] considered the 

two-dimensional problems of diffraction of elastic waves by four 

coplanar parallel rigid strips embedded in an infinite orthotropic 

medium. The five part mixed boundary value problem is reduced to 

the solution of a set of integral equations. The normal stress 

under the strips and displacement out side the strips were derived 
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in close analytical form. In another paper, Mandal, Pal and Ghosh 

[1996 b] considered the vertical vibration of four rigid strips in 

smooth contact with a semi-infinite elastic medium. The resulting 

mixed boundary value problem has been reduced to the solution of 

quadruple integral equations, which have further been reduced to 

the solution of a integra-differential equations. An iterative 

solution valid fot- low frequency has been obtained. From the 

solution, the stress just below the strips and. also the vertical 

displacement at points outside the trips on the free surface have 

been found. 

In case of low frequency oscillations Noble's [1963] method of 

solving- dual integral equations, Tranter's [1968] technique for· 

solving dual integral equations, Matched Asymptotic Expansion, and 

variational principle are found to be very useful techniques. · 

Different techniques have been applied by many authors to 

tackle these type of crack problems. From these stand point, these 

problems may be divided into two categories : one for low frequency 

oscillation of the source or long wave scatt~ring or transmission 

and the other for high frequency oscillation or short wave 

scattering or transmission in the medium. The term long and short 

are used in comparison to the regibn of the source of. distrubance 

or the size of the crack or strip etc. inside the medium to the 

wave length of disturbance. The useful techniques for low frequency 

scattering are due to Noble [1963] and Tranter [1968]. In case of 
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high frequency oscillations Wiener-Hopf [Noble, 1958] technique and 

Kel1er's [1958] geometrical theory are found to be most suitable. 

Here we briefly discuss some of the useful methods. 

GREEN'S FUNCTIONS : 

The general· theory of linear equations suggests two methods 

which can be used to solve the equation of the type 

Lu = f ( 1 ) 

where L is an ordinary linear· differential operator, f a known 

function, and u the unknown function. 

One method-~s to find the operator inverse to L, that is, to 

' -1 -1 
find an operator L such that the product L L is the identity 

operator. We shall find.that the inverse of a differential operator 

is an integral operator. The kernel of that i-ntegral operator will 

be called the Green's function of the differential operator. The 

techniques which we shall provide for finding the Green's function 

use a tool which has proved valuable in many branches of applied 

mathematics, namely, the Dirac 6-function. 

Inverse of a differential operator can be obtained, following 

Friedman [1966], Roach [1982], as follows: 
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Suppose that ~~ and ¢ are testing functions and consider the 

equation 

Up = q_, ( 2 ) 

Here we assume that the inverse operator L 
-J. 

is an integral 

operator with some kernel G(x,t) such that 

(3) 

Now we permit G(x,t) to be symbolic function. Applying the 

differential operator L to both sides of this equation, we get 

(4) 

This equation will be satisfied if we find g such that 

LG = 6 ( x-t), ( 5 ) 

where the differentiation is to be understood as symbolic 

differentiation. 

To illustrate the method of inverting an operator, we consider 

the special case when 

L = 
2 

dx 

then (5) becomes 
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? 
G(x,t) = 6(x-t) (6) 

dx~ 

This equation can be solved by straightforward integration and 

using the fact that the &-function is the derivative of the 

Heaviside unit function and we get 

d 
G(x,t) = H(x-t) + a(t) ( 7 ) 

dx 

where a(t) is an arbitrary function. 

Integrating again, we get 

G(x,t) = I H(x-t)dt + xa(t) + f(t) 

' = (x-t)H(x-t) + xa(t) + f(t), (8) 

where f(t) is another arbitrary function. It can be proved that any 

symbolic function which is a solUtion of (6) may be written in the 

form (8). Note that G(x,t) is a continuous, piecewis~, 

differentiable function, and note also that if f(x) is an 

integrable function which vanishes outside a finite interval, then 

it is easy to show that the function 

u(x) = I G(x,t) f(t) dt (9) 

satisfies the differential equation 
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. ., = f(x) (10)' 
dx ... 

By the suitable choice of the function a(t) and f(t) we can in 

general find a solution of (10) which satisfies two conditions. 

Thus, to find a solution of (10) which satisfies the conditions 
... 

u(O) = u(1) = 0, we proceed as follows : 

From (9) we have 

X 00 

u(x) = J (x-t) f(t) dt + x J ~(t) f(t) dt + 

- tt) 

U) 

+ f iH t) f C t) dt. · 
, 
-((1 

Substituting x = 0 and x = in ( 11 ) we get 

0 (.Q 

o = - J t f(t) dt + o + J ~(t) f(t) dt 

1 

0 = J 
-00 

-U) -00 

00 

(1-tY f(t) dt + J. a(t) f(t) dt + 

-00 

(.() 

+ J ~(t) f(t) dt. 

-((1 

24 

. 
( 1 1 ) 

( 1 2) 

( 1 3 ) 



From equation (12) we get 

OCt) = t H(-t)' 

and then from (13) we obtain 

~(t) =- 1 + t H(t), -((! ~ t < 

= 0 ' for all other values oft. 

Substituting (14) arid (15) in (9) we get 

X 

u (X·) = I 
0 

1 

(x-t) f(t) dt - x I 
0 

(1-t) f(t) dt. 

So, in this case the kernel ( Green's function ) 

G(x,t) = (x-t) H(x-t) - x (1-t), 0 < X, t < 

also satisfies the boundary conditions 

G(O,t) = G(1,t) = 0 

( 14) 

( 1 5 ) 

( 16) 

( 1 7) 

( 18) 

The Other Method is to find the spectral representation of L 

by studing the solution of the equation 

Lu :: A.u, ( 19 ,) 

where \ is an arbitrary constant. 

Let L be an ordinary self-adjoint differential operator and 

suppose that u ' :1. u ' 2 
... are its eigenfunctions and\,\, 

:1 2 
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corresponding eigenvalues. We shall also suppose that the 

eigenfunctions span the domain of the given operator, and that, in 

consequence, any square integrable function u(x) may be expanded as 

where 

u(x) 

t."'4. = 
k 

='c~.u(x), L 1t 1t 

U. , U ). · 
k 

Now, it follows that 

Lu(x) = 2 c.x ).._ u (x) 
k ·k k 

(20) 

( 21 ) 

(22) 

and if f(x) denotes a function which is analytic in a region 

containing the eigenvalues, we define 

For the particular case when 

f(t) = (A - t)-1 we obtain 

C.~L }u(x) = I a u (x) 
k k 

.>-. - \ 
k 

(23) 

(24) 

The left hand side of (24) can be expressed in terms of the Green's 

function for the differential operator L-A. Therefore, we put 

w(x) 
-1 

=(f..-L) u(x); 

and we have ( L - A )w = - u. 
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If G(x,(,~) is the Green's function for the operator L-~, we have 

w(x) = - I G(x,CAl u(OdC (25) 

and consequently, 

[ 

1 

) u ( X ) = - I G ( X ' ( J, ) u ( ( ) d( 
~ - L 

(26) 

Now, integrating (24) over a large circle of radius R in the 

complex ~-plane, we get 

1 r u(x) 
~ 

1 

J 
c.1 u (x) 

d\ k k d;\ (27) J = .. 
2'IT i A. - L L 2'IT i ! .... - /... 

).; 

Now, as the radius of the circle approaches infinity, the 

right-hand side of (27) includes more and more residues, and we 

obtain, bearing in mind that necessarily u is also a function of~. 

Lt 
R --tOO 2'IT i 

~ 

\ ot u {x) = - u(x) . L k k 

This result, which connects the Green's function 

(28) 

with the 

eigenfunctions, was.obtained, by making a great many assumptions, 

such as that the eigenfunctions ·were known and that they were 

complete. In practice, we try to _work it backwards. We start with a 

knowledge of the Green's function G(x,(;A) for the operator L-A; 
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then we consider the following integral in the complex \-plane; 

-
1
- I d;\ IG ( X I ( ; \ ) u u: ) d( , 

2i'I i . 
(29) 

and then, by evaluating it in terms of residues, we hope to get 

(28), that is, an expansion of u(x) in terms of the eigenfunctions 

of L. 

CAGNIARD-DEHOOP TRANSFORMATION : 

Following Pilant [1979] Cagniard-deHoop technique can better 

be · explined taking an example. We find a solution of the 

inhomogeneous scalar wave equation 

2 a2, 02¢, a rt~ fj.! .,.. 
+ ·- - 2110 (X )0 ( Z )o ( t) 

ax 2 az 2 v2 at2 

c5 ( r )6 ( t) 

= (30) 

r 

Taking a Laplace transform with respect to time, we get 

iJ2if; 2- 2 
i} ¢> s 

+ ¢ = - 2 no (X )6 ( z) I 

ax 2 az 2 v2 
( 31) 

L1) 

where I 
-st 

= ¢(x,z,t) e dt. (32) 

0 
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In order to simplify what· is to come, we shall take a slightly 

modified Fourier transform with respect to x, i.e., 

= 

= J 
-isqx/v 

¢(x,z,s) e dx (33) ¢ (q,z,s) 

-U) 

with the inverse 

(.() 

isox/v 1 

J 
= 

' ¢1(q,z,s) d(sq/v). cp = e 
2•rT 

" 

(34) 

-co 

This gives 

= = = 
2 

¢ a2 ¢ .I a 2 2 
¢ 2rr6 ( z) - (sq/v) + z - (·s/v) = - (35) 

Finally, taking a two-sided Laplace transform with respect to z, we 

have 

(tl 

-

J 
= -pz 

where ¢1 = ¢'(q,z,s) e dz 
2-rr - (() 

Inverting with respect to p, we have 

2 1/2 = -(s/v)(q +1) jzj 
¢ = ( rrv I s ) e 

29 

-1/2 
2 

( q + 1 ) 

(36) 

(37) 



. Inverting with respect to q, we obtain 

(.{.I 2 1/2 I I -(s/v)(q +1) 1 z 
dJ(x·z s) 
' ' ' = I e 

2 
-(.() 

-1/2 
2 

( q + 1 ) e 
i sqx';v 

dq 

(38) 

The expression (38) is just the integral representation of the 

Macdonald function K
0

(sr/v). 

Cagnia~d-deHoop transformation invol~es the following change 

of variable 

. 2 1/2 
easEl ( q +1 ) iq sine = T = vt/r, (39) 

where r case = z, r sin8 = x, and T is the reduced time variable as 

shown in Fig. 1. Note that r-e system is not standard cylindrical 

co-ordinates. The inverse of this transformation is 

q(T) 

Therefore 

dq 

d'r 

2 1/2 
=iT sin$+ cos$ (T -1) 

r case 
= i si n8 + 

( 2 ) 1 /2 Q +1 

(40) 

(41) 

The last expression comes from .solving for (q2+1) 112 from 

(39) while substituting (40) for q. Taking account of the symmetry 
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---------

Fig. 1. Two dimensional co-ordinate systems. 
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of the real and imaginary parts of exp(isqx/v), we can write (38) 

as 

2 1/2 + isqx/v co -(s/v)(q +1) !zl 

Re[ I 
e 

dq J ¢· :: (42) 

2 ) 1 /2 
0 

( q + 1 

we can now wr~ite this using (41 ). in terms of the new vari.able .. T .. 

and obtain 

? -st 

[ I 
e 

¢ (x,z,s) = Re 
,., 1/2 

(q£.+1) 
? 

dt ] (43) 
dq v 

dt r 

? -st 

[ I 
e 

:: Re 
2"• 1/2 

? 
("r -1 ) 

dt ] v 

r 

Equation (43) can now be recognized as the Laplace transform of the 

function 

2 1/2 
(T -1 ) 

v 

J r 

looked at as a function of the time variable "T". However, we have 

to look at a few details before we can say that this identification 

is valid and place proper limits on the integral. First of all, we 

want to look at the path q takes as we let the variable r run from 
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0 to oo . For r = 0 , we have that q = - case where the sign has 

been choosen in (40) to satisfy (39). The variable q then moves up 

the imaginary axis to q = i sin8, and then branches out into the 

first quadrant along a hyperbola as defined by (40) and along an 

asymptote at an angle 8 as 'in Fig. 2(a). Inasmuch as the 

singularities of (42) are branch.points at q = ± i, we see that the 

original path can be deformed into the dashed line path as in 

Fig. 2(b). However, on the vertical segment from 0 to isin8 we see 

that the integrand of (42) has no real part. Consequently the 

limits on (43) may be written 

co 

[ 
-st 

l I 
e v 

q_,(x z s) = Re 
( 2 ) 1 /2 

dt I . I I 

r -1 r J 

(44) 

r/v 

By inspection we have 

¢ = H ( t- r/v ), (45) 

where H is the Heaviside Unit Step F~nction defined by 

H (X) = 1, X > 0 

= 1/2' X = 0 

= 0, X < 0 (46) 

There is a sharp wavefront associated with the response to a 

delta-function source, but in two dimensions we also have a tail ... 
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1:" ~ 1 
q l. ne 

't:::O 
q=-i Cose 

( a ) , 

Origiral Path 

q -plane 

Fig. 2(a). The relationship between the original path of 

integratio~ in (42) and the path which q 

takes as I varies between zero and infinity. 

(]) 
'
Q) 

.J::. 

i: 

8. 
0 
Q) 
'-

0 
c 

(b) 

. Original Path 

q- plane 

Fig. 2(b) The relationship between the original path and 

the deformed path ( Cagniard Path ) in the 

complex q-plane. 
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associated with the waveform in contrast to the delta-function 

which has zero width. 

INTEGRAL TRANSFORM TECHNIQUE : 

As the equations of motion in the theory of elasticity are 

partial differential equations which may be discussed with 

reference either to Helmholtz equation 6r to Laplace's equation_, 

the method of integral transform is one of the most effective 

methods for solving such equati~n~ as application of this method to 

such equations results in the 16wering of the dimension of an 

equation by one. There are several forms of integral transform ahd 

the choice of an integral transform depends on the structure of the 

equation and the geometry of the domain. 

The integral transform f(a) of a function f(x) defined on an 

interval (a,w) is ~n expression of the form 

00 

~(a) =·J f(x) K(x,a) dx 

a 

(47) 

where a is a real number and a is ·a comple~ parameter varying over 

some region D of the complex plane. K(x,a) is called the kernel of 

the transformation. The transformation (47) becomes. particularly 

useful if it possesses inverse mapping. In that case one can 

express f(x) in terms of its integr~l transform by 
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f (X) = 2'TT i f(o.) M(x,cx) dcx (48) 

where M(x,a) is a suitable function defined in a < x < oo ~nd a e D 

and is called the kernel of the inverse transform, which is defined 

for all X in the interval (a,oo). The complex f is a suitable path 

of .integration in D. After reducing the governing partial 

differential equation, the reduced problem can be solved for f(a.). 

The solution of the original equation can be expressed in terms .of 

the inverse integral, which may then be evaluated. The inversion 

from the transformed space to the space of actual:variables usually 

involved very complicated integrations. In many cases even the 

numerical integration can not be performed successfully because of 

the highly oscillatory character of the integrands ( tCf. Eringen 

and Suh~bi [1975], chap.7; Achenbach [1975], chap.7 ) . In 

particular, mixed boundary value pr.oblems like the dynamic response 

of a punch on an elastic half-space and the problem involving the 

presence of a crack or a strip inside an elastic medium may be 

reduced to Fredholm integral equation of first kind or to dual 

integral equations. 
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HILBERT TRANSFORM TECHNIQUE : 

If P(yt E L
2
(a,b), then the equation 

b 

I h(x) 
dx = n P(y), y E (a,b) 

x-y 
a 

has the solution 

h(x) 

b 

J
" r b-y ... 1 1 2 p c y ) 

l y-a J · x-y 
a 

dy + 

(49) 

c 
(50) 

~ (x-a)(b-x) 

where C is an arbitrary constant, and the first term belongs to the 

class L
2

(a,b). 

Using the above theorem, we find that the solution to the 

integral equation 

b 2 

I 
2xh(x ) 

dx = nP(y), ·Y E (a, b) (51 ) 
2 2 

a 
X -y 

(provided that P satisfies the conditions of the above theorem) is 

given by 

.... ,., 1/2 b 2 2 1/2 c.. c.. 
2yP(y) 

h(x 2 ) ( 
x -a 

) I ( 
b -y 

) = "dy + 
2 2 2 2 2 2 

T[ b -x Y -a X -y 
a 

c 
+ 

~ 2 2 2 2 ( x -a )( b -x ) 

where C is an arbitrary constant. 
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THE WIENER-HOPF TECHNIQUE : 

Let a function ¢(z) analytic in the interval y < Im ~ < y+ be 

defined in the plane of a complex variable z. It is required to 

express ¢(z) in the form 

(52) 

where ¢+(z) and ¢_(z) are functions analytic in the half-plane Im z 

> y and the half-plane Im z < y+ respectively. The problem is 

called factorization problem. In a more general case, it is 

required to define two functions ¢+(z) and p_(z) which are analytic 

in the same half-planes respectively and which satisfy the 

following relation in the interval 

A(z)¢+(z) + B(z)¢ (z) + C(z) = 0 (53) 

where A(z), B(.z) and C(z) are given analytic functions in the 

interval. It is obvious that if C(z) = 0, we obtain the 

representation (52) after the corresponding changes in the 
.<: 

notation. 

Let us assume that the function ¢(z) which is to be factorised 

does not have any zeros in the interval y < Im z < y and tends to 
+· 

infinity as x ---H"O • In this case, neither of the functions dJ (z) 
'+ 

and ¢_(z) will have any zero, and we can take the logarithm of both 
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sides of the relation (52) 

log ¢(z) = log ¢+(z) + log ¢ (z) (54) 

The function F(z) = log ¢(z) satisfies the condition 

-P I F(x+iy) I < C lxl , ( P > 0 for x ~ oo ) (55) 

and hence the relation (54) can always be solved with the help of 

the transformation 

F(z) = F (z) + + F ( z ) (56) 

Finally, we get 

F ( z) F+(z) 
rj.) ( z) 

+ 
¢ ( z )¢1 ( z) = e e = 

+ -
(57) 

If the function ¢(z) has zeros in the intervals we must consider 

new function 

2 2 N/2 
(z +b) d>(z) 

'+; (z) = 
1 N 

1 

n 
i = 1 

a. 
1 

z - z.) 
1 

(58) 

a 

where z. and a. are the zeros, their multiplicity in the interval 
1 1 

N1 ~ N, where N is the total number of zeros, b > (y+' y ). The 

factor in the numerator of (58) ensures that the properties of 

auxiliary functions are conserved at infinity. 

Let us now consider the relation (53) and carry out its 
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factorisation into L+ and 1/L for the same interval of the rat~o 

A/B. The re1ation (53) can be represented in 'the form 

L+(z)¢+(z) + L (z)¢ (z) + L (z)C(z)/B(z) = 0 (59) 

The expression L (z)C(z)/B(z) can ibe represented in the 

following form in acco~dance with (56) 

E (z) + E (z) 
+ 

where ¢+(z) and ¢_(z) are functions analytic in the half-plane 

y > y and the half-plane y < y 
+ 

account, we get 

respectively. Taking this 

L (z)6 (z) + E (z) = - L (z)6 (z) - E (z) 
+ ' + + ' 

into 

(60) 

It follows from the generalized Liouville's theorem that the· 

left as well as right hand side of (60) represents the same 

polynomial P (z) of nth degree. 
n 

Wiener-Hopf technique and different other techniques. for 

solving partial differential equation arising in Solid Mechanics 

have been elaborately discussed by Duffy [1994] in his book. 

The thesis presented here consists of some boundary value 

problems in elastodynamics involving wave propagation due to some 

finite source or cracks. The wor.k has been presented in three 

chapters. The first chapter deals with problems on moving source on 
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the free surface. 

The problems on scattering of waves by mov1ng interface crack 

have been presented in the secon~ chapter. 

The third chapter deals with the diffraction probl~ms in 

elastic medium. 

The summary of the thesis is presented here chapter wise. 

The first problem of chapter-1 ·has been formulated ,as follows: 

We have considered the problem of the SH-type of elastic wave 

propagation in ~he semi-infinite medium due to a ring source 

producing SH-waves in the presence of a circular cylindrical cavity 

and the problem of SH-wave propagation in the presence of rigid 

circular cylindrical inclusion in the semi-infinite medium due a 

ring source. 

An integral representation of the Dirac delta function 

required for solving the above axisymmetric boundary value problem 

has been derived first. 

In the second problem of chapter-1, an elliptic ring load 

emanating from the ori~in of co-ordinates at t = o is assumed to 

expand on the free-surface of an elastic h~lf-space. The 
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displacement at points on the f~ee-surface has been de~ived in 

integral form by Cagniard-De Hoop technique. Displacement jumps 

across different wave fronts have also been derived. 

In chapter-2, the problem of diffraction of normally inciderit 

antiplane shear wave by a crack of finite length situated at· the . . 

interface of two bonded dissimilar elastic half-spaces has been 

considered in the first problem. The problem is reduced to the 

solution of a Wiener-Hopf equation. The expressions for the stress 

intensity factor (SIF) and the crack opening displacement have been 

derived for the case of wave length short compared to the length of 

the crack. The numerical results for two different pairs of samples 

have been presented graphically. 

In the second problem of this chapter, the diffraction of 

horizontally polarized shear waves by a finite crack moving on a 

bimaterial interface is studied. In order to obtain a high 

frequency solution, the problem is formulated as an extended 

Wiener-Hopf problem. The expressions for the dynamic stress 

intansity ·factor at the crack ·tip and the crack opening 

displacement are derived for the case of wave length& which are 

short compared to the length of the crack. The dynamic stress 

intensity factor for high frequencies is illustrated graphically 

for two pairs of different types of material for different crack 

velocities and angles of incidence. 
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In chapter-3, first paper deals ·with the problem of two 

dimansional oscillations of four rigid strips, situated on a 

homogeneous isotropic semi-infinite elasitic solid and forced by a 

specified normal component of the displacement. The mixed boundary 

value problem of determining the unknown stress disiribution just 

below the strips and vertical displacement outside the strips has 

been converted to the determination of the solution of quadruple 

integral equations by the use of Fourier transform. An iterative 

solution of these integral equations valid for low frequency has 

been found by the application of the finite H~lbert transform. The 

normal stress just below the strips and the vertical displacement 

away from the strips have been obtained. Finally graphs are 

presented which illustrate the salient features of the displacement 

and stress intensity factors at the edges of the strips. 

The last problem of this ~hapter deals with the elastodynamic 

response of four coplanar rigid strips embedded in an infinite 

orthotropic medium due to elastic waves incident normally on the 

strips. The resulting mixed boundary value problem has been solved 

by Integral Equation method. The normal stress and the. vertical 

displacement have been derived in closed analytic form .. Numerical 

values of stress intensity factors at the edges of the strips and 

the vertical displacement at points in the plane of the strips .for 

several orthotropic materials have been calculated and plotted 

graphically. 
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With this much of introduction, we now present the thesis 

chapterwise. References given in the thesis do not include all the 

previous workers in this line. But attempt has been made to include 

most of them. 
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Paper - 1 . 

Paper - 2. 

C H A P T E R I 

RING SOURCE PROBLEMS 

Spectral representation of a certain 

class of self-adjoint differential 

operators and its application to 

axisymmetric boundary value problems 

in elastodynamics. 

Waves in a semi-infinite elastic 

medium due an expanding elliptic ring 

source on the free surface. 
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SPECTRAL REPRESENTATION OF A CERTAIN CLASS OF SELF-ADJOINT 

DIFFERENTIAL OPERATORS AND ITS APPLICATION TO AXISYMMETRIC 

BOUNDARY VALUE PROBLEMS IN ELASTODYNAMICS 

1. INTRODUCTION 

In this work an inategral representation of the Dirac delta 

function required for solving the axisymmetric boundary value 

problem has been derived first. This representation is particularly 

suitable for problems where mixed boundary conditions are 

encountered. Following Friedmann [1966], by contour integration of 

a suitable Green's function, integral representation of 6(R - R ) 
0 

(R,R > 1) has been derived. This representation has been used to 
0 

solve a particular type of axisymmetric problem in elastodynamics. 

The problem treated is that of a semi-infinite elastic body 

containing a circular cylindrical cavity, whose axis is 

perpendicular to the plane surface. The semi-infinite medium is 

subjected to an axisymmetric concentric torque applied dynamically 

as a step function in time at the plane surface. 

At first Lamb [1904] investigated the classical normal loading 

problem of an elastic half-space. Similar type of problem was 

PUBLISHED IN "JOURNAL OF TECHNICAL PHYSICS" V26, :1, PP97-:1:15, :1995. 
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investigated by Eason [1964], Mitra [1964], Chakraborty and De 

[1971] and many others. They are all point source problems in a~ 

homogeneous semi-infinite medium. 

The propagation of elastic waves, due to applied boundary 

tractions, in semi-infinite media containing internal boundaries 

has as yet n6t been studied to any large extent. 

An earlier and comprehensive survey of the field is given by 

Scott and Miklowitz [1964]. Recenuly this type of work has been 

done by Johnson arid Parnes [1977]. 

We have solved the problem of· the SH-type of elastic wave 

propagation in the semi-infinite medium due to a ring source 

producing SH-waves in the presenqe of a circular cylindrical cavity 

(case 1). The problem of SH-wave propagation in the presence of 

rigid circular cylindrical incluiion in the semi-infinite medium 

due to the ring source has also been treated in the case 2. 

2. INTEGRAL REPRESENTATION OF A DIRAC DELTA FUNCTION 

Consider the operator L with ~ as a complex parameter, where 

L - ~r ( r ~r J + A.r r 
(1) 
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whose domain, D, is the set of all twice-differentiable functions 

u(r), a< r < oo such that 

( i ) 
du 

r dr - u = 0 at r = a > o 

(ii) the behaviour of u as r ~ oo is that of an outgoing wave. 

The solutions of LG = 0 which satisfy (i) are 
1 

a<r<r , 
f) 

Where A is an arbitrary constant and J and Y are the 
1 n n 

functions of the first and second kind, respectively. 

( 2 ) 

Bessel 

Again the function G which will 
2 

satisfy LG 
z = o and the 

condition (ii) can be written as 

( a< r < r < oo ), 
f) 

H
( 1) 

where A is an arbitrary constant and is 
Z n 

the Hankel 

of the first kind of order n. 

(3) 

function 

From Eqs. (2) and (3) the Green's function G satisfying the 

equation LG =- o(r- r ) and the conditions (i) and (ii) mentioned 
0 

above is given by (e.f. Friedmann [1966]) 
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G(r,r ;/c) = 
0 

rrH<
1

> ( -IAr )[ · 
= _, 1 

.. 
0 

J (fi-. r) y (f.;.._ a) - Y (-IJ.. r) J (fi-. a) 
\11 ( " ) 1 2 1 2 2H 7Aa . 
2 . 

( 

2H fAa ( 1) ( ) 

2 . 

Now consider 

G ( r, r ; i\) rdi\, 
0 

o < argi\ < 2n • 

., 

J
H(r -r) 

" 0 

(4) 

( 5 ) 

where the contour of integration in the i\-p1ane is shown in Fig. 1. 

Since G has a branch point at A = 0, we introduce a branch cut in 

the comp 1 ex \.-p 1 ane a 1 ong the positive rea 1 axis and the·n take the 

contour as a large circie of radi.us R
2

, having the centre at:;.._= 0, 
1 

not crossing the branch cut. In terms of Hankel functions Eq. (4) 

can be written as 

IT [ < 1> ( ) ( 1i ( ) + -
4

. H_ ff..r_ H fi· .. r 
1 1 · U· 1 · 

H~ 2 
> (fAa) 

H< u (fAa ) 
2 . . 

( 2) . . 
H (-{J·,a) 

2 " 

+ 

( 6) 
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F1u. l. Circular contour of integration AJJA' in the A-plane. 
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For 1 arge J z I , the asymptotic behaviour of Hl~•i> ( z) 

(Lebedev [1965]) 

H< 11 ( z) 
n 

H < .2i ( z) 
n 

nn 
2 

nn 
2 

·~ )] . 

( 7 ) 

. Thus, for large values of jl,j, from the relations (7) we obtain 

( .., \ 

H'""' (1~\a ) 
H <:iJ (·-{,-.... r J. H di (-{,\ r J. -

2
----

:1 0 :1 \, { :1 } -" ) 
H ( rA.a 2 . 

H w ('f,\ r . ). H ( Z> ('fA. r . ) . 
. :1 u 1 

{ 1} . . ( ..,, . . 
H (i:t.... r J H ""' (-!A. r J 

:1 :1 0 

? 

2 

rr~/"rr 
0 

2 

2 
if;\ (r - r 

0 

( 8) 

are 

If we put /-... = · k ... , then the c i rc 1 e in the /·,-p 1 ane becomes a 

semi-circular arc C of radius R in the upper half of the k-plane 
:1 

(shown in Fig.2.) Consequently, for large values of R the integral 
1 
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lm I< 

E 

Fig. 2. OED'- the semi-circular path of integration c 

in the K-plane. 
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(5) can be written as 

·-
1 Jr J[exp{ik(r- r)}H(r...: r) + exp{ik(r-r )}H(r-r )J.,dk-

2rr r o o o o 
0 

c 

lr 
2rr S ~-r 

0 
c 

R 
1 

exp{ik(r + r - 2a)}dk 
0 

& = I exp(ikl r-r
0

J )dk + 
2"/T 

0 
-R 

1 

R 

~ 
1 

+ I exp {ik(r + r -2a) }dk 2•rT 0 " 0 
-R 

:1 

~ 
s i nR ( r-r ) 

~ j ~ 
sinR ( r + r -2a) 

1 0 :1 0 = + 
rr 

-2a 0 r - r 0 r + r 
0 0 

Our object is to show that the integral (5) represents 

( 9 ) 

-6 ( r-r ) 
0 

when R -ten. To justify the statement, consider a testing function 
:1 

¢(r), in D which is continuous, has a continuous derivative of 

order two and vanishes outside a finite interval ... Then, from the 

relati9ns (5) and (9) 
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1 im 

co 

J r.j;( r )-1-. 
2·rr 1 

1 G(r,r ;~)rd~dr J 0 
R --7(1) a 

:1 

(() 

[f 1 i m 1 J ¢•(r) = n 
R --700 0 

:1 a 

sinR (r 
1 

r )dr -
0 

+ 
(r - r ) 

0 

co 

.!_ J d>(r) Jr sinR (r + r - 2a)dr 
+ 1 im 

R --700 
:1 

=- r.h(r ) 
r (J ' 

n · r 
0 

a 

1 0 

(r + r -2a) 
0 

where we have used the result of Dirichlet integral 

Riemann-Lebesgue Lemma (Whittaker and Watson [1963]). 

Therefore 

1 i m 
R -t((! 

1 

G ( r , r _ ) .. ) r d~·-
. u 

=-o(r-r). 
0 

and 

To obtain. an alternative integral representation, which will 

be useful for our subsequent application in physical problems, we 

consider the contour r (Fig.3) consisting of the real axis from k = 

p to k = R , where 0 < p < R ; a semi-circle c of radius R above 
1 1 1 

th~ real axis; the real axis again from- R to-p; and finally a 
:1 

semi-circler of radius p above the real axis with the centre at 

the origin. We take p small and R large. 
1 

2 
The integrand 2G(r,r ,k ) kr has no singularity inside the 

0 

contour r , and so the value of the integral. 
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JmK 

E 

Fig. 3. FDED'F'F- thr path of integration r in the 

K-plane. 
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2n i 

i.e. 2n:i 

I G(r,r ;k
2

)2krdk = 0, 
0 . 

r 

R 
1 

I . z 
G(r,r

0
;!<. )2krdk = JG(r,r

0
;u

2
)2urdu + 2ni 

c 

R 
1 

p 

f 2"1Ti. 2 
+ G(r,r ;e u )2rudu-

2ti i ,_ 0 

n 

J z zi.e. 2 zi.e 
- -- G ( r , r ; p e ) 2 rp e de . 

2·n: 0 

0 

( 1 0) 

The behaviour of Y (z) for small values of 1~1 is described by the 
li 

formula (Lebedev [1965]) 

y ( z) ~ 
n n 

"ITZ 

and J (z) is bounded for small values of izl when n is a positive 
li 

integer. Using these results we conclude 

z zi.e 
G( r, r ;p e )p 

0 

is bounded for small values of p. Hence 

rr 

1 im 
z zi.e zi.e z 

-n: J G ( r, r 
0

; p e ) e p rde = 0. 
p~o 

0 
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Letting p ~ 

o(r -r 
0 

From Eq. ( 4) 

2. 
G(r,r ;k) 

0 

) 

0 and R ~ oo in 
1 

r = - 1 i m 
2n i .J 

R --Hu 
1 c 

m 

( 10), we get 

z 
G(r,r ;k )2krdk 

0 

2·.~i I [ z z zi.n 
= G(r,r ;k) - G(r,r ;k e ) 

0 0 

0 

2 2i..n 
G(r r -k e ) = 

' 0' 

J (kr )+iY (kr ) 

] 2krdk. 

71[ 1 0 1 0 =-2--
J2(ka)+iY2(ka) 

[ 

J (kr)+iY (kr) 
'IT 1 1 

2 
J (ka)+iY (ka) 

2 2 

J (kr)-iY (l<.r) 
1 1 ] --x 

J (ka)-iY (ka) 
2 2 

X r J (kr )Y (ka)-Y (kr )J (ka)]HCr- r ) 
'-1 0 2 1 0 2 0 

( 1 1 ) 

[ J
1 

(kr)Y
2 

(ka)-Y
1 

(kr)J
2 

(ka)] [ J
1 

(kr
0 

)Y
2 

(ka)-Y
1 

(kr
0 

)J
2 

(ka)] 

= irr 
2 2 

J (ka)+Y (ka) 
2 2 

Substituting this expression in Eq. (11), we get 
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(5 ( r- r ) = 
u 

t\ 

Substituting r/a = R, r /a= R and ka = y, Eq.(12) can be 

as 

o(R-R ) = 
u 

0 0 

00 f J ('1-· R ) Y ('"•·· ) - Y (v R ) J ( --v ) ] [J ( '~-' R ) Y (-v ) - Y ( v R ) J ( v ) ] 
L.t'o 2' t'o 2' t' 2' t' 2' 

= f 
0 

2 2 
J (-•·) + Y (v) 

2 I 2 ' 

( 12) 

written 

Rydy 

(13) 

Since 6(R -R.) is symmetric with respect to R and R , then, on the 
u 0 

right ~and side of Eq. (13), Rand R can be interchanged. So we 
0 

write 

o(R-R ) = 
0 

co r(J (:rR )Y (r-)-Y (rR )J (y)l (J (yR)Y (f·)-Y (yR)J (y)] 
-- R f t o 2 t o 2 "' t 2 t 2 dy. 

0 2 2 
J (v) + Y (y) 

0 2 • 2 

( 14) 
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3. FORMULATION AND GENERAL SOLUTION ( CASE - 1 ) 

Case 1. We shall now use the integral representation of the delta 

function given by Eq. (13) to derive the time dependent response of 

an isotropic linearly elastic half-space containing a cylindrical 

cavity of radius a due to a ring source. The axis of the cylider 

considered as the z-axis, which is perpendicular to the plane 

surface, is directed downwards (·Fig.4). A torque is applied on the 

free surface of the half-space over the rim of a concentric circle 

of radius r = r 
0 

r > a ) for t > 0. Therefore on the cavity 
0 

surface r = a 

,u ( 

au_ u_ 
e e 

T = -- -
rG or r 

) = 0 

·and on the plane surface z = 0 

T ez = .u 
au_ 

B 

i)z 

= o(r -r )H(t) 
0 

( a<r<(o, r >a ) , 
0 

( 1 5) 

( 1 6) 

where~ is Lame's constant, o is the Dirac delta function and H is 

the unit step function. 

Now· the only non-zero equation of motion is 

:l a 02 .2 a u_ u_ UG u_ ij u 
e 8 B G 

( 1 7) +- + = 
or 

2 
or oz 2 2 ~.2 at 2 

r r 11 ,. 
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I 
I 
I 
I 
I 
I 
I 
I 

z l 

Fig. 4. Geometry of the problem. 
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where r = ~ ~/p is the shear wave velocity. 

Changing the independent variables (r,z,t) to the 

no-dimensional variables (R,Z,r) defined by 

r 

R = 0 
( 1 8 ) 

a o a 

the above equation reduces to 

;l au_ r/ .2 u_ u_ u_ iJ u_ 
8. 8 (:1 8 8 

+ + = 
JR 

2 
JR az 2 R2 J-r 

2 
R 

( 1 9) 

and boundary conditions become 

,u .... au u 

) I e e 
T = = 0 on R = 

r·9 aR a .... R 
(20) 

and 

,u au 
8 

r = = o:S(R - R )H(t) on z = o. ( 21 ) 
~z 

;Jz 
I) 

a a 

Now, taking the Laplace transform with respect to 

nondimensional time (r) and assuming the homogeneous initial 

conditions 

u
8 

( R, z, o) = 
au_(R,Z,O) 

8 

dt 

Eq. (19) takes the form 

= 0 at t = 0 
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. 2 a .-.2 .... 
iJ u_ ue a u_ u-

e e tl 2 
+ + = s ue 2 

JR az 2 2 
JR R R 

(I) 

... -sT 
where u_ = J u_e dT . 

e 8 

I) 

Take solution of Eq. (22) in the form 

u_{R,Z,s) 
8 

co 

= jr lr A (r)J (rR)+B (y)Y (yR) l 
i 1 1 1 J 

0 

(22) 

(23) 

d····· 
! I (24) 

where r is real, J andY are Bessel functions of the first and 
i 1 

second kind respectively. 

Using the boundary condition (20), we obtain 

B (··v) 
. ' 1 

=-A(-v) 
1 ' 

J (y) 
2 

Substituting the value of 8 (y) in Eq. (24), we have 
i 

00 ~----

] 

I 2 2 

I [ -~ S +·V u_ (R,Z,s) = A(-Y) J (vR)Y (v)-J (v)Y (<··R) e · ' 
8 • 1 1 2' 2' 1' 

0 

where A(y) = 
A ('v) 

:1 ' 

'( (v) 
2 ' 

Therefore the transformed stress component reduces to 
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(26) 

(27) 



,u 

= 
a 

where C (vR) 
2 ' 

r 2 2 :i./2 
,_ A(y·) (y+s) 

0 

C ('•·'R) 
2 J 

r-:;--2 
e -~;·· .. - +s 

Now, using the representation (29), Eq. (14) becomes 

00 
vC (-vR) C (yR ) 

o(R-R ) I 
' 2 ,, 2 0 

dr. = R 
0 0 2 2 

J ( y) + Y ('v) 
0 2 2 ' 

z dy, (28) 

(29) 

(30) 

Using Eq$. (21), (28) and (30), the value of A(y) is obtained as 

R 
A(t) = 

Therefore u becomes e 

Cl) 
R vC (vR) C (vR ) 

u. (R,Z,s) = tl . 

~ J ______ ~ __ 2 __ ' _____ 2 __ ~ __ o ____ __ 
2 2 1/2 2 2 

,us (-1·· +s) {J (y) + Y (v)} 
0 J 2 2 J 

On the plane boundary Z = 0 

u. (R,O,s) = 
tl 

((J 
R vC ('vR) C (rR) 

0 ' 2 ' 2 0 --J---'---------
,LLS (;v2 +s2 ) 1/2 {J2 (-v) + y2 (-v)} 

0 2 ' 2 ' 

( 31) 

z 
d 'V ' . (32) 

d•v ' . (33) 

Now, introducing the change of the variable r = s( into the above 

expression (33), we· obtain 
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Ll) 
R t C ( s'"' R ) C ( s'·· R ) 

u_ (R,O,s) = 
til 

of '2 i., 2£..0 

,u 0 u· 2 
+ 1 ) 

1
/

2 {J: ( s( ) + y: ( s( ) } 
d(. 

Next, using 

J (s(R) = 
H< 1 >(s(R) + H< 2 )(s(R) 

n · n 

li 
2 

and 

Y (s(R) = 
li ' 

H < 
1 >· ( s( R ) - H < 

2 
> ( s( R ) 

n n 

2i 

we obtain 

C ( s( R ) = J ( st ) Y ( st R ) - Y ( st ) J ( st R ) 
2. 2,1, 2.1' 

[ H < 
1 

> ( s( R) ( 2 ) ( ,_. ) H < 
2 > ( s( R) H~ 11 

( s() J = H s£ · 
2i 

1 , 2 . , 1 ' 

and 

1 
C (st"R) [ ( 1) ( ,_. ) H < 

2 1 
( st ) H < 

2 
> ( s( R ) (1)( ·-·)] = - H S£ R H s£, . 2 , 0 1 , 0 2 , 1 ' 0 2 

2i 

Also 

(34) 

(35) 

( 35' ) 

(36) 

( 36' ) 

J2 ( s( ) + Y2 ( s( ) = H < 1> ( sr ) H<2> ( s( ) • ( 36' ' ) 
2 2 2 , 2 ' 

Therefore, Eq.(34) becomes 

R 
00 r 

0 ' 
u_ (R,O,s) = f F(R,R ,s() d( 

til 

j((2+1) 
0 ' 

4,u 
0 

(37) 
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where 

and 

F ( ex , 6 , st ) 1 , 

F ( R , R , s[ ) + F ( R , R , s( ) 
1 0 . 2 0 

= F (R ,R,st) + F (R ,R.s() 
1 0 . 2 0 

= F(R ,R,s() 
0 

H< 1 >(st") 
\2i( ..... -.){ \1)( _,. ) (2)( .. 2 , _-} = H Si, f' H S(. c-4. - H s( 01) 
1 '"· 1 . :1 H 1 2 ; ( s( ) 

:z . 

(38) 

( 38' ) 

= H \ 1 
) ( sr ,-n {HI 2 ) ( s( 01 ) 

:1 , 1 , 

H t z > ( s( ) ·}· 
(i} ( .... ) 2 H S£ 01 ---------
:1 , H11 i(st) 

( 38'' ) 

2 . 

Using the asymptotic values of the Hankel functions for a large 

argument, it can be shown that 

( F (R,R_ ,s() 
:1 u 

2 r -is( (R
0 

-R) -is( (R+R
0 

-2)1 ---Le + e J 
J; n:sr 

0 

as Is() ~ crj , showing that 
( F

1 
(R,R

0 
,s() 

Jc£:"
2

+1) 

vanishes over 

(39) 

a large 

circular arc in the forth quadrant of the complex (-plane for 

R < R . 
0 
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Also 

2 

[ 

is( ( R -R) 
0 

e + ( 39' ) 

ns( ~ RR. 
u 

showing that 
( F (R,R ,s() 

2 0 
vanishes over a large circular arc in 

the first quadrant of the complex (-pla~e for R<R • Therefore, for 
(J 

R > R , 
0 

and 
( F ( R . , R , s( ) 

:1. u 

vanish over large circular arcs in the first and fourth quadrants, 

respectively, of the complex (-plane. 

Denoting the responses for field points inside (R < R ) 
0 

and 

outside (R > R ) the source by the subscripts I and 0 respectively, 
0 

we have for points inside the source (R < R ) 
0 

R 
l'l) 

0 f 
4,U 

0 

and for points outside the source (R > R ) 
0 

ll) 
R 

( [F ( R , R , st ) 
2 0 ' 

~((~+1) 
+ F ( R , R, s( )] dt" • :1 0 . , u

80
(R,O,s) = o I 

4,U 
0 
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In order to evaluate 

(.Jj 
( R 

0 ' 

I 
j((2+1) 4,u 

u 

which is the first part of 

F (R, R 
2 0 

, s() 

u (R,O,s) 
er 

d( l (41) 

we note first that the 

integrand has branch points at ( = ± i and also has a branch point 

at the origin of coordinates due to the presence of Hankel 

functions in the integrand. The integrand has also poles which 

correspond to the zeros of Hw ( s(). From Eq. ( 32) we note that in 
2 ' 

order that u_(R,Z,s) may be finite for large positive values of Z, e ... 

((
2

+1)
1

/
2 

should have a positive real part on the path of 

integration. Accordingly, we draw cuts parallel to the real axis 

from +i to -w+i and from -i to ~-i to satisfy our requirement. 'A 

cut along the negative real axis from the origin is also drawn to 

make Hankel functions single valued 

R 
F (R,R ,s() 

2 0 . 

0 

4,u 

is now integrated along the quadrant of a large circle lying in the 

first quadrant of the complex (-plane as shown in Fig. Sa. Since 

poles of the integrand are out side the path of integrationJ .the 

integral (41) becomes 
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.. 

a) 

------fl(\ ----- ..... -·-- --
0 

~ 

-r :It------

){ Oranch point 
- Uronch cut 
u Pules 

b) 

0 
0 _____ ...,r ______ -

Fig. 5. Integration paths in .the complex (-plane. 
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:1 
R ,.. v 

(J I .r F (R,R ,isv)dv + z 0 
4,u L - j ( 1 

2· 
0 -v ) 

00 
v 

] + f F (R,R ,isv)dv 
2 0 

Using the relations 

H{z> ( i v) = 
1 

H a> ( i v ) = 
2 

{2) ( ' ) H . 1V = -
2 

we have 

1 i~) 

2 

rr 

2 

iT 

2i 

·rr 

K ( v), 
1 

K ( v) + 
1 

K (v), 
2 

2I ( v) -
2 

2ii (v), 
1 

2i 
K (v), 

2 
f[ 

F (R,R ,isv) = 
2 0 

4i 

rr K,(svR
0

) {r,(svR) + K
1

(svR) 

Therfore, the expression (42) becomes 

iR 
1 

v 
-~J---

,urr I 2 
o ~ ( 1 -v ) 

(.(1 

I 2 (sv)·}· 

K ( sv ). 
2 

. 

R I (sv) v . r 
}dv. 

0 

I I ( svR) K ( svR) 
2 --- K

1 
( svR

0 
)1 + 

1 ~(v2 -1) 
:i :1 

K ( sv) ,Lm '"· 2 
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(42) 

I 

:I 

(43) 

(44) 

(45) 



The second part of u (R,O,s) is equal to 
8I 

((.l ,_. 
R t 

0 

f F ( R, R , s( )d( 
:1 0 , 

(46) 
4!--1 

0 j c(2 
+1 ) 

we draw cuts from +i to m+i and from -i to -ru-i as shown in Fig. 

(5b). A cut from the origin along the negative real axis is also 

drawn to make Hankel functions single valued. 

Taking a quadrant of a large circul~r contour in the fourth 

quadrant (Fig. (5b)) and noting that the poles of F (R,R ,s() 
1 0 

outside the contour, the inte~ral (46) takes the form 

1 

Ro [ J v 

4~ ~ 2 
o 1 ( 1 -v ) 

F (R,R ,-isv)dv -
1 0 

Using the relations 

Hw (- iv) = 
:1 

(2) ( ' ) H -1v = 
1 

2 

rr 

(_!J 
v 

-J--
:1 ;.~) 

F ( R, R , - i sv) dv .J, . 
1 0 

K ( v) 
1 

2 
K ( v) I 

1 
rr 

2ii (v), 
1 
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H \ 1> ( - i v ) = - 2 I ( v ) + 
2 2 

H\Z> (- i v) = 
2 

2i 
K ( v) I 

2 

the expression (47) becomes 

2i 
K ( v) I 

2 

1 
i R v 

~s---
r r2 c sv) ~l 

K ( s v R _ ) i I 
1 

( s v R ) + K
1 

( s v R ) j d v 
U'IT I 2 
' o ·!(v -1) 

1 
u t_ K ( sv) 

2 

(.(1 

R v 
0 r - -- J 

,u·rr 
1 j (v2

-1) 

K ( svR ) 
:1 0 

{ I, ( svR) + K, ( svR) 

Adding the relations (45) and (49), we obtain 

2R 
0 

L'(l 
v 

f . 
,un I 2 

1 ~(v -1) 

K ( svR ) X 
:1 0 

{

. I (sv) 
X I (svR)+K (svR)--

2
----

1 .i K ( sv) 
2 

Similarly, it can be shown that 

u
80

(R,O,s) = 
2R 

0 

,urr 

1)) 

v 
f --
:1 Jcv2

-1) 

K (svR) X 
:1. 

I (sv) 

-
2
-- }dv. 

K ( sv) 
2 

(48) 

(49) 

(50) 

I ( svR ) + K ( svR ) 
:1 0 :1 0 

I (sv) 
2 

}dv. (50' ) 
K ( sv) 

2 
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Laplace inversion of the relations (50) is now taken to obtain 

the displacement of points inside the source. Therefore 

00 
2R v 

u
91

(R,O,-r) 
0 J TSd r E(sv)dv, = - -- e s 

.J 

~ (v
2
-1) 

2rr i ,un 
B r· 1 

(51) 

where 

E(sv) = K
1

(svR
0

) {r
1

(svR) 

" 

I ( sv) · 
+ K

1
(svR) 

2 
}· 

K ( sv) 
(52) 

2 . 

Introducing the change of variable P. = sv, and changing the order 

of integration 

u ... I(R,O,-r) 
'=' 

where 

= -
2R 

0 --
,u n 

2R 
0 

=- --
,u. n 

(I) 

1 

r I dv I L 
1 j(v

2
-1) 

2n i 
Br-

E(r/v) dv, 

E (T /v) { E(p) }. 

(T /V) p .... 

dp ] E(p) e 

(53) 

We note that E(p) possesses no poles and is analytic for p > 

0. It has a branch point at the origin and therefore a cut is drawn 

from the origin along the negative-real axis of the complex p-plane 

in order to make E(p) single valued. 

Drawing a large semi-circular contour to the rig~t of the 
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Bromwich path AB in the complex p-plane, we conclude that E(T/v) = 

0 if the integral 

J E(p) e(T/V)p dp = 0 

2tr i 

over the semi-circular arc BC'A ·(Fig. 6). 

Now 

E( p) = J 
- t-r 'V'P E(p)e" .. ' dp 

BC 1 A 

=- --
2-rr i 

' <T /Yip 

J K ( pR ) I ( pR) e dp -
1 0 1 

Since 

and 

---
2-rr i 

BC'A 

I (p) 

J K1(pRd)K1(pR) _z __ 
K ( p) 

BC 1 A 2 

e'T...-VIp K (pR )I (pR) 
1 0 1 

2p~ RR_ 
e 

ll 

T 
[ v 

I (p) 
\T /Vlp - ( R ) ( ) 2 

T 
[ - (R+R -2l] p 

v 0 
e K1 p o Ii pR -K~(-p~) 

2 

e 
2p~ RR 

0 

<R -Rl] p 
0 

I I 

(54) 

as I P I ---7 m 

then the first integral on the right hand side of Eq.(54) vanishes 

for 0 < T/v < (R- R), whereas the second integral vanishes for 
0 

0 < T/V < (R + R - 2). 
0 
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B --' ' ' \ \ 
'c' ---~~1 
I 

I 
I 

/ 
/ ___ / p -plane 

A 

Fig. 6. Laplace inversion contour. 
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Therefore 

I 0, for 0 < T /v < (R - R), 
(J 

I 

E ( T /v) I D 
= 1 E (T/v), for (R - R) < T /v < (R + R -2)' 

1.) 1.) 

where 

I R 

L E (T/V), for (R + R -2) < r /v. 
0 

E
0

(T /v) = :£.'-
1 

[ K .(PR.) I (pR), ] , 

E ,T;V, = R ( I ) ·J:.,_.,.-1 [ 

1 u 1 

I (p) 

K
1

(pR
0

) \(pR) + K
1

(pR
0

) K
1

(pR) /(p) ]· 
i 

(55) 

(56) 

For value of ·r/v lying in the range (R .- R) < T/v < (R + R -2) 
0 0 

E(T/V) 
[I 

= E (T /v) = 
cr . .-~v;p 

e dp. (57) 
2tr i 

Therefore, putting r/v = (R -R+y), where y > o 
(I . 

D. 
E (R -R+y) = 

0 
2n i 

J [ 
pR 

0 
K ( pR. ) e 

1 0 ] [ 

-pR ] 
. I

1 
(pR) e eyp dp. 

Br· 

From the Laplace inversion table Erdelyi [1954], we find that 

'P-1 [ 
~· 

pR 
() OJ.,I= 1<. pR e 

1 0 

and 

H ( y) ( y+R ) 
0 

1/.2 R {y(y+2R } 
0 0 
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[H(y) - H(y-2R)] (R-y) 
j_:-1 Lr I1(pR) e-pR Jl = ---------

~ 1/2 
nR {y(2R - y)} 

So by the convolution theorem 

\l 
[H(n)-HCn-2R)J H(y-n)(R-n)(y-n+R

0
) 

0 

1/2 
trRR

0 
['1; ( 2R-n) ( y-(J) ( y-lj+2R

0
)] 

(58) 

For T/v lying in the range (R -R) < T/v < (R+R -2), T/v must be 
0 0 

less than (R+R ), i.e. y < 2R. 
0 

So 

Therefore we can write 

y 

0 
;rrRR 

0 

( R-r/) (y-·;,+R. ) 
() 

. 1/2 
rnC2R-n)(y-n)Cy-n+2R )J . 

0 

E(T/v) 
IJ = E (T /v) = 

= 
·r /v-{R -R) 

0 

J 
( R-n) ( T /v+R-·n) d·n 

0 
:rrRR. [D(2R-n)(T/v-R.+R-n)(T/v+R +R-n)J 

.u u 0 

for (R -R) < (T/V) < (R+R -2). 
0 u 

1/2 

For values of T/v satisfying the condition r/v > R+R -2, 
(J 
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E(T/V) 
R = E (T /v) = 

= 
Br· 

This integra 1 is equa 1 to the integral along the large 

semi-circular arc on the left side of the Bromwich path AB plus the 

integral on the two sides of the ·branch cut (Fig.6). Since the 

integral on the large semi-circular arc vanishes, then Eq. (60) 

becomes 

CD 

E(-r/v) = [ -J E-( i.rr) -<T/Vl'fJd ne e n + 
2rri 

0 

co 

+ J -( -i.rr) -<T/vrnd ] E ne e n . 
0 

Using the relations 

+;rr ±i.vrr 
IL_. (.,-,e--") = e I.C'o), 

~-· 

and 

±i.rr +i.l.m K (.,-,e ) = e Kv C'n) + in I~) <-o) , j.) 

we obtain (for -r/v > R+R -2) 
0 

77 

( 61 ) 



c::o u (R,rJ) u CR_ .n) 
-{T/V)Y! e . 

E(T/V) 
R r 2 2 u 

(62) = E (T /v) = - df/' J 2 2 2 

0 
K < n) + rr r e-n ) 

2 2 

where U (X, I)) = K (r/) I (X, ·n) + I (-r,) K (X, T/) • 
2 2 1 2 1 

Substituting these values of E(T/v) in Eq. (53), we obtain 

u_I(R,O,T) = 
t.l 

2R 
0 

r -r., 
=- -- [{+ - o I --;;-) 

T 

- R -R 

+ H (t - r+r:.-2J{ o J 
i' T 

R+R -z 
0 

T 

D 
E (T/v) dv + 

T 
R+R -2 

ER ( r I v ) Pv}] , 
1 0 1 

D. 

I E (T/v)dv + 

j v2 -1 1 J v2 
-1 

(63) 

D R where the values of E (T/v) and E (T/V) are given in Eqs. (59) and 

(62), respectively. 

Similarly, taking the inverse Laplace transform of Eq. (40' ), 

the displacement u
90

(R,O,T) on the free surface outside the ring 

source can be derived and it is found that 
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u
80 

( R, 0, T) = 

[{+ 2R r-r --
H ( t 

0 

~J = ---
,U'IT 11 

I" 

T 

D-D 

+ H (t - r+r:-2J{ " " 0 

f 
p 

T 

R+R -.2 
0 

R R· 
where F ('r/v) = E (T/v), and 

D 

} r+r: -2a) 
11 
I" 

T --
R-R 

() 

I 
~ :1 

T 

R+R -2 
0 

F
0 

( T I v ) d v + f 

C R -n) (T /v+R -n) d·n 
0 0 

D 
F ( T /v) dv + 

( 63' ) 

F (T/V) = I 
0 

:1/2 
nRR. [r; ( 2R. -r;) ( T /v-R+R. -r;) (T /v+R+Ru_ -r;)] 

u u u 

t64) 

First, the integrals of Eq. (63) are the displacements due to a 

direct wave from the ring· source before the arrival of the waves 

reflected from the wall of the cylindrical cavity. The last two 

. integrals together give the displacement after the arrival of the 

reflected wave. 

In order to obtain the response in the vicinity of the SH-wave 

front, we consider the displacement profile immediately behind the 

direct outgoing SH-wave. Accordingly, we shall have to study the 
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first integra 1 of Eq. ( 63' ) because it gives the response of the 

direct SH-wave before the arrival of the reflected wave front. 

Let R = R + T and R = R £R where R and R denote 
s 0 s s 0 s s 

points at and immediately behind the SH-wave front, respectively, 

£ is a small positive quantity. 

Then 

and 

T 

R - R 
s (! 

R 
s 

T 

R 
0 

= (65) 

= = q (T). (say) ( 65' ) 

Substituting these values in the first integral of Eq. (63' ), we 

obtain 

and 

u_
0

(R ,O,T) = 0, e s · 

2R 
0 

,un:. 

Therefore, we can write 

u_
0

(R , 0 ,·r) = -
8 s 

q ( T ) 1 

J ~ (v-1) { 
D - } F (R ,R

0
,T/v) dv. 

~ v+1 

2R 
q (T) 

0 

·f V(v)dv, --
-lV-1 ,u rr 

1 

(66) 

where V(v) is analytic portion of the integrand. For small value of 
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£ expanding V(v) by the Taylor's series about the point v = and 

integrating term by term, we obtain 

4R R 
1/2 

UAO(R~ 0 ,T) V(1) [ 0 ) 1/2 1/Z 
(say), (67) , ~ ~· = A e 

- ~ ,un T 

where A is a constant. 

It therefore follows that the displacement cqmponent is 

continuous i.e. there is no jump in displacement across the direct 

SH-wave front. 

Next, in orde~ to consider the behaviour of response just 

under the ring source, it should be remembered that the integral 

representations of transformed displacements given by Eqs. (50) 

were derived from Eqs. (40) assuming that R ~ R . For R = R the 
0 0 

integrals along large quarter circles in the first and fourth 

quadrants should be reexamined. In· this case it is found that 

though the contributions from the i~tegrals along large circular 

arcs in the first and fourth quadrants are not separately zero, but 

the combined sum of the integrals along the large arcs in the first 

and fourth quadrants of the (-plane ( Fig. 5a and 5b ) vanishes. So 

the transformed displacements for R = R are also given by Eqs. 
0 

(50). Making R -7 R_±, it can easily be shown by help of Eqs. (50) 
L1 

that the displacement has no jump discontinuity across the ring 

source. 
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Therefore, in order to derive the nature of the displacement 

as R ~ R , any one of the relations (63) may be studied. Consider, 
(I 

for example, the displacement at field points outside the source 

given by (63' ). As R ~ R, the upper limit of integration T/(R-R) 
(I (I 

~.r.l). 

Further, as 

T 

v ~ ---t co, 
R-R 

0 

~ (68) 

~ v 

and 

D 
F (T/V) --7 

Thus, from Eq. ( 63' ) 

lim u
80 

( R , 0 , 'f ) = 
R-?R 

0 

-

2R 
0 

2R 
0 --

,u n 

T 

R-R 
(} 

I dv + 
v 2R 

N 0 

+ a finite quantity, where N is large. 

( 68' ) 

(69) 

The integral is found to contribute a logarithmic singularity 

to the displacement just on the ring source. 
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4. FORMULATION AND GENERAL SOLUTION ( CASE - 2 ) 

Case. 2. In this case the problem considered is the same in all 

respects with the first, except that the cavity of the'radius a has 

been replaced by a _rigid cylindrical ·inclusion of the same radius. 

The cylindrical inclusion being in welded contact with the elastic 

half-space, there is no relative displacement at the interface. In 

this case, the condition on the cylindrical boundary is u
8

=o on r = 

a. In order to solve this problem, we take the solution in this 

form: 

u (R,Z,s) = e 

= 

((I 

(70) 

0 

where u_(R,Z,s) is the Laplace transform of u (R,Z,t) with respect 
e e 

to t. Now, using the boundary condition 

we have 

B (·•-·) = 
-~ ' L 

so u becomes 
c. 
'-" 

on R = 1 , 

A (-!··) ., . ._ 

J ("v) 
1 ' 

y ('}"" ) 
1. 
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u_(RIZ 1 s) = 
e 

Cl) 

= 
. I 2 2 

1 ~v +- Z 
I A. ( 'V ) [J Cv R ) y Cv ) - J ( r ) y ( r R ) ] e- • b dr I 

' 1 • 1 ' 1 1 

0 

where 
A (v) 

1 2 ' 
A Cv) = 

y (;v) 
J. 

(72) 

Therefore, the transformed stress component on the free 

surface Z = o is 

where 

T _ (R 1 0 1 S) = 
ez 

,U 

a 

((1 

I" :1 I . ., ., J A ( y ) ~ y ._ +s... C 
1 

( y R) d;•- 1 

0 

C (vR) = J (yR)Y (y)- J (y)Y (yR) 1 
:1 ' :1 :1 :1 . :1 

(73) 

(74) 

1 
r _ ( R I 0 1 s) shou 1 d be equa 1 to -. 6 ( R 
ez . as 

R ). In this case, the 
0 

required integral representation of the delta function can be 

obtained from the following expansion formula given by Titchmarsh 

[1962]: 

(X) 

( [J ((r)Y ((a) J (i:"a)Y (tr)] 
f(r) I 

:1 :1 1 . :1 . 
d( = 

/((a) + Y
2 cr a) 

0 :1 , :1 > 

X 

X j_, t ... f U,.. ) [ J ( r t ) Y ( ( a ) - J ( ( a ) Y ( r f ) ] dt 
:1 > • 1 . 1 . :1 • • ' I 

(75) 

a 
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where f(r) is a suitably restricted arbitrary function. 

Putting f ( ,-) 

f((') 

we get 

6 ( r- r ) = 
0 

= ?. ( r- r ) ._, 0 , 

= ou:-r ) , 
u 

where r > 
0 

a > 0, 

lt1 ,._. 
l., [J ((r)Y ((a)-J ((a)Y ((r)][J (/:"r. )Y ((a)-J ((a)Y ((r. )] 

1 1 1 1 1 u 1 1 1 u. . & 
J 2 ( r a ) + Y2 ( ( a ) ., . 

1 ' 1 , 

=r J 
0 

0 

(76) 

r 
Now putting, = R, 

r 
0 

= R ' 0 
.(a = t, we have 

a a 

o(R-R ) = 
(J 

m 
.·1·· 

' 
[J (vR)Y (v)-J (v)Y (vR)][J (vR )Y (v)-J (v)Y (v~ )] 

1' 1' 1 1 1' 1'0 1' 1' 1 1 0 
= R I 0 

0 

2 2 
J U··) +Y C···) 

1 1 • 

dy J 

so by the relation (74) 

(() 
C ('vR) C (·vR) 1' 

' :1 ' :1 ' 0 
o(R-R ) = R J d:r-. (77) 

0 0 2. 
'/ ('v ) J l 'V) + 

0 1 ' 1 I 

This result can also be obtained by the following technique already 

developed in Section-2 of this paper. 
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.1. 
Now, we find the value of A Cr) as 

:1 
. A (y) = 

,us ~ 2 2 
~Y +s 

Therefore u becomes e 

u_ (R,O,s) = 
8 

'(tl 

,us 

.,.. C ('<··R) C ('vR) 
I 1 I 1 I U 

(78) 

d •v 
I • (79) 

Carrying on a similar procedure as followed to obtain the 

displacement in the case 1, we find that in this case 

u
9 

I ( R , 0 , T ) = 

+ H [t -

and 

T 

- R -R 
r+r -2a~ { o 

o I r 
i"• J l .) 

I> 
'[ 

R+R -z 
(.r 

~ 

T 

R -R 
(I 

f 
:1 

D 
E (T/V)dv + 

86 

T 

R+R 
0 

I 

D 
E (T /v) dv + 

-2 

E:(T/V)dv}] 
~ 1 

(80) 



= 

u_ (R,O,-r) :: eo 

rrH r t 2R r-r __ 
H ( ... 0 __ ol 

ll·L -
J LlJ 

,u-rr (i 

T 

- R-R 
1-+r o-2al f ro 

(3 )ll .) 
T 

· R+R -z 
0 

-

1 

r+r -2a .... l 
o I 
i1 J J 

.T 
-
R-R 

(I 

r 
J 

~ 1 

T 

R-R +2 
0 

F
0

(-r/v)dv + J 

D 
F (T /v)dv + 

( 81 ) 

where E
0
(r/v) and F

0
(-r/v) are respectively given by Eq. (59) and 

(64) and · 

Ct) u ( R ' (I ) u ( R ' n ) e- ( T I v hi 
R 

E (-r/v) = R 
F (T /v) = 

1 I 
:1 :1 0 

1 2 2 2 
K (1i) + -rr r Cn) 

1 1 
0 

where 

U ( X , f! ) = K ( J) ) I ( XJ) ) - I ( Tl ) K ( XfJ ) • 
:1 1 :1 :i ' :1. 
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WAVES IN A SEMI-INFINITE ELASTIC MEDIUM DUE TO AN 

EXPANDING ELLIPTIC RING SOURCE ON THE FREE SURFACE 

1. INTRODUCTION 

Since Lamb's original study of the elasitc wave produced by a 

time-dependent point force acting normally to the surface of an 

elastic half-space, many authors have elaborated on his work. 

Aggarwal and Abolw [1967] discussed the exact solution of a class 

of half-space pulse propagation problems generated by impulsive 

sources. Gakenheimer and Miklowitz [1969] used a modification of. 

Cagniard's method [1962] to discuss the disturbance created by a 

moving point load. In case of finite sources, the most widely 

discussed model is that of a circular ring or disc load. Mitra 

[1964], Tupholme [1970] and Roy [1975] have studied the various 

aspects of the same problem. Elastic waves due to uniformly 

expanding disc or ring loads on the free surface of a semi-infinite 

medium have been studied extensively by Gakenheimer [1971]. The 

axisymmetric problem of the determination of the displacement due 

to a stress discqntinuity over a uniformly expanding circular 

region at a certain depth below the free surface has been studied 

by Ghosh [1971]. 

PUBLISHED IN "INDIAN J. PURE APPL. MATH.", V18(7), PP648-674, 1987. 
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However exact evaluation of the displacement field for finite 

source other than the circular model does not seem to have been 

attempted much in the literature. Burridge and Willis [1969] 

obtained a solution for radiation from a growing elliptical crack 

in an anisotropic medium. The problem of an elliptical shear crack 

growing in prestressed medium has been solved by Richards [1973] by 

the Cagniard-de Hoop Method. Roy [1981] also attempted the same 

technique to slave the problem of elastic wave propagation due to 

prescribed normal stress over an elliptic area on the free surface 

of an elastic half-space. 

In our problem, we have considered the propagation of 

elastic waves due to an expanding elliptical ring load over the 

free surface of a semi-infinite medium. The expression for 

displacement at points on the free surface has been derived in 

integral form by the application of Cagniard-de Hoop technique for 

different values of the rate of increase of the major and minor 

axes of the elliptic ring source. The displacement jumps across the 

different wave fronts have also been derived. 

2. FORMULATION OF THE PROBLEM AND ITS SOLUTION 

Let an elliptic ring load P acting normal to the surface of an 

elastic half-space emanating from the origin of co-ordinates expand 
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in such a way that the rates of increase of the major and minor 

axes of the ellipse are a and b respectively, a and b being 

constants. Major and minor axes of the ellipse are taken to 

coincide with the x and y-axes of co-ordinates wher~ as z-axis is 

taken vertically downwards into the medium (Fig. 1.). Thus we have 

on z = 0 

P f..1 t - (x a + - ( . 2 - 2 y2 b- 2. ) 1/2 J" 

= zz 

= T 
xz yz 

. 2 -2 2 -2 1/2 
tx a + y b ) 

= 0 

where P is constant and 6 is the Dirac delta function~ 

( 1 ) 

The displacement field· inside the elastic medium (z > 0) 1s 

given interms of potentials ¢ and ~ as 

u =V¢~+7>=.7::-~ 

where 

.2 ' .2 
iJ if' . iJ ~# 

.-.2 -z. 
v r.P = -- I v l/-' = ( 2 ) 

2 Jt 2 2 
ih 

2 
. c. c 

d. s 

e , e , e are unit vectors along co-ordinate axes and cd and c 
X '! Z S 

are the p- and s-wave velocities of the medium. 

In order to obtain solutions of wave equations (2), we 

introduce Laplace transform with respect to t and denote it by bar 

and also introduce bilateral Fourier transform with respect to x 
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X 

.... -....-------

z 

Fig. 1. Geometry of the problem. 
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and y to supress the time· parameter t and the x, y space 

co-ordinates. Taking Laplace transform with respect to t(-) and 

also bilateral Fourier transform with respect to x andy (~), the 

transformed boundary conditions are 

T = 
zz 

Pab 

( 
2, .. 2 2 2 

a ( + b n 2 ):1/2 I 

+ s 
T = T = 0 (3) 

xz yz 

Then satisfying the transformed boundary conditions (3) and 

performing the inverse Fourier transform, the Laplace transformed 

displacement field can be written as 

where 

and 

U. (_x 1 Y 1 Z 1 5 ) = U "d ( X 1 Y 1 Z 1 5 ) + U. ( X 1 Y 1 Z 1 5 ) 
J r JS 

u (x,y,z,s) = 
jc~ 

1 

00 00 

for j = X 1 y,z 

(4) 

= 1/2rr.,u J J Fj
01 

(( ,r,,s)exp[-(<-'ol.z + i((x+"T)Y)]d(drJ (5) 

-((I - (.1) 

F . ( ( , Yt , s ) = 
Xd 

F .(t ,r;,s) = 
yd. 

1 :1 

in(. G, 
u 

for ex = d,s 
1 

F (( ,TJ,S) = 2irt t G 
!<:3 ~ 'J .. d .. 9 , 

F ((" I.,.,, s) = 2 i (J ( .( G l 
ys d. s 

92 



F ('t ·,-~ s) = ( ( G 
- ... j .... ''r ' , .J ~ . ' 
L:_., ·~ U 

.. 2 2 .. = - 2 (( +n ) ( dG, 

Pab 
G = 

2 2 :J./2 
(s+r). T 0 

( 6) 

..... - c·2 2 +k2)1/2, ( 
,~2 2 2 )1/2' 

l = <· +[! = r +n +k 
'd d 9 ' 9 

s s 

(0 
k2 2((2 2 

= + + n ) , kd = k = 
8 c 8 c 

d s 

Now the De-Hoop transformation, 

( = s/cd(q cos e- w s1n e), ry = s/cd(q s1n e + w cos e) (7) 

where 
-1 

8 = tan y/x, 

is applied into (5). The Laplace transformed displacement field 

(5) can be written as 

u ·a ( R , Z , s ) = 
J 

1 

where 

00 (U 

1/21T,U J J 
- OC• - Cu 

F xd ( q , W , S ) = 

F. (q,w,s)exp[-s/c (m Z-iqR)] 
JU d 0! 

1 

i Pab ( q cos e - w sin e)m 
0 

s.s/c (E + 0) 1
/

2 .N 
d 1 
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s 

dqdw 

( 8) 



F = 

F (Q 1 W,s) = 
xs 

F yd ( Q I w ' s ) = 

F (Q 1 W 1 S) = 
vs 

F zd ( Q 1 W , s ) = 

F (q,w~s) = 
zs 

2i Pab (q cos e - w sin e)m.m 
d 9 

Pab (q sin e + w cos e)m_ 
tl 

.1/2 
s.s/c (E + 0) .N. 

. d' 1 

2i Pab (q sin e + w cos 8) m m 
d ~ 

1/2 
s.s/c (E + 0) .N. 

d 1 

Pab m m 
d 0 

1/2 
s.s/c (E + 0) .N. 

d 1 

2 2. 
2 Pab (q + w )md 

1/2 
s.s/c (E +0) .N. 

d 1 

( 
2 2 ) 1/2 

m= q+w+1 1 
d 

(q 
2 2 12 )1/2 I m = + w + 

2 2 2 
m = 1 + 2(q + w ) 1 

0 

2 2 
E =(1+qD+wF) 1 

:1 

2 ., 
a b ... 

sin 
2 2 

8 + -- cos 8 
2 2 

Cd Cd 

~;.. 

, 0 = 

2 2 2 
1 = c I c , and R = x + y • 

d s 
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N = 

0 = 

- 2QW 

2 2 2 
m 4mdms (q + W ) 1 

0 

2 ., 
a b ... 

2 2 
cos to + -- sin 8 1 

:.! :.! 

Cd c 
d 

sine cose(a 
2 2. 2 - b )/cd 

( 9) 



For mathematical simplicity we confine our attention to the 

derivation of the displacement field at any point on the xz-plane. 

Obviously the displacement at any point on any plane through the 

z-axis can then easily be visualized. Accordingly in order to 

obtain the displacement at any point on the xz-plane, we put e = 0 

in (8} which then takes the form 

where 

and 

L\) (]) 

u. (X 1 Z 1 S) = 
lL'I. 

Pab 
2-n:uc 

' d 
I I 

.. 1 

K .(Q 1 W) = 
Xd 

K d(Q 1 W) = 
V• 

K zd ( q 1 w) = 

- (.() -(() 

iqm 
0 

• /? E ....... N 

lWm 
0 

1/Z 
E • N 

1/Z 
E .N 

K 

2 2 2 
E = (c · + a q 

d 

2 2. 2 
+ b w )/cd. 

jL\ 
1 

95 

s 
- -.(m z-iqx) 

c c~ 

d J dq (q 1 w) e 

Kx:;; ( q 1 w) = 

K (qlw) = vs 

K (qlw) = zs 

2iqm m 
,j ~ .... "' 

E
i/2 N . . 

2iwm m 
d s 

1/Z 

I 

E .N. 

2md (q 
2 

+ 

1/Z 

w 

E .N 

2 

dw 

( 10) 

( 11 ) 



3. DILATATIONAL CONTRIBUTION 

From ( 10) u is converted to the Lap 1 ace transform of a known 
zd 

function by mapp1ng (m z-iqx)/c into t through 
d. d. 

a contour 

integration in a complex q-plane. 

The singularities of the integrand of u are branch points at 
zd 

1-
q = s = + 

d 
. ( 2 )J./2 
1 w + 1 , 

+ 
q = s 

9 

+ . ( 2 2 )1/2 = 1 w + 1 , 

+ 
q = s- = + 

c 

2 ) 1/Z + c 
d 

a 

and the poles at (12) 

q = s + = + i ( w 2 + v 
2 

) 1/
2 

• 
k 'R 

The poles at q 
+ = s- correspond to the zeros 
R 

( 1 2 ) 

of the Rayleigh 

function N, where ·v = c./ c and c is the Ray 1 ei gh surface wave 
'R .j R R 

speed. The contours of integration in the q-plane are shown in Fig~ 

2(a,b,c) which also show the positions of singularities lying .in 

the upper half of the q-plane. 

Since the positions of the singularities and the transformed 

contour of integration depend on different values of a and b, three 

different cases arise for the evaluation of u 
zd 
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(a) Case a > b > Cd . 

The q-plane for a > b > Cd is shown in Fig. 2(a). 

t 
contour q = q: in the q-plane, is found by solving 

t = ( m Z - i qx) I c 
d d 

for q, where t is real , we get 

. 2 2 .1/2 . 
Q = qd = iTS i n ¢• ! ( T - T _ ) COS rj• 

+ 

for r > r , where 
vd 

vd 

l 1/2 
-r = ( w + 1 ) , ·-c = edt/ p 

vd 

The 

( 13) 

( 14) 

( 1 5) 

and (p,¢) are the polar coordinates in the xz-plane as shown in 

Fig.1. Equations (14) define one branch of a hyperbola with vertex 

.. 2 )1/Z I at q = 1 ( w + 1 x p, which is parametrically described by 

the dimensionless time parameter r as r var1es from r 
vd_ 

towards 

infinity. 

As shown in Fig. 2(a), the contour of integration has two 

possible configurations in the q-plane, depending upon ¢ and w. 

For the case(1) given by: 

Case(1) ¢ < d• and 
· cia 

0 < (..IJ < (.(.1 

or 

¢· < ¢' da. 
< r:f\ .. ::J. 

and w < w 
da 

< 00 ( 1 6) 
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Sn+ ·s + 
.R sR+-

Sc+ s+-s ss+ 

s+ s sc+- sd ... 
II 

i 
l\ 
~ 

for all w, a( c5 < cdJor O(W( w5a c5 (a(Cd for O<W(Wda Cl)Cd 

op a<.cs fop wsa<"fi(Wqo Q(Cd foPWcta(W.(.O 

(c) (b) (a) 

Fig. 2. Cagniard paths of integration in the q-plane. 
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where 

and 
2 

r 
C. -

d 
W. = I .ja 2 

I .... a Sll1 

= s i n -
1 c . I a ·, 

d 

2 2 - 1/2 
a S1n ¢' I 

I 2 
' 

2 
r.L' - b 

J 

f 

-1 
= sin b/a 

( 1 7 ) 

the vertex of the path q = q~ does not lie on the branch cuts and 

+ 
hence the path of integration contour is simply q = qd and is 

denoted by I. But for the case (2) g1ven by : 

Case ( 2): ~ < ¢ < ¢ and o < w < w · 'da ba da 

or ¢1 > and O<w<c.o ( 18) 

+ 
the vertex of the path q = qd lies on the branch cut between the 

. s~ ~ branch po1nts q = and q = S . Hence the integration 
c d 

given by 
+ 

q = q 
d 

for T > T vd which is denoted 

contour is 

by II, plus 

q = qda = i-rsi nc,b -
2 1/2 

T ) cos¢ ( 19) 

for T < T < T vda vd 
where 

C
z ) }1/2 2 2 z 1 ..-z · ] d cos¢ + ( w b + Cd) ·· sin ·P . 

(20) 

Transferring the ·path of integration from the real q-axis to 

the Cagniard's path we obtain 
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U zd (p , ¢1 , S ) = 2 Pab 
'ITL!C 

' d 

w t 
da 'Jd 

+ H(¢bu. - ¢)H(¢ - ¢da)J J Re[kzd(qdu. 

0 t 
•Jda 

+ H ( ¢ - ¢. )j" J Re [ 
bu. 

(J t 
•Jda. 

dq 
d·.J. 

dt 

dqda. ] -st 
,w) ---- e dtdw + 

dt 

e dtdw ] 
-st ] ( 21 ) 

where t = (p/Cd )T "d ·and t = (p/C )T The first term of ( 21) 
'Jd w 'Jda d 'Jda . 

+ 
is the contribution from qd and the second and third terms are the 

contributions from q 
da.. 

Now interchanging the order of integration in (21) and 

inverting the Laplace transform, we find that 

U (··, ,+, T) !Zd ,_., r, 

T 
dct 

.. r 
·"' J 

A 
da. 

... 

l 2 Pab 
H(T 1 ) = -

'ITUC 
I d 

[ 

dq 
da. 

Re k ( q w) 
zd da, 

dt 

T 
d 

J Re[ 
+ 

kzd ( qd 'W) 

(! 
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where 

+ H ( r}) - r})_ ) H ( T - T . ) >< 
' ' t:a da 

A 
da 

0 
A 

da 

{

0 for T <T < 1 
da 

= Td f 0 r 1 ( T < T ' 
. da 

= {o for -rd·.l <T< 

T for -r > 1 
d 

) 

0 2 . 2 ' ( 2 2) 2"' 
X d = T d b S 1 n rp + a - b T d COS '1--' 

2 
y =To b4 sin4J, + (az _ bz)z 2 4, 

d d 't" T d COS rp + 

Z_ = (-r_-
d d 

2 2 
-r = a -r 

d 

2 2 2 u . 2, 2, 
+ 2 ( a - b ) b -r -r s 1 n ¢' cos ¢' 

d d 

2 . 2 ' )2 
2Cd S1 n rp -

? ? 

2 2 2 
4C _ (a - c 

d d 

~ ~ i ) a. cos '+' 

1 0 1 

. 2 ' 2 .+ 
s 1 n r.p cos lf-' 

(22) 

(23) 

(24) 

(25) 



0 2 2 2 2 2 . 
(26) T = a -r (Cd - a cos ¢•) 

ci 

[ cl 2) 1/'2 1 
T = c cos¢ + C. sin 1-· J I (27) 

d·:J. a d •.:l 

2 bz 1/2 

r c -
l d 

(28) "[ = 
L I 

d·.:t 2 
sin 

2, -b2 J a (/.' 

The first term in u is due to the dilatational motion behind 
zd 

hemispherical wave front at T = 1 and the second and third terms 

are due to the dilatational motion behind the conical wave front at 

T-r for¢ > ~ • These wave fronts are shown in Fig. 3(a), T = 
'- da 'da 

Tda shown in Fig 3(a) by a dashed curve, is not a wave front 

because it 1s not a characteristic surface for governing wave 

equation for the dilatational motion. Similar non characteristic 

surfaces were found by Gakenheimer and Miklowitz [1969] for a point 

load travelling on an elastic half-space and also by Aggarwal and 

Ablow [1967] for the motion of an acoustic half-space due to an 

expanding surface load. They proved explicitly that their solution 

was analytic over the surfaces. The same thing can be proved in our 

case also. 

(b) Case a > cd > b 

In this case, the path of integration with respect to q 

transforms to the simple path given by contour I (Fig.2(a)) for all 
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\ 

~da 

z 

3 (a) for a > b > "" 

.... 
~ba 

'% 

\ 
I 
I 

't~>ba 

3 (c) for at < cd 

z 

\ 
\ 

\~ba 

3 (b) for at > ell > b 

F1o. 3. Wave patten for dilatational motion. 
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w when ¢ <¢ba and also for O<w<wda when <r.iJ • 'da whereas the 

path of integration with respect to q transform to the contour II 

(Fig.2(a)) fol- w <w <ct..' when dJ <¢<¢' and also for all w when d•J. ' ba da. 

¢ > ¢da.· The remaining details of inverting uzd for a > cd> b are 

exactly the same as for a> b> c, and one can easily find that 
d. 

T 

[H(r 
d 

2 Pab 
1) J Re [ U (p,dJ,T) 

'!' 

= - kzd ( qd 'W) zd ' 'T!UC . d 
0 

+ H ( ¢ - ¢. ) H ( ¢ . - ¢1 ) H ( T - T . ) X l:,a. da. da. 

'f 
da. 

dq 
X r Re r k ( q , w) d·.J. l dw + 

J l zd da. d t J . 
'f 

d 

+ H(d' - d1 )H(T - T. ) .Y.. . . da. da. 

T 
da. 

.x J Re [k ( q zd da. 
0 

A. da. 

+ dq, 
] dw 

.j 

+ 
dt 

(29) 

0 
where A is g1ven by (23). The wave geometry associated with this da. 

expression is shown in Fig.3(b). 
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(c) Case a < c 
d 

For this case the path of integration with respect to q 

transform to the simple path given by contour I [Figs. 2(b),2(c)] 

for all w when 0<¢ and also for O<w <w when~ >~ whereas the 
. bet. d·:t. ' 'bet.' 

path of integration with respect to q transforms to the contour II 

[Fig.2 (a)] for w <w<oo when ¢>¢ . Note that in this case the 
dct. bet. 

angle ¢ does not arise. Now preceding 
dct. 

i nvet-t i ng u we get 
zd 

U _(p,¢,T) = 
z,j 

2 Pab 
rr,uc d 

[ H(T -

T 
d·:J. 

as the 

dq 
H(¢1 l'f, )H ('r ·r' ) J Re[ kzd ( Qdu. 'W) 

dr.:1. 
+ - . ...., -

'h·:t. dct. 
dt 

T 
d 

case 

l dw 
J 

1 

a>b>c 
d 

J . 
(30) 

for 

The wave geometry associated with this expression is shown in 

Fig.3(c). As expected physically, contribution due to the conical 

wave front does not exist for this case. 

Summary 

Combin-ing (22),. (29) and (30) one finds that 

written as one expression for ail value of a and b. 
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T .. d "'" 

Pab dw + 
u (pl¢1-r) 

2 l H(T 1)J Re [ k zd ( Q:, W) 
dqd ] 

= -
zd 'TI.UC. dt 

where 

I 

I 
A 

da i 
l 

I 

I 
I 

I 
I 
L 

. d 

r + lH(T -·1. )H(¢ 
Cia. 

0 

c.) + 
d 

+ H(a-c )H(c -b)lJ .. + H (-r -T '. ) H (ill - 1! ) f H ( a - c . ) r.. 
cta. ' ba. l ct 

d d 

x H(c - b)H(rb - rb) +·H(c- a)·_}] :,;. 
d ' da. ' ' d 

T. 
eta 

dqda ] ] s Re[ kzd ( Qda. I W ) ;1\. 
- dw 
dt 

A 
da 

= 0 for T < T < 1 l da. 

= T for 1 <·r <T' 
d da f ,, 

= T for T >·r '. J 
da a a. 

for ¢ <¢<¢ , a>b>c. 
da ba d 

= 0 for ·r <T < ·f l da I 

for rf' > ¢•. 1 a> b >cct. 
t>a 

( 
= T. for <T J for ¢ > ~ , a> c >b 

'da. d 
ct 

(31) 

T for > ·T/ 1 = ·r ' 
for w < w <¢ ,a > cd>b 

' ba. ' d a. 
d da 

L for¢>¢ ,a<c .. 
'ba. ct 

(32) 
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4. EQUIVOLUMINAL CONTRIBUTIONS 

Inve1~sion of u is comp1icated than the 
zs 

inversion of u 
zd 

because of the appearence of head waves (Von-Schmidt waves) 

otherwise it is same as u . Here the integration contour has more 
zd 

configurations in the q-plane though the singularities are the 

+ + 
same. Here the hyperbola q = q- arises in a similar way to q = q ., 

s d 

but its vertex can lie on the branch cut between the branch points 

+ + + + at q = s and q = S and at q = s and q = S as well as between q 
d s c s 

= s+ and q = s+, depending on the values of w, ¢, a and b. In this 
c d 

case, the straight line contour lying along the imaginary q-axis is 

denoted by q which is similar 
sa 

to q 
da 

appearing in the 

dilatational contributions. Now omiting details of inverting u"~ 
~"' 

one can easily find 

T 

r 
9 

u ( ,-, ¢' ., ) 4 Pab 
H(T 1 ) J [ (q 

"1-
,w) r-· , , ' = - Re k 

Z:d rruc. zg 9 
' •:i L .o 

"1-
dq 

g 

dt 

+ [H('f -r )H(cb- ¢ ){H(b- c) + H(c- b)H("a- c)} + 
9•:1 ' 9(1 9 9 9 

+ H(T - T
1 )H(¢ - ¢ ) {H(c - b)H(¢ - ¢) X 
sa ba s sa 

x H (a -c ) + H ( c - a)}] x 
s s 
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where 

T 
9U. dq 

J Re[ (q ,w) 
sa. 

] dw :,.:. k + 
:zs sa 

dt 
A 

9Ci 

+ H(T- T )H('r'.- T)H(¢'- q_, .) .". 
sd sd . sd 

T 
:=:d 

x. Jr Re [k ( q , w) 
zs sa 

A 
:=:d 

(33) 

for 0 < p < oo , 0 < ¢ < rr/2, 

0 < r <m, 05 a <m and 0 < b <co, a> b 

r = 0 for T < '[ < 1 r ¢ < ¢) <~ba'a>ed,a>b>e9 ,ae9 >bed SCi SCi 

I i ¢ <r./.> <¢
9
d,a>ed,a>b>e

9
,ae

9
<bed I S!•.J.. 

I I 
I = T for 1 (T < -r' l rj.J <o:f.> <¢. ,ed>a>b>e 

9 sa 9(.1. abs · s 
I 
I 
I 

I 
! 

0 for < < 1 { ¢ < 4' <¢'sci , a> b > e d , ae s > bed = ·r T 
sa ba 

= T for ·r > 1 l ¢ <¢ <dJ ,a>c >e >b ' s sa 'sd d s 

= 0 for '[ < T( T l 
sa sd ,, 

= T for T < T < r' l ,,.., >¢ .,a>b>e, ac >be 
( "T" 

sd sd sd sd d 9 d 

T for > -r' 
lj q., >d' , a> e.> e >b 

= -r 'sd d 9 

9 9d 

= 0 for T < T (T l 
sa. sd I 

I 
I 
I 

= T for T < T <T' ~ rj.> >¢ .,a>b>c.,ae <be. 
sd sd 9d Sd d 9 d 
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A 
sa 

I 
I 
l 
I 

I 
I 

I 
I 

I 
I 

,I 

J 
1, 

I 
I 
! 

I 
I 
I 
I 

= T for T' <T <T' 
s sd sa 

= T for T > T' 
9 9 •J. 

= T for -r' <-r<-r'. 
9 sa scta 

= T . for -r' <-rcr' 
sct sda sd 

= T for T">T'. 
9 sct 

= 0 for T ('[ < 1 
so. 

= T for 1 <T 
s 

<T' 
sda 

= T for -r' <T<T' 
sd sda sd 

= T for ·r>T' 
sd 

= 0 forT <T<·r' 
sa sda. 

= T
9
d for -r' <T <T' 

sda sd 

= T for T > T' 
sd 

= 0 for T u < 1 
9Ci 

= T 
9 

for l<T<T' 
,;;de. 

= T forT'. <T<T' 
9d ,;;aa ,;;d 

= T for T 1 <T<T' 
9 sd sa. 

= 0 for T < T <T' 
9da. 

= T for -r' <T<T' 
sd sd•J. sci 

= T for T 1 (T(T' 
sd sa 9 

j 
r 
i 
l 

l 
,' 
I 

r 
I, 
'I 
J 

l 

l 
( ,, 
I 

l 
l 

I ,, 

~ ll 
l 
I 
I 

~· 

l 
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¢ <~ <¢ ,a>c.>c >b 
h·J. ' 9 •J. d s 

¢'. <¢ <¢ . , c. >a>c > b 
be. C.b:S d s 

¢· < <P<r.P. ,a<c 
be. aus s 

4-, . <4-,<4· , c. >a>c >b 
:J.t~g ga. d g 

4J>rj.• . , a<c 
a.t1 :9 9 

(34) 

~>~ ,c.>a>c >b,u>0 
' 8(J d 9 

¢ <¢<¢ ,c >a>c >b,~>a>r' 
S•J. X d 9 

¢ >~ ,c >a>b>c ,a>0 
' ba. d 9 

¢ <~<~ ,c >a>b>c ,0>a>r 
l;uJ.' 'x d 9 

¢>¢ ,c >a>c >b,0>a>r' 
X d 9 

¢>¢ ,c >a>b>c .~>a>r 
X d 9 

¢•>¢. ; c >a>b>c. ,a<r 
l;)oJ. d 9 

~ <~<A c >a>b>c a>~ 
I a.bg I r ba. ' d 9 7 I 

¢ . <4,<¢ , c. >a>b>c ,(J>c.o;v 
a.bs b·J. d s 

¢ . <~<¢.• , c. >a>b>c ,a<y 
a.bs !~ d s 

¢ <¢<¢ ,c >a>b>c ,a<y. 
X be. d 9 



A . 
sct 

I 
I 

I 
II 

l, 

I 
I 
I 

I 

I 
I 
L 

= 0 for T <T < 1 ad 

= T for 
:3 

1 <T <T I 

sci 

= 0 for T <-r < 1 
sd 

= T for 1<-r<T 1 

s sa. 

= T forT' (T(T 1 

sa. sda.. sa 

= T for T
1

• <T<T' 
scta sd s 

= 0 for .,... <·' <·' 
L sd L L sa. 

l 
I 
J 

( 

= T for T < T <T 1 
1,' 

sa sda 1 sa 
I 

= T for T
1 

<T<T' 
s da s d l 

= 0 for T (T (T l 
ad. <s.: 

1 
f 

for t <T : 
sa ada = T 

sa 

= 0 for T 
1 

• <T < 1 
sda 

= T for 1 <T 
s 

<TI 
ed 

= 0 for ·r <r <T 
::;d 9a 

= T for r <T<T' 

= T 

sa sa. sa. 

8 

f 0 r ·r I ( .,- ( .,- I 

'au. ' 'sd 

J 

l 
I 
L 
I, 
I 
I 

J 

¢ d<¢<¢ b ,c >a>c >b s a·s d s 

¢ <¢<¢ ,c >a>b>c 
s d sa. d s 

¢ d<¢<¢ b ,a<c s a s 8 

¢. <¢<¢ ,c.>a>c >b 
abe sa d s 

¢ >¢ . , a< c 
at.s e 

·di >¢.' c.>a>c >b ot)ij' 
' sa' d s ' 1 

¢ <¢<¢ ,c.>a>c >b,~>a>r' 
sa x d s 

¢>¢ . , c. >a>b>c ,a>f3 
abs d 9 

¢. <¢<¢ ,c >a>b>c .~>a>r 
aba x d s 

¢ <¢<¢ ,c >a>b>c ,a<r 
abs x d s 

¢>¢ ,c >a>c >b,~>a>r' 
)( d 8 

¢>¢ ,c >a>b>c .~>a>r 
X d 9 

¢>~ ,c >a>b>c ;a~r 
' X : d :3 

(35) 

1 1 0 



and also where 

T 
9 

T 
sa 

X 
s 

y 
s 

= (T 

= [ 
I) 

= 'f s 

0 = T 
s 

2 12) 1/2 -

2 2, 
b

2 /z 1/2 1/2 
X - {Y -(a cos <:p - } . 

] 9 9 9 

2 2 b2 )2 (a cos ¢ -

2 . 2' 
(a 

2 b2) 2, 
b s1 n rp + - T cos cp 

:3 

2 
4 ' 4 ' ( 2 2 )2 2 4 ' b s 1 n cp + a - b T cos f/-' + 

s 

2 ' 2ri ' 2 2 2 ( 2 2 ) ' 2.4 2 . Z = ( T - 2c .s 1 n ~,) - 4 1 c a - c s 1 n wcos rJ_, 
9 9 d d 9 • • 

I) 

T 
s 

T 
sd 

T 
sa 

'f 
sd 

2 2 2 2 2 2,) = a ·r + 1 ( c - a cos q:.' 
s 

2 2 12 ( c2 2 2 ' ) = aT - - a cos q:.• 
s 

= [{cT - T )cosec¢ +J sd 

1/a[l(a
2 2 1/2 ' = - c_) cosq.' + 

"' 

- ~r/2 

cd sin'4] 

= [cl2 - 1//2 cos ¢> + sin ¢> J 

11 1 

(36) 

(37) 

(38) 
" 

(39) 

(40) 

(41) 



¢ 
){ 

·r I 
' = 

9•:1. 

-r' 
gd = 

-1 = sin 

¢. = at,,;; 

r 
12 ( b2 - cz) r2 s 

L b2 2 
sin 2 ' - a 1-' 

cl - 1 )1/2 sec¢• 

2 

1/2 
1) cos¢• + 

c. 

l
- ct 

2 
a 

-1 = sin 

2 
- b 

2 
- b 

c /a, 
g 

r:J_, 
'sd 

c /c., 4•. 
,;; d t.a 

z ., 

( 
c b"" 

sin 
-1 d 

1
2 

(a 
2 2 2 2 - b )+cd -a 

z z 
c. - a 

sin ¢• ] 

-1 = sin 

l 
1/2 

) 

b/a 

r/2 ( .j 
(~ ( 12 1/2 

(.lJ,. = = - 1 ) ' I ;-
I 2 b2 '- a 

·,.. = b ( ,z 
, a 

z 
(c. a a 

., ~ .1? 
b ... ) ........ ,· 

2 2 

c [ a - c.::, ( c~ _ b? )] l/2 
a,; ( 12 - 1 /...-z - ~ . -a-2--b; a -

+ 2 T2 )1/Z q = i T sin¢ + (T - cos¢ 
9 V9 

11 2 

(42) 

(4~) 

(44) 

(45) 

(46) 

l ( 47) 

(48) 

(49) 



2 2 1 /? 

T = (w + 1 ) .· ~ (50) 
\la 

iT sin¢, i(T 
z Tz )1/Z cos¢ (51) q = - -

sa W'S 

The first term in the expression (33) is the equivoluminal 

motion behind the hemispherical wave front at T = 1 and the second 

is due to the equivoluminal motion behind the conical wave front at 

T = T . The third term in u represents the equivoluminal motion 
sa zs 

due to the head wave fronts at T = T 
sd 

The wave fronts T = T . 
sa 

for r} >r.iJ and T = ·r are shown in Figs. 4(a-1). 
' 'sd sa 

The equations T = r' , T = r' and T = r' are shown in 
sa sd sda 

Fig. 4 by dashed curves which are similar to T = T' 
da 

appearing in 

the u . These dashed curved surfaces are not considered as wave 
zd 

fronts because it can be shown that displacements and their 

derivatives are continuous across these surfaces. 

5. WAVE FRONT EXPANSIONS 

The wave forms of the solution given in (31) and (33) are 

evaluted by approximate estimation of the integrals in the 

neighbourhood of the first arrival of the different waves. To 

facilitate this evaluation we put 

z 2 2. . z 1/2 
w =[A + (B- A )Slnc~.J (52) 
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in the integrals arising in and u where A and 8 are 
zs 

respectively the lower and upper limits of the particular integral 

in question, and the range of integration with respect to a is from 

0 to rr/2. 

Now for the first integral of (31), we put w = T. sin a and 
d 

hence for T ---t 1 +, we find that for any value of a, 

w ~ 0, 

d + cd qd cos ¢ 
···--7 

T cosot' 
dt 

p 
d 

m. ~ cos¢, 
a 

m ~ 
0 

( 12 . 2 ') - 2s 1 n rp , 

E 
1/2 

N ~ N 
1 

C. 
,•j ..... 

i 
c. 

a 

2 
(c. 

d 

2 ' 2 ' )1/2 as1nq:• , 

( 
2 . 2. 2)1.-'.2 

as1n¢-c , 
d 

for 

for ¢• > d• 
I :.:kt' 

( 
2 ' 2 ' )2 .. 2 ' . ( 2 . 2 . 1/2 where N = 1 - 2 s 1 n q:• + 4 s 1 n q:• cos ¢• 1 - s 1 n ¢•) • 

:1 

(53) 

(54) 

Substituting these approximate values in the first integral of 

(31) one can find, for¢<~ 
'da 

[ u ] ---t N as T ---t 1 + 
Z Z1. 

where 

N 
b 2.(2 ,2,) Pa cd cos ¢ 1 - 2s1n ~ 

= 
(

2 2 ,2,)1/2 
~p cd - a s1n rp .N

1 

Z1 
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Again in the second integral of (31) we put w·=T sina and as T~1-
da. 

for ¢>¢ we find that 
da. 

i s i n¢' - i cos¢ T da s i n a 

dq ic T sin a sin¢ + cos¢ da d da 
~ 

p 
( T~ 2· '1'2):1/2 .dt sin (~ + -

a a 

Puting these values in the second integral of (31), we get 

(57) 

TU2 
i c d 

J Re[ kzd ( i sin¢ i cos¢ sin sin a) 

I) 

= 

X 

+ 

X 

T da 

T sin a sin¢ + c6s ¢ da 

ot, T da 

2 ' 2 2 1/2 
(Tda Sln u + 1 - T ) 

] T COSOl dOl da 

E 

Re[ 
' 

f k ( i sin¢ -i cos ¢ T sin 0(, Tda sin zd da 
0 

T. sin a. si n¢• + cos¢ 

] da .,... 
COSC.~ de.~ + 

2 2 2) :1/2 
1 cla 

(T. sin (.~ + 1 - ·r 
da 

·t[/'2 

f Re[kz/isin ¢ icos¢ T sin sinot) - (.~ ' T. da da 
E 

Tdasin a sin¢' + cos¢• 

] T CO SOl de{ 
( 2 ' 2 2):1/2 da T Sln <.X + 1 - ·r 

da 

where E is very small. 

1 15 

X 

p 

(58) 

i cd 
0( ) -- X 

p 

i c cl 
X 

p 

(59) 



Since the main contribution to the integral (58) as T ~ 

arises from the first integral of (59) as ·r 
' 1 , so for the 

evaluation of (58) as -r ~ 1, we consider the approximate value of 

the integral given by 

E 
i cd 

k ( i s i nrh - i cos ,J.. T sin Ol T sin 01) -- x 
zd ..,. 'V da ' da p 

0 

T sin ('{ sin¢ + cos¢ ] da 
:..:.. T CO SOl de.~ (60) 

2 2 2) :1/2 da 
(T. sin (~ + 1 - T 

da 

as -r ---t 1 • 

Since E is very small so a is also small. So for the evaluation of. 

the integral (60) as T ~ 1 we also use the fact that a ~o, from 

which we get, 

' ' ,;, ( 12 . 2 ' )1/2 w ---+ 0, qda ~ 1 S1nf[J, md ~ cos'~-', m
9 
~ - s1n t:p , 

( 61 ) . 

1/2 . I ( 2 . 2 , 2 )1/2 for , ¢ 
N ~ N :L , E ~ 1 c d a s 1 n q; - c cl q; > 'do. • 

Now substituting these approximate values in (60) and integrating 

we obtain the approximate value of the integral as 

11 6 



So for ¢' > 

where 

2 2,(2 .2,) cd cos ~ 1 - 2s1n ~ 
1 og IT - 1 I 

( 
2 . 2 ' 2) :1/2 

p a Sln r.p- C. .N 
d 1 

2,(2 .. 2-1) 2Pabc cos rp 1 -· 2 s1n '+' 
d 

N = 
Z4 

( 
2 . 2 .J 2 1/2 

ITf.lp a s 1 n cp - .c . ) . N 
.j :1 

when T ---1: 1 • 

In order to obtain the value of u as T ~ T we put 
zd da 

2 
w 

2 = A 
da. 

2 . . 2 
A.)Slnot. 

da. ' 

in the second integral of (31). 

When T ~ T. +, we find that 
da 

w ~ 0 

q . ____,. ; 
da. 

c 
d 

a 

dq_/dt~iA' 
cta 

2 2 

... 

where A' = c d ( _a __ -_zc_d J :1/2 for a > cd' 
pa L 

- ·T 
da 

11 7 

(62) 

(63) 

(64) 



where 

where 

m ___, 
d 

1/a(a 

1 
m ___, 

,; a 

N ---t N 
2 

2 
(a 

2 2 )1/2 for - cd 

c2)v2 - m 
9 0 

E
1/2 . 1/2 ( )1/2 __,. lK T - -r 

da. 

a 

___, 

2 2 2 1/2 
cos a(a -c.) . 

2a d 

> cd, 

z 
1 

(a 
2 

2 
a 

K = 
cd (< az 2 ) 1/2 . A. · A.] -cd s1n~ - cdcos~ 

(65) 

2 - 2c ), 
s 

Using these approximate values in the second integral of (31) 

we find that for a > cd 

where 

[u J ---t N 
Z4 z 

N 
2Pab = Z4 

as T ---tT 
da. 

+ 

2)1/2( 2 - c a 
d 

( 2KA )
1

/
2 

N 
2 
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r 

where Z ( 2 Z )1/Z , ¢ , 
C = Ba c dT da a -c d s 1 n ~ cosq:., 

2 2 2) 2 0) 2 2. 2. ( 0. 
A=a(a-b cos¢7: (T +T +abs1n¢Td T.-TdaJ da da da a cia 

It may be noted that conical wave front T 

for a < c 
d 

(68) 

= T does not arise 
da 

Next when ¢ < rj.1 , for the eva 1 uat ion of u as r ---t 1 , we put 
.sa zs 

w = T sina in the first integral of (33). When T--;, 1, we find that 
s 

in the above integral 

w --;, 0 

+ 
il sin¢' q -t 

s 

dq+ cd s 
1 cos¢ 

~ 

dt p T co sex 
s 

( 
2 2) 2. 2, 

q +w ---t - 1 s 1 n q:., 

m ---t 1 cos¢' 
s 

11 9 



2 ( zd . 2 , ) m __,. 1 cos , ' - s 1 n rp 
0 

1/2 1 2 2 ' 2 '{/2 E. ~ -(c a s1 n !f' c g 
9 

(a 
2 2. c2 )1/2 ---t sin¢ for 

c g 
g 

N ____,. 1
3

N 
!'I 

for ¢.• < ¢'Q·:J. 

¢> > q., 
sa 

where [ 1 ( 2-/, , 2,)2 , 2, A.(· 12, 2-/,)1/2] N
9 

= cos 'f' - s 1 n f/J + 4s 1 n f!J cos'f' 1 - s 1 n 'f' • 

Using these approximate values in the first integral of (33) 

one can find for all values of a and b, 

where 

[ u ] ---t N for ¢ < ¢ as T ---t 1 
z z2 sa 

N = 
Z2 

2pabc 
:9 

,up 

' 2¢ ' 
51 n ' COS!f' ( . 1 2 ' 2 .:1. ) 1 / 2 1- s1n 'f' 

2 2 ' 2 1/2 
(c -a s1n ¢) .N 

9 9 

(70) 

(71 ) 

For ¢ > ¢ , considering approximate evalu~tion of last two 
sa 

integrals of (33) as T---t 1 it can be shown that for the case· 

a > b >c 
d 

u ~ N 1 og IT - 1 I for ¢ > ¢ as T ---t 1 
z z3 ad 
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and for the case cd > a > b > cs 

and also for the case c > a > b , 

where 

N 
z5 

N 
Z9 

= 

= 

2pabc 
s 

8pabc 
s 

IT,Up 

as T ~ 1 

'2,J '( 12 '2-~·)1/2 
S 1 n 'tl COS!f' 1 - . S 1 n '+' 

2 . 2 -~- c2 ) 1 / 2 (a s1n 'P - N 
g 9 

. 4 ,J, 2 ' ' ( 2 ' 2 ,J, ) s1n ..,., cos !fJ 1 s1n ..,., - 1 

2 . 2¢ c2 )1/2 (a s1n · :.. N 
g 4 

(75) 

(76) 

(77) 

(78) 

. 2 ' ¢ ( 2 ' 2d ) 1/2 ( 2d ' 2 . )2 2pabc. s1n q_1 cos 1 1 s1n ,1 - 1 cos.'- s1n ¢ 
d 

N = 
z6 

'IT.,Up (c
2 2 .2.)1/2N - a s1n ¢• 
g 4 

[ 1
2 ( 2 ' • 2¢ ) 4 ' 4 ' 2 ,J, ( 2 . 2 _,J_ ) ] N = cos ({-1 - s 1 n I + 1 6 s 1 n !fJ cos ..,., 1 s 1 n o/ - 1 

4 

(79) 

(80) 

For the approximate evaluation of the displacements at the 

wave fronts T = T 
sa 

and T = T 
sd 

we follow 

1 21 

similar procedure as 



followed for the evaluation of u as T ~ T and we find that 
zd da 

where 

N = 
Z6 

[ u ] ~ N as T ~ T for a > c 
z z5 ea. d 

[ u z ] ~ N z<5 as T ~ T sa. for c d > a > c 
9 

[ U ] ___,. N ( T - T ) 
3
/Z f > 

3 d 
as T ~ T ~d or a cd z z 9 ~ 

[ U ] ~ N ( T - T . ) as T ~ T . f 0 r a < C . 
z z? ed sd d 

N = 
z!5 

2 2 :1/2 
4Pbc d A

9 
[ (a -c d ) D 

9 
] 

2 . :1/2 
·rr,u a ( 2 K B A ) 

9 :3 9 

2 :~ ( 2 2 [ (a· 2 _ cz ) 0 ] 1/2 16Pa bed cd-a ) A
8 8 8 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 
2 1/Z 6 2 Z 4 4 Z Z Z 2 

·rr,u(2K-=- 1 A
9

) [1 (a -2c
9

) - 16c. (c -a )(a -c )] 
~ d d 9 

4Pab 

[ 
2 coseo:jJ r/2 2 

N = - -- Asd 8
sd 

B A (87) 
z3 sd sd z z 

rr,u a - C. 
.j 

4Pab 

[ 
2 cosec¢ r2 2 

N = Asd 8
sd 

A (88) 
z7 sd 2 2 

·rr,u c. - a 
.j 

2 ., 1 ... , 

1 cd (a - c ... ) .· .... 
s 

A = (89) 
s 2 2 1/2 . . ,:, [ l(a -c ) s1 nd> c. cos¢' ] 

9 ' u 
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z 2 c2 )1...-2 D = 8a 1 c -r s i ncb cos¢• (a -
s d s;a ' 9 

(90) 

[ 
2 z 0 ) . 2 ' ( 2 2) z 2 ' ( 0 )] ( ) 

A 
9 

= ·r sa a b ( T sa- T 
9 

a s 1 n q; + a - b a cos q; T sa.+ T sa. 9 2 

A =·rr4 [ 
sd 

(93) 

(94) 

B = 4 A ( 1
2 

-· 1 //
2 

B
2 

sd sd sd 
(95) 

A = ( 1 2 - 1 ) uz ( 1 2 - 1 ) V"Z s i n¢• - cos¢• cd [ ]-1 
sd p 

(96) 

In these expressions the notations [u ] stands for the change 
z 

in u across a wave front and N etc. are wave front coefficients. 
z Z1 

It may also be noted that if we put a = b in this problem, it 

re'duces to the problem of uniformly expanding circular ring source 

and in that case our derived results coincide with the results 

given in the paper of Gakenheimer [1971]. 
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Fig. 4. Wave pattern for equivoluminal and head wave motion. 
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Fig, 4. 
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Fig. 4. 
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z 
4 (i) for Ctl > a> c, > b, oc > ~. a Cs > b Ctl. 

z 

4 (j) for ct~> a > c, > b, ~ > « > y', ac1 > bed. 

Fig. 4. Wave pattern for equivoluminal and head wave motion. 
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Fig. 4. 
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Paper - 3. 

Paper - 4. 

C H A P T E R II 

CRACK PROBLEMS IN ELASTODYNAMICS 

High frequency scattering of plane 

horizontal shear waves by an 

interface crack. 

High frequency scattering of plane 

horiiontal shear waves by a Griffith 

crack propagating along the 

bimaterial interface. 
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HIGH FREQUENCY SCATTERING OF ANTIPLANE 

SHEAR WAVES BY AN INTERFACE CRACK 

1. INTRODUCTION. 

Scattering of elastic waves by a crack of finite length at the 

interface of two dissimilar elastic materials is important in view 

of its application in Geophysics and in Mechanical engineering 

problems. The extensive use of composite materials in modern 

technology has created interest in t~e wave propagation problems in 

layered media with interfacial discontinuities. The diffraction of 

Love waves by a crack of finite wi~th at the interface of a layered 

half space was studied by Neerhoff [1979]. Kuo [1984] carried out 

numerical and analytical studies of transient response of an 

interfacial crack between two dissimilar orthotropic half spaces. 

Following the method of Mal [1970], Srivastava et al. [1980] also 

considered the low frequency aspect of the interaction of antiplane 

shear waves by a Griffith crack at the interface of two bonded 

dissimilar elastic half space. 

PUBLISHED IN "IND.IAN J. PURE APPL. MATH.", V 21<12), PP 1107-1124, 1~90. 
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But high frequency solution of the diffraction of elastic 

waves by a crack of finite size is interesting in view of the fact 

that transient solution close to the wave front can be represented 

by an integral of high frequency component of the solution. Green's 

function method together with a function-theoretic technique based 

upon an extended Wiener-Hopf argument has been developed by Keogh 

[1985 a], [1985 b] for solving the problem of high frequency 

scattering of elastic waves by a Griffith crack situated in an 

infinite homogeneous elastic medium. 

In the present paper, we have derived the high· frequency 

solution of the diffraction of SH-wave when it interacts with a 

Griffith crack located at the interface of two bonded dissimilar 

elastic half spaces. To solve the problem, following the method of 

Chang [1971], the problem has been formulated as an extended 

Wiener-Hopf equation and the asymptotic solutions for high 

frequencies or for wavelengths short compared to the length of the 

crack have been derived. Expressions for the dynamic stress 

intensity factor and the crack opening displacement have beeri 

obtained and the results have been illustrated graphically for two 

pairs of different types of material. 
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2. FORMULATION OF THE PROBLEM 

Let (x,y,z) be a rectangular partesian coordinates. Let an 

open crack of finite length 2L be.located at the interface of two 

bonded dissimilar elastic semi-infi~ite solids lying parallel to 

x-axis. The x-axis is taken along the interface, y-axis vertically 

upwards into the medium and z-axis is perpendicular to the plane of 

the paper. (~ ,p ) and (~ ,p ) are coefficients of rigidity and 
1 1 2 2 

density respectively of the upper and lower semi-infinite medium. 

The crack is subjected to a normally incoming anti plane shear 

wave originating at y = -oo. 

We are interested in finding the high frequency solution of 

the diffraction problem i.e. the solution when the length of the 

crack is large compared to the wave length of the incident wave. 

Accordingly we shall have to solve the problem when the crack 

is subject to the following boundary conditions: 

<f) 
a (x,O+) 

vz 

( 2) = a (X, 0-) = 
Y!Z 

( 1) 
a ( x, 0+) = 

Y!Z 

W (X, 0+) = 
1 

Cl) 
0 (X, 0-), 

yz 

W (X, 0-), 
2 

-P 
s 

-P e 
0 

-i.Wt 

I X I > L 

I X I > L 

I X I < L ( 1 ) 

( 2 ) 

( 3) 

where w is the circular frequency and P is the static pressure. 
s 
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Assume 

w (x,y,t) 
1 . 

= W (x,y) 
1 

w (x,y,t) = W (x,y) 
2 2 

-i..l~.)t 
e 

where W and W satisfy the following two wave equations 
1 z 

2 
1(x,y) 

2 
(x,y) v w + k w = 0 

1 1 

v2 w 2(x,y) 
:! 

2(x,y) + k w = 0 2 

fl .2: 
i:J 

·> 
with ,.....,.:. 

+ v = --
ox 2 oy 2 

(4) 

(5) 

(6) 

( 7 ) 

The shear wave number k and k are related to the two shear wave 
1 2 

velocities c and C of medium (1) and (2) respectively by 
1 z 

(8) k = I.JJ/C 
2 2 

Without any loss of generality we assume that k >k: 
2 1 

( 1) (1) -i.wt 
Let a (x,y,t) = ·r (x,y) e 

yz yz 

( 2> {2) -i.Wt 
a (x,y,t) = T (x,y) e 

yz yz 

(9) 

( 1 0) 

( 1 1 ) 

In the boundary condition (1), P is the stati6 pessure assumed to 
s 

be sufficiently large so that crack faces do not come in contact 

during vibration. Since we are interested in the dynamic part of 

the stress distribution, so the boundary conditions (f), (2) and 
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(3) may be written as 

and 

that is 

and 

111 
. T .. (X I 0+) 

yz 

(1) 

T (X I 0+) 
yz 

W (X, 0+) 
:1 

aw 
:1. 

u = 
' :1. 

oy 

aw 
1 

u = ' 1 
iJy 

w (X I 0+) = 
1 

{ 2! 
= T ·(x,O-) = -P 

yz o' I X I < L 

{2} 

= T (X, 0-), 
yz ·I xj > L 

= w (X I 0-)' I xl > L 
2 

aw 
2 I X I <L I u = - p y = 

'2 
i)y 

o' 

aw 
2 I X I >L I 0 u y = '2 

Jy 

w (X' 0-) I I X I >L 
2 I I 

(12) 

( 13) 

( 14) 

0 ( 1 5 ) 

(16) 

(.17) 

In order to obtain solutions of wave equations (6) and (7) we 

introduce Fourier transform defined by 

00 

W((.'<,y) = f ic~x 
W(x 1 y) e dx 

-((I 

Thus we obtain the transformed wave equations as 

2 2 
(<:.'4 -k )W = 0 

1 1 
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? ? 

(c./"-k ... )W = 0 
2 2 

(20) 

The-solutions of (19) and (20), bounded as y tends to infinity, are 

·W (cx,y) ( Cll) 

-y1y 
> ( 21 ) = A e y 0 

1 1 

'V y 
w (t.'X,y) A (cd 

' 2 < (22) = e y 0 
2 . ., 

£. 

1/2 1/2 
2 2 

(23) (012-k2) (24) where .-~ ... = (ot -k ) 'II' = 
' 1 1 '2 2 

Introducing for a complex a 

G (a) = 
+ I <1> · ei.a cx-L> dx 

·r (x,O) 
yz 

(25) 

L 

-L 

G ((.'\) f 
( 1) i.Cl. <X+Ll 

= 'f (X ,.0) e dx (26) 
~ 2n 

yz 
-((1 

and 

L 

G (ot) I 
{ 1} . i.C.~X 

(27) = T (x,O) e dx 
:l 

~ 2'TT 
yz 

-L 

the transformed stress at the interface y = 0 can be written as 

( 1) 
T (a,O) = G (ot) 

yz + 

i.CI.L - i.CI.L 
e + G (ot) + G (ot) e 

1 
(28) 
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Using the boundary condition (12) we note that 

G (C() = 
1 

p 
0 

Further using the fact that 

[ e i.otL - e-i.Oll.. ] 

(f) 

T (ot,O) = - u y A (ex) 
yz ' 1 1 1 

we obtain from (28) 

-,uyA(a.) 
1 :1 1 

p 
__ o __ [ei.otL _ e-i.otL] 

~ 2·TI iot 

Since from ( 1 2 ) and ('13) stress ·T" is continuous at all ' yz 

the interface, so we obtain 

A ( c~) 
,u 1r 1 

A ( c.x .) • = ---
2 1 

u v 
' 2 1 2 

So ( 21 ) and (22) take the forms 

-·v Y 
W (c4.,y) A (c.~) 

' 1 .... = e y =- 0 
1 1 

!-l1Y1 r Y 
W (c:o~.,y) A (01) 

2 
= e y s 0 

2 1 
U ·v 
' 2 1 2 
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points of 
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L 

r r 1 i.ax 
Now· w (ot,O+) - w ((.1, 0-) = I W (X, 0+) - W (X, 0-) I e dx 

:1 2 [21! 
J l :1 2 J 

-L 

= B(ct), (say) (35) 

wich is the measure of the discontinuity of displacement along the 

surface of the crack. From (35). we get 

A (<-'X) = 
1 

Eliminating A (C<) 
:l. 

,u r s(a) 
2 2 

U'V +U'V 
':1'1 '2'2 

from ( 31 ) 

Wiener-Hopf equation, namely 

and (36) we obtain 

G (01) 
T 

iotL 
e + G (01) 

-i.OIL 
e + B(a)K(cx) = 

p 
0 [ e i.OIL _ e -i_otL] 

ia 

where 

K(c11.) = 

R(a) = 

L.! u ..•.. •\.' 
':~.'2 1 :1(2 

= 
(

' 2 k 2)1/2 
,u ,Ll <-"'! -

:1 2 . :1 

( J-l +J-1 ) 
:1 2 

( 
2 2):1/2 ( 2 k 2):1/2 

J-1 Ol -k + J-l Ol -
1. 1 2 2 

R (ot) 

(36) 

an extended 

(37) 

(38) 

(39) 

In order to solve the Wiener-Hopf equation given by (37) we assume 

that the branch points ex = k and k of K(c.x) possess a small 
1 2 
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imaginary part such that 

k = k + ik and k ::: k + ik 
~ 1 1 2 2 2 

where k and k are infinitesimally small positive quantities 
1 2 

which would ultimately be made to tend to zero. 

Now we write K(a) = K (c.x)K (a) where K (c.x) is analytic in the 
T - + 

upper half plane Im a >-k whereas K (a) is analytic in the lower 
' 2 

half plane given by Im a < k . 
2 

Since T (x,O) 
Y'Z 

decreases 

exponent i a 11 y as x_, ±co, G (a) and G (a) have the same common 
+ 

region of regularity asK (01) and K (01). 
+ -

Now (37) can easily be expressed as two integral equations 

relating G (a), G (a) and B(a) as follows: 
T -

G (c.() p 

[ 
1 

] 
.,. 0 

+ 
K ( Ol) ~ 2rr ia K ( Ol) K ( 0 ) .,. + -t 

-2 i. SL 
e 

[ 
p 

] + I G ( s) 0 
+ ds 

2'11 i ( s-c.~) K ( s) ~ 2'11 is c + 
+ 

-i.OIL 
p 

- B(ot) K (a) 
0 

= e + 
~ 2TT ia K ( 0) 

T 

-2 isL 
e 

[ 
p 

] f G (s) 
0 

+ ds (40) 
2-rr i (s-a)K (s) ~ 2rr 1S c T 
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and 

G (c'X) p 
0 

+ 
K ( 01) ~ 2n i 01 K ( 01 ) 

+ I 
2n i 

2i. SL 
e p 

[G+ ( s ) -
0 

. ] ds 
( s-01) K ( s) ~ 2n 1 s c 

Zi. SL 
p e 

-B(ot)K (c1) 
i.L"XL 0 

( 41 ) = e --- [ G+ ( s) I ] ds 
+ ,f2n is 2n i 

c+ 
(s-01). K ( s) . 

where C and C are the straight contours below the pole at s = 0 
+ 

and situated within the common region of regularity of G ( s), 
+ 

G ( s), K ( s), and K (s) as shown in Fig. 1 • 
+ 

In ( 40), the left-hand side is analytic in the upper half 

plane whereas the right-hand side is analytic in the lower-half 

plane and both of them are equal in the common region of 

analyticity of these two functions. So by analytic continuation, · 

both sides of (40) are analytic in the whole of the s-plane. Now 

since 

T ,.. (X 
yz 

so7 

and also 

K. (c~) "' 
t-

-1/2 
+ L) 

-1/2 
(~ 

1/2 
c.~ 

so it follows that 

as x~ + L 
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S:::so 
J<, 

--------~--e-------------a-·t-:..---
~-----··-·-··--·---4---------J ...... 

• •-k. C-t-
-k 1 2 

Fig. 1. Path of integration in the complex s-plane. 

141 



K (a) + 

-1 
c~. as I ex I ~ co. 

Therefore by Liouville's theorem, both sides of (40) are equal to 

zero. Equation (41) can be treated ~imilarly~ 

Therefore from (40) and (41) we obtain the system of integral 

equations given by 

and 

[ G"'(<.:'l!) -

1 

+-I 

K (D!) 
;-

-2i. SL 
e 

+ 

p 
0 

+ 
K ( 0) 

;-

p 

[ G _ ( s) + --
0

- ] ds = 0 
2rr i 

c+ 
( s -c~ ) K ( s ) ~ 2rr i s 

+ 

[ G (d) 

1 

+-I 
21I i c 

+ 
K (c~) 

2i.SL 
e 

[ G+ (s) 
(s-a) K ( s) 

p 

--
0
--] ds = 0 

~ 2rr is 

(42) 

(43) 

( 1> . 
Since r (x,O) is an even function of x, so from (25) and (26) it 

yz 

can be shown that G ( -c.'l.) = G ( c.x) and it has been shown in the 
+ 

Appendix that K (-a) = iK (a). Using these results and replacing a 
+ 

by -a and s by -s in (42) it can easily be shown that equations 

(42) and (43) are identical. So G (ct) and G (ot) are to be .,. 

determined from any one of the integral equation (42) or (43). 
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3. HIGH FREQUENCY SOLUTION OF THE INTEGRAL EQUATION 

To solve the integral equation (43) in the case when 

normalized wave number k L >::> 1, the integration along the path C 
1 

in (43) is replaced by the integra~ion round the circular contour 

c round the pole at s = 0 and by the integration along the 
0 

contours c and c round the branch 
k k 

1 2 

points k and k of the function K (s) as 

Now 

1 2 -
Thus equation (43) takes the form 

K ((..'<t) 

+ --- I 
2rr i 

C +C 
k k 

1 z 

2isL 
e 

I 
(s-a )K ( s) 

1 

= 
IJ 
' 1 

I 
C. 

v. 
1 

P K (ct) 
0 

~ 2n i c~ K ( 0 ) 

2isL 
e 

+ 

( s-a ) K ( s ) [ 
G ( s) -

+ 

9 2i SL K ( S) 
+ 

Z Z 1/Z 
(s-ot) ( s - k ) 

1 

.cuts through the 

shown in Fig. 2. 

p 

0 ] --- ds = 0 
~ 2rr is 

p 

--
0
-] ds 

~ 2-rr is 

branch 

(44) 

which can easily be evaluated when k L >>1 and 1s found to be equal 
1 

to 
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Ims 

' kz 

-------------t---------~~-------------c-

F10. 2. l'ath of integration C0• Ck , Ck . 
I 2 

143 a 



1~ 
2i k L 

K (k ) 
irv"4 

e 1 e 
-t- :i 

-=- ~ ~ (k -!.)!) 
' 1 1 1 

Similarly for k L » 1 
1 

2i SL p e 
0 [ ] f G ( s) -

-t- ~ 2n c ( s-<-'<) K ( s) is 
k 

2 

=--1 r;; 
u · k L 
' 2 2 

e 
2i k L 

2 K ( k ) 
-t- 2 

( k -Ol ) 
2 

irv4 
e 

[ G ( k ) -
-t- :1 

ds 

[ G (k ) -
-t- 2 

Using the results (45) and (46) and also 

p 
0 

~ 2n 

the 

G (-a) = G (a) and K (-a)= -iK (ot), we obtain from (44) 
-t- -t- · 

A(k )F (k )e2ik1L 

] ( 45) . 
ik 

:1 

(46) 

relations 

:1 -t- :1 
F ( -C1t) + -------- = C(ct). (47) + ---------

+ 
,u ( k -r.:x ) .JkL 

:1 :1 . :1 
u (k -a)~ 

. '2 2 o\j 
1
\ L 

where 

F U') = -t- , 

p 

[ G (t) -
0 

] 

K ( -( ) + . ~ 2tr i ( 
(48) 

[K (t)]
2 irr/ 4 

e 
A((:) 

-t- ' 

= (49) 

2fii 

and 

p 

C(() = 0 
(50) 

.f2rl iK ( 0 )( 
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Substituting <."\l = 

the equations 

- k 
1 

A(k )e2ik1 L 

and a = -k 
2 

in· ( 4 7), we obtain respectively 

21) : {kL ] 
F ( k ) + 

+ 1 
= - C(k ) (51) 

1 

:1 :1 :1 
u ( k +k ) 1 k L 
' 2 1 2 "i 2 

and 

F ( k ) + .[1 + 
+ 1 

A(k )e2lk2L 
2 

] F ( k ) - -c < k
2 

) 

2,U k ~ k L + 
2 

2 2 2 

Now solving (51) and (52) we get 

and 

where 

F ( k ) = 
+ 1 

C( k ) 
1 

F ( k ) 
+ 2 

= C( k ) 
2 

2ik L 

l
'" A(k) (k -k )e. 2 

2 1 2 

2u k ( k +k )~ k L 
' 2 2 1 2 2 

2ik L 

[ 

A(k ) (k -k )e 1 
1 2 1 

2,u k ( k +k )~ k L 
1 1 1 2 1 

A(k ) 
2ik L 

e :1 

- 1 ] U(k ,k) 
. 1 2 

U(k ,k) 
1 2 

2i k L 
e 2 

U(k , k ) 
1 

1 + ------
A(k ) 

2 
+ ------ + 

:1 2 
2,u k ~ 

1 1 :1 
2,u k ~ 

2 2 2 
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Now expanding U(k ,k) 
• ? 

and neglecting higher order terms of 
.... ... 

(k L)- 1
/

2 and (k L)-
1

/
2 and using (47) we get 

1 2 

G (a) = - C(a) K (0) + C(Ol) K (a) + 

2jJ k ~ k L 
1 1 1 

A(k )k e 2 ik2L 
2 1 ] --+ 

u k 'kL ( k +k ) 
' 2 2"'' t\2 L 1 2 

,u ( k -ex)~ k L 
:1. :1. 1 

2ik L 
K (cx)A(k )e 1 .C(k) 

1 1 

+ ---------------------

L1 ( k -(..'i )·~ 
' 2 2 2 

A(k )e2ik2L 

2u 

2 

k .fk:L ] 
' 2 2 2 

2i k L K (u)A(k )e 2 .C(k ) 
- 2 2 

+ -----------------------
J-1 k ~ (k +k ) 

1 1 1 :1 2 

(56). 

Now replacing a by -a and using C(-a) =- C(a). We have 

G (a ) = c (a ) K ( o ) - c (a ) K ( -a) + 
+ 

,u ( k +ex )..[kl 
:1. 1 :1. 

A(k )k e 2 ik2L 

u : ~ (k +k )]+ 
' 2 2 2 1 2 

.C(k ) 
1 

+ ------------------------

2i k L 
K ( -ot ) A ( k ) e 1 

:1. 

2i k L 
K _ ( -ot) A ( k

2 
) e 2 • C ( k

2 
) [ 

+ 1-
Ll ( k +a) 'kL 
• 2 2 .., "'2 '- ,Ll k ..['kL ( k +k ) 

1 :1 :1 :1 2 

A(k )e2ik2L 

2!J 

2 

k .fk:L ] . 
2 2 2 

(57). 
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4. STRESS INTENSITY FACTOR AND CRACK OPENING DISPLACEMENT 

NEAR THE CRACK TIPS 

Now as L"X ~ co 

K ( -c~) = iK (01) = 
+ 

K ( -ot) 

---~-

a + k 
1 

K ( -c.t) 

l/2 [ · ~ l ,U 2] 

1

/Z 
; (Ot+k ) . ~ 

. -:1/2 
1 (.~ 

1 
U +11 
' 1 r-2 

-1-·'2 
--- ~ -ic~ · [ ~::· ]1/Z 

C.Hk 
2 ~ 1 ' 2 

So as a~ co we get from (56) and (57) 

and 

where 

p 

G (<-"l) ~ 
-1/2 0 s Ot + 

+ 

G (01) 
-1/2 

~ - iS Cl[ 

p 
0 
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; 01:1/2 [ _._u_l ._u 2_ ] 1/2 

~:1 +~2 

(58) 



s = 

+ 

p 
0 

A(k ) e 
1 

2 i k L 
1 

+ 
A(k ) e 

2 

2 i k L 
2 

[iiT K (0) ,u k ~ 
:1 1 1 

II k ~ ,- 2 2 1 1\2 L. 

A(k 
1 

) 

}.11 k 

4 i k L 4 i k L 

A
2

(k ) e 
1 

1 

L 
+ 

A
2 

( k· ) e 
2 

-...,---2 __ ) + 

u
2 

k
2 

k L 
' 2 2 2 

2i(k +k )L 
1/2 

A(k ) 
:1 . .2 . 

] 
e r Ll u 

) 2 ' :1 ' 2 

L J.1 + u k ~ k L k L u 
1 ' 2 2 1 2 1 ' 2 

+ 

Now from equation (37) using (58) and also the fact that 

we get 

K(o!) ~ ± ex 

B(c.:x) = + s [ 
ot..[Oi 

U +11 
• :1 ,-2 

. - ic~L 
le 

as a ~ + oo 

i C.\L 
- e 

u +u 

] 

' 1 ' 2 

u u 
' :1' 2 

as 01 ~ ± co 

(59) 

(60) 

( 61) 

Taking inverse Fourier-Transform of (35) and using the results of 

Fresnel integral~ viz. 

I 
0 

sin 
(x+L)a 

cos dOl = ( 
..fOi 

n .J 1/2 

2(x+L) 
(62) 
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We get the displacement jump across the surface of the crack as 

AW = W (X, 0+) - W (X 0-) = 2S(1-i) ~ (L-X) for x ~ L-0 (63) 
:1. 2 ' 1 

and 

AW = W (X, 0+) W (X, 0-) = 2S(1-i) .Jcx+L) for X -t -L+O (64) 
:1. 2 1 

where s 
(pi +J-12) 

s = (65) 
1 

,u. 
1 /-l2 

Next in order to find the value of T near about the crack tip we 
xy 

use (61) in (36) and (32) and to obtain 

(-1 )j+:l. s 
[ - ic~L iaL ]· A.(L"X) = ie - e 

J 01~ ,u. 
,! 

and 

(-1 ).j+1 s 
[ -:-iaL icxL ] ' A.(OI) ie = e 

J ,u 0(~-01 
.) 

Now 

T (x,y) = ,U. 
yz J 

= ,Lt. 
J 

aw. c x, y) 
.I 

{Jy 

a 1 

C2n iJy 

-

j=1 '2 

(.() 

I A.(ot) exp 
J 

-((1 
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(j 

(j 

{-

= 1 '2) as a -t 00 (66) 

= 1 '2) as 01 -t -oo (67) 

t -I Y I 
J 



Substituting the values of A.(<.-x) as !c{l ~ co, we can write the. 
J 

stress near about the crack tip as 

((1 e -ot! Y I s 
[ e ic:~ ( X+L) . ic.~(x-L) 

·r ( x y) = I - 19 -yz , 
f2IT fa 

0 

. -iQ(X+L) -ia(~-L)] 
- 1e + e da 

S(1-i) 
00 e-a/y/ 

= I 
~ 211 .[a: 

0 

1 

[F ( 1- i ) sin = s 
2 

near about the crack tips, where 

[ 

2 2 ] 
1
/Z 

r = ( x-L) + y 
1 

[ COSC{( X+l) - sina(x+L) + 

+ COSLi! (X- l) + s i not ( x- L) J d01 

' ' '" rTo ...... 
'2 

+ cos :1 ] 
2 rr: 

' :1 

' -1 
9-1; = s1n 

1 

' -1 
,A = s1n 
'+'2 

r 
1 

r 
2 
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Therefore at the interface ( y = 0 ) we obtain 

S( 1-i) 
T --t as x --t L+O yz 

~ ( x- L) 

and 

8(1-i) 

T --7 as x _,. -L-0 
yz 

~-(x+L) 

Now the stress intensity factor is defined by 

K = 
p 

(I 

(72) 

(73) 

(74) 

The absolute value of the complex stress intensity factor 

defined by (74) has been plotted against k L in Fig.3 for values of 
1 

k L > 1 for the following two sets of materials, given by 
1 

First Set: 

Steel 7.6 gm/cm 
3 11 2 

p = u = 8.32 ){ 10 dyne/em 
:1. ' :1 

Aluminium 2.7 gm/cm 
3 

10
11 2 

p:l. = Ll = 2.63 .X dyne/em 
'2 

Second Set: 

Wrought iron 7.8 gm/cm 
3 

7.7 10
11 

dyne/em 
2 p = u = X. 

:1. ' :1 

Copper gm/cm 
3 

10
11 2 

p2 = 8.96 u = 4.5 X dyne/em . 
' 2 
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t 
:t: 

I 

0 2 J 4 5 6 7 8 

Aluminium & Steel 
WrouQht iron & copper 

~ 10 11 12 IJ 14 15 16 17 18 19 20 
k,l-

FIG. 3. Stress intensity factor K versus dimensionless frequency k1 I. 
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5. CRACK OPENING DISPLACEMENT AT POINTS AWAY FROM THE CRACK TIPS · 

Next in order to obtain the displacement jump for the large 

values of k (L-x) and k (L+x) we write G (01.) and G (01) from (57) 
1 :1 + 

and (56) respectively as 

p QK (-a) R(k ,k ) K (-a) 

G (!-'I) 
+ 

and 

G (<..-x) 

where 

= 
ex 

p 

= -- + 

p = 

Q = 

(.'( 

p 
0 

.f2n i 

p 
0 

- 1 2 -+ 
01. k +Ol 

1 

QK (a) R(k ,k ) K - :l 2 
+ 

a k -Ol 
1 

p 

= 
~ 2n i K ( o) K ( 0) 

and 

2i k L 2ik L 
QA(k ) e 

m Ill 
A(k 

[1 
e 

R(k 'k ) 
Ill 

= m n 
,u k m m 2,umkm m m m m 

where m = when n = 2 

and m = 2 when n = 1. 
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(a) -

) 
m 

R(k ,k ) K (-a) 
2 1 -+ (75) 

k +01 
2 

R(k ' k ) K (a) 
2 :l -+ (76) 

k -Ol 
2 

(77) 

(78) 

2ik L 
r, 

A(k )k e 

J n m 
(79) 

m 1-l k ( k +k 
n n n m n 



Again using K (-a) = -iK (a) we get from ( 37) 

B(a) = 
Q

. iaL 
1e 

ot K (01) 

- ic';L 
Q e 

a K ccn 
1' 

+ 

iaL iR(k ,k ) e 
1 2 

+ + 
( k +a ) K ( 01 ) 

:1 

R( k , k ) 
- iL"'{L 

e 
1 2 

( k -01) K (a) 
1 + 

iR(k ,k ) 
2 1 

iaL 
e 

(k +Ot) K (Ot) 
2 

R(k ,k ) 
- it~L 

e 
2 1 

Ck -en K (a) 
2 1' 

(80) 

From (35) we get the displacement jump across the surface of the 

crack as 

00 

f -iax 
B ( <.'!. ) e da . ( 81 ) 

-oo 

Now substituting the expression of B(a) from (80) .in (81) and 

approximately evaluating the integrals arising in (81) term by term 

for large values of k (L-x), k (L-x), k (L+x) and k (L+x) and 
. 1 2 1 2 

neglecting terms of order higher than 

obtain finally the crack opening 

cracked-surface in the following form: 
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( k L) -3 ..... 2 and 
1 

displacement 

( k L) -3/2' 
2 

across 

we 

the 



+ 

A.W = w1. c x, o+) - w
2 
c x, o-) = 2rr Qi K ( o) 

T 

ik (L-X) ik (L+x) 

-iiT/4 
+ f2 Q e 

R R 
:1 :11 

+ 

[(;k,:L-x) 

2ik L 
1. 

.e R 
2 

+ X {R, 
~ 2k L 

1 

l. 

+ 
e 
-)x 
~k (L+x) 

1 

2i k L 4 i k L 
2 

R ( R )2 1 
R e e 

2:1 :1 1.1 
+ 

~ 2k L 
2 

~ 2k L ~ 2k L . 1 1 

+ 

4 i k L 2i(k +k )L 2i(k +k )L 

+ 

2 
R R R e 

2 22 21 

~ 2k L ~ 2k L 
2: 2 

ik (L-X) 
2 

e 

+ (~k (L-x) 
2 

R R 
2 22 

X R + 

R 

+ 
R R e 

:1 :12 2:1 

~ 2k L ~ 2k L 
:1 2 

ik (L+X) 
2 

e 
+ ----- J X 

~k (L+x) 
2 

2 i k L 
2 

:1 2 

2 i k L 
1 

e R R e 
:1 :12 

+ { 2 
~ 2k L ~ 2k L 

2 :1 

4 i k L 2 i ( k +k )L 
1 1 2 

R R R e R R R e 
1. :1:1 :12 2 2:1 :12 

+ 
~ 2k L ~ 2k L 

1 1. 
~ 2k L ~ 2k L 

1. 2 
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. :1 2 

} R R R e 
2 2:1 :1:1 

+ + 

~ 2k L ~ 2k L 
:1 2 

4 i k L 
2 2 

R2(R22) e 
+ + 

~ 2k L ~ 2k L 
2 2 

2 i ( k +k )L 
1 2 

} ] R R R e 
:1 12 22 

+ 

~ 2k L ~ 2k L 
1 2 

(82) 



where 

K (k ) K ( k ) 
+ 1 + 2 

R = R = 
1 .[2 ,Li k 

2 [2 u k 
:1. 1 ' 2 2 

D [K (k )]
2 

D [K (k )]
2 

+ 1 -t 2 
R = R = 

11 22 
(k +k ) u (k +k ) f-1.2 ' :1. :1. 1 . 2 2 

D K (k ) K (k ) D K (k ) K (k ) 
-t 1 -t 2 

R = 
21 

-t 1 T 2 

,U ( k +k ) 
1 1 2 

Expressions in (63) 

near about the crack tips 

away from the crack tips 

D = (-1) 

iiT/4 e . 

R = 
12 

and (64) give the 

u ( k +k ) 
' 2 1 2 

displacement 

where as the displacement jump at 

are given by (82). 

(83) 

jump 

points 

From these two results we can obtain the crack opening 

displacement at any point of the crack surface -L < x < L, y = 0. 

Here also normalized crack opening displacement has been 

plotted against normalized distance x/L from the centre of the 

crack for two different sets of materials in Fig. 4. It is 

interesting to note that oscillatory nature of the crack opening 

displacement increases with the increase of frequencies as a result 

of the interference of waves inside the crack. Further we note that 

amplitude of the crack opening displacement decreases with the 

increase of frequency~ 
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··· Aluminium & Steel 
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XfL --+-

FlU. 4. Normalized crack opening displacement versus normalized distance x/1 
from the centre of the crack. 
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where 

put 

Ther~efore 

where 

Now 

Therefore 

K(cx) = 

R(a) = 

m = 
u. 
'2 

u 
• I ! 

K(o.) = 

R(cx) = 

,App~ndix 

( 2 -k2 )1./2 u u ex 
' :1' 2 1 

R(c~) 

( 
2 2):1./2 ( 2 2):1./2 u a -k +u a -k 

' :l ":l ' 2 2 

2 2 :1/2 
u ( (\ - k ) 
I 2 :!. 

1 + m 

2 2 1/2 
( 1 +m) ( C'{ - k ) 

2 

( 2 k2 ) 1/2 ( - 2 k2 ) 1/2 a - +m 01. -
1 2 

as jal ~ w 

( 2 2)1/Z ]-1 
___ ot_· ---~_: 1 __ _ 

2 2 :1/2 
( m+ 1 ) ( ot - k ) 

2 

1 og R (a) + 1 og R (a) = 
'1-

= Log [ ___:__ + 
1+m 

___ <_(x....:..2 ___ k_:_)_1_/_z_ Jl -·1 

2 2 1./2 
( m+ 1 ) ( a - k ) 

2 
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Therefore 

log R(z) 
-i C+LLI 

log R(z) 
log R ( (1[) = r dz = r dz J I 

+ ..J 

271 i c ( z-ot) 2n i 
- i c-'XI 

( z-.::.~) 
L 

whet-e the path of integration C is shown in Fig. 5. 
L 

Putting z = -z and using the fact that R(z) = R(-z), we get 

i c+o:,~ 
log R(z) 

log R ( 01) = I dz 
-t 

2n i ( z+c~) 
ic-oo 

log R(z) 

= f dz 
2'fT i c (z+ot) 

1 

where C is the contour round the branch points k and k as shown 
1 1 2 

in Fig. 6 . 

So, 

( 2 2) 1/2 

[ 
m z -k 

] 1 
log + 

2 2 1/2 
m+1 (m+1 )( z -k ) 

log R (ex) I 2 
= dz 

-t 
2n i 

c 
( z + (~ ) 

1 

[ 1. 

i(zz-kz)i/2 

] log 1 

k + 
2 m( kz -zz //2 

I 
2 . 

dz = --
2n i 

k 
( z + 01 ) 

1 
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lm Z 

Cu .k1 ck2 

E - _... Re z 0< 
0 0 , CL -k -k 

2 1 

Fig. 5. Complex z-plane. 

AIm z 

k1 kz_.. ct 
C e----- -•-- - ------
-. ~ . 

' Re z 

Fig. 6. Path of integration round the branch points. 
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[ 1 

i(zz-kz )1/2 

] 1 

k 
log 

( 2 2)1/2 
1 2 m k -z 

I 
2 

dz 
2n:i ( z + 0! ) 

k 
1 

-1[ cl-k2 )1/2 

] 1 
tan 

k m(k2-l )1/2 2 

I 
2 

dz = 
·rr (z + (.~ ) I L 

k 
1 

( 2 2)1/2 
-1 r z -k 1 .. 

tan l ... 

J u 
k" ( Z 2)1/Z 

dz ] 

z m k -z 
R (ex) I 2 

Therefore = exp 
T 

k 
(z + 01 ) 

1 

Si mi.l arl y 

-1[ (zz-kz )1/2 

] 1 

eXp [ ~ 
k 

tan 
m( kz -zz) 1/2 

dz ] 

2 

R (<-"X) I·. 2 
= 

k 
( z - 01 ) 

"1 

Therefore from (A1) we can write 
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. -1 r 
(zz-kz )1/2 , 

tan l 1 

j w2 1/2 u k m(kz_ 2 z )1/2 

dz ] 

( ot+k ) · 2 
:1 r 2 

(A2) K (cot) = exp J -1" 

~ ( 1 +m) 
k 

(z + 01. ) 

1 

and 

K (01) 
w (01.-k //

2 
[ 1 k2 

2 :1 I = exp -
~(1+m) rr k 

(A3) 

1 

Hence from (A2) and (A3) we get 

-1[ (zz-kz )1/Z 

] tan 
. 1 

W i(OI-k )i/Z k ., ., ~ ;z 

u 2 m( k .. -z .. )""' 

dz J K (-ex) 
2 1 r 2 

= exp J -1" 

~ ( 1 +m) 
k 

(z - 01. ) 

1 

= i K (a) 

i.e. K ( -c.>~. ) = i K ( et ) 
T 

(A4) 

---x---
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HIGH FREQUENCY SCATTERING OF PLANE HORIZONTAL SHEAR WAVES BY 

A GRIFFITH CRACK PROPAGATING ALONG THE BIMATERIAL INTERFACE 

1. INTRODUCTION 

Scattering of elastic waves by a stationary or a moving crack 

of finite length at the interface of two dissimilar elastic 

materials is important in view of its applica,tion in fracture' 

mechanics as well as in seismology. Recently, Takei, Shindo and 

Atsumi [1982] considered the problem of diffraction of transient 

horizontal shear waves by a finite crack lying on a bimaterial 

interface. The method of solution was extended by Ueda, Shindo 

and Atsumi [1983] to solve the problem of torsional impact response 

of a penny shaped interface crack. Srivastava et al [1980] also 

considered the 1 ow frequency aspect of the . interaction of an 

antiplane shear wave by a Griffith crack at the interface of two 

bonded dissimilar elastic half spaces. 

In the case of cracks of finite size, travelling at a 

constant velocity, loads, for mathematical simplicity, are usually 

assumed to be independent of time. However, in practice, structures 

PUBLISHED IN "ENGINEERING FRACTURE MECHANICS" V45, N01, PP107-118, 1999. 

163 



are often required to sustain oscillating loads where the dynamic 

disturbances propagate through the elastic medium in the form of 

stress waves. The problem of diffraction of plane harmonic 

polarized shear wave by a half plane crack extended under antiplane 

strain was first studied by Jahanshahi [1967]. Later Chen and Sih 

[1973] considered the interaction of stress waves with a 

semi-infinite running crack under either the plane strain or the 

generalized plane stress condition. Sih and Loeber [1970] and Chen 

and Sih [1975] also considered the problem of scattering of plane 

harmonic waves by a running crack of finite length. In both the 

cases the problem was reduced to a system of simultaneous Fredholm 

integral equations which wer.e solved numerically. 

In the present paper, we have investigated the high 

frequency solution of the problem of diffraction of horizontally 

polarized shear waves by a finite crack moving on a bimaterial 

interface. The high frequency solution of the diffraction of 

elastic waves by a crack of finite size is important in view of the 

fact that transient solution close to the wave front can be 

represented by an integral of the high frequency component of the 

solution. In order to solve the problem, following the method of 

Chang [1971], the problem has been formulated as an extended 

Wiener-Hopf . equation and the asymptotic solutions for high 

frequencies or for wave lengths which are short compared to the 
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length of the crack have been derived. Expressions for the dynamic 

stress intensity factor at the crack tip and the crack opening 

displacement have been derived. The dynamic stress intensity factor 

for high frequencies has been illustrated graphi~ally for two pairs 
. . 

of different types of materials for different crack velocities and 

angles of incidence. 

2. FORMULATION OF THE PROBLEM AND ITS SOLUTION 

Let a plane crack of width 2L move at a constant velocity V at 

the interface of two bonded dissimilar elastic semi-infinite media 

due to the incidence of the plane horizontal SH-wave 

W =A exp[-{k (X cose + Y sine) + OT}] 
i. . 1 1 1 

(1) 

in the medium. The crack lies on the bimaterial interface along Y=O 

with respect to the fixed rectangular co-ordinate system (X,Y,Z} as 

shown in Fig.1. 

We assume that the displacement and stress fields W., T 
J YZ . 

( j = 1 , 2) are 

W. = W.(X,Y,T) 

T 

J J 

YZ. 
J 

= J,-l. 
.J 

aw. ex, v) 
J 

{Jy 

.) 

( 2) 

(3) 

in which subscripts j=1 ,2 refer to the upper and lower half planes, 

165 



0 

I ricidenr SH- wave 
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X 

· __,.... V = Crack velocity 

Fig. I. Running interface crack. 
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respectively, T denotes time and ~. is shear modulus of elasticity. 
. J 

The displacement W. is governed by the classical wave equation 
J 

2 
;J W. r/w. ilw. 

J + J 
= 

J (j=1 ,2) (4) -- -- --
;Jy2 2 2 2 ar ax c 

J 

where c.=(.u./p.)
1 

..... 
2 

is shear wave velocity and P. is the density of 
J J J .I 

the material. Without any loss of 'generality, we further assume 

that c > c . 
1 2 

Due to the incident wave given by (1), reflected ano 

transmitted waves in the absence of the crack may be written in the 

form 

w = 8 exp [- i { k (X cose - Y sine ) + (2T } ] 
1"' 1 :1 :1 

( 5) 

and 

w = c exp [-i{k (X cose * Y sine)+ OT }], (6) 
·r 2 2 2 

where 
k sine - mk sine 

:l 1 2 2 
8 = A· (7) 

k sine + mk sine 
1 1 2 2 

2k sine 
1 1 c = A (8) 

k sine + mk sine 
:1 :1. 2 2 

m = u /u . • 2 • :i. 
and k cose = k case 

:i. :i. 2 2 
(9) 

A,B,C are incident, reflected and transmitted wave amplitude, k. is 
.] 

the wave number, 0 = k.c. is the circular frequency and e 
J J 1 

the angles of incidence and refraction, respectively. 
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A set of moving co-ordinates (x,y.,z,t) attached to the 
J 

centre of the crack moving at a constant velocity V is introduced 

in accordance with 

where 

X = X - Vt, 

. 2 1/Z 
s. = (1-M. ) 

J J 

Y. = s.Y, z = z, t = T ( 1 0 ) 
J J 

and M. = V/c. is the Mach number. 
J . J 

In terms of the translating co-ordinates X, Y., 
.I 

equation ( 4) 

becomes 

tl W. i1
2

W. a 
[. 

·aw. aw. 
] J ) J J 

0 ( 11 ) + + 2M.c.- - -- = 
iJx 

2 
ily. 

2 2 2 at J J iix at c. s. 
J J J 

In the moving system (x,y,z,t) equations (1),(5) and ( 6 ) take the 

form 

y 

1 r 

A exp[-i{k (x 
1 

+ wt}] W. cose + -sine ) 
l 1 1 s 1 

1 

-;,_,_It 
w B exp[-i{k (x 

y1 
+ wt}] e = case -sine ) ( 1 2 ) 

1' 1 1 s 1 

J l 
1 

J C exp [- i { k ( x 
y2 

+ wt}] WT case + -sine ) 
2 2 s 2 

2 

where w = Ocx and ex = ( 1+M case ) = ( 1+M cose ) . 
1 1 2 2 

In view of the equation (12) we take the solution of (11) as 

-iL!.lt 
W.(x,y.)e = w.(x,y.) exp[i(M.:A...x- i~.:lt)]. 

.1 J J J J J 
( 1 3 ) 

Substitution of equation (13) into equation (11) yields the 
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Helmholtz equation governing w 

where 

2 
Jx 

;j2 
W. 

1 . 2 
+--+.i,.w=O, 

2 .i 
iJy. 

k (X 
J 

2 
S. 

1 

(j = 1,2) ( 14) 

Applying Fourier transform, equation (14) can be solved and the 

result is 

00 

w (x,y ) 
1 I c~ ) [ . . . c~ 2 A. 2 ) :1/2 J ·~ = 8 < exp -1 ~ x- r - y dt , 

1 1 2IT 1 , . 1 1 , 
y >O (15) 

1 

-co 

00 

w (x,y ) 
1 I c·) [ .,. c·2 . 2 ):1/2 J ·~ = 8

2 
( exp -1( x+ ( -i-.

2 
y 

2 
d( , 

2 2 2IT 

-(0 

From (13),(15) and (16) w~ obtain the displacement components due 

to scattered field as 

00 

1 I w = 
1 2IT 

-co 

and 
(iJ 

:1 I w = 2 2IT 

-co 

where 

A (t ) exp [- i ;.; X .:.... V y ] di'" 
1 ' , 1 1 , ' 

A ( ( ) exp [- i r X + V y ] dl , 
2 ' 2 2 .... 

' 2]1/2 
A.. ' 

J 
j= 1 '2 

169 

y >O 
1 

y <O, 
2 

.::.. 

( 1 7 ) 

( 18) 

( 1 9) . 



A (() and A (( ) are the unknown quantities to be determined from 
1 2 . 

the following boundary conditions: 

aw aw 
:1 2 

for a 11 y=O u s = u s ' x, ' 1 1 
i) 

' 2 2 
iJ y1 y2 

w w I I 
y=O = i Xi >L' 

:1 :2 

aw aw. aw 
1 L r· 

+ -- + -- = 0, lxj<L, y=O+ 
i) y1 i) y1 i)y 

1 

From the boundary condition (22) we obtain 

where 

iJW 
1 

A = 
1 

= A exp [- i k x cose ] , 1 1 1 

i (A-B)k s·ine 
1 1 

s 
1 

j xj <L, y=O, 

Using (17), the above equation can be written as 

l"O 

:1 

I 2"IT 
A (( )v exp[-itx]dt = - A exp[-ik x cose], 

:1 :1 , • 1 :1 :1 

-((! 

= P(x), x>L (say) 

= Q(x)' x<-L (say) 

Therefore, 

A (( )v = exp[i("L] G+(() + exp[-i(L] G (() 
1 :1 

(20) 

( 21 ) 

(22) 

(23) 

(24) 

-L<x<L 

A 

--
1
- [ exp{i((-(u. )L} - exp{-i((-("

0
)L} ] , (25) . ( ,... ,.. ) 

1 r -r . 'o 
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where 

From the 

where 

O'J 

G (1) + ., = I P(x) exp[i((x-L)]dx 

L 

-L 

G (() = I Q(x) exp[i( (x+L)]dx 

-(.(! 

:-;: = k cose '··o :1 

boundary 

A (() = 2 . 

u s 
' 1 1 

M = 
u s 
' 2 2 

:1 

condition (20) 

M v A (() 
:1 :1 . 

l.-' 
2 

we obtain 

Next using the. boundary condition (21), we obtain 

I 
-(X) 

L 

= I 
-L 

= N(() 

(W -W ) exp[i(x]dx 
:1 2 

P (x) exp[ii~x]dx 
:1 

(say), 

(26) 

(27) 

( 28') 

(29) 

(30) 

( 31 ) 

which is the measure of the discontinuity of displacement along the 

surface of the crack. Now with the aid of (29) and (31), we find 
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A ''t) = \ ., 
·1 

~J N(t=) 
2 ' 

(32) 
1.> +Ml-' 

2 :1 

Eliminating A (() from (25) and (32) we obtain an extended 
:! .•. 

Wiener-Hopf equation, namely 

where 

exp[ i(L ]G U') + exp[-i(L ]G (() - N(( )K(() 
.,. ' 

= A
1 

[ exp{i ((-(. )L} - exp{-i (~-(- 0 )L} ] , 
. ( .... .•. ) 0 . 
1 t -r . 'o 

K ( (" ) = 

R(() = 

v v 
1 2 

v +M 11 .... 
2: 1 

( 1 +M )v 
2 

li +M 1.) 
2 . 1 

v 
1 

R (( ) = 
1+M 

(33) 

(34) 

(35) 

In order to solve the Wiener-Hopf equation given by (33) we 

assume that branch points /-, ( 1-M ) , " -f., ( 1 +M ) 
2 2 :1 1 

and 

-f.. ( 1 +M ) of K (( ) possess sma 11 imaginary parts, which wou 1 d 
2 2 

ultimately be made to tend to zero. 

Now we write K(() = K (( )K ((), where K (() is analytic in the 
.,. - -t-

upper-half plane Im (>Im [-A. (1+M )], whereas K (()is analytic in 
1 :1 -

the lower-half plane given by Im (<Im [A. (1-M)]. The expressions 
1 :1 • ow 

of K (() and K (() are derived in the Appendix. Since 
1 

decreases .,. -
{Jy 

1 

exponentially as x ~±o), G (() and G (() 
-t- - . 

have the same common 

region of regularity as K U) and K ((). -t- • 

Now equation (33) can easily be expressed as two integral 
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equations involving G ((), G (()and N((·) as follows: 

G U' ) 
-t 

K (t) 
"!- ' 

1 
+ --

2rr i 

"!-

I 
c 

+ 

- -2ni I 
c 

K cr ) 
-t ·o 

-2isL 
e 

( s-t ) K ( s) 
"!-

.[ G (s) + 

-i( L 
A e ·o 

-2isL 
e 

:1. 

( s-() K ( s) 
+ 

[ G (s) + 

if L 
A e 'o 

1 

i ( s-t ) 
Ll 

if L 
A1 e 'o J 

ds, 
i( s-( ) 

0 

where c and c are the straight contours below the pole at 
"!-

(36) 

and situated within the common region of regularity of G-r((), 

G_ ((), K+(() and K_ ((') as shown in Fig.2. 

The left hand side of (36) is analytic in the upper-half plane 

whereas the right hand side is analytic in the lower-half plane and 

both of them are equal in common region of analyticity of these two 

functions. Therefore, by analytic continuation, both sides of (36) 

are analytic in the whole of the s-plane. Next, by· Liouville's 

theorem, it can be shown that both sides of (36) are equal to zero. 

Thus we obtain 
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c_ 
~0 ).~(1-Ml) ~2(1-M~) • _/ 
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• • 
-.i\zO+Mz) -.i\l(l+Ml) 

Fig. 2. Path of integration in the complex .\·-plane. 
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K (() 
+ 

similarly, 

1 

K (( ) 

- ;r L 
A e 'o 

- ;r L 
A e 'o 

i 

[ 
i ] G (t)- ----+ • + 

HZ -r ) ' ( 1 -1 ) K ( ,,; ) 
. "'o 1 ' ., . ~ .. u + u 

2isL A 
;z: L 

I 
e 

[ G_ ( s) 
e ··o 

:1 
+ -- + 

2n i ( s-( ) K (s) i ( s-~~ ) 
. T 0 c 

+ 

we also obtain 

A 
i( L 

[ G_ U: ) 
e ·o 

] :1 
+ + 

i(( -( ) 
' (I 

2isL -i( 
1 

I 
e 

[ G+ ( s) 
A e 'o 

i 
+ -- -

2rr i ( s-( ) K (s) . ( ... ) 1 s-( - (J 

c 

+ 

J ds = 0 

L 

] ds = 0 

3. HIGH FREQUENCY SOLUTION OF THE INTEGRAL EQUATIONS 

(37) 

(38) 

In order to obtain G+(() and G_(() from the integral equations 

(37) and (38) in case when the normalized wave number 

A ( 1 +M ) L » 1 I the integration along the path c in (37) is replaced 
:1 :1 + 

by the integration along the loops L_.\ and L_.\ round the branch 
:1 2 

points :...._\ ( 1 +M ) and -t... (1+M ) of K ( s), respectively. Also, 
i 1 2 2 T• 

integration along the path c in (38) is replaced by 

integration round the circular coritour L , round the pole 
0 

S -~1 --'u 

the 

the 

and 

by the integrations along the loops LA and LA round the branch 
:1 2 
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cuts through the branch points 

function K (s) as shown in Fig. 3. 

:;.~ ( 1-M ) 
1 1 

and J.~ (1-M ) 
2 2 

of the 

Finally evaluating the integrals along the straight line paths 

round the branch points for large values of frequency, we obtain 

two equations given by 

= 0, (39) 

where a =1 and o =M, and 
1 2 

+ ir L 
A e 'o 

+i( L 
A e ·o 

1 ] 

i ({ -( ) . ·o 

C, U') = 
-r 

1 
(40) 

i (f -~'' ) K, (t ) , .... 0 2: , 0 

Now substituting ( = A (1-M ) and /-. (1-M ) and ( = -A ( 1 +M ) and 
1 1 2 2 1 1 

-A (1+M) in (39) a system of lfnear equations of F [ A (1-M) ], 
2 2 T 1 1 

F [ f.~ ( 1-M ) ] , F [ -J., ( 1 +M ) ] and F [ -/-, ( 1 +M ) ] are obtai ned. Now 
T 2 2 -1 1 -2 2 

solving them and neglecting higher order terms of (A. L) -1/Z 
1 

(A. L)-
1

/
2 

we obtain, finally, after some algebraic manipulation: 
2 
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F+[±\ (1+Mk)] =- C+[±\._ (1+M. )] ::< 
- k .· - k: k: 

2 
2 if.. . ( 1 +M. ) L 

ere 1 ¥: r >< 1-E 
L 

j ' 

( .. )1./2{ 

A- [ +!· .. . ( 1 ±M . ) ] c_ [+A. . ( 1 ±M . ) ] l 
1- J J + J J 

' k= 1 '2 ( 41 ) 
\.(1±M.)+\. (1+M. )}C.._[±\. (I+M. )] J j=1 2 A L 

J J J J.: J.: .!. J.: k 

Now using (39) we get from (41) 

G (f) + ., 

+ 

= + 

+if L 
A e ·o 

1 -
1-

i(f-( )K (f ) 
' ·o. ± ·o 

. ' ( +M ) L .. 

+ 

2 1 A L [ -· ( + ) ] [ -· ( + ) ] 
')" k + k k . + k . k 
2 [ a e k k A_ +A 1-M c_ +A 1_M 

..... . 1/2 . .· .. 
k=1 2(AkL) { Ak(1±Mk)±(} 

2i~- (1+M )L +. - )] [+. (- )] 
2 er . e j j A+ [_A . ( 1 + M . C + _,\ . 1 + M . )l 

·('""') - J J - J J .X 1-,L . 
j=1 2U .. L)u

2
{ \ .. (1+M.)+\. (1±M. )}C-[+1 .. (1±M. )]Jj 

J J J k k + k k 

>< 

(42) 

4. CRACK OPENING DISPLACEMENT AT POINTS AWAY FROM THE CRACK TIPS 

In order to obtain the displacement jump for the large values 

of A (L-x), A (L-x), A (L+x) and A (L+x), we can write G (() and 
:1 2 :1 2 + . 

G <<:) from (42) as 

Q±K± U:) K (':: ) 
( k ) 

P. 2 R± 
G. (f) + 

:t - E 
± ~-

(43) = + + 1- ., 

(" -( f -( k=1 { A. ( 1±M )±(} . ·o ~ , 0 ].; k ' 
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where 

'".\ ( + ) _ 21.··-. 1-M. LA [-·. ( 1+M )] [-·;.. ( + )] t.r e .k: ~:: _ +l·._ _ c_ +,... 1-M. 
k + k k + k J.: = 

(
·. ) :1/:2 

2 l'-. L 
k 

2 r:.r . e 2 i ;-.. _ j ( 1 :;:: M j ) L . A+ [±A. . ( 1 + M . ) ] C + [±A. . ( 1 :;: M . ) ] 

X [ 1- _E J - J J - J J ) 

J=1 2(A..L)
1

/
2

{ A..(1+M.)+Ak(1±Mk)} C-[+Ak(1±M. )] 
J J J . + k . 

Now we obtain from (33) 

+ 

if L Q e , 
+ 

(r -f ) K cr:) 
~ ., 0 - ..., 

-it L Q e . 

(( -(. ) K (() 
u + 

R
<1> i(L e . 
+ 

+ ----------------
{(+/-.. (1+M )}K (() 

1 1 -

<1> -if"L 
R e · · 

{(-\. (1-M )}K (() 
:1 :1 + 

+ ---------------
{(+/-.. (1+M )}K (() 

2 2 -

<2> -ifL 
R e · 

{ ( -:', ( 1-M ) } K U: ) 
, 2 2 + 

(44) 

(45) 

(46) 

+ 

(47) 

From (31) we obtain the displacement jump across the surface of the 

crack as 

Wi. (x,O+) - W
2

(x,O-) = (48) 
2n 

-I)J 
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substituting the expression of N(() from (47) in (48) and 

approximately evaluating the integrals arising in (48) term by term 

. for large values of X (L-x), X (L-x), 
1 2 

neglecting terms of order higher than 

J. .. (L+x), 
1 

( ' ) -3/2 
A L 

1 

and ')., ( L +x) , 
2 

and (J., L)-312
, 

2 

and 

we 

finally obtain the crack opening displacement across the cracked 

surface at points away from the crack tips in the following form: 

where 

IJ.W = 

= 

W (X, 0+ ) - W (X , 0- ) 
1 2 

:~~ 

1 

[ 
{((,+A. M )

2
-A

2 

u :1 :1 :1 

-irr/4 
e 

·rT .. 1/2 [ T - T 
+ 

M 
+ 

} 
L/2 {('"' •. )2 .. 2 ( +A M -.A. 

·o 2 2 2 

] '· 

. iJ.,, (1=i=M )(L+x) [ 
2 a. e y; k 
E ~<: . 

{ . ( - ) } :1/2 k=1 A L+X 
k 

2
1 

/ 
2 

[ A ( 1 + M. Ht ] 
k k . 0 

] -:1/2 
} 

(49) 

2 ~ A-[+A..(1±M. )] K+[±A.k(1=i=M )] 
I:J + J J -. k 

( Q 
2iA..(1±M.)L I +e J J 

j = 1 2 ( 2 \ L ) 
1 

/
2 

{ ;.._. ( 1 + M ) +A .. ( 1 ± M . ) } 
j k k J J L 

{ A •. ( 1 ±M. )±(. } 
J J u 

. A [ · ·· ( 1 - M ) ] Q 2 i [ A ( 1 + M ) +I-, . ( 1 ± M . ) ] L ] ] u . :!:A + e r· r· J 1 E __ ~ __ ! ____ ~ _____ ~ _____ ± _________________ · _____ ~____ . 

2(/.. L) 1
/

2
{ / .. (1+M )+/. .. (1±M.)}{ /,_ (1+M )+f} 

r· 1' r· J J r· 1·· ' 0 

2 

(50) 
1'·=:1 
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5. STRESS INTENSITY FACTOR AND CRACK OPENING DISPLACEMENT 

NEAR THE CRACK TIPS 

Now considering the behaviour of ~ at infinity we obtain from 

(42) 

where 

i (( -~ ) , I) 

1 

( 1 +M) 1/2 

.. -1/2 
+ s 't +· 

:ti( L A e ·o 
:1 

i K+ (( ) - ·o 

as (----. oo, 

+ 

2 a e 2 i~k( 1 ±Mk)L A-[+k (1~M )] C_(:tk (1±M )] 
k + k k + k' k 

+ E-------------------------------------------2< \ L)i/'2 
. "k k =1 

X [1-. r 
J =:1 

X: 

]) . 
Now, ~rom equation (33), using (51).and also the fact that 

K(() ____. + as (~ ±w, 
1+M 

we obtain 

1+M 

[ i( L -i( L 

J NU~') = s e + s e as (-) ±oo. 
+f ("'' ):1./2 

i-

-, c, 

1 81 

(51) 

(52) 

(53) 

(54) 



Taking inverse Fourier transform of (31) and using the results 

of Fresnel integrals, viz. 

Ll) 
sin 

J 
(x+L)a 

[ n r·. cos 
d<..ll. (55) = 

(0!):1/2 2(x+L) 

0 

we obtain the displacement jump across the surface of the crack as 

~W = w (x,O+) - w (x,o-) 
1 2 

( 1 +M ) ( 1 + i ) S [ 2 (x+L) r2 for x____,. -L+O = - n (56) 

= - ( 1 +M ) ( 1 - i ) S [ 2(L-x) r2 for X----+ L-0. 
+ rr 

(57) 

Expressions (56) and (57) give the displacement jump near to 

the crack tips, whereas the displacement jump away from the crack 

tips is given by (49). 

Next, in order to find the value ofT near to the crack tip yz 

we use (54) in (32) and (29) and obtain 

A. (() = 
J 

A. (() = 
J 

i + 1 
(-1)' 0. 

-----=-) [ 

'•"('-·):1./2 ( ( 

. ( ) i + 1 1 -1 ., 0. 

---.:.....! [ 
·>: ( .,, )i/2 
~ -,, 

itL 
S e · 

T 

j=1, 2 

-ir L ] Se ·· , j=1,2 
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aw. c x, y. ) 

{Jy 

Now T (X,y.) = U. 
yz .J , .J 

j ) 

,u.S. i) 

= J J 

2rr a Y . 
[I 

.) 
-(.(.l 

= U.S . . .) .) 

A. (() 
J 

aw. c x, y. ) 
.) j 

{Jy 
.! 

-i;~x-v!Y-1 d':: J e J J ~. • ( 60'") 

Now substituting the values of A.U!.) as I< I ~ Cl) in (60) and 
J 

integrating, we obtain the stress near tp the crack tip as 

where { ( /' 2} 1/2 r :: x-L +y , 
:1 :1 

2 2 1/2 
r = {(x+L) +y'} , 
2 :1 

d {(x-L)2+/}1/2 = :1 2 , 

2 2 :1/"2 
d = { ( x+L) +y } , 

2 2 

.. -1 
If' = s1n 

:1. 

-1 
¥' = sin 

2 

¢' sin 
-:1 

= 1 

-:1 
.j, =sin 
' :2. 
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l 
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d 
1 

I I 
I y I 
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d 
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Therefore at the interface (y=O) near to the right-hand crack 

vertex, we obtain 

T ---t -
yz 

tJS(1-i)S 
1 :1. i" 

1/2 
{ 2?7 ( x-L)} 

as x--t L+o.· (64) 

Now the normalized dynamic stress intensity factor K at the crack 

tip x = L is defined by 

1 [ 2rrk
1 

(x-L)] 

u A 
' :1 '1 

1/2 
T yz 

where A is given by (24). 
1 

= s 
1 

(1-i)S (k )
1

/
2 

+ 1 

A 
1 

for X---tL+O, (65) 

The absolute values of the complex stress intensity factor 

defined by (65) has been plotted against k L in Fig.4 for values 
1 

k L>1 for different values of the Mach number M and the angle, of 
1 z 

incidence for the following sets of materials: 

first set: 

Steel gm/cm 
3 11 2 

p= 7.6 ' J-l = 8.32 X 10 dyne/em 
:1 :1 

Aluminium 3 11 2 
p = 2.7 gm/cm ., J-l = 2.63 X 10 dyne/em 

2 2 

second set: 

Wrought iron gm/cm 
3' 11 2 

p= 7.8 
' 1-1 = 7.7 X 10 dyne/em 

:1 1 

Copper gm/cm 3 11 2 
p2= 8.96 ' u = 4.5 X 10 dyne/em 

'2 
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As the Mach number M ~a the stress intensity factor K tends to 
2 

the value of the stress intensity factor corresponding to the 

stationary.crack. The problem fore= rr/2 and M =0.~ was 
:1 2 

solved 

earlier by Pal and Ghosh [1990]. The graph of stress intensity 

factor vs K
1

L corresponding to e
1
=rr/2 and M

2
=o.o as given in Fig.4a 

is found to coincide exactly with that given by Pal and Ghosh 

[1990]. It is interesting to note that for both pairs of materials, 

as M2 increases, the· peaks of the curves of stress intensity 

factors decrease in magnitude and occur at lower values of K
1

L. 

Further, it may be noted that for any fixed value of- M
2 

the s:tress 

intensity factor decreases with the decrease in the value of the 

angle of incidence. 
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<l) 2·0· 

r· 
~ 0·8 

Q.4 Wrought Iron fl. Gop per 

Aluminium & Steel 

5 7 

Mz=·o·o 

,-

M-z= O·S 

9 11 1J 15 l'T 19 

k1L -

Fig.4(a). Stress intensity factor K versus dimensionless 

(b) 2·0 ~----------------------, 

1.6 

1.2 

t 
~ 0.8 

o.4 
Wrought Iron ll Coppor --.. 

Aluminium & Stool 

Fig.4(b). Stress intensity factor K versus dimensionless 



(c) ~·o.,.----------------------.. 

1·6 

~ o.a 

0·4 Wrought Iron & Copper 

Aluminium & Steel 

3 5 '1 

k 1 L 

Ma= O·O 

9 11 13 . ·15 17 19 

Fig.4(c). Stress intensity factor K versus dimensionless 

(d) Z·O -r--------------:----------, 

1.6 

1·2. 

t 
~ 0·8 

0·4 

Wrought lron & Copper 

Aluminium & Steel 

3 5 7 9 11 1::1 15 17 19 

k1L ----+ 

,. 
···' 

Fig.4(d). Stress intensity factor K versus dimensionless 

k
1

L for 8 1 = n/6. 

187 



where 

and 

Now 

APPENDIX 

K(() = 
{(

... )2 .z. }1/2 t +A M -A 
. 1 1 1 

R(() 
1+M 

u s 
0 :1 :1 

M = 
u s 
0 2 2 

( ){(
,_. .. )2. 2}1/2 1 +M (+A M -i\ 

I 2 2 2 
R(<) = ----------------------------------- ~ 1 

M{((+A. M )2-A.2}1/2+{((+A. M )2-A.2}1/2 
1 1 1 ' 2 2 2 

as I< I --+OO 

1 

R+(()R_(() = ---------------------------
{(

u·. )2 .. 2}1/2 M ~+A M -A 
:1 :1 :1 

+ -----------------------
( ){(

u • )2. 2}1/2 1 +M ;: +A M -i,_ 
' 2 2 2 

1+M 

Taking log on both sides 

log R(C) = 1 og R (() + 1 og R (~~) = 
-r 

2'1! i 
f 

C -t-C 
L U 

log R ("r;) 

n-<" 

where the paths of integration c and c are shown in Fig.A1. 
L U 

Therefore 
1 log R(n) 

=-I---
2n i 

c 
L 
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1 log R (YJ) 
log R (() = -- J dn - 2rr i r,-( c 

u 

-ic+w log R C"rl ) 
or log R c"= > = I dt] -t- ~. 

2'11 i ry-{ 
-i C-(.(1 

. 

Putting n = -n 

ic-w log R(-{1) 

log R u= > = I df} T . 
2'11 i !)+( 

ic+w 

i c-eo log R {'t;) 

log R (( ) = J dr,, -
2n i 

ic+oo n-( 

therefore 

ti 

1 og R ( ( ) = 
. 2 2 1/2 

M{ ('r,+A M ) -A } 
1 1 1 

2'1Ti 
] dn 

:1 -- + 
{( 

. )2 .2}1/2 1+M (1+M) n+A M -A 
2 2 2 

where c is 
1 

the contour round the branch points A. (1-M ) 
1 1 

A (1-M ) as shown in Fig. A2. 
2 2 

Therefore 
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log R (() = 

\.. {1-.M ) 

1 
2 2 . 2 . 2 1/2 

i M { ("(]+A M ) -,\ } 

= f [ 

- 1 
logl-·- + 

1 +M ( 1 +M) { 

:1 :1 :1 J 
. 2 ( ·. 2 1/2 
,\ - '(!+A M ) } ' 

:2 ' 2 :2 
2"FI i c n-:~ ) 

_i..._ \1-M> 
1 1 

A (1-M } 
2 2 

1 
= J 

c n-( ) 
A (1-M 

1 :1 

and therefore 

r- 1 
R _ cz= ) = exp l.~ 

Similarly 

[ ~ R (t) = exp 
+ ' 

1! 

\.(1-M j 

2 2 

J 
\. (1-M 

1 1 

/.. <1+M 
2 2 

J 
' A < 1-t-M 

:1 1 

i 

) 

.- 1 

logl
"'1 +M 

. 2 . 2 1/2 
i M { ("(J+A M ) -i·, } J ] 1 1 1 

2 2 1/2 
( 1 +M) { \ - ( n+!.... M ) } 

2 ' 2 2 

-:1 
tan 

{( 
. .2. 2}1/2 

[ 

M '(J+i.... M ) -i.... J 
:1 1 1 

. 2 2 1/2 d'(,l' 
{ A - (yt+A. M ) } 

2 2 2 

d'(J 

-:1 
tan 

. 2 . 2 :i./2 
.M [ ('(J+A M ) -i.... ] J J l :i. :i. 1 
-c-;;._-2 ___ (_n_+_;\_M_)_2_J_:i._/_2 dn . 

2 ' 2 2 

[ ("n-1.... M 
)2 ., 2 1/2 

c -A ] 

J dn ] . 
-:1 1 1 1 

tan 
. 2 ( ' 0 2 ]1/2 <n+(' ) [ A - t]-A M ) 

2 2 2 

Therefore from (A1) we can write 

190 



r t +/.. ( 1 +M ) 11/2 
K (() 

' 1 1 

= I I 
I -t 

L ( 1 +M) J 

.\. l1-tM > 
2 2 

x exp I 
-:J. 

---tan 

Cn+() 
.\ t 1 +-M > 

:1. :1 

and 

K u:) r ::-t.. (1-M ) 11/2 
1 1 

=1--jl 
L ( 1 +M) 

'}, t1-M > 
2 2 

x exp [ 2 
rr 

I 
-:1. 

---tan 

co-r ) 
A (1-M ) 

:1. 1 

X 

[ ( 
.· 2 . 2 ] 1/2 

M n-.A. M ) -A 

(
- , 1 1 1 l df/ l ( A2 ) 

. 2 . 2 ] 1/2. J . J 
[ A - (n-A. M ) 

2 I 2 2 

1/2 
[(

. )2.2 t-1 ·o +,1-, M -A. 

l
r 1 1 1 

[ 
. 2 ( \ . 2 
i\ - r1+1\. M ) 

] 

J df/ ] . (A3) 
]1/2 

2 2 2 
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lm Y( 

'A,(1-Ml ) . 'A2(1-Mz) 

Cu • • 

·& R e.~ 

• • CL ·> 

- 7.2(1+Mz) - .A1 (1+M1) 

Fig. A1. Complex n-plane. 

Im ~ 

]..1(1-M1) c1 J.z_(t-Mz) 
(..-- ____ ) -- .. -

< 

• • 
- 1.zO+MzJ - i\,(HM, > 

Fig. A2. Path of integration round the branch points. 

192· 



Paper - 5. 

Paper - 6. 

C H A P T E R III 

DIFFRACTION PROBLEMS. IN ELASTODYNAMICS 

Forced vertical vibration of four 

rigid strips on a 

elastic solid. 

semi-infinite 

Diffraction of elastic wavei by four· 

rigid strips embedded in· an 

infinite orthotropic medium. 
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FORCED VERTICAL VIBRATION OF FOUR RIGID STRIPS 

ON A SEMI-INFINITE ~LASTIC SOLID 

1 . INTRODUCTION 

The problem of the effect of vibrating source in different 

forms on the surface of an elastiq medium have aroused attention in 

view of their application in seismology and geophysics. Reissner 

[1937], and later Millar and Pursey [1954], treated the case of a 

uniform vibrating pressure distribution applied to a circular· 

region on the surface of an elastic half-space. Analytical 

treatment of the dynamical response of footings and solid-structure 

interaction are usually available in the literature only for 

circular and elliptical footings, and infinite strip loadings. Such 

results are important in view of their application in the design of 

foundations for machinery and buildings, and also in the study of 

the vibration of dams and large structures subjected to 

earthquakes. The problem of circular punch has been solved 

analytically by Awojobi and Grootenhuis [1965], Robertson [1966], 

Gladwell [1968] and others. Roy [1986] considered the dynamic 

IN PRESS "INT. J. SOLIDS and STRUCTURES", 1996 
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response of an elliptical footing in frictionless contact with a 

homogeneous elastic half-space. Karasudhi, Keer and Lee [1968] 

obtained a low frequency solution for the vertical, horizontal and 

rocking vibration of an infinite strip on a semi-infinite elastic 

medium. Wickham [1977] worked out in detail the problem of forced 

two-dimensional oscillation of a rigid strip in smooth contact with 

a semi-infinite elastic medium. Recently, Mandal and Ghosh [1992] 

treated the problem of forced vertical vibration of two rigid 

strips on a semi-infinite elastic medium. 

To improve the dynamic models of buildings and other 

structures, it will be fruitful to have analytic results for 

foundations of a more complicated nature. In what follows, the 

problem of vertical vibration of four rigid strips in smooth 

contact with a semi-infinite elastic medium has been considered~ 

The problem is also important in view of its application in the 

study of the vibration of an elastic medium caused by running 

wheels on a railway track. The resulting mixed boundary value 

problem has been reduced to the solution of quadruple integral 

equations, which have further been reduced to· the solution of 

integral-differential equations. Finally, an iterative solution 

va 1 i d for 1 ow fre.quency has been obtai ned. 

From the solution of the integral equations, the stress just 

below the strips and also the vertical displacement at points 
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outside the strips on the free surface have been found. The effects 

of stress intensity factors at the edges of the strips and vertical 

displacement outside the strips have been shown by means of graphs. 

2. FORMULATION OF THE PROBLEM 

Consider the normal vibration· of frequency w of four rigid 

strips having smooth contact with a semi-infinite homogeneous 

isotropic elastic solid occupying the half-space -oo<X<oo, Y~O, 

-oo<Z<oo. It is assumed that the motion is forced by prescribed 

displacement distribution normal to the four infinite 

strips located in the region d 1 sJxJ~d 2 , d 3~JxJ~d. Y=O, JzJ<oo, where 

v
0 

is a constant. 

Normalizing all the lengths with respect to d and puiting 

X 
d 

= x, 
y 

d 
= y, 

z 
d = z, = a, = c, 

d 

one finds that the rigid strips are defined by ~JxJ~b, c ~)xJ~1, 

y=O, JzJ<oo (fig.1). With the time factor suppressed 

throughout the analysis, the displacement components can be written 

as 

u(x,y) = o¢ v(x,y) w(x,y) = o ( 1 ) 
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_, -c -b -a a 

y 

Fig. 1. Geometry of the problem. 
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where the displ~cement potentials ¢(x,y) and ~(x,y) satisfy the 

Helmholtz equations 

iJ2¢ a2¢ 
2, 

+ -- + m q..> 

ox 2 oy 2 1 

. 2 2 
·() lj.l () '1/) 

2 
+ -- + m .1.1., 

ax 2 (}y 2 2' 

in which 

2 2 
2 

i_\) d 

m1 . = 2 
c1 

= 

= 

0. 

0 

and 

2 2 
(•.) d 

In terms of ' and the stress .components ,, V.t are ..,.. 

T = ,u xy 

'T = - !1 yy 

T = 0 
. yz 

iJ2¢ 
f 2 
l axay 

{[ 2 m· + 
2 

The boundary conditions are 

v(x,O) = v
0 

T (x,O) = 0 
yy 

T (x,O) = 0 
xy 

a2¥' 
,., 

a~lp 1 
+ --·-

ax 2 ay2 J 

a2 a2 ljl 

} 2- ]¢ 2 -
ox2 oxoy 

X E I2 I I4 

-CO < X < (.U 

(2) 

( 3) 

(4) 

(5) 

(6) 

where r 1 = (O,a), r 2 = (a,b), r 3 = (b,c), r 4 = (c,1), r
5 

= (1,oc•)·. 
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The solution of the Helmholtz equation (2) can be written as 

where 

(.(1 

¢>=2JA(() 

0 

tO 

-~~- 1 y 
cos( x e d(-

-'v y 

f. ( .. .. & 2 .. 
V-' = 2 8 (~) sin:~x e d~ 

.! 

0 

{ 
('~ 2 m~)1/2 I r, I ( -

J ' 
"l·' = d j '( 2 ,_. 2" 1/2 j( I _, m. - ( ) 

J 

> } m. 
J j = 1 '2 

< m. 
"J 

( 7) 

and A(() and 8(() are unknown functions, to be determined from the· 

boundary conditions. 

By using the boundary condition (6) it can be shown that 

A(() 
2 + '!-" • 2 

Now the displacement component v and stress T yy 

(.l) 
, 

2:~ c. _ .. , ... _ .. , .... 
& ' 

become 

[ 2y 1y l v(x,y) = 2 I e - e AU: )cos( x d(" 
... 2 2 

T (x,y) 
yy 

0 
2( 

0 

- m2 .J 

(8) 

(9) 

( 1 0) 

From the boundary conditions (4) and (5) we get the following set 

of integral equations in P((): 
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and 

where 

P(( )cos(x d( = 
,_. 2 

4~ V 'V 
<, • 1' 2 

J P(()cos(x d( = 0 , 

0 

PU') = 
2 22 ~~-2 

( 2f -m ) - 4r v v ' 2 •, ' ,. 2 

2 

A c:: ) . 

X E I, 
c. 

3. SOLUTION OF THE PROBLEM 

( 11 ) 

( 1 2) 

We consider the solution of the integral equations (11) and 

(12) in the form 

b 

J ( 2) .. ,. 2 .. = tf t cos(t dt + I ug(u )cos(u du 
-,) 

a c 

. 2 2 
where f(t ) and g(u ) are unknown functions to be determined. 

( 1 3 ) 

By the choice of P(() given by (13) the relation (12) is 

satisfied automatically and the equation (11) becomes 
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b 00 2 .,,. m 
~ J 1 2 

Jr tf(t~)dt Jr ------------------" ~ 2 2 ( 2'
,_, '--m~) ,J • 4v '-.' -"v 

a 0 ·· 2 ', ~ 1' 2 

cos( t d(. + 

(.t\ 2 

I 2 I 
;v 1m2 

cos(x cos(u d'~-+ ug(u )du <, 
( ,_.2 2)2 u2 

2t -m - 4r r ·v 
c 0 , 2 , 1' 2 

X E I~ 
~ ' I4 

using the reiation 

-~: 2 
'·. 

X t 

=I S 
0 0 

wvJ 
0 

(( w) J 
0 

(( v) dvdw 

(x2~w2) 1/2 (t2-v2) 1/2 

the above equation is converted to the form 

d I dx 
a 

where 

b X t wv L (v,w) dvdw 
2 a I I 

1 
t f(t ) dt at + 

( 2 . 2) 1/2 (t2-v2)1/2 
0 0 

x -w 

• X U wv L
1

(v,w) dvdw 
d f u 

2 a . 
+ g(u )du auf I dx ( 2 2)1/2 ( 2 2)1/2 

0 0 
x -w u -v 

c 

= 

(.(1 

L
1

(v,w) 

2 
;v1m2 

= f -------------.. -2--- Jo((w)Jo((v)d( 
( 2 <-: 2 2) 2 .. c -m - 4r v v 0 ., 2 ·, • 1' 2 
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By a simple contour integration technique used by Ghosh and Ghosh 

(1985), L1(v,w) can be written as 

L
1

(v,w) 
,., 

. c. = -l'T 

. 2 
- 41T 

T 2 2 2 2 1/2. (1) 

J 
n <n ~1)(r -n ) . H0 (m1nw) J 0 (m 1nv) 

2 2 4 4 2 2 2 
dY) + 

. 2 + tilT 

. 2 
- l'f 

=----
2 

1 6 ( 1-T ) 

2 
+ \' ,... ) v. 

L J 
j=O 

. 2 
+ 'li l'T' 

m2 
where T = = 

0 
( 21) -T ) + 1 6't) (f) -1 )( T -·r) ) 

2 

[ 2 Pj I 
j=O 0 

J 
0 

2 1/2 (1) 
(1-n ) H0 Cm 1nw)J 0 Cm 1nv) 

2 2 
'(] -T j 

2 2 
{/ -T . 

J 

T 0 is the root of the Rayleigh wave equation Q
0

(n) = o. 

are the root~ of the equation 
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2 2 2 2 2 1/2 2 2 1/2 c 2r; --r ) + 4 n c n - 1 ) < n _, ) = o . 

Q0 (~) denotes the derivative of Q0 (~) with respect to n and 

P. = 
J 

s. = J 

2 2 
( 2T , - T ) 

J 
2 2 n (T , T , ) 

; J 1 

2 2 
1 ) 4T, (T . -

J J 
2 2 n (T . T . ) 

i J 1 

i 'j = 0' 1 '2 and· ; ;r! j . 

The corresponding expression for L
1

(v,w) for w < v follows from 

equation (17) by interchanging wand v. For a Poisson ratio a= 4' 

the values of ·r, 

2 
T = 

2 ( 1-0') 

= 3, 
( 1-2a) 

2 
ro = 

and r
2 

are given by 

3 
2 

3 

(0.9194) 2 ' 
T 1 = 

(2+2/3) 

Hence, in this case T
2 

< T
1 

< 

and 2 3 
T 2 = 4 

By using the series expansions of J
0 

and H~ 1 ) and evaluating 

the integrals arising in equation (17), we obtain, after some-

algebraic manipulation, 
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·rr; -. 
2 2 r .- m

1
w 

p 2 2 2 ] L (v,w) = -'T 1 rr + log -- -JM + N - -(w +v )m logm 
1 n: L l 4 1 1 2 2 . 

2 2 [ [ 
m

1
v 1I i _ _. 

p 2 2 2 ] = rrr r + log --- ;-JM + N - ~(w +v )m1 logm1 
2 

w < 

where r = 0.5772157 .•. is Euler's constant, 

N 

M = 

-rr 

IT 

2 
4 ( 1-T ) 

2 Jc ;_.r ~) 
~ -1 

[ 
4 p ' J = 4log- + 2 tan 

2 T J 32 ( 1-T ) 
j= 1 

T, 
J 

j(T
2
-1) n} + - p 0 log {~ 0 +J (T ~ -0 

ro 

2 ~ (T 
2 
-T ~) ~ (T 

2 -T~) 
2 s. J tan 

-1 J + 
J 

j=1 
T, T, 

J J 

I 2 
~ ( 1-T , ) 

J 

T, 
J 

Jc-r~-r 2 ) ro + J (r ~ -r 2
) 

} ] ' - s log 
0 

ro T 

2 2 n ..... 

[ 
c.. 

J . p = ) P. c.!. 2 2 T 2 
·T" ) + s (- ·T" ) ' ' 2 L.. J 2 J j 2 ' j 

32 ( 1-T ) 
j=O j=O 
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+ O(m2 ) 
1 

w > v. 

., 
+ O(m~) 

v. ( 18) 

( 1 9 ) 

(20) 
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Next, differentiating both sides of the relation (14) with respect 

to x, we obtain 

sin( x sin~~ t d( + 

1 (.\'.) 2,_. 
"v 1m{ . 2) • 

+ J ug(u du J s i ni: x sin( u d(" = 0, 
( 2( 2-m2) 2 '~ 2 

0 4< r 1r 2 c 2 

Following similar procedure as done for deriving equation (15), we 

get 

where 

X f dt + X J 
a c 

b X 

a 0 0 

X U 

J 2 a J J + u g(u )du --au 
c 0 0 

(.(1 

L 2( v ' w ) = I [ r, -
0 

2 ug(u ) 

2 2 x -u 

t 

du 

( 2 2)1/2 ( 2 2)1/2 x -w u -v 
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+ 

, X € I
2

, I 
4 

(22) 

J 0 ( r, w ) J 0 ( r, v ) d( 

(23) 



For small values of m
1 

and m
2 

such that m
1

=o(m
2

), one can use the 

contour integration technique mentioned above and obtain 

I 
0 

1( 2)1/2( 2 2)2 2 1-·n 2n -T n 
2 2 4 

( 2"(J -T ) 
4 

+ 16"() 

. 2 ( 2) + 41 m
1 

1-T 

T 4 2 2 2. 1/2 ( 1) 
2r1 ("fl -1 )(T -n) H

0 
(m

1
rJW) J

0
(m

1
nv) 

J - 2 2 4 4 2 2 2 
d"(J -

0 
.. ) ( )( ) t2n -T + 16"0 n -1 -r -n 

w>v 

(24) 

By a process similar to the one which led to equation (18), 

equation (24) can be written as 

L,(v,w) 
c:. 

4P 2 2 2 
=- rr (1-r ) m1 logm 1 + O(m 1) (25) 

where Pis given by equation (21). 

Now examining the relation (15) and (18) we assume the expressions 
' 2 2 of the functions f(t ) and g(u ) as 

(26) 
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Putting the above expressions of f(t
2

) and g(u
2

) and the value of 

L
2

(v,w) given by (25) in equation (22) and equating the 

coefficients of like powers of m
1 

we obtain 

ug ( u
2

) 

J
_o __ 

2 2 x -u 
du = o , X E I

2 
, I 

4 
(27) 

a 

and 

a 

= 

b 

~ P( 1-T 
2

) [I 
a 

c 

c 

2 
ug 

1 
( u ) 

du = 
2 2 x -u 

2 J 2 1 tf
0
(t )dt + ug

0
(u ) duj, 

c 

X E 

Following Srivastava and Lowengrub (1970) the solutions of the 

above integral equations (27) can be obt~ined as 

- 0 
2 J 

1/2 
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and 

1-a 2 1/2 2 2 1/2 1 

r 
.... 

( 
u -c .... 2 j go(u ) = 01 J + 2 2 2 .... c -a 1-u j 2 2 2 2 (u -a )(u -b ) 

2 2 1/2 

( 
u -a 

"'' + D 
u2-b2 J ' 

U E ·I (30) 2 j 2 . 2 2 
4 

(u -c )(1-u ) 

where o
1 

and o
2 

are constants which can be calculated as follows: 

We substitute the value of L
1

(v,w) from (18) as well as the 

expansions of f(t
2

) and g(u
2

) obtained from (26), (29) and (30) 

2 . 
upto O(m

1 
logm

1
) in the equation (15). When the coefficients of 

like powers of m from both sides of the resulting €quation are 
1 . 

equated 

following 

where 

and we get after some algebraic manipulation, the 

nv
0 

(X
2
-x

1
) 

2 
4-r ( X 

1 
X 

4
- X 

2 
X 

3 
) 

1/2 

J [{( y 

D,., = 
~ 

nv0 (X
1
-x

3
) 

2 
4-r ( X 

1 
X 

4
- X 

2 
X 

3 
) 

1 2 2 ) + 2MJ
1 

log(b -a ) + MJ
5 
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(32) 



f ( m1 rr: il } 1 2 2 x
2 

= v + log- - -1M + N (J -J ) - - MJ
2

log(b -a ) + MJ t L' 2 2 J 4 2 2 6 

x4 = 

2 
1-a 

x3 = r 2 2 J-
l c -a 

,- - m1 
J f-·· + log-
l --· 2 

b 

J1 = f ( 
a 

b 

a 

c 

c 

1/2 

[{[r+logm~- ;i)M + +J1+J3) + 

rr i) Nl(J -J ) 
1 2 

- M + + - MJ 1 og ( 1-c ) - MJ 
2 I 4 2 2 4 8 

./ 

c2-t2- 1/2 
tdt 

1-t2 J J (t2-a2)(b2-t2) 

tdt 

udu 
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ulog ( j u2 -b2 + j u2-a2 ) 
2 2 1/2 

( 
u -c _ 

J5 = J 
1 -u 2 J du 

~ 2 2. 2 2 c ( u -a )( u -b ) 

1 
ulog ( j u2-b2 Ju2-a2 ) 

2 2 1/2 
+ 

( u 2-:2 J J6 = s du 

J 2 2 2 u -
c ( 1 -u ) ( u -c ) 

b 

a 

b 

dt. 

a J 2 2 2 . ( 1 -t )( c -t ) 

4. STRESS INTENSITY FACTORS AND DISPLACEMENT 

The normal stress T (x,y) on the plane y=O can be found from
YY 

the relations (10), (13), (26), (29) and (30) as 

rr,ux 
-r (x,O) = ------

YY 
~ 2 2 2 2 ( x -a )( b -x ) 
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2 2 1/2 
c -x 

[ ---=-2 ) 
1 -x 



= 
rr,ux 

2 2 
(x -a ) 

2 2 1/2 x -a 

+o(-] ] 
2 '- 2 b2 X -

2 2 
(x -c ) 

+ 
~ 2 2 2 2 · (X -a )(X -b ) 

2 
+ 0( m

1 
1 ogm

1 
) , (36) 

Defining the stress inte~sity factors at the edges of the strips by 

the relations 

K = Lt a 

K = c 

We get 

x-ta+ 

Lt 
x-tc+ 

K = a 

T ( x 0 )~ x-a yy ' 

rr uv 
' 0 

T ( x ,0 )~ x-c yy 

n uv ' 0 

Kb = Lt 
X-tb-

K1 = Lt 
X-t1-
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T (x,O)~b-x yy 

rr uv . 
' 0 

T (X, 0 )[1="X yy 

n ,uvo 

(37) 



Kb = 
fb 

~2(b 2-a2 ) 

K 
c 

2 1/2 
{ D1, 

1 -a _ 

2 2 J vo l c -a 

2 2 1/2 2 2 

[ c ~:2 ) D ( b -a ) · I 
2 

2 2 2 }I -

v 0 j ( 1 -b ){ C -b ) I 

(38) 

(39) 

2 1/2 __ 1 -a -

2 + l ~2 J 
-b ) 

·-. I 
D2 }, I (40) 

The vertical displacement v(x,y) on the plane y=O can be obtained 

from equations (9), (13), (26), (29), and (30) as 

v(x,o) = 

2 
4-r 

+ 

2 1/2 

+ D2(J4-J2)} + ~ {(J9+J11)[ :2~:2) 0 1 + D2(J12-J10)}] 

(41) 

where 
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b 2 2 2 2 1/2 
tloglt -x l t -a I I ( J J10 = I b2-t2 

dt 
~ 2 2 2 a ( 1 -t ) ( c -t ) 

2 2 2 2 1/2 
ulogju -x I 

( 
u -c 

) J 11 = J du 
2 

~ 2 2 2 2 -u 
c (u -a )(u -b ) 

2 2 2 2 1/2 
uloglu -x I 

[ 
u -a 

) J 
I I 

J12 = du. 
u2-b2 ~ 2 2 2 c ( u -c )( 1 -u ) 

5. NUMERICAL RESULTS AND DISCUSSION 

The stress intensity factors (SIF) K , Kb, K and K1 at the · a c 

edges of the strips and vertical displacement lv(x,O)/v0 1 near 

about the rigid strips have been plotted against dimensionless 

frequency m
1 

and distance x respectively for a Poisson solid 

2 
(T =3). 

It is found that whatever the lengths of the strips are, SIFs 

at the four edges of the strips increase with increase in the value 

From the graphs, it may be noted further that with a decrease 

in the length of the inner strip, which might be induced either by 

increasing 'a' or by decreasing 'b', the SIFs gradually increase 

(fig.2- fig.9). 
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Also, a decrease in the value of the length of the outer 

strip, which might be induced by increasing the value of c, causes 

an increase in the values of the SIFs (fig.10- fig.13), from which 

an interesting conclusion might be drawn: i.e, that the presence of 

the outer strip suppresses the SIFs at both the edges of the inner 

strip and the presence of the inner strip suppresses the SIFs at 

both the edges of the outer strip. 

The vertical displacement has been plotted for different strip 

lengths. It is found from fig.14- fig.16 that with the increase in 

the value of strip lengths, the displacement increases. 
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Fig. 2. Stress intensity factor K versus dimensionless 
a 

frequency m
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for b = 0. 6 J c = 0.8 and for 

different values of a. 
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Fig. 3. Stress intensity factor Kb versus dimensionless 

frequency m1 forb =· 0.6, c = 0.8 and for 

different values of a . 
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Fig. 4. Stress intensity factor K versus dimensionless 
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frequency m
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for b 0.6, c = 0.8 and for 

different values of a. 
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Fig. 5. Stress intensity factor K
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versus dimensionless 

frequency m
1 

for b = 0.6, c = 0.8 and for 

different values of a. 
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Fig. 6. Stress intensity factor K versus dimensionless 
a 

frequency m
1 

for a = 0. 2, c = 0.8 and for 

different values of b. 
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frequency m
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different values of b. 
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Fig. 8. Stress intensity factor K versus dimensionless 
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frequency m1 for a = _0.2, c = 0.8 and for 

different values of b. 
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Fig. 9. Stress intensity factor K
1 

versus dimensionless 

frequency m
1 

for a = 0.2, c = 0.8 and for 

different values of b. 
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Fig. 10. Stress intensity factor K versus dimensionless 
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frequency m
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for a = 0.2, b = 0.4 and for 

different values of c. 
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Fig. 11. Stress intensity factor Kb versus dimensionless 

frequency m
1 

for a = 0. 2' b = 0.4 and for 

different values of c. 
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versus 
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versus 

dimensionless distance x for a = 0.2, c = 0.8, 
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1 

= 0.1, 0.2, 0.3. 
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DIFFRACTION OF ELASTIC WAVES BY FOUR RIGID STRIPS 

EMBEDDED IN AN INFINITE ORTHOTROPIC MEDIUM 

1. INTRODUCTION 

In recent years, the study of the problems involving cracks or 

inclusions in composite and anisotropic materials has gained much 

importance. The problems of diffraction of elastic waves by cracks 

or inclusions have aroused attention in the field of fracture 

mechanics in view of their application in Seismology and 

Geophysics."studies of a single Griffith crack as well as two 

parallel and coplanar Griffith cracks have been made by Mal [1970], 

Jain and Kanwal [1972] and Itou [1980]. The corresponding problems 

of diffraction by a single and two parallel rigid strips have been 

solved by Wickham [1977], Jain and Kanwal [1972] and Mandal and 

Ghosh [1992] respectively. In most of the cases the problems were 

solved by the integral equation technique, but the solutions of 

interesting problems involving the scattering of elastic waves by, 

more than two coplanar Griffith cracks or strips are still lacking. 

The problem involving single Griffith crack in orthotropic medium 

was investigated by Kassir and Bandyopadhya [1983], Shindo et al 

IN PRESS "JOURNAL OF ENGINEERING MATHEMATICS", :1996. 
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[1986] and De and Patra [1990]. Shindo et al [1991] have 

investigated the impact response of symmetric edge cracks in an 

orthotropic strip. Mandal and Ghosh [1994] considered the problem 

of interaction of elastic waves with a periodic array of coplanar 

Griffith cracks in an orthotropic elastic medium. The problem of 

scattering of elastic waves by a 'circular crack in transversely 

isotropic medium was investigated.by Kundu and Bostrom [1991]. 

In our case, we have considered the two-dimensional problems 

of diffraction of elastic waves by four coplanar parallel rigid' 

strips embedded in an infinite orthotropic medium. The five part 

mixed boundary value problem was reduced to the solution of a set 

of integral equations. Following the technique· developed by 

Srivastava and Lowengrub [1970], the integral equations were 

solved. The normal stress under the strips and displacement outside 

the strips were derived in closed an~lytical form. To display the 

influence of the material orthotropy numerical values of stress 

intensity factors at the edges of the strips and vertical 

displacement have been plotted against dimensionless frequency and 

distance respectively for several orthotropic materials. This type 

of problem is important in view of their application in detecting 

the presence of inhomogeneities embedded in material structure and 

in seismology while studing the scattering of elastic waves by 

inhomogeneities like rigid hard rocks inside the earth. 
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2. FORMULATION OF THE PROBLEM 

Consider the diffraction of normally incident longitudinal 

wave by four coplanar and parallel rigid strips embedded in an 

infinite orthotropic elastic. medium and the strips occupy the 

and 

(i,j=1,2,3) denote the engineering elastic const~nts of the 

material where the ~ubscripts 1 ,2,3 correspond to the x
1

, x
2

, x
3 

directions which coincide with the axes of material orthotropy. 

Normalizing all lengths with respect to 'd' and putting x
1
1d=x, 

d,..,ld=b, 
'"" 

the rigid strips are 

defined by a~lx!~b, c~!x!~1, y=O, !zl<oo (Fig.1). 

Let a time harmonic wave given by ui=O and v
1

=v
0

exp[ i~ky-~t)] 

h k dl ~ ( I )112 . were =tv cs ,c22 , cs= 1-1 12 p and v
0 

1s a constant, travelling 

in the direction of positive y-axis be incident normally on the 

strips. The non-zero stress components T and T are given by 
YY xy 

au iJv 
c12 ox + c22 {}y 

av au 
Txy I ,u12:: +

{}y ax 
( 1 ) 

where c .. (i,j = 1 ,2) are nondimensional parameters related to the 
1J 

elastic constants by the relations 
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Fig. 1. Geometry of the strips and incident field. 
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(2) 

The constants Ei and vij satisfy the Maxwell's relation 

;:: v .. I E. 
Jl J 

The equations of motion for orthotropic material, interms of 

displacements are 

a2
u a2

u a2
v d2 a2 u 

c 11 + -- + ( 1 + c12)-- = 2 2 2 . 2 ax ay axoy c at 
s ( 3) 

a2v a2
v a2u d2 a2v 

c22 + -- + ( 1 + c12.)-- = ay 2 ax 2 2 
at 

2 axay c 
s 

where u, v are the displacement components of the scattered field, 

(Fig.2). 
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Fig. 2. Displacement components of the scattered field . 
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The boundary conditions are 

(i) u(x,y,t) = 0, v(x,y,t) + v.(x,y,t) = o 
1 

the surface of the strips. 

across y=O on 

(ii) u and v are continuous across y=O for jxj< w. 

(iii)~ T are continuous across y=O outside the strips. 
, YY ' xy 

Further, the scattered field should satisfy the radiation condition 

at infinity. Substituting u(x,y,t) = u(x,y)exp(-iwt) and v(x,y,t) = 

v(x,y)exp(-iwt) our problem reduces to the solution of the 

equations 

i/u a2u a2
v d2 2 w 

c 11 + -- + ( 1 + c )-- + -- u = 0 
ax 

2 c1y 
2 12 c1xc1y 2 

c s 

and 

i)2 a2
v a2 2 2 

I V . u d 6.) 

c22 + -- + ( 1 + c )-- +- v = 0 ( 4) 
;Jy 2 ax 2 12 a a 2 

. X y c s 

Boundary conditions on u and v suggest that u and v are odd and 

even functions of y respectively. Accordingly, equations (4) are to 

be solved subject to the boundary conditions 
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v(x.O) = - vo ' X E I. ,I4 2 
(5) 

T (x,O) = 0 X E !1 ' I3 ' I5 yy 
(6) 

u(x,O) = 0 lxl < c.o ( 7 ) 

with r
1 

= (O,a), r 2 = (a,b), r 3 = (b,c), .r 4 = (c,1), r 5 = (1,oo). 

Henceforth the time factor exp(-iwt) which is common to a11 

'field variables would be omitted in the sequel. 

The solutions of equations (4) are taken as 

Ll) 

u(x,y) + 2 

I [A 1 (( ) exp ( -y 1 I y I ) A 2 ( ( ) ex P ( -r 21 Y I ) J sin( x d·;; >o = + 
IT '· ' y< 

0 (8) 

L'O 

v(x,y) = ~I ([a1A1 (( )exp(-y 11 yj) + a2A2(()exp(-y2Jyj )] cosf, x d~-' 
'. 

where 

C:l, = 
1 

0 

.. 2 2 2 
c 'f -k -·v. 11 , s d i 

i = 1 '2 

2 2 

k2 
d (.'.) 

= s 2 c 
s 

and A.(f) (i = 1,2) are the unknowns to be solved, v
2 

1 • • 1 

the roots of the equation 

(9) 

( 1 0) 

and 
2 

·v 
i 2 are 

c22r4 +{<c72+2c12-c11c22)(2 +(1+c22lk:!}r2 +(c11(2-k!)((2-k!l = o 

( 11) 
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From the boundary condition (7) it i~ found that 

Therefore displacements u, v and stresses T T finally can be yy' xy 

written as 

(.1) 

u(x,y) =~I [exp(-r
1
1Yil- exp(-r

2
1y!J]A

1
(0sin(x d(, y>O (12) 

0 

tl) 

v ( x, Y) = ~I f [.:x 
1 
ex p ( -r-

1 
I y I ) - <-il 

2 
exp ( -y 

2
1 y I ) ] A 

1 
( ( ) cos;: x d(. ( 1 3) 

0 

00 

T yy IJ.i 1 2 = ~ J [ ( c 1 2( 
0 

Cu 

T XY /,U 12 = ~ I r Cr 1 + 0[1 ) exp ( -r 1 i y I ) 
II. L 

0 

Next putting 

a v - a v 

A(() = 1 J 1 . 2' , 
------A (/) 1 .. 

y>O ( 14) 

(15) 

the boundary conditions (5) and (6) lead to the following integral 
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equations in A(() 

tl) 

Cl.1 

J ( 
01 1{"1 0 

and 

- Ol,.., 
t:.. 

J A ( (." ) 
..... 

d;~ COS( X 

- {II .... 
-·2'' 2 

J A(() cos(x d( = 0 , 

0 

= 
IT 

2 vo ' X E I2 ' I4 

3. SOLUTION OF THE PROBLEM 

( 1 6) 

( 1 7) 

We consider the solution of the integral equations (16) and 

(17) in the form 

b 

A(() = J t((t
2

)cos(t dt +.J ug(u
2

)cos(u du ( 18) 

a c 

2 2 
where f(t ) and g(u ) are unknown functions to be determined. 

By the choice of A(() given bY (18) the relation (17) is 

satisfied automatically and the equation (16) becomes 

b 00 
C.\ - C.\ 2 r tf(t2 )dt J ( 1 

J cos(x cos(t dt~ + 
..J 

(.)( {' - i.)! r 
a 0 1 1 2 2 

239 



1 ((! 

[,, :1 - (.~ 

J f 2 J 2 
cos(x cos~: u d~· + ug(u )du 

0\ "{' 
c 0 1" 1 2 2 

= 

Using the relation 

sin::=x sin(t 
X t 

wvJ ·crw)J (fv)dvdw 
0 ' 0 ' =I J 

0 0 

the above equation is converted to the form 

where 

d b · x t · · vwL (v,w) dw dv 

J 
... 2 8JJ 1 

d X '"' t f ( t ) d t (ft -( X_2 ___ W_2_)_1 -:-/ 2-:---(-t-::-2-_-V 2-::-)-1-:--:/ 2 

a 0 o 

d 

+-J 
dx 

c 

= 

1 

L1 (v,w) 

2 ug(u )du 

00 

a 
au 

(a :1 I = 
0 1' 1 

X 

r 
.J 

0 

u vwL
1

(v,w) dw dv 

J 
( 2 2)1/2 ( 2 2)1/2 x -w u -v 

0 

- cx
2 

J Jo((w) Jo ((v) d(. 
- 0\ 'V 

2' 2 

( 1 9 ) 

+ 

(20) 

( 21) 

By a contour integration technique (Mandal and Ghosh [1994]) the 

infinite integral in L
1

(v,w) can be converted to the following 

finite integrals 
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,.. 1;-IC 2 
I 1 1 C ·r·, -1-··r.·· "r.r 

( 1 ) 

l! 
11'' ;1;2 

dn L1(v,w) = ·- i J 0 ( k5
r,v )H0 ( k

5
:nw) 

y1y2(y1+ r2) 

: 

2 -'2 .., 

s c11n -1+y 2 
J

0
(k r,v)H~ 1 )(k r,w) dr1 w>v (22) J 

-' 2 -' 2 -' 2 
·s s 

1;-1"C
11 t2 <r1 +r2) 

_J 

where r = [ ~ { R1 - (R2 - 4R )1/2 } ] 1/2 
1 1 2 

'V = [ ~ { R1 + (R2 4R )1/2 } ] 1/2 
• 2 1 2 

,.'"_. = [ i { -R1 + (R2 + 4R )1/2 } r2 ' 1 1 3 . 

[ i { 2 4R )1/2 } ] 1/2 ··v = R1 + ( R 1 + • 2 3 

R1 {<c~2 2 + ( 1 + c22>} = + 2c - c c ) n 
c22 12 12 22 

c 11 
2 ( 1 1)2 ) R2 = (1- n ) --

c22 c 11 

c 
2 '( 2 

c: 1 ) 
1 1 

(23) R3 = (1- ·ry ) r, -
c22 

The corresponding expression of L
1

(v,w) for w<v follows from (22) 

by interchanging w and v. 
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Substituting the series expansion and 

small k , in (22) we find after some algebraic manipulation 
s 

2 2 (w +v ) 
L

1 
(v,w) = ~r(•·+log(k w/2) - rriJM + N - Rk 2logk ] + O(k2 ) 

rrL' s 2 
4 

s s s 

2 2 
(w +v ) 

, w>v 

for 

2[f rriJ · = - i···+ 1 og ( k v /2) - - M + N -
rr l• s 2 

2 1 2 
Rk 1 ogk J + 0( k ) s s s 

4 

where ·v 
' = 0.5772157 ....... 

1/fC 11 2 - -
c11.,-, -1-···· ·j.• 

' 1' 2 
M = J 

r1r2(r1+ 't ) 
0 2 

1/fC 11 2 - -
c 111) -:- 1-y1y2 

N I = - - -
0 ;~·l· 2 <r 1 + /,...) 

.:. 

1/ft 11 

and R = I 
0 

is .. 

dr1 

logr1 

, v>w (24) 

Euler's constant, 

2 -' 2 
c11"0 -1 +;v 

J 2 
dr1 

1/"1(;"11 
-' 2 -' 2 -' 2 
v (v +v· ) • 2 • 1 • 2 

(25) 

2 _, 2 
c 11 rl -1 +;v 

dr1 I 2 
':"'" 

11rc11 
_i 2 -' 2 -' 2 
r 2 (y 1 +;v 2 ) 

(26) 

I 
-· 2 -· 2 -· 2 
Y 2 <r 1 +y 2 ) 

(21) 

Now differentiating both sides of the relation (19) with respect to 

x we obtain 
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b 00 

<( 
C\ 1 - C.\2 

J 
? 

J J tf(t~)dt sin( x cos:: t d;,· + L, 

t)( ...... - (.1( ...... 

a 0 - 1l 2. 2 

1 (0 

- ( "'1 
- (.~2 

f 
2 f J sin( x cos;: u d( + ug(u )du ( 

(:_./. ... - - 0( .•.. 

c 0 - 11 1 21 2 

= 0 , X E !
2

, I 
4 

Following similar procedure as done for deriving equation (20), we 

obtain 

= 

1 2 ug(u ) 
X f du 

J 2 '? 
(x -u~) 

c 

b X t 
. vwL

2 
( v, w) dw dv 

,. 2 ;} 
J tf(t )dt at J f 
a 0 0 

X u 

+ 
(x2-w2) 1/2 (t2-v2) 1/2 

vwL
2

(v,w) dw dv 
2 ;} 

+ J ug(u )du au f J 
( 2 2)1/2 ( 2 2)1/2 x -w u -v 

c 0 0 

= 0 I X E I2,I4 

where 

CD 
r ~: 2 r 01.1 - ,~i! 

.... , 
L

2
(v,w) r l'~ 

-·2 
JJJo(<~w) J (:'>v)df = ,J 0 ' ' 

8 . nt v - (~ 'I' 
0 - 1' 1 -·2' 2 
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c 11 + N1N2 
8 = (30) 

N1 + N2 

1 
N2 r 2 · ~ 2 2 ]. = l-(c12+2c12-c11c22) + 4c11c22 1 

2c22 
(c12+2c12-c11c22) -

( 31 ) 

and 

1 

- j(c~2+2c12-c11c22) 2 N2 = [-(c~2+2 c12-c11c22) - 4c11c22 ] . 2 
2c22 

We use the contour integration technique mentioned earlier and get 

from (29) 

r 
1;v'C"

11 

f 
L 0 

w>v (32) 

By the process similar to the one which led to the equation (24), 

(32) for small values of. k can be written as 
~ 

where P ---1 R d .. () 
9 

an R 1s g1ven by 27 . 
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Now, let us consider 

and (34) 

Putting the above expressions of f(t 2 ), 
2 g(u ) and the value of 

L
2

(v,w) given by (33) in the equation (28) and equating the 

coefficients of like powers of k we obtain, 
s 

and 
b tf (t2 ) 

I 21 2 dt + 
(x - t ) 

a 

1 2 ug ( u ) 

J 20 2 du = 
(x - u ) 

c 

1 2 ug 
1 

( u ) 
r 2 .., du 

.J t:.. 
(x - u ) 

c 

b 1 

0 ' X E I
2 

, I
4 

(35) 

=-
2;~ [I tf0 (t

2
)dt +I ug0 (u

2
)du], x e r 2 , r 4 (36) 

a c 

Following Srivastava and Lowengrub [1970] the solutions of the 

above integral equation (35) can be obtained as 
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and 

2 1/2 
-a 

01 (-2-2 J 
c -a 

2 1/2 
-a 

= 0 1 ( -2-2 J 
c -a 

2 2 

( 

u -a 

2 b2 u -

1/2 

J 

2 2 1/2 

( 

u -c 

1 -u 2 J 

X E I 
2 

~ 2 2. 2 2 (u -a )(u -b ) 

X E I 
4 

(37) 

+ 

(38) 

where o
1 

and 0~ are constants which ·can be calculaed as follows. 

We substitute the value of L
1

(v,w) from (24) as well as the 

expansion of f(t 2
) and g(u 2 ) obtained from (34), (37) and (38) up 

2 
in to O(k logk ) 

s s 

powers of k from 
s 

we get after some 

the equation ( 20 ) .. When the coefficients 

both sides of 

manipulation, 

the· resulting equation 

the following results: 

n2 (X3 -x-1) 
0 2 = - vo 4 ----

(X2X3-X1X4) 
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Where 

r .-a 2 J 1 I 2l'lr {. 
x1 = ( -2--2 

c -a 

X 
3 = 

x4 = 

1 2 2 l 
: + 2M J 1 1 o g ( b -a ) + M J 5 J . 

2 1/2 

r { r 
1 -a 

J ( IT i J Y+log(k /2)-- M + N 
2 2 . s 2 ... c -a 

L 

1 
1 2 

J 
+ 2MJ

3
1og(1 -c )+ MJ 

7 

( --
IT i J 

., 
t l y· + 1 og ( k /2) - - M + N J(J -J ) + s 2 4 2 

a 

1/2 
tdt 

J 2 2 2 2 ( t -a )( b -t ) 
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( 41 ) 

}<J +J ) + 1 3 

(42) 

(43) 



b 2 2 1/2 
tdt t -a 

J2 = s r b2-t2 J ... J ( 1 -t2)(c2-t2) a 

2 2 1/2 
udu 

f ( 
u 

~:2 ) J.._ = ., 
~ 2 2 2 2 

c ( u -a )( u -b ) 

2 2 1/2 
udu 

( 
u -a 

J J4 = J 
u2-b2 j ( 1 

2 2 2 
c -u )(u -c ) 

2 2 1/2 (~ 2 2 ~2] 
I ( 

u 

~:2 ) ulog u -b + . u -a 

J5 = du 

J 2 2 2 2 c ( u -a )( u -b ) 

2 2 1/2 
ulog8u

2
-b

2 
+ Ju

2
-a

2
) u -a 

J6 = J [ u2-b2 J du. 

J 2 2 2 c ( l -u )( u -c ) 

b c2-t2 1/2 
t 1 og (j c 2

-t
2 ~2"' 

J7 = I ( J 
+ J 

dt 
1 -t

2 j 2: 2 2 2 
a .(t-a)(b-t) 

tlog(Jc
2
-t

2 b t2-a2 -. 1/2 I 21 

J8 = I ( b2-t2 J 
+ .., 1 -t J 

dt 

J 2 2 2 a ( 1 -t )( c -t ) 
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4. STRESS INTENSITY FACTORS AND DISPLACEMENT 

The normal stress r (x,y) on the plane y = o can be found 
yy 

from the relations (14), (18), (34),(37) and (38) as 

T (x,O) = yy 
~ 2 2 2 2 ( x -a )( b -x ) 

J
l + O(k

2
logk ) 

s s 
i 2 2 2 

--1 ( 1 -x ) ( c -x ) 

~ 2 2 2 ( x -c )( 1 -x ) 

1/2 

) } + 
2 

O(k logk ) , . s s 

2 2 
( c -x

2 
1 -x 

1/2 

) 

, 2 
(x ... -c ) 

~ 2 2 2 2 (X -a )(X -b ) 

+ 

(44) 

Defining the stress intensity factors at the edges of the strips by 

the relations 

K = Lt a 
X--7a+ 

1 r (x,O)~(x~a) 1 

yy 

249 



we get 

Kb = Lt 
X---tb-

K = Lt c 
X-7C+ 

K
1 

= Lt 
x~1-

T (x,O)~ (b-x) 
yy 

T (x,O)~ (x-c) 
yy 

T (x,0)~(1-x) 
yy 

K = a 

c2;ra o1 I 
.I 2 2 I 

' --! 2 ( b -a ) I 

K = c 
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(45) 

0 (b
2-a2

) ·.I 
--,..2 ____ J 
j(1 -b

2
)(c

2
-b

2
) 

(46) 

(47) 

(48) 



The vertical di.splacement v(x,y) on the plane y = 0 can be 

obtained from equations (13), (18), (34), (37) and (38) as 

v(x,O) 

where 

J10 = 

J 11 = 

J12 = 

+ 1 og ( k ) 
s 

ni ) _·}, - M + N ><-

2 

2 1/2 

x { D 1 [ ~ 2 ~: 2 ) ( J 1 + J 2) + D 2 ( J 4 - J 2) } + 

} ] ' 

(49) 

b 2 2 1/2 2 2 
c -t tloglt -x I 

I ( -1 --t2 J dt 

a ~ 2 2 2 2 ( t -a )( b -t ) 

b t2-a2 1/2 2 2 

I ( 
) tlog It -x I 

dt 
b2-t2 1 2 2 2 

a 'ij ( 1 -t ) ( c -t ) 

2 2 1/2 2 . 2 

f ( 
u -c - ulogju -x I 
'1 -u

2 J du 

J 2 2 2 2 c ( u -a )( u -b ) 

2 2 1/2 2 2 

I ( 
u -a 

) 
ulogju -x I 

du 
u2-b2 ~ 2 2 2 c ( u -c )( 1 -u ) 
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In order to obtain the solution of the problem corresponding to two 

rigid strips taking b ~ c we find from (37) and (38) that in this 

particular case 

2 1/2 
-a 

D 1 ( --=-2 --=-2 ) 
c -a 

1/2 

J 

1 

2 2 ' 
b - t 

a ·<:: t < ·1. 

It can further be shown that x
1 

= x
3 

so that 

where 

2 1/2 

x1 = ~ [ -
2 
-a

2 
) · [ { r + 

c -a 

2 1/2} 
+ 1 og ( 1-a ) . M + 

It can easily be shown that in the isotropic case this result is 

identical with result given by Jain and Kanwal [1972]. 
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5. NUMERICAL RESULTS AND DISCUSSION 

The stress intensity factors (SIF) Ka, Kb, Kc and K1 given by 

(45) - (48) at the edges of the strips and vertical displacement 

jv(x,O)/v
0

j near about the rigid strips have been plotted against 

dimensionless frequency k and distance x respectively for three 
s 

different types of orthotropic materia 1 s whose 

constants have been listed in table 1. 

Type I 

Type II 

Type III 

TABLE- 1. ENGINEERING ELASTIC CONSTANTS 

Modulite II Graphite-Epoxi Composite 

9 
15.3>::10 

9 
1·58. 0~< 1 0 

E-Type Glass-Epoxi Composite 

9 
9.79x10 

9 
42.3x10 

·g 
5.52x10 

9 
3.66x10 

Stainless Steel-Aluminium Composite : 

9 
79.76x10 

. 9 
. 85.91x10 

9 
30.02x10 

engineering 

0.033 

0.063 

0. 31 

It is found that whatever the lengths of the strips are, SIFs at· 

the four edges of the strips increase with increase in the value of 

253 



k (0.1~k S0.6). From the graphs, it may be noted further that with 
s s 

a decrease in the length of the inner strip, which might be induced 

either by increasing 'a' or by decreasing 'b', the SIF K at the 
a 

innermost edge gradually decreases, wheareas the SIFs at the other 

edges show just the opposite behavior (Fig.3- Fig.4). 

Also, a decrease in the value of the length of the outer 

strip, which might be induced by increasing the value of 'c', 

causes an increase in the values of the SIFs (Fig.5) from which an 

interesting conclusion might be drawn : i.e., the presence of the 

inner strip suppresses the SIFs at both edges of the outer strip 

and the presence of the outer strip suppresses the SIFs at the 

edges of the inner strip. 

The SIF K has been plotted ( Fig. 6) for 
a 

different 

orthotropic materials to show the effect of material orthotropy. 

Similar effect are being seen for other SIFs. 

The vertical displacement ha~ been plotted for different strip 

lengths. It is found from Fig.7- Fig.9 that with the increase in 

the value of strip length, the displacement increases. 

For a fixed material the variation of displacement with· 

frequency is found to be insignificant. 
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Fig. 3. Stress intensity factors vs. frequency 
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SPECTRAL REPRESENTATION OF A CERTAIN CLASS OF SELF-ADJOINT DIFFERENTIAL 
·OPERATORS AND ITS APPLICATION TO AXISYMMETRIC BOUNDARY VALUE PROBLEMS 

IN ELASTODYNAMICS 

S. C. P A L, M. L. G H 0 S H and P. K. C H 0 W D H U R I (DARJEELING) 

1. Introduction 

In this work an integral representation of the Dirac delta function required for solving 
the axisymmetric boundary value problem has been derived first. This representation 
is particularly suitable for problems where mixed boundary conditions are encountered. 
Following FRIEDMANN [I], by contour integration of a suitable Green's function, integral 
representation of c5(R- R0) (R, R0 > 1) has been derive_d. This representation haS been 
used to solve a particular type of axisymmetric problem in elastodynamics. 

The problem treated is that of a semi-infinite elastic body containing a circular cy
lindrical cavity, whose axis is perpendicular to the plane surface. The semi-infinite me
dium is subjected to an axisymmetric concentric torque applied dynamically as a step 
function in time at the plane surface. . 

At first LAMB [4) investigated the classical normal loading problem of an elastic half
space. As similar type of problem was investigated by EASON [5], MITRA [6], CHAKRA
BORTY and DE [7] and many others. '[hey are all point source problems in a homogeneous 
semi-infinite medium. 

The propagation of elastic waves, due to applied boundary tractions, in semi-infinite 
media containing internal boundaries has as yet not been studied to any· large extent. 

An earlier and comprehensive survey of the field is given by Scorr and MIKLOWITZ [8]. 
Recently this type of work has been done by JoHNSON and PARNES [9). 

We have solved the problem of the SH-type of elastic wave propagation in the semi
infinite medium due to a ring source producing SH-waves in the presence ·or.a circular 
cylindrical cavity (case I). The problem of SH-wave propagation in the presence of rigid 
circular cylindrical inclusion in the semi-infinite medium due to the ring source has also 
been treated in the case 2. 

2. Integral Representation of a Dirac Delta Function 

Consider the operator L with A as a complex parameter, where 

(2.1) L = .!!_ (r !!_) + .tr- .!_ 
dr dr r 

whose domain, D, is the set of all twice-differentiable functions u(r), a < r < oo such that 

7 Journal of Techn. Physics 1/85 
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(i) 

---··-------- --- ___ _._ ___________ _ 
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du 
r-- -u = 0 at r =a > 0 dr 

(ii) the behaviour of u as r ~ co is that of an outgoing wave. 
The solutions of LG1 = 0 which satisfy (i) are 

(2.2) G1 = At[lt((Ir) Yz(r'Ia)- Yt(V'Ir)J2(tlfa)], a< r < r0 , 

where A 1 is an arbitrary constant and J. and Y. are the Bessel functions of the first and 
second kind, respectively. 

Again the function G2 which will satisfy LG2 = 0 and the condition (ii) can be writ
ten as 

(2.3) G A H (l)( .. -") 
2. = 2 1 V /.r (a < r 0 < r < co), 

where A2 is an arbitrary constant and H~ 1' is the Hankel function of the first kind of 
order n. 

From Eqs. (2.2) and (2.3) the Green's function G satisfying the equation LG 
= -b(r-r0 ) and the conditions (i) and (ii) mentioned above is given by (c.f. [I]). 

(2.4) G(r, r0 ; ).) = - 1tHP'(v'Iro)[l1(yir)Yl(yia)-:-Y1(yir)J2(yia)]H(r0 -r)-
2Hi1>(JI ).a) 

1tHII)(y'}:r) .r .r- .r .r _ _::_.o...:__,_<-[Jt( v Aro) Y2(v ).a)- Yt(V Aro)Jz( v Aa)]H(r-r0 ), 

2Hi 1>(l/ Aa) . 
0 < arg). < 2n. 

Now consider 

(2.5) 1 j--2 . G(r, r0 ; A)rd)., 
:ru 

where the contour of integration in the ).-plane is shown in Fig. 1. Since G has a branch 
point at ). = 0, we introduce a branch eut in the complex A-plane along the positive real 
axis and then take the contour as a large circle of radius Ri, having the centre at ). = 0, 
not crossing the branch cut. 

' 1m:>. 

FIG. 1. Circular contour of integration ABA; in the ).-plane. 
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In terms of Hankel functions Eq. (2.4) can be written as 

(2.6) -4~ [HP>(y'Iro)HP>(v'Ir) H~2>(~Ia) Hfi>({Iro) HF>({Ir)]H(r0 -r)+ 
I H~'l( Ail) 

+ ~ [H''>(liJ.r )H<'>(r.IIr) Hf<>(VJa) -H0 >(J/Xr)H<2>(•1J.r)]H(r-r) 
4; , o 1 , • H~ 1 >(y'J.a) , 1 " o o . 

For large JzJ, the asymptotic behaviour of m'>(z) and H~2 >(z) is [2] 

m'>(z) 'V y 1t~ exp [i ( z- n; - ~)], 

H~2 >(z) 'V V :z exp[ -i( z- n; _ ~)]. 
(2.7) 

Thus, for large values of J).J, from the relations (2.7) we obtain 

{2.8) 

y'- ,- H12'(yia) 2 .r 
Hi'>( l.ro)HP>(vJ.r) ~ 'V exp[iy J.(r+ro-2a)+i7t], 

H1'>( -A.a) Jl J.rro7t 

Hf'l( JIIro)Hf2>(VJr),.., --.7 ~xp[i y'I(r0 -r)], 
7t I' A.rro 

Hf'>(y'Ir) Hf2>( y'Ir0 ),..,-} exp(i y'I(r-r0 )]. 

7t r A.rr0 

If we put }. = k 2 , then the circle in the A.-plane becomes a semi-ci_rcular arc C of radius R 1 

in the upper half of the k-plane shown in Fig. 2. 

lmK 

E 

F1G. 2. DED'- the semi-circular path of integration C in the K-plane. 

Consequently, for large values of R 1 the integral (2.5) can be written as 

(2.9) _J_-.. //:.j [exp{ik(r0 -r)}H(r0 -r)+exp{ik(r-r0 )}H(r-r0 )]dk-
21t V ro 

7• 

,. 

--
1-J-. i !-exp{ik(r+r0 -2a)}dk = 

27t V ro 
c 

R, R, 

- -~-1/ T J exp(ikJr--r0 J) dk+-
1
--. / !.__ J exp{ik(r+r0 -2a)}dk = 

2rr r0 27t V r0 
-R 1 -R, 
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Our .object is to show that the integral (2.5) represents - t5(r- r0 ) when R 1 -+ oo. To justify 
the statement, consider a testing function ¢(r), in D which is continuous, has a continuous 
d~rivative of order two and vanishes outside a finite :interval. Then, from the relations 
(2.5) and (2.9) 

00 

lim J ¢(r)-
2
1

. j" G(r, r0 ; ).)rdA.dr 
R 1-.ro 7tl 

a 
00 

= _lim _!__ J ¢(r)-. / r !.inR1(r-r0 )dr + 
R,-•oo n V ro (r- r0 ) 

a 

00 . 

I . I f ..l.( )vr sinR1 (r+r0 -2a)dr ..l.( ) + 1m - 'I' r - - -'1' r0 
R,-x rc r0 (r+r0 -2a) - . ' 

a 

where we have used the result of Dirichlet integral and Riemann-Lebesgue Lemma [3]. 
Therefore 

lim -
2
1 

. f G(r, r0 ; J..)rd). = - b(r-r0) •. 
R 1__,.oo l'tl 

To obtain an alternative integral representation, which will be useful for our subsequent 
application in physical problems, we consider the contour r (Fig. ~)consisting of the real 
axis from k = e to k = R 1 , where 0 < e < R; a semi-circle C 0f radius R 1 above the 
real axis; the real axis again from - R to - e; and finally a semi-citcle r of radius e above 
the real axis with the centre at the origin. We take e small and R 1ilarge. 

JmK 

E 

FIG. 3. FDED' F' F- the path of integration F in the K-plane. 

The integrand 2G(r, r0 , k 2 ) kr has no singularity inside the contour r, and so the 
value of the integral 

(2.10) 

i.e. 

2~i f G(r,r0 ;P)2krdk = 0, 
r 

R, 

2~i J G(r, r 0 ; F)2krdk = - ~i J G(r, r0 ; u2)2urdu+ 
~ 

~ ~ 

+ 2~i f G(r, ro; e2"1u2)2rudu- 2~ J G(r, ro; e2e2'o)2re2e210d(). 
. 0 
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" 
lim_!_ J G(r, r0 ; r/e211f)e218e2rd8 = 0. 
-on

0 
_ . 

Letting e --+ 0 and R 1 --+ oo in (2.1 0), we get 

(2.11) . I J .. o(r-r0 ) = - hm -
2 

. G(r, r0; P)2krdk = 
R1-•ro 1tl 

From Eq. (2.4) 

c 

<Xl 

= -
2
1

. J· [G(r, r0 ; P)-G(r, r0 ; Pe21")]2krdk. 
31 • 

0 

' 
x H(r -r)-~ [ J1(kr)+iY1(kr) _ J1(kr)...:...iY1(kr)] x 

· 
0 2 J2(ka)+iY2(ka) J2(ka)-iY2(ka) · 

x [J1 (kro)Y2(ka)-Y1 (kro)J2(ka)~H(r-ro) = 
• <' ..... .., 

. [J1(kr) Y2(ka)- Y1 (kr)J2 (k~)] [Jt(kro) Y2(ka)~ Y1(k~o)J2(ka)] · 
= 13 

. Ji(ka) + Yi(ka) · · 

Substituting this expression ii_J- Eq. (2.11)," we get / 
<Xl 

.ll( _ ) = j' [J1 (kr0) Y2(ka)- Y1 (kr0)J2(ka)] [J1(kr) Y2(ka)- Y1(kr)J2(ka)] k . ..z'k· 

u r r0 . J2(k )· Y2(k ) · · · · r: "' • . 2 a+ 2 a . . . 
0 ' 

Substituting rfa = R, r 0 /a = R0 and ka = y, ·Eq. (2.12) can be written as 

<Xl 

(2.13) CJ(R-Ro) = J [JI(YRo) Y2(y)- Yl(yRo)J2(y)] [J1(yR)Y2(y)- Y1(yR)J2(y)] Rydy. 
noo+~M . · ··· 

0 

Since d(R-R0 ) is symmetric with respect to R and R 0 , then, .on the rlght hand ~ide of 
Eq. (2.13), Rand R0 can be interchanged. So we write 
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3. Formulation and General Solution 

Case 1. We shall now use the integral representation of the delta function given by Eq. 
(2.13) to derive the time dependent response of an isotropic linearly elastic half-space 
containing a cylindrical cavity of radius a due to a ring source. The axis of the cylinder 
considered as the z-axis, which is perpendicular to the plane surface, is directed downwards 
(Fig. 4). A torque is applied on the free surface of the half-space over the rim ofa concen· 
tric circle of_radius r = r 0 (r0 > a) for t ;;::: 0. 

z 

FIG. 4. Geometry of the problem. 

Therefore on the cavity surface r = a 

(3.1) T,o=f-l(ouo_~)=o 
or r 

and on the plane surface z = 0 

(3.2) 
ou6 

T6: = ~-'¥ = IJ(r-r0)H(t) (a< r < oo, r0 >a), 

where p is Lame's constant, o is the Dirac delta function and H is the unit step function. 
Now the only non-zero equation of motion is 

(3.3) iFuo. + J_ _ou0 + o2u0 _ ~ = _1_ o2u0 
or2 r or oz2 r2 {32 ot 2 , 

where {3 = {ii1(i is the shear wave velocity. 
Changing the independent variables (r, z, t) to the no-dimensional variables (R, Z, 1') 

defined by 
; 

(3.4) 
r 

R = ·-·, 
a 

the above equation reduces to 

Z = ~z·, 
a 

{3t 
T=-, 

a 
ro 

Ro = -a 

(3.5) o2 uo 1 Olio 02 Uo Uo o2 uo 
oR2 +R oR + oZ2 -f'iZ = o-cz 

and boundary conditions become 

(3.6) T 0 = !:!:_ ( 0110 
- ~) = 0 on R = 1 

' a oR R 
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and 
I 

(3.7) _I!_ -
01

-16 = _!_ b(R-R0 )R(t) To. = a oz a on z = 0. 

I 
Now, taking the Laplace transform with re~pect to nondimensional time (•) and· 

ou0(R, Z, 0) · 
assuming the homogeneous initial conditions u0(R, Z, 0) = --· · --rfr ---·- = 0 at t = 0 

Eq. (3.5) takes the form 

(3.8) 

where 
co 

(3.9) ~ J -.nd uo = uoe T. 
0 

Take solution of Eq. (3.8) in the form 
co 

(3.10) iio(R, Z, s) = f [A 1(y)J1(yR)+Bt(y)Y1 (yR)]e-Y•'+r•z dy, 
0 

where y is real, J 1 and Y1 are Bessel functions of the first and second kind respectively. 
Using the boundary condition (3.6), we obtain 

J2(y) 
(3.11) B1 (y) = -Ax(Y) Y

2
(y). 

Substituting the value of B1 (y) an in Eq. (3.10), we have 
' co 

(3.12) ii0(R, Z., s) = j A(y)[J1 (yR) Y2 (y)-J2 (y) Y1 (yR)]e- 11
'

2

+r•z dy, 
0 

where 

(3.13) 

Therefore the transformed stress component reduces to 

(3.14) 

where 

(3.15) 

New, using the representation (3.15), Eq. (2.14) becomes 

(3.16) 

.. 
Using Eqs. (3.7), (3.14) and (3.16), the value of A(y) is obtained as 

A(y) = ~ yC2(YRo) 
(3.17) flS y'(s2-yz) {Ji(r)+YHy)}. 



104 S; C. Pal, M. L. Ghosh and P. K. Chowdhuri 

Therefore u8 becomes 
ct) 

(3.18) iio(R, Z, s) = - Ro J - yC;z(yR)C:z(rRo) e-Jfy'+s' zdy 
flS 0 y'(y2 +s2) {Ji(y)+ YHy)} · 

On the plane boundary Z = 0 
co 

(3.19) uo(R, o, s) = - Ro f yC;z(yR)C:z(YRo) dy. 
flS o y(yl+sl) {J~(y)+Yi(y)} 

Now, introducing the change of the variable y = s?; into the above expression (3.19), 
we obtain 

(3.20) u0(R,o,s) = 

Next, using 

(3.21) 

and 

(3.21') 

we obtain 

(3.22) C 2 (si;R) = J 2 (s?;)Y1 (si;R)-Y2 (s?;)J1 (s?;R) = 

1 • 
= 2/[Hp>(s?;R)Hf>(s?;) -Hf2 >(si;R)Hi1>(si;)] 

and 

(3.22') 

Also 

(3.22") 

Therefore, Eq. (3.20) becomes 
ct) 

(3.23) uo(R, o, s) = -
4
Ro f V ?; F(R, R0 , s?;)d?;, 

' fl 0 ( 1;2 + 1 ) 

where 

(3.24) (R, R0 , s?;) = F 1 (R, R 0 , si;)+F2 (R, R0 , s?;) = F 1 (R0 , R, si;)+F2 (R0 , R, s?;) = 
= F(R0 , R, st) 

and 

(3.24') 

(3.24") 
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Using the asymptotic values of the Hankel functions for a large argument, it ean be shown 
that 

~ 2 
(3.25) 1, -= F, (R, Ro' sl;) --+ ----= [e-lsC(Ro-R) + e-I•C(R+Ro-2>] 

'ti y ( 1;2 + I) nsl; V RRo 

as I sCI --+ oo, showing that ~~ (R' Ro' .sC) vanishes over a large circular arc in the fourth 
(!;2 + 1) . . 

quadrant of the complex !;-plane for R < R0 • 

Also 

(3.25') CF2(R, Ro. sl;) 2 [e'•C<Ro-R>+e"C<R+Ro-2>] 
l/ (1;2 +I) --+ nsC V RRo 

h . h CF2(R, Ro, sl;) . h 1 . I . . h fi d f s owmg t at varus es over a arge c1rcu ar arc m t e rst qua rant o 
.;ce+l) 

the complex C -plane for R < R0 • Therefore, for R > R0 , 

CF2(R0 , R, sl;) 

y' (C2 +I) 
and 

l;F1 (R0 , R, sl;) 

y(l;2 +1) 

,vanish over large circular arcs in the first and fourth quadrants, respectively ,of the complex 
!;-plane. 

Denoting the responses for field points inside (R < R0 ) and outside (R > R0 ) the 
I 

source by the subscripts I and 0 respectively, WI! ha'o[e for points inside the source (R < R0) 
I 

00 

(3.26) R f I; ! ii8,(R,o,s) = --
4
° -:o.=[F2aR,Ro,sC)+F1 (R,Ro,sC)]dl; 
flo y(C2+1) 

and points outside the source (R > R0 ) 

(3.26') 

In order to evaluate 
00 

(3.27) Ro r C --
4 

I F2 (R, R0 , sl;)dl;, 
fl 0 JU?+I) · 

which is the first part of it01 (R, 0, s) we note first that the integrand has branch points 
at I; = ± i and also has a branch point at the origin of coordinates due to the presence 
of Hankel functions in the integrand. The integrand has also poles which correspond 
to the zeros of H~1 '(sl;). From Eq. (3.18) we note that in order that ii0(R, Z, s) may be 
finite for large positive values of Z,(l;2 + 1)112 should have a positive real part on the path 
of integration. Accordingly, we draw cuts parallel to· the r~al axis from + i to - oo + i 
and from - i to oo- i to satisfy our requirement. A cut along the negative real axis from 
the origin is also drawn to make Hankel functions single valued 

8 Journal of Tecbn. Physics 1/85 
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is now integrated along the quadrant of a large circle lying in the first quadrant of the 
complex C-plane as shown in Fig. 5a. Since poles of the integrand are outside the path 
of integration, the integral (3.27) becomes 

(3.28) 

_ 1 <X> - e 
Ro [ J~ v F2(R, R0 , isv)dv+ J v F2 (R, R0 , isv)dv]. 
4p, - o V (1-vz) I i y (v2 -1) . 

a) 

i (~2-1 )1/2 

11-~ ) 

0 
0 

-i+----

• Branch point 
- Branch cut 
o Poles 

b) 

11 _
11

21v2 

-i(l12·1)1/2 

FIG. 5. Integration paths in the complex C-plane. 

Using the relations 

(3.29) 

we have 

ml>(iv) = -~ K,(v), 
:n 

H\ 21 (iv) = 2_K,(v)+2il1 (v), 
:n 

. 4i { . ~ l2(sv) } 
(3.30) F2 (R, R0 , rsv) = --;-K1(svR 0 ) 11 (svR)+Kt~svRJ K

2
(sv) · 

Therefore, the expression (3.28) becomes 

1 

(3.31) - iRo J Y v K 1 (svR0 ){/1(svR)+K1(svR) ::<~)) }dv-
p.n o (1-:- v2) 2 sv 

R0 J"" v { /2(sv) } --- -- K 1(svR0 ) / 1 (svR)+K1 (svR) K ( ) dv. 
_p,7t

1 
y(v2-l) - 2SV 

The second part of u61 (R, 0, s) is equal to 

(3.32) 
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we draw cuts from +ito co+ i and from -ito -co- i as shown in Fig;1 (Sb). A cut from 
the origin along the negative real axis is also drawn to make Hankel functions single valued. 

Taking a quadrant of a large circular contour in the fourth quadrant (Fig. (Jb)) and 
noting that the poles of F_1 (R, R0 sC) lie outside the contour, the integral (3.32) takC;s 
the form 

(3.J3) Ro r f ____ v- F1(R, R0 , -isv)dv-Jco I v F1 (R, R0 , -isv)dv]. 
41' o y'(I -v2) J ; J (v2-1) , 

Using the relations 

(3.34) 

H~ 1'( -;iv) = .3_ K1(v) -2i/1(v), 
7t 

.2 . 
H121(-iv) = --K1(v),. 

n 

the expression (3.33) becomes 

I 

(3.35) iRo J y v K1(svR0 ) J 11 (~R)+K1 (svR) i~sv)) }dv-
l'n 

0 
( v 2 - 1) \ · 2 sv 

\co 

-~J v K1 (svR0){11(svR)+K1(svR) KI2 ~(sv))··}dv. 
l'7l 

0 
y' (v2 -1) · 2 sv 

Adding the relations (3.31) and (3.35), we obtain 

co -

- 2R0 J v { /2(sv) }dv (3.36) u81(R, o, s) = -- K1(svR0 ) 11 (svR)+K1(svR) K ( ) · 
flll 1 y(v2-f!) 2 sv 

Similarly, it can be shown that 

(3.36') Uoo(R, o, s) = - 2
Ro Joo v_ · K1(~m {/1 (svR0)+K1 (svRo) ~2~sv~ }dv. 

' ftn I y ( v2 - 1) 2 sv 

Laplace inversion of the relations (3.36) is now taken to o)tain the displacement of 
points inside the source. 
Therefore 

(3.37) 

where 

(3.38) 

s· 
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Introducing the change of variable p = sv, and changing the order of integration 

(3.39) 

00 

Uo1 (R, 0, •) = - 2
Ro f. ··----1 

- dv [-
1
-. J e<rf•>P E(p) dp] = 

J-m · ll(v 2 _ l) 2m 
I Br • 

00 

2R .f l = ---0 
1 =.=::;:;-E(•fv)dv, 

p:n l' Jl (vl- 1) 

whereE(•/v) = ..2'_- 1 {E(p)}. 1 
We note that E(p) possesses no poles and is analytic for p > 10. It has a branch point 

at the origin and therefore a cut is drawn from the origin along the negative real axis 
of the complex p-plane in order to make E(p) single valued. 

Drawing a large semi-circular contour to the right of the Bromwich path AB in the 
complex p-plane, we conclude that E( -c fv) = 0 -if the integral · 

~i J E(p)e<rtu>Pdp = 0 
BC'A 

over the semi-circular arc BC' A (Fig. 6). 

,/ 
__ .,. p-plane 

A 

FIG. 6. Laplace inversion contour. 

Now 

(3.40) E(p) = 

Since 

and 

e<ri•P>Kl(PRo)lr(pR) ! 2 (p) ""-- l J.;.-(R+Ro-l)J P as IPI-+ 00 
K 2 (p) 2p V RR0 

then the first integral on the right hand side of Eq. (3.40) vanishes for 0 < -c fv < (Ro- R), 
whereas the second integral vanishes for 0 < -cfv < (R+R0 -2). 

:-_: 
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Therefore 

(3.41) 

Where 

(3.42) 

I 

0, 

E(rjv) = ED(r-/v), 
ER(-r:fv), 

for o· < rfv < (R0 -R), 
for · (R0 -R) < T/V < (R+R0 -2), 

for (R+R0 -2) < T/V. 

£D(T/v) = 9'-1[Kl(pRo)/l(R)), 

ER(T/v) = _5f-~[x~(pRo)I1(pR)+Kl(PRo)x1(pR) _iY;)]. 
For value of r fv lying in the range (R- R0) < T Jv < (R + R0 - 2) 

(3.43) E(rjv) = ED(rfv) = ~i J K1(pR0)11(pR)e'*>Pdp . 
. Br 

Therefore, putting r/v = (R0 -R+y), where y > 0 

ED(Ro-R+y) = 
2
!i Jrx~(pR)e"Ro][J1 (pR)e-"R]eY"dp. 

Br 

From the Laplace inversion table [12], we find that 

9'~1[K ( R) pR0] _ H(y)(y+Ro) 
1 p 0 e - Ro{y(y+2Ro)P 12 ' 

and 

..2'-l[J ( R) -pRJ= [H(y)-H(y-2R)](R-y) 
1 p e 1tR {y(2R- y) )112. 

So by the convolution theorem 
y 

(-3.44) ED(R -R+ ) _ J" [H(rJ)-H(1].-2R)]H(y-rJ}(R-rJ)(y-'1]+R0 ) d 
0 y - nRR0 [1)(2R-1J)(y-'1})(Y-'1J+2Ro)]112 '1/· 

. 0 

For r/v lying in the range (R-R0 ) < T/v < (R+R0-2)T/v must be less than (R+R0 ), 

i.e. y < 2R. 
Therefore we can write 

So 

(3.45) 

E(-cfv) = £D(-r:fv) = 

!..-(Ro-R) 
v 

f 
0 

(R- rJ) ( -r:fv + R -1j)d'1J 

For values of -c fv satisfying the condition r fv > R + R0 - 2, 

(3.46) E(-r:fv) = £R(-cfv) = ~i 1 {Kt(pR0)lt(pR)+Kl(PRo)Kl(pR) ~:~)}e'*)"dp. 
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This integral is equal to the integral along the large semi-circular arc on the left side of 
the Bromwich path AB plus the integral on the two sides of the branch cut (Fig. 6). Since 
the integral-on the large semi-cir9ul~r ar?. vanishes, then Eq .. (3.46~ becomes 

(3.47) 

Using the relations 

and 
K.('T}e±1") = e~ 1."K.(rJ)±inl.(rJ), 

we obtain (for -rfv ·> R+R0 -2) 

where 

U2(x, rJ) = K2(YJ)l1(x, rJ)+l2(1J)Kl(x, rJ). 

Substituting these values of E(-rfv) in Eq. (3.39), we obtain . 

(3.49) . -~-

Uot(R, 0, -r) = -
2
:: [{ H( t- 'apr)- H(r- r+rp-

2
a )} J-R V v~-l £D(-rjv)dv+ 

. 1 

T ~ 

+H(t- ,+,p-2")1 '( v~E0(<fv)dv+ 'T' y.: -1 E'(<fv)dv)], 

· R+Ro-Z · 

where the.val.ues of ED(-rfv) and £R(T/v) are given in Eqs. (3.45) and (3.48), respectively. 
Similarly, taking the inverse=. Laplace transform. of Eq. (3.36'), the displacement 

iloo(R, 0, T) o·n the free surface outside'the ring source can be derived and it is found that 

(3.49') -·-

Uoo(R, o -r) = - 2Ro [{H (r- r-ro )-.H(t- r+ro-2~)}RJ-:.Ra 1 FD(-rfv)dv+ 

(3.50) 

' pn {3 {3 
1 

. y (vz -1) 

• T I 

.t-H(r-.!..7-'{3o-2a){ RJ-Ru ·,· __ ! ___ FD(rfv)dv+ R+[RoT2 
•· v 2 -l · · I 

~=·~ r 1 I 
R+Ro-2 

y 
---(R-Ro) 
v 

FD(-rfv) = J 
0 

(Ro- 1}) ( -rfv + Ro- rJ)drJ 
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First, the integrals of Eqs. (3.49) are the displacements due to a direct wave from the 
ring source before the arrival of the waves reflected from ·.the wall of the cylindrical cavity. 
The last two integrals together give the displacement after the arrival of the reflected wave. 

In order to obtain the response in the vicinity of the SH-wave front, we consider the 
displacement profile immediately behind the direct outgoing SH-wave. Accordingly, 
we shall have to study the first integral of Eq. (3.49') because it gives the response of 
the direct SH-wave before the arrival of the reflected wave front. · 

Let R, = R0 + -r: and R.; = R. -- eR0 where R. and R- denote points at and immediately 
behind the SH-wave front, respectively~is a small positive quantity. 

Then 

(3.51) 

and 

(3.51') ~;~Ro = (1+ e~o) = q(-r). 
. . . f 

Substituting these values in the first integral of Eq. 3.49~, we obtain 

uo0 (R., o, -r) = 0, 
anci i 

q(T) 

Uoo(R;, o, -r) = -
2

Ro j" .. ! 1 -{1./ 1
-- · FD(lf,Ro, -rfv)}dv• 

p.n y ( v- 1) y v + 1 · 
I 

Therefore, we can write 
q(r) . 

(3.52) 2R0 J 1 lloo(R;,O,-r)= --- -==V(v)dv, 
p.n 

1 
yv-1·. 

where V(v) is an analytic portion of the integrand. For small values of e expanding V(v) 
by the Taylor's series about the point v = 1 and integrating term by ~erm, we ob~n 

(3.53) 4R (R )112 

Uoo(R;, o, r) :: --- V(l) - 0 e112 = Ae112 

p.n • , 
(say), 

where A is a constant. 
It therefore follows that the displacement component is continuous i.e. there is no 

jump in displacement across the direct SH-wavc front. 
Next, in order to consider the behaviour-of response just under the ring source, it 

should be remembered that the integral representations of transformed displacements 
given by Eqs. (3.36) were derived from Eqs. (3.26) <~ssuming that R -# Ro. For R =:= Ro 
the integrals along large quarter circles in the first and fourth quadrants should be reexam
ined. In this case it is found that though the contributions from the integrals along large 
circular arcs in the first and fourth quadrants are not separately zero, but the combined 
sum of the integrals along the large arcs in the first and fourth qu·adrants of the C-plane 
(Fig. pi and fb) vanishes. So the transformed displacements for R = R 0 are also given 
by Eqs. (3.36). Making R --t R 0 ±, it can easily by shown by help of Eqs. (3.36) that the 
displacement has no jump discontinuity accross the ring source. 
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Therefore, in order to derive the nature of the displacement as R -+ R0 , any one 
of the relations (3.49) may be studied. Consider, for example, the displacement at field 
points outside the source given by (3.49'). As R-+R0 , the upper limit of integration 
-r/(R-Ro)-+ oo. 

Further, as 

(3.54) 

and 

(3.54') 

Thus, from Eq. (3.49') 

T 

1 1 
-y'r.( v=;2c=-=1==) _. v 

~ 

R-Ro 

(3.55) 1. (R ) 2R0 J 1 1 -~. r· . . 1m Ueo , o, T =· --- -· -- uv+a mite quantity 
R-Ro J-l3'& V 2Ro · ' . N 

where N is large. 
The integral is found to contribute a logarithmic singularity to the displacerrtent 

just on the ring source. 
Case 2.' In this case the problem considered is the same in all respects with the first, 

except that the cavity of t~e radius a has been replaced by a rigid. cylindrical inclusion of 
the same radius. The cylindrical inclusion-being in welded contact with the elastic half
space, there is no relative displacement at the interface. In this case, the condition on 
the cylindrical boundary is u6 = 0 on r = a. 
In order to solve this problem, we take the solution in this form: 

co 

(3.56) iie(R, Z, s) = j [A 2 (y)J1(yR)+B2 (y)Y1 (yR)]e-yy•+s•z dy, 
0 

where u6(R, Z, ·s) is the Laplace transform of u6(R, Z, t) with respect to t. Now, ·using 
the boundary condition 

iio = 0 on R = 1 , 

we have 

(3.57) 

so iie becomes 1 

co I 
(3.58) ii6(R, Z, s) = j A1(y)[Jl(yR)Yl(y)-J1 (y)Y1(yR)]e-Yr'+s'Zdy, 

0 

where 
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Therefore, the transformed stress component on the free surface Z = 0 is 

(3.59) 

where 

(3.60) 

00 

'i:o,(R, o, s) = - ~ f A 1 (y) yy2 +Sl C1(yR)dy, 
0 

-ro.,(R, O,s) should be equal to ~ t5 (R-R0 ). In; this case, the required integral repreSen

tation of ~he delta function can be obtained fromj the following expansion formula given 
by Titchmarsh [11]: . I I . 
(3.61) 00 00 

f(r) = J C[J1 (Cr)Jtc~i;:~~~~Y1 (Cr)J dC J JfC~HltCCE)Yt(Ca)-Jt(Ca)YtCC~JdE. 
0 G 

where f(r) is a suitably restricted arbitrary function. 
Putting 

f(r) = t5{r-r0), 

f(l;) = t5a-ro). where r0 > a > 0, 

we get 

Now putting, !_ = R, !!>_ = R0 , Ca = y, we have 
a a 

00 . . 

lJ(R-R) = R J y[Jl(yR)Yt(y)-Jt(y)Yt(yR)][Jt(YRo)Yt(Y)-Jt(1')fi(YRo)l~ .. 
o o o JHy)+YHy) .. r. 

so by the relation (3.60) 

(3.63) 

This result can also be obtained by th~ -following technique already developed in Sect. 2 
of this paper. -

Now, we find·the value of A1 (y) as . 

(3.64) A1 (y) = Ro yCt(YRo) __ 1 __ 
p/l YY 2 +s2 Ji(y)+YHy) 

Therefore ii0 becomes 

(3.65) 
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Carrying on a similar procedure as followed to. obtain the displacement in the case 1, we 
find that in this case 

{3.66) . -11-· 

2R0 [{ ( r0-r) ( r+r0-2a)}Rfo-R 1 
u01(R, o, -r) = f.J-t~ H t--13- -H t- fJ 

1 

y'v
2

...:.
1 
E0(-rfv)~~ 

T T 

+H(t- r+rp-2a ){ R·"IR 
T 

y I E(-r-/v)dv}] 
v 2 -I·· 

:and 

.(3.67) _ _;_ R-Ro· 
uo~(J~, o, -r) = 2Ro [{H(r- r-ro )-H(r- r+ro-2a)} ( __ 1_ FD(rfv)dv+ 

flTt fJ fJ i' y' v2 
- 1 

R+Ro-2 

1 D . 

/
--=- F ("r:fv)dv+ 

l v2-l 

T R-Ro+2 
J 

. 1 .. 

y' 
1 

Ff(-rfv) dv}]. 
v 2 -l · 

-where £D(-rfv) and F0 (-r:fv) are (respectively) given by Eqs. (3.45) and (3.50) and 

c(3.68~ Ef(-r:/v) = Ff(-r:fv) = -I"' ui_(R, 7]) U,(Ro, rJ)e :...H·)'l dn 
Ki(rJ)+n 2 Ji(7J) ., 

0 

·where 

<(3.69) 
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Streszczenie 

SPEKTRALNA REPREZENTACJA PEWNEJ KLASY SAMOSPRZ~ZONYCH OPERATOR6W 
R6i:NICZKOWYCH I JEJ ZASTOSOWANIE DO OSIOWO-SYMETRYCZNYCH ZAGADNIEN 

BRZEGOWYCH W ELASTODYNAMICE 

Praca jest pr6bq znalezienia zamkni~tej postaci osiowo-symetrycznej dynamicznej funkcji Greena 
typu SH dla izotropowej jednorodnej liniowej p61przestrzeni spr~:iystej, zawieraj11cej cylindryczny otw6r 
kolowy prostopadly do brzegu p61przestrzeni. Rozwaiono dwa przypadki: pierwszy odpowiada swobod
nemu od obci!li:en.brzegowi cylindryczilemu oraz nagle przyloi:onemu osiowo-symetrycznemu obcii\Zeniu 
stycznemu, kt6re jest skupione na konturze pewnego kola w. plaszczyinie brzegu · p61przestizeni; drugi 
odpowiada utwierdzonemu brzegowi otworu oraz obci!li:eniu takiemu jak w przypadku pierwszym. Sto
suj!lc pewn!l calkow!l reprezentacj~ celowo-symetrycznego obcii\Zenia dla rozwa.i:anego ciala oraz technik~ 
transformacji Laplace'a, podano zamkni~t!l postac funkcji Greena tylko na brzegu p61przestrzeni. Prze
prowadzono tei: analiz~ jakosciow!l tej postaci w otoczeniu pewnego kolowego frontu falowego. 

Pe3JOAte 

CITEKTPAJihHOE ITPE.IJ;CTABJIEHHE HEKOTOPOrO ISJIACCA CAMOCOITPJDKEHHhiX 
.lll1ct><t>EPEHUHA.TlhHhiXOITEPATOPOB 11 ErO ITPHMEHEHHE K OCECHMMETPHl.J:HhiM 

KP AEBhiM 3A,UA l.J:AM B 3JIACTO,UHHAMHKE 

Pao(JTa HDJJHCTCH DOllblTI<Oii HaXO>J<J:(CHIIH 38MI<HyTOl'O BIIJ:(8 OCCCII.'II.:\IeTpU'IH0$1 AHHaMHtteCl<OH 
<I>YHI<I..IIIIl rpnHa Tltna SH MH JI30T{JOUHODO!'O OJ:(HOpOJ:(HOl'O nHHeiiHOl'O ynpyroro nonynpoCTpaHCTDa, 
co.z:tepmaBruero I..IHmm.z:tpnttecHoe HpyroBoe OTBepCTne nepneJ:tHI<YDHpnoe I< rpaHHJthi nonynpOCTIJI!JICTBa. 
PaCC,\IOT{JeHhl J:(B8 cnyttaH: nepBhlH OTDettaeT CB060J:(HOMY OT Harpy30J{ I<pa!O lUfJlllliAI)H'IeCI<OrO OT
BepCTDUfl u aHe3anno npnnomemwii ocecuM~!CTpH'IHoii KacaTt;JlhHOH narpy3I<e, KOTOpaH cocpe~orotte
.na ua l<OHT}'Pe HCIWToporo l<pyra B UJIOCHOCTII rj)aHHI~bi nonynpocrpaHCTBa, BTOpo$1 OTBettaeT 33l<peDJJeH
HOMy !<palO OTBepCTHH II Harpy3He Tai<Olt 1<8!< B nepBOM cnyttae. 

ilpimennn neHoTopoe mrrerpam,noe npe.z:tCTaDneHHe ocecmmeTputmoli uarpy31<H wm pacCAtaTPH
aae.uoro Tena II TeXHHKY npeo6pa30BaHilfl Jlarmaca, npu~e.z:teH 33.\U<H}'ThiH Blf.l( <jJyHJ<ItHH rpHHa TOJU.KO 
Ha rpam!lle DOJiyTipocrpaliCTDa. fipoDeJ:(ell Tome I<a'leCTBeHHbJii aHaJJH3 3TO!'O BH~a B OKpeCTHOCTH He
l<OToporo HpyroBoro BOJlHOBoro <!>pmrra. 
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WAVES IN A SEMI-INFINITE ELASTIC MEDIUM DUE TO AN 
EXPANDING ELLIPTIC RING SOURCE ON THE FREE SURFACE. 

S.c. PAL AND M~ L. GHOSH 

Department of MatiteJ;,atics, North Bengal Unirersity, Dist. Darjeeling 
West Bengal 734430 

(Received 12 May 1986) 

An elliptic ring load emanating from the origin of co-ordinates at I = 0 is 
assumed to expand on the free-surface of an elastic half-space. The rates 
of increase of the major and minor axes of the ellipse are assumed to be 
equal to a and b respectively. The displacement at points on the free-surface 
has been derived in integral form by Cagniard-de· Hoop technique. Displace
ment jumps across different wave fronts have also been derived. 

1. INTRODUCTION 

Since Lamb's original study of the elastic wave produced by a time-dependent 
point force acting normally to the surface of an elastic half-space, many authors have 
elaborated on his work. Aggarwal and A blow' discussed the exact solution of a class 
of half-space pulse propagation problems generated by impulsive sources. Gakenheimer 
and Miklowitz4 used a modification of Cagniard's method3 to discu~s the disturbance 
created by a moving point l0ad. In case of finite sources, the most widely discussed 
model is that of a circular ring or disc load. Mitra', Tupholme11 and Roy9 have studied 
the various aspects of the same problem. Elastic waves due to uniformly expanding 
disc or ring loads on the free surface of a semi-infinite medium have been studied ex
tensively by Gakenheimer5

• The axisymmetric problem of the determination of the 
displacement due to a stress discontinuity over a uniformly expanding circular region 
at a certain depth below the free surface has been studied by Ghosh6

• 

However exact evaluation of the displacement field for finite source other than the 
circular model docs not seem to have been attempted much in the literature. Burridge 
and Willis' obtained a solution for radiation from a g'rowing elliptical crack in an 

I 

anisotropic medtum. The problem of an elliptical she;ar crack growing in prestressed 
medium has been solved by Richards8 by the Cagniard-ae Hoop Method. Roy10 also 
attempted the same technique to solve the problem of ejastic wave propagation due to 
prescribed normal stress over an elliptic area on the free surface of an elastic half
space. 

In our problem, we have considen d the propagation of elastic waves due to an 
expanding elliptical ring load over the free surface of a semi-infinite medium. The 
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expression for displacement at points on the free surface has been derived in integral 
from by the application .of Cagniard-de Hoop technique for different values of the rate 

. I 

of increase of the major and minor axes of the elliptic ring source. The displacement 
jumps across the different wave fronts have also been derived. ! 

! 
2. FORMULATION OF THE PROBLEM AND ITS SOLfTION 

· Let an elliptic ring load P acting normal to the surface of an elastic half-space 
emanating from the origin of co-ordinates expand in such a way that the rates of in
crease of the major and minor axes of the ellipse are a and b respectively, a and b 
being constants. Major and minor axes of the ellipse are taken to coincide with the 
x and y-axes of co-ordinates where as z-axis is taken vertically downwards into the 
medium (Fig.l ). 

Thus we;have on z ~ 0 

"tzz--:-" -. 

z 
Fro. 1. Geometry of the Problem. 

p o t - (x: a-2 + y~ b-2)\fZ 
. (x" u -: + ytb-2)1f2 

';zz = ';yz = 0 

where P is constant and cS is the Dirac delta function. 

... (I) 

The displacement field inside the elastic medium· (z > 0) is given interms of 
potent~als cp and ~ as 

U = V ,P + V X V X ( ez •;} 
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where 

... (2). 

ex, Cy, e, are unit vectors along co-ordinate axes and Cd and c. are the p - and s-wave 
velocities of the medium. 

In order to obtain solutions of wave equations (2), we introduce Laplace trans
form with respect tor and denote it·by bar and also introduce bilateral Fourier trans
form with respect to x andy to supress the time parameter t and the x, y space 
co-ordinates. Taking laplace transform with respect tot (-)and also bilateral Fourier 
transform with respect to x andy(~),. the transformed boundary conditions are 

Pob 
'rzz = - ~-::--.=--:--,....,...-=---, (a2 ;! + b2 lJz + s2)112 , 't,n = 'ryz = 0. •.. (3) 

Then satisfying the transformed boundary conditions (3) and performing the inverse 
Fourier transform, the Laplace transformed displacement field can be written as 

where 

and 

ii1 (x, y, z, s) = ii1d (x, y, z, s) + ii1• (x, y, z, s) ... (4) 

for j = x, y, z 

co 00 . 

u i''• 1 (x, y, z, s) = J /2rrJ.L I I F}':q (;, lJ, s) exp [~ .. z + i (~ + "'jY)] d~ d'T) 
-00 00 1 

for ext = d, s 

Fxd (~, '1, s) = - i ~ ~ 0 G, Fx, (~, '1), s) = 2i~ ~d ~. G, 

Fyd (~. lJ, s) = - i71 ~o G, Fy: (~. '1J, s) = 2i"' ~d ~. G, 

Fzd (~. lJ, s) = ~d ~o G, F •• (;, lJ, s) = - 2 (~2 + 'TJ~) ~d G, 

G = (-;2-:~~).'FT' T = ~~ - 4 ~d ~. (E;2 + 11 2) 

,2 = a2 c;2 + b2 r,~, 

k s k = :_s_ 
d = -., s 

Cd c. 

Now the De-Hoop transformation, ! 

c; = ·s{cd (q cos 8 - w sin e), Y, = s/cd (q sid e + II' cos 8) 
I 
I 

l 
I 
I 
i 
I 
I 

I 
I 
>
\ 
I 
I 
I 
I 
i 
I 
J 

... (5) 

... (6) 

... (7) 
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where 6 = tan-1 yfx. ::·. ·-·· 

is applied into (5). The Laplace transformed displacement field (5) can be written as 

where 

00 00 

(R, Z, s) = lf2rrp. f I Fr~.l (q, w, s) exp [- s/cd (m.,. Z - iqR)] 
-00-00 . 

s:i 
x -- dqdw 

c~ 
d 

i Pab (q cos 6 - IV sin 6) m0 
Fxd (q, w, s) = - s. s/cd (E

1 
+ O)f/: .N 

2i Pab (q cos 6 - IV sin 6) md m. 
F:x. (q, w, s) = s. sfca (E1 + 0) 1 '~. N. 

i Pab (q sin 6 + w cos 6) m0 Fyd ( q, IV. s) = - ------0-'----.,------,-,,.:..____:__:_:_~____o'--
s. s/cd (E1 + 0)1 •2. N. 

2i Pab (q sin 8 + w cos 8) ma ms 
Fy~ (q, II', s) = · s. s{cd (E1 + 0)112 • N. 

Pab ma m 0 
Fzd (q, W, s) = / (E 0) 1 ., N , 

S.SCd 1+ '- .. . 
- 2 Pab (q2 + w3) ffld 

Fz, (q, w, s) = s. S/Cd (E
1 
+ 0)1/ 2 .N. ' 

I 

i 
ms = (q2 + IV~ + /:)1J2j 

E 1 = (I + q2 D + IV
2 F), . D = 

... (8) 

a= • • b~ 
F -= -- sm- 6 + -- cos2 9, 0 = - 2qiV sin 8 cos 6 (a2-b2)fc; 

z ·- c2 
cd d 

... (9) 

For mathematical simplicity Wf? confine our attention to the derivation of the 
displacement field at any point on the xz-plane. Obviously tlie displacement at any point 
on any plane through the z-:Jxis can then easily be visualized. Accordingly in order to 
obtain the displacement at any point on the xz-plane, we put 6 = 0 in (8) which then 
takes the form 

---
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S- : 

p b OOJ OOJ [ -- (m01 z - iqx) J 
u1.,1 (x_, z, __ s) = 

2
__!!___ Re K1.,

1 
(q,w)e CtJ dq dw 

7TiJ-Cd ·· · 

where 

and 

-oo - oo 

) . iwmn ) 
Kyd (q, w = - £11Z.N' Ky. (q, w = 

E = 1/cd2 (cd2 + a2 q2 + b2 w2
). 

2iwmdm., 
£lfz.N. 

3. DILATATIONAL CONTRIBUTION 

1 

-I 

~ 
i 
I 
I 

' J 

... (10). 

••• (II} 

From (I 0) ii~d is converted to the Laplace transform of a known function by 

mapping lfcd (mdz - iqx) into t through a contour integration in a complex q-plarie~ 

The singularities of the integrand of iizd are branch points at 

and the poles at 

± i (w2 + 1) 1 1~, ~ - s;= 
. (wz b~ + Cd2)•f2 

±z ---
a ' 

q = s; = ± i(w2 +r~ )112. 

± i"(wz + /2)'/2, l 
I 
I 
I 

>-
' ... (12) 
l 
I 
I 
J 

The poles at q = s; correspond to the zeros of the Rayleigh function N, · where 

YR = Cd/CR and CR is the Rayleigh surface wave speed. The contours of integration in 
the q-plane are shown in Fig. 2 (a, b, c) which also show the positjons of singularities 
lying in the upper half of the q-plane. 

Since the positions of the singularities and the transformed cottour of integration 
depend on different values of a and b, three different cases arise for the evaluation 
of Uzd.· 

(a) Case a > b > c.~. 

The q-plane for a > b > C d is shown in Fig. 2 (a)~ The contour q = q; in the 

q-plane, is found by solving 

.. (13} 
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I 

(c) 

Cs(O(Cd for O(w(WdQ 

oP a<.cs fop wso<"'<.Wda 

(b) 
FIG. 2. Cagniard paths of integration in the q-plane. 

for q, where tis real, we get 

for 

a.> CcJ fo1' all w, 

Q(Cd foPWda(W.(.O 

(a) 

.. (14) 

.. (15) 

and (P, rp) are the polar coordinates in the xz-plane as shown in Fig. I. Equations (14) 
1;\efine one branch of a hyperbola with vertex at q = i (wz + l)llz xJP, which is para
metrically described by the dimensionleSS time parameter: 't" as T VarieS from 'tMd 

towards infinity. 

As shown in Fig. 2 (a), the contour of integration has two possible configurations 
in the q-plane, depending upon .p and w. I 

For the case (I} given by: 

Case (I): 4> < 4>da and 0 < w < oo 

or 

¢da < rp < cf>ba and ll'da < w < 00 

where t/>da = sin-1 Cd/a, r/>ba = sin- 1 bfa 

and 

... (16) 

... (17) 

the vertex of the path = q; does not lie on the bra·nch cuts and hence the path of 

integration contour is simply q = q; and is denotec:i by /. 
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But for the case (2) given by : 

Case (2): tpd" < .P < tpba and 0 < w < Wda 

Or rp > tpba arid 0 <: IV < oo 

the vertex of the path q = q'/: lies on the branch cut betwee·n the branch poin~_q = s; 
and q = s; . Hence the integration contour is given by q = q;i f~r -r > -rwd which 

is denoted by II, plus q = qda = i -r sin .p - i (-r~,. - -r 2) 1 / 2 cos .p ... (19) 

for "t"wda < -r < -.,.d, where 

X cos rfo + (w2 b2 + C~ )1 1% sin rfo J . . .. (20) 

Transferring the path of integration from the real q-axis to the Cagniard's-path 
we obtain 

2 Pab 
ii:d (P, r{l, s) = 

r.,_.Cd 

"'da 1wd 

dq; J 
w) - e-., dt dw 

J dt 

+ H (</>ba -cp) f{ (,P - </Jda) I J Re [ kzd (qda, w) -- e-•t dtdw dqda J 
dt 

0 1
.·da 

00 
1
wd 

+ H (.P-.Pba) J J Re [kzd (qda, w) d~~a-] e-•1 dt dw J 
Q 1wda . . 

... (21) 

where fwd = P/Cd "t"wd and fwd a = P/Cd "t"wda. The first term of(21} is the. contribution 

from q; and the second and third terms are the contributions from qdq. 

Now interchanging the order of integration in (21) and inverting the .Laplace 
transform, we find that 

2 Pab [ 
ll:d (P, ,P, •) = --C- . H (• -

1T P. cl 

.I 

+ H (cp - t/>da) H (cPb••l- t/>) H (• .- Tda) H (T~., ~ -r) ' 

/ ( equar io11 rom inuetl 011 p. 655) 
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Tda 

X J Re [kzd (qda, w) d~;" J dw 

A~., 

r 0 for 'rda < .. < 1 I . 
~ 
I Td for l < 1: < "~a 
L 

A~ =. { 0 for """ < -r < 
Td for -r > I 

TJ = (-.: _ !)1/2 

l 
I 

l 
I 
I 
I 
J 

[ 
Xd - {YJ - (a2 cos2 rfo - b2) Zd}1 PJ112 

TJo = (a2 cos2 rp - b2)2 

1 

Yc1 = -r~ b4 sin4 .P + (a2 
- b2

)
2 

Tda = ~ [ (a 2 
- c~ )112 cos 4> + Ca sin "'J ' 

655 

... (22) 

... (23) 

... (24) 

... (25) 



------------------- ·- ---------

656 S.C. PAL AND M. L. GHOSH 

The first term in Uzd is due to the dilatational motion behind hemisphe~cal wave 
front at or = 1 and the second and third terms arc due to the dilationaJ motion behind 
the conical wave front at or = orda for ,P > t/>Ja • These wave fronts are shown in Fig. 
3 (a), 

3 (a) for a > b > Ctl 

z 

\ 
\ 

\~ba 

3 (b) for « > cr~ > b 

·.'% 

\ 
I 
\ 

\4' bca 

3 (c) for « < C4 . . • 

Fro. 3. Wave .patten for dilatational motion.~ 

or = -r:~,. shown in Fig 3 (a) by a dashed curve, is not a wave front because- it 

is not a characteristic surface for governing wave equation for the dilatatio.nal motion. 
Similar non characteristic surfaces were found by Gakenheimer and Miklowitz' for,a 
point load travelling on an elastic half space and also by Aggarwal and Ablow1 for the 
motion of an acoustic half;space due to an expanding surface load. They prove expli
citly that their solution was analytic over the surfaces. The same thing can be proved 
in our case also. 
(b) Case a > Cd > b 

In this case, the path of integration with respect to q transforms to- the simple 
path given by contour I (Fig. 2 (a)) for all w when t/> < t/>ba and also for 0 < w < Wda 

wben ~ba < cp < ¢da; whereas the path of'integration with respect to q transform to 
the contour II tFig. 2 (a)) for Wda < w < oo when rPba < ,P < r/>tia and also for all w 
when ~ > </>da· The remaining details of inverting. ilzd for a > C4 > b arc exactly 
the same as for a > b > CJ, and one can easily find :that 

2 Pab [ - JT d: [ dq: J . 
Uzd (P, ,P, -r:) = -- H (-r:- 1) ~~ kzd (q;, w)-d- dw 

1TJ-L Cd II ;! ! . _1 

(equation contlnu•d on Jl, ·657) 
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+ H (</> - tPba) H (r/>da - </>) H ('t - .1.~) 

··rda 

X J Re [kzd (qda,w) d~:4 J dw 

Td 

+ H ( tP - </>a a) H ( 'r - 'tda) , 

T da 

X J Re [ k"d (qda, w) d~~a J dw J 

where A~" is given by (23). 

Av 
da 

. • I 

The wave geometry associated with this expression is shown in Fig. 3 (b). 

(c) Case a < Cd 

657 

... (27) 

For this case the path of integration with respect to q transform to the simple 
path given by contour I [Figs. 2(bJ, 2 (c)] for all w when cJ, < cpba and also for 0 < w 
< Wda when cp > tPba, whereas the path of integration with respect to q transforms to 
the contour II [Fig. 2 (a)] for Wda < w < oo when cp >. c/>ba. Note that in this case 
the angle cpda does not arise. Now proceeding as the· case a > b > Cd for inverting 

llzd we get 

. u,,j (P, .p, -r) - 2 Pab [H (• -
. 1TfJ.Cd . 

Td ·. 

l) JR;[ k.~ (q; l w) 
Q I 

! 
I 
I 

·.:_ . 

.. (30) 

T,b.~ wave ge()IJietry associated with this expression is sho:ovn in Fi~. 3 (c). As 
expec~ed physically, contribution due to th(! conical wave front does not exist for this 
case. 

Summary 

Combining (22), (29) and (30) one finds that"Uzd cart be written as one expression 
for all values of a and b. · 
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Td: 
i dq; 

Uzd (P, </>, -r) =-
2 ~:~ [ H ('r - I)! f?.~ [kzd(q;, w) dt J dw 

o I 

+ [H (-r - Tda) H (rp -1 cPba) {H (b - Cd) -

+ H (a-cd) H (cd-b)} ~H(-r- -.~ .. ) H (r/>-r/>ba) {H (a- cd) 

x TH (cd - b) H (r/>da - rp) + H (cd- a)}] 
da 

X J Re [kzd (qda, w) 7tda J dw J 
-~da 

... (31) 

f 0 for "da < -r < 1 
I 

1 
I 

I 
I 
l 
I 
I 
~ 
I 

I 
Td for I < -r < ... ~.. ~ 

I 
J 

for cPda < </> < rPba, a > b > Cd 

I · 0 for -rda < -r < I } for </> > r/>ba, a > b > Cd 

for r/> > r/>da, a_ .:> Cd >.: fJ_ 
I 

Td for 1 <-. I 
I 
I 
1 Td for -r > -r~ .. 
l 

{ for t/>ba < r/> < c/>da, a > Cd > b 

for ,P > rPba, a < Cd. • •• (~2) 

4. EQUIVOLUMINAL CONTRIBUTIONS 

Inversion of iiz. is complicated than the inversion of iizd because pfthe appearence 
of head waves (Von-Schmidt waves) otherwise it is same as iizd. Here the integration 
contour bas more configurations in the q·plane though the singularities are the same. 

Here the hyperbola q = q~ aris~s in ~ similar way to q = q; , but its vertex can lie 

on the branch cut between the branch points at q = S~ and q = s: and at q = s: 
and q = s; as well as between q = s; and q = s; , depending on the values of w, q,, 
a and b. In this case, the straight line contour lying along the imaginary q~axis is _de
noted by q,a which is similar to qda appearing in the dilatational contributions. Now 
o¥uniting details of inverting iiz., one can easily find 

. T -

Uz, (P, cP, -r) = 
• d + 

4 Pab [ J [ + q, J H (-r - I) R~ kz~ (q , w) ""d dw 
rrpCd 

0 
• • t 

(equation continued 011 p. 659) 
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+ [H(T-•,a) H(,P--cp,a) {H(b-c,)+H(c,-b) H(a-c,)}-

-+ H(T - •:a) H(,P- cpba) {H(c,- b) H(cp,a- if>} 

x H (a - c,) + H (c. - a)}] 

T 

X r Re [kz, (q,a, w) ~~·" _ J dw 
~ ,a 

r,d 

X J Re [ kz, (q,a, w) ~~·a J dw J 
,: ,d 

for 0 ~ P < oo, 0 ~ .p < ":/2, 

•.. (33) 

0 ~ ' < oo, 0 ~ a < oo and 

0 ~ b < oo, a> b 

( = 0 for T ,a < T < I 
I 
I 
I 
\ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
i 
I 
I 
I 
I 
I 
I 
I 
I 
I 

= T~ for l < ~ < T' 
IQ 

= 0 for T,a < T <I 

= T, for • > l 

= 0 for '•" ...::::;: -.:<-r,d 

{ 

cp5 a < cp < t/>ba, a> Cd, a>b>c, ac,>bcd 

,P,a < .P<t/>,d, a>cd, a>b>c, ac,<bcd 

,P,a<t/><.cpob., Cd>a>b>c, 

} 
,Pba < .P < cp,J, a>b>cd, ac,>bcd 

,P,a<.P<r/J,d, a>cd>c,>b . 

1 

l r r/J>r/>,d, a>~>Cd, ac,>bca 

: .P >cp,d, a> Cd > 'c, >b 
j 

I 
I 
I 
> 
I 
I 

j 

I 

if> > </>.d, a > b > Cd~ ac, <bed 
I 

i" 
) cpba <cf> < cp,a, a > c4 > c, > b 

1 cpba < cp < cPab., Cd > a > Cs > b 

cpba < rP < cPab., a < c, 
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I 
I 
I 

= T, for -r' < "' < -r'a 
'" J " 

l 
I 
I 

I 
I 
I 

-r' 1a 
I .Pa~. < "' < ,P,a, Cd > a > c, > b 
~ 
I rf.>cpab., a < c, I 

I 
l 
I 
I 
~ 

A 1 a I 
I 
I 
I 
I 

= T. for"'> <a 
= 0 for -r,a < -r < I 

= T, for I < ·-r < -r 'a 
1 a 

-1 =T,afor•'a <-r<-r' 
1 . 1 a 1d 

I 
I 
l 
I 
I 
I 
I 
I 

I 
l 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 

= T,a for -r'a <"' < -r'a s a s 

= 0 for -r,a < -r < I 

= T, fc,r I < "' < ;;' · 
•da 

= T,a for "''d <"'<"''a I Q I 

.. ' .a 

I = 0 for 't" ,a < ;; < ;;' · sa a· 

I 
I 

I 
l 
I 
L 

= T,d for •'a < .r <-r'd 
I a - I 

( 
I 
I 
, = 0 for "'sd < "' < I 
I ..,_ .... ,_:;_:....,.., " -
I~..._ __ ...,. ... ~- • I = T. for I < ;; < "'•a 

I 

! ! 

I 
J 

r 
I 
I 
} ,P,a < .Pit, ca > a >c, > b, ~ > a:> y' 
~ 
j tP > rPba, ca > a > b > c., oc > ~ · 

/ rpba < ,P < rpx, Cd >a:;> b > c,~>IX>y 
L 

l 
l 
I ,P > · ,Px, Cd > a > c, > b, {3 > IX > y' 
I 
}-- rp > .Px, Cd > a > b > c,, ~ > IX > i' 
I 
l rp > tPba, Cd > a > b > c~, IX < y 
I 
J 

1 ., 
I tPabs < .p < tPba, Cd > a>b > c,, IX>{3 

I }- rpabs < rp < rPba, l;d>a>b>c., {l>IX>i' 
I 

I rPab, < "' < if>x, Cd > a > b > c., IX<i' 
l 

J 

I 
I 

-i-
_ ~ if>,. < ,P < rpba, Cd > a > b>c,. IX<y. 
l 

l 

I 
I 
J 

.P > ,P,d, a > b > Cd 
j __ .P > rf 5d, _a > Cd > c, > b 

>-

-I 
I 

J 

t/J,a < rp < rPabso Cd>a>c,>b 

4'sd < .p· <·rp,a,-Cd >a>b>c, 
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I = 0 for T,d < T < I 
I 

~ 
I 
I 

I 
I 

I 
I 
I 
I 

~ 
I 
I 

I 
I 
1 
l 

I 
I 

I 
I 

I 
I 
1 
L 

= T, for I < T < T' , IIJ 

= T,a for -:' <T< T'd .aa ~ a 

= T, for <.sa < T < T;d 

= 0 for T,d < T < t,a l rp > rp,a, Cd > a>c, ':>b, :x.>fl 

T t: . , I rp,a<rp<rp"', Cd> __ a;>c,';>b,~~cc>y' 
= ,a lOt T,a < T < Tada I 

~ .P>.Pab., Cd>a>b>c., ct>~ 

= T, for -r;d., < T < T:d j .Pa~>,<.P<.P"'• Cd>a>b>c.,~>ct>'J' 
l tPabs<.P<.P"• Cd>a>b>c., cc<y 

=.,0 for<da <:: T <I 

=- T,a for T,a < T < T
1 

. •a 

~>.P"'' cd>a>c,>b, ~>cx>y; 

rp > "'"'' CJ>a>b>c,~ 13>cc>y 
rp>t/>"', cd>a>b>c., a:<y 

T, = (Tll - J2)112 

... (35) 

••. (36) 

.. (37) 
_ [ X,- {Y. - (a2 cos~ .p - b2)2 2,}112 

T,a - (a~ cost .p - b1)a 

+ 2 (a2 - b~)b~ T, T~ SiJ?2 .p cos2 .p 

Z, = (T, -2c~ sin: .p)z - 41z c~ (a'- c;) sin2 .P cos2 .p 

T, = a2 T 2 + JZ (c: - a 2 cos.1 rp) 

l 
·I 
I 
I 
I 
I 
I 
)-
1 
I 
I 

1: 
I 

J 
.. (38) 
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-.:,a = lfa [(/ a 2 
- c; )1 12 cos rf> + Cd sin cf>] 

[ ( c; - b
2 

) 112 J 
-:- •d• = (/~ - J)I/2 cos cf> +. a2- b2 sin</> 

ct.= )

1/2 
, ~ = (F _ J)llll, y = bfa (/2 _ J)IJ2 

•> % a-- c 
- l{a [ -a~2--b-2_' 

q ± = i -:- sin .J. ± (-:- 2 - -:-
2 

) 112 cos 4> 
J ~ ws 

q,a = i-:- sin <P - i (-:-~, -- T
2
.)

1
'

2 cos rf>. 

... (39) 

... (40) 

... (41) 

... (42) 

.. ~( 43) 

... (44) 

.. (45) 

... (46) 

... (47) 

... (48) 

... (49) 

... (50) 

...(51) 

The first term in the expression (33) is the equivoluminal motion behind the hemi
spherical wave front" at -r = 1 and the second is due to the equivoluminal motion 
behind the conical wave front at • = •,a· The third term in u,, represents the equi-
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voluminal motion due to the head wave fronts at -r = -r..a. The wave fronts -r = -r,d 

for</>> tPsd and -r = -r,a are shown iri Figs. 4(a-l). 

\ 9'>6a 

z 
FIGS. 4(a-l). Wave pattern for equivoluminal and head wave motion. 

4 (a) for a > cd, a > b > c., a Cs > b Cd. 

\ 

z 

\ 
\ 

4'sa 

'\ 
'\ 
<;~~sd 

...... ...... 

4 (b) for a > cd, a > b > c,, a c, < bed. 

X 

The equations -r = -r:a , -; = -r:d and -r = <da are shown in Fig. 4 by dashed 

curve which are similar to -r = -r~a appearing in the Uzd. These dashed curved surfaces 

are not considered as wave fronts because it can be shown that displacements and their 
derivatives are continuo~s across these surfaces. 
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z 

\ 
\ 

4»ba 

\ 

\ 
\ 4'sa 

4 (c) for a > cd > cs > b. 

z: 
4 (d) for cd > a > b > c., « > 13· 

5. WAVE FRONT EXPANSIONS 

The wave forms of the solution given in (31) and (33) are evaluted by approximate 
estimation of the integrals in the neighQourhood of the first arrival of the different 
waves. To facilitate this evaluation we put 

w = [A 2 + (B~ ~ A2
) sin2 a.J 112 

••• (52) 

in the jntegrals arising in u,d and u,. where A and B are respectively the lower and 
upper limits ofthe particular integral in question, and the range of integration with 
respect to a: is form 0 to n {2. 

Now for .the first integrai of (31), we put w = Td sin a: and hence for-.-+ 1 +. 
we find that for any value of a. 
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z 

\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

' \. 
\. 

\. 

\ 
<t'sd 

' \. 

4 (e) for ca > a> b ~ c,, ~ > « > y • 

z 
4 (f) for ca > a>b > c,, a:-< y. 

w - 0, q; - i sin cp, Cd COS rP 
P.1 Td cos a. ' 

md- cos cp, ms- (/2
- sin2 cp)112

, m0 - (/2
- 2sin2 cp), 

p;z- :d (c~ - a2 sin2 cp)112, for cp < cPda 

665 

X 

- --<1>x 

......... ',~ba 

1 
I 

I 
I 
I 

J 

••. (53) 
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\ 

z 

\ 

\ 
' 

4 (g) for cd > a > c, > b, " > ~. ac, < bed. 

z 

' ' 

4 (h) for cd > a> c, > b, ~ > "'[> y', ac, < bed. 

where N1 = (1 2 
- 2 sin2 rfo)2 + 4 sin2 ,P cos rfo (1 2

- sin2 cp) 1 '
2

• . .. (54) 

Substituting these appr:oximate values in the first integral of (31) one can find, for 
tp <: rpda 

••• (55) 

where 

Pabcd ~::os2 .p (/2 - 2sin2 ,P) 
f-'P 

.. (56) 
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X 

I \ 

\ \ 

·' I 
\ 'Pab~, 

\ 
I 

I \ 
\ 

I 'ct>sd 
\ 

I 
I 
\¢ba 

·z 

4 (i) for .Cd > a > c, > b, "' > (3, a c, > b Cd. 

z 

4 (j) for cd :> a > c. >" b, (3 > "' > y', ac; > bed. 

"Again in tne second integral of (3 I) we put w = Tda sin " and as T -4- 1 - for cp > rpda · 
we find that 

qda ~ i sin cp - i cos cp ~da sin c:t 

Tda sin :t sin </>. + cos <P 

(T!a sin2 c:t + 1 - T 2)
1i2 

Puting these values in th~ second integral of (31), we get 

.. (57). 
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z 
4 (k) for a ·< c,, ac, < bca. 

2 

4 (I) for a < c,, ac, > b cd . 

... ,2 
J R, [kza (i sin .p·- i cos .p Taa sin c.t, ~a a sin c.t) ~a , 
0 . 

Taa sin c.t sin r/> + cos <b J l d 
X ~ da COS a. U. 

(T;a sin2 a. + I - ~2)1/2 i . 
I • 

= J R. [kzd (i sin r/> 
ica 

i cos rf. Taa sin c.t, Taa sin c.t) p 
0 

X 

X 

... (58) 

(equation continued on p. 669) 



X 
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Tda sin a sin ¢> + cos </> J T. 1 
lf~ da COS r:J. T a 

(T~a sin~ 'l. + I - -r 2
) 

.,.,2 
r [ icd + J R~ kzd (i sin ,P - i cos ,P Tda sin a:, Tda sin a:) p 

Tda sin ct sin tP + cos "'] T. · d 
X da COS a: rJ. 

where E is very small. 

(T 2 sin2 
0( +I --r2)112 

da 

669 

.. (59) 

Since the main contribution to the integral (58) as T -+ 1 arises from the first in
tegral of (59) as -r ...-..+ 1, so for the evaluation of (58) as -r -+ 1, we consider the approxi
mate value of the integral given by 

• 
J Re [ k:d (i sin cf> - i cos_ cf> Tda sin a:, Tda sin a) i;d 
0 

Tda sin a: sin 4> + cos ,J, J 
X -'----- Tda cos a d a 

(T;a sin 2 a + I - -r 2
) 

.•. (60) 

as -r-+ I. 

Since f is very small so a. is also small. So for the evaluation of the integral (60) as 
-r -+ 1 we also use the fact that 0( -+ 0, from wliich we get, 

... (61) 

Now substituting these approximate values in (60) and integrating we obtain the approxi-
mate value of the integral as · 

So for rp > r/>da 

c~ cos2 ¢> (F - 2 sin2 rp) 
-----------log l -r- I l when -r-+ I. 

P (a2 sin 2 <P - ~~ )1 1~ .N1 

[u,] -+ N;4 log f • - I I as -r -+ l 

... (62) 

... (63) 
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... (64} 

In order to obtain the value of u,a as -r -+.faa we put in the second integral 

of(31). 

When -r-+ -raa +, we find that 

where 

W-+0 

• Cd 
qaa-+ I

a 

dqaa{dt -+ iA' 

ca ( where A'=pa for a> ca, 

ma -+ !{a (a2 
-- c! )1 12 for a > ca, 

[2 
rna-+-:;

a· 

l 
I 
I 
I 
>-

1 
i 
I 
j 

where N2 = Ita' [ /4 (a2 
- 2c; )2 + 4 I c~ (a2 

- c; )11
2 J 

£112 -+ iKI/2 {-r _ -raa)l/2 

K -- 2a 

ca { (a2 - c! )112 sin rp-ca cos rf>} 
for a> ca. 

... (65} 

Using these approximate values in the second integral of (31) we find that for 

a> ca 

where 

/ 2 (a2 
- c~ } 1 ' 2 (ai.- 2c~) A' C1 i 2 

(2KA) 112 • N2 

... (66) 

... (67) 
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where C = Sa~ Cd "tda (a2 - C~ ) 112 sin rP COS cP 
•, 

"'~a ~ l{a [ Cd sin <P - (a 2 
- c~ )112 cos,P]. .. _(68) 

It may be noted that conical wave front r = •da does not arise for a < CJ. 

Next when</> < cp,a, for the evaluation of u,, as • - l, we put w = T, sin oc in 
the first integral of (33). When • ---+ I, we find that in the above integral 

w~o 

-S!._ l cos "' 
p r; coso: 

(q2 + w2
) ~ [2 sin2 

.; 

mil- (1- !2 sin2 ,P)1 12 

m.-? 1 cos .P 

m0 - [2 (cos2 r/> - sin2 rf>) 

£ 112 
- lfc. (c! - a2 sin2 ,P)l/2 for rp < r/>,a 

-? ifc, (a2 sin2 .P - c~) 1
'
2 for <P > r/>sa 

where Na = [I (cos2 .P - sin2 ,P)2 + 4 sin2 rp cos ¢ (l - f2 sin2 rf-)1/2}. 

Using these approximate values in the first integral of (33) one can find for ali 
values of a and b. 

[u.] - N: 2 for </> < <Ps" as "= -+ I 

where 

N,
2 

= _ 2Pabc. sin2 .p cos ,p (I - [2 sin2 ,p)tf2 

P. p ( c: - a'!- sin 2 .;, } 112• N3 

••. (71} 

-----
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For <P > cPfa, considering approximate evalution of last two integrals of (33) as 
-r -+ l it can be shown that for the case a > b > Cd 

and for the case Cd > a > b > c., 

liz -+ N~G log I T - I l for cPsll < rf> < cPsa as T -+ 

and also for the case Cs ;.. a > b, 

where 

liz -+ N: 6 log I -r - 1 I for cp > cf>sd as -r -+ I 

N' 
z5 

N' 
z3 

2Pabc.. sin2 
<P cos ,P (I - /2 sin2 ¢>) 1 ' 2 

8Pabc. 
rrp.P 

(a2 sin2 cf> - c; ) 1 '~. N3 

sin4 </> cos2 r/> k I f§jtfl $1¥1'( L '2...s;·,/y) - I) 

(a2 sin2 .J. -·c2 
) 112 N 'fl • .J 0 4 

... (72} 

... (73) 

... (74) 

... (75) 

... (76) 

... (77) 

... (78) 

N' 
• ? .L ., .J. (/"' • 0 .L t J'i ,. ( ., . ., -'-)2 sm- '~-' cos- 't' - sm- '~' -- L - cos- .P- sm- '~' · 
-----'--'-----"'--~-'-- ----'-... (79) 

z6 

. (c! ·- a2 sin2 4>)11!. N4 

... (80) 

.For the approximate evaluation of the dis~lacements at the wave fronts -r = -r,a 

and -r = "t sd we follow similar procedure as followed for the evaluation of Urd as 
-r ----? 'tda and we find that 

[ur] -r Nz; as T -+"~"sa for a > Cd I 
I 

[uz] .._ N, 6 as -o; ~ •,a for Cc! > a >\ C5 

[uz] -+ Nr3 (-r - "~"sd) 31 ~ as T ~ 'rsd for a > Cd 

where 

... (81) 

.. (82) 

... (83) 

... (S4) 
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"lk (2K, f2 A,)112 [Is (a2 - 2c; )4 - J6c! (c!- a2) (a·2 -·c:)]· 

.;.(86) ' _·.· . 

N ·. ~ __ 4PabA B2 B' · ·A' ( . 2 cosec {> )
1
l

2 
... , _ 

za - . sd ,d sd ,d 
'~~'I' a 2 - c2 

d 

4Pab A,'d (. 2 c
2

- osec ."' )
2 

Nn = A 5d B!d 
'II' flo 

A'= • 

cd- a-

p [1 (a 2 - C: )112 sin¢ - c,; cos .PJ 

B~ = ~ [!3 (a~- 2c; )2 + 4c~ f (a1-c~) (a2 
.;. c; )] 

a ~ . 

I 

... (88) ... 
- . ' 

... (89) 

... (90) 

.... (91). 

A,= ['t-,a a" b2 (-r,a- -r~) sin2 ~+ (a2
- b2

) a2 pos2 {> (-r,a + 't:.,)] 
... (92) 

1T [ 2 (F _ 1)112 ]1/Z 
Asd = 4 (!2 - 1)1'' sin</> -cos{> . 

... (93) 

B,d = (F - 2)- 1 . .. {94) 

B' 4 A (l'' 1)112 B2 
sd = sd - - Sd ... {26) 

A • __ S!_ ·(JZ _ 1)1t2 [(J2 _ J)l/2 .51·n ,J. _- cos.t)-1 
~ p • p p 

... (96) 
. - " ~- ~ :' 

In these expressions the notations [u~] stands for the change in u; .across a wa..ve · .. 
front and Nz1 etc. are wave front coefficients. 

It may also be noted that if we put a = b, in this proble-m, it reduces to the J>ro- . 
blem of uniformly expanding circular: ring· source and in that case out derived re8ults 
coincide with the results given in thepaper_of Gakenheimer5

• ~ 
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HIGH FREQUENCY SCATTERING OF ANTIPLANE 
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The problem of diffraction of normally incident anti plane shear wave by a crack of 
finite length situated at the interface of two bonded dissimilar elastic half spaces has 
been studied. The problem is reduced to the solution of a Wjener-Hopf problem. 
The expressions for the stress intensity factor and the crack opening displacement 
ha,·e been derived for the case of wave-lengths short compared to the length of the 
crack. The numerical results for two different pairs of samples have been presented 
graphically. 

1. INTRODUCTION 

i 

Scattering of elastic waves by a crack of finite length at the interface of two 
dissimilar elastic materials is important in view of its application in Geophysics and 
in Mechanical engineering problems. The extensive! use of composite materials in 
modern technology has created interest in the wave p~opagation problems in layered 
media with interfacial discontinuities. The diffractidn of Love waves by a crack of 
finite width at the interface of a layered half space Jas studied by Neerhoff5 . Kuo 6 

carried out numerical and analytical studies of transient response of an interfacial 
crack between two dissimilar orthotropic half spaces. Following the method of Mal 7 , 

Srivastava et al. 1 also considered the low frequency aspect of the interaction of an
tiplane shear waves by a Griffith crack at the interface of two bonded dissimilar elastic 
half space. 

But high frequency solution of the diffraction of elastic waves ·by a crack of 
finite size is interesting in view of the fact that transient solution close to the wave 
front can be represented by an integral of the high frequency component of the solu
tion. Green's function method together with a function~theoretic technique based 
upon an extended Wiener-Hopf argument has been developed by Keogh 3•

4 for solv
ing the problem of high frequency scattering.of elastic waves by a Griffith crack 
situated in an infinite homogeneous elastic medium. 
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In the present paper, we have derived the high frequency solution of the diffrac
tion of SH-wave when it interacts with a Griffith crack located at the interface of 
two bonded dissimilar elastic half spaces. To solve the problem, following the method 
of Chang2

, the problem has been formulated as an extended Wiener-Hopf equation 
and the asymptotic solutions for high frequencies or for wavelengths short compared 
tb the length of the crack have been derived. Expressions for the dynamic stress in
tensity factor and the crack opening displacement have been obtained and the results 
have been illustrated graphically for two pairs of different types of material. 

2. FoRMULATION OF THE PROBLEM · 

Let (x, y, z) be a rectangular Cartesian coordinates. Let an open crack of finite 
length 21 be located at the interface of two bonded dissimilar elastic semi-infinite solids 
lying parallel to x-axis. The x-axis is taken along the interface, y-axis vertically 
ciP\Ypwards into the medium and z~axis is perpendicular to the plane of the paper. 
(p.I> p 1) and (p.2, p~ are coefficients of rigidity and density respectively of the upper 
ahd lower semi-infinite medium. The crack is subjected to a nbrmally incoming an
tiplane shear wave originating at y = - oo. 

We are interested in finding the high frequency solution df the diffraction pro
. blem i.e. the solution when the length of the crack is large cbmpared to the wave 

. . I 

length of the incident wave. 1 

Accordingly we shall have to solve the problem when the ~rack is subject to the 
following boundary conditions: 

a~~) (x, 0 +) a~lJ. (x, 0 -) = - Ps- P0 e-wr:· JxJ < l. 

a~~> (x, 0+) a§2J. (x, 0 -), JxJ > L 
lJ'I (X, 0+) = W1 (X, o-I), J.xj >/ 

where w is the circular frequency and Ps is the static pressure. 
Assume 

W1 (X, y, t) 

w2 (x, y, t) 

WI (x, y) e-iwt 

w1 (x, y) e-iwl 

where wl and w1 satisfy the following two wave equations 

'\l2Wl (X, y) + kl1wl (x, y) 0 

v2w2 (X, y) + k22Wz (X, y) 0 

with '\11= 
a2 a2 

ox2 + 
ay1 

... (1) 

... (2) 

... (3) 

... (4) 

... (5) 

... (6) 

... (7) 

The shear wave numbers k 1 and k2 are related to the two shear wave velocities. C 1 

and C2 of medium (1) and (2) respectively by 

... (8) 

... (9) 
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Without any loss of generality we assume that k2 > k 1• 

Let (I) ( ) a yz X, y, t 

(2) ( ) a yz X, y, t 

T~f (x, y) e-iwt 

Tw (X, y) e-iwt. 

1109 

... (10) 

. .. (ll) 

In the boundary condition (I), P5 is the static pressure assumed to be sufficiently 
large so that crack faces do not come in contact during vibration. Since we are in
terested in the dynamic part of the stress distribution, so the boundary conditions 
(1), (2) and (3) may be wtitt~n as 

- P,, lxl < j 
lxl > L. 

and 

that is 

and 

7< 1> (x 0 +) yz , 

7(1> (x o+) 
YZ ' . 

7~~ (x, o-) 

7~~ (X, 0-), 

awl aw2 
11-1 -- = 11-2 -- = - PO, lxl < 1. y = 0 ay ay 

aw2 
1'2 ---ay-· ·I xi > t. Y = 0 

... (12) 

... (13) 

. .. (14) 

... (15) 

... (16) 

... (17) 

In order to obtain solutions of wave equations (6) and (7) we introduce Fourier 
transform defined by 

- 1 r . 
W (a, y) = fl1f J W(x, y) e'ax dx. 

-00 

Thus we obtain the transformed wave equations as 

d2WI 
- (a 2 

- k[) W1 = 0 
dy2 

dzw2 
- (a 2 

- k"f) W2 = 0. 
dy2 

The solutions of ( 19) and (20), bounded as y tends to infinity, are 

where 

'YI 

'Y2 

(a2 - kf) v, 

(a 2 
- kr> '1'. 

. .. (18) 

: .. (19) 

. .. (20) 

... (21) 

... (22) 

... (23)

...(24) 
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Introducing for a complex a 

and 

G_ (a) = 

00 

fu I rW (x, 0) eia(x-1) -dx 

l 
-L 

. r r~1 (x, 0) eia(x+/) dx 
ilij 

-00 

L 

= --1- [ r 0 > (x 0) eiax dx 
ili J .vz ' ' 

-t. 

the transformed stress at the interface y = O.can be written as 

iW (a, 0) = G+ (a) eial + G1 (a) + G_ (a) e-ial. 

Using the boundary condition (12) we note .that 

Further using the fact that 

i~£ (a,O) = -.LL(YIAI (a) 

we obtain from (28) 

... (25) 

... (26) 

... (27) 

. .• (28) 

... (29) 

... (30) 

- JLI'YIAI(a) = G+ (a) eial + G_ (a) e-iaf -. v:;. [eia/- e-iaf]· ... (31) 
· · · 211" /a . 

Since from (12) 'and ( 13) stress T.vz is continuous at all points of the interface so we 
obtain 

A2 (a) = -~ A 1 (a) 
• J-12 'Y2 

so (2 I) and (22) take the forms 

WI (a. y) = A 1 (a) e-•,Y, y ;:: 0 

JL2 'Y2 
L 

... (32) 

... (33) 

... (34) 

Now WI (a, o+) -Wz (a, o-) ili I [WI (x,o+)- w2 (X, 0-:)] eiax dx 

-l 

= B(a) (say) ... (35) 

which is the measure of the discontinuity of displacement ~long· tbe surface of the 
crack. From (35) we get 
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f.Lz'YzB (a) 
... ~ 

... (36) 
f.Ltii + f.Lz'Yz -~ 

Eliminating A 1 (a) from (31) and (36) we obtain an extenoed Wiener-Hop[ equa
tion, namely 

where 

G+ (a) eic.t + G_(a) e-iat + B(o:)K(o:) 

K(o:) 
f.Ltf.L2/'l'Y2 . 

f.LI'Y! + /-<2/'2 

0 0 .(37) 

. .. (38) 

... (39) 

In order to solve the Wiener-Hopf equation given by (37) we assume that the branch 
points o: = k 1 and k~ of K(o:) possess a small imaginary part ~uch that 

k 1 = k 1 + i k\ and k 2 = k 2 + i ki 

where k( and ki. ar€ infinitesimally small positive quantities which would ultimately 
be made to tend to zero. 

Now we write K(o:) = K+ (o:) K __ (o:) where K+ (o:) is analytic in the upper 
h&lf plane Im o: > - k-l. whereas K_ (o:) is analytic in the lower half plane given by 
Im o: < k-l.. Since T,-~ (x, 0) decreases exponentially !as x - ± co, G .. (o:) and 
G_ (o:) have the same common region of regularity-~:; K+(o:) an~ K_ (a). 

lms 

>-1 
======~~====~s=~=o==========~Res 

!.k. 
2 

·-II. 
1 

FIG. I. Path of integration in the .:omple:ot s-plane. 

Now (37) can easily. be expressed as two integral equations relating G + ( o:), 
G_(o:) and B(o:) as follows: 
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and 
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P0 [ I I ] 
fu ia · K+ (a) · - K + (0) 

G_ (s) + _r;;-
0

• ds 
e-2isl [ p, ] 

(s-a) K+ (s) v21r 1s 

= - B(a) K_ (a) e-ial + Po I f 
ili ia K+ (0) - 2-;ri. J 

c_ 

G_ (s) + _-_o- ds e-lis( [ p ] 

(s-a)K+ (s) . fuis 

G_ (a) Po e2isl 

+ + 
K_ (a) ili ia K_ (a) hi J (s - a) K_ (s) 

c_ 

[c+ (s)- -- ds Po l 
ili is 

.:.. B(a)" K+ 
. I l 1 

e2isl 

lG+ (a) e'0 
- -- (s) -

2-;ri (s-a) K_ (S·) 
c. 

Po 

v27tis 

... (40) 

] ds 

. .. (41) 

where c+ and c_ are the straight contours below the pole at s = 0 and situated 
,within the common regionof regularity of.G+ (s), G_(s), K+ (s) and f<_(s) as, 
.shown in Fig. l. 

In (40), the left-hand side is analytic in the upper half plane whereas the right
hand side is analytic in the lower-half plan·e and both of them are equal in the com
;mon region of analyticB/cy of these two functions. So by analytic continuation, both 
'sides of (40) are analytic in the whole of the s-plane. Now since 

as x- ± L 

so G ± (a ) a- v; as lal co 

and also K± (a) - av' as jaj co 

so it follows that 

- a -I as In: I 00. 

. I 
Therefore by Liouville's th.eor.em, both sides of (40) are equa\to zero. Equation (41) 
can be t~eated similarly. I,\ · 
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Therefore from (40) and (41) we obtain the system of integral· equations given by 

___ e_-2is_·
1
-- [o- (s). + _,:_0 • J ds = 0 

(s-a) K+ (s) . v21!" IS 
... (42) 

and 

... (43) 

Since r~l (x, 0) is an even function of x, so from (25) and (26) it can be shown that 
G+(-a) =G_ (a) and it has been·shown in the appendix that·K+ {-a):::::: iK. (a); 
Using these results and replacing a by -a anp s by-sin (42) it can easily be shown · 
that equation~ (42) and (43) are identical. So G+ (a) and G_ (a) are to be deter-
mined from any one of the integral equation (42) or (43). · 

3. HIGH FREQUENCY SoLUTION OF THE hnEGRAt EQUATION 

To solve the integral equation· (43) in the case iwhen normalized wave number 
k1 l > 1, the integration along the path C_ in ( 43~ is replaced ?Y the integration 

. round the circular contour C0 round the pole Cit s l 0 ~d by the integration along 
the contours Ck

1 
and Ck

2 
round the branch cuts through the branch points k1 and 

k2 of the function K~ (s) as shown in Fig. 2. · · · 

Ims 

' •'!, I o ... . ·: 

.. · 

.\. 

·: ·.... 
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Thus eqn. (43) takes tlre form 

Now 

[ G_ (a) + v!':/- J-2-rza 

Po K_ (a) 

fu ia K_ (0) 
I 

K_ (a) + --- exp (2is/) [ I P0 ] 
----- G+ (s) - _,...- . ds = 0. 
(s - a) K_ (s) v27f zs 

... (44) 

1 exp (2is/) [ Po J 
G+ (s) - -~~ 

15
• ds 

(s-a) K_ (s) VL.7f 

= 
I' I 

which can easily be evaluated when k, t ~ 1 and -is found to be equal to 

__ 1_ H.; exp· {2ik1 I) K+ (ki) eir/
4 

[ p J 
G+ (k1) - ili 0• • ••• (45) 

JL 1 k 1 I (k1 - a) 27f zk1 

Similarly for k 1 I ~ I 

~ exp (2isl) [ P0 J 
G+ (s)- ·'2"-zs· ds 

\ (s-a) K_ (s) VL.7f 

C.t2 

=· __ 1_ r;- . exp {2ik2 /) K + (k2) eir/
4 [a+ (k

2
) _ 

1-'2 '\} k;/ . . (k2- a) · - · 
P, . '] Vh o_ •••• (46) 
1r lk2 

Using ·the results (45) and (46) and also the relations G+ (-a) = G_(a) and 
K_ (a)= - iK+ {a), we obtain from (44) 

A (kd F~ (k1) euk,, A (k2 ) F+ (k2 ) euk,; 
F+ (-a) + + = C(a). 

p.1 (k1 - a) ..Jk11 JL2 (k2 - a) fk;/ ... (47) 

where 

F+ (~) = 1 [a 
K_ (-0 + 

Po J <~> - .fi.,- u; ... (48) 

A(~) 
[K+ (~)]2 eir/4 

= 2..ri 
... (49) 

and 

C(O 
·po 

= 
V2ir iK_ (0)~ 

... (50) 



and 

and 

HIGH FREQUENCY SCATIERING OF ANTIPLANE 

A (k2 ) e2iki 

21'2 k2 ..ff;J 
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... (51) 

(kz) = - C(k;). 

... (52) 

... (53) 

... (54) 

where 

L (k~> k2 ) = [I + 
A (kd e2ik,t 

21'1 kl Yk;i 
A (k2) e2iki 

+ ------==-
21'2 k 2 ..ff;J 

A(kdA(k2) (k1 - k 2 ) 2 e2i(k,+k2>1]-I 
+ 2 -~ -~ • • •• (55) 

41'1 Jlz k 1 k 2 (k1 +kz) vlkt v/k2 

Now expanding L (k1, k2 ) and neglecting higher order terms o~ and~ and 
using (47) we get 

G_ (a) = - C(a) K_ (0) + C(a) K_ (a) 

+ K_ (a)A (kd e2ik,t · C(kd [t _ A (k{) eZik,t A{k2 ) k
1 

e2ikJ ] 

1'1 (k1 -a) Yk1/ 21'1 k1 Yk;J - 1'2 kz Vk;i (kl +k2) 

+ _K ___ (_a_)_A_(_k_2 )_e
2
_ik_11=·=C=--(k_z_) [I _ . A (kd kz e2ik,t A (k2 ) e2ik,f J 

1'2 (kz- a)Yf;f Ill k1 ..fk;i (kl +kz) - 21'2 k2 Vk;i 
... (56) 

Now replacing a by -a and using C(-a) =- C(a). We have 

G+ (a) = C(a) K_ (0)- C(a) K_ (-a). 

+ _K ___ (.:...-_a_)A_(_k::....d_e_
2
_ik--:,

1
==·=C,...(-'-k-=-t-'-) [I _ A (kd e2jk,t A (k2 ) k 1 euk,t ] 

i-Ll Ck1 + a) Yk;J · 21'1 k1 -fiZJ - 1'2 k2 Vk;J (kl +k2) 
I . 

+ _K ___ (_-_a_)A_(_k2_)_e_
2
_ik....,,t=·=C,...(_k-'"'2_> [I _ A (kt) ~2 e2ik,t _ A (k2 ) euk,t ]· 

1'2 (kz + a) Vk;i Ill k1 ..fkJ (kl +kz) 21'2 k2 Vk;i . 
... (57) 
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4. STRESS INTENSITY FACTOR AND CRACK OPENING'. DISPLACEMENT NEAR THE CRACK TIPS 

Now as a- oo 

K_ (-a) 

K_ (-a) 

a+ k 1 

K_ (-a) 

a+k2 

= - iK+ (a) = - i (a+kr) Yz j P.rP.2 :::: 
' P.t+P.'l, 

. -Yz~lP.2 = -Ia ---
. P.l + P.2 

- . _y,~lll-2 - -Ia · ---· 
P.t + P.2 

So as a - oo we get from (56) and (57) 

and 

G (a) 

where 

S= 

·Yz~IP.2 -Ia ---
P.t + P.2 

... (58) 

+- 1 + k 2 + 
1 ( A 2 

( k ) e
4
ik,l A 2 

( k ) e4ik,J ) 

2 p.f kr k1I · P.i ki k2I 

A ( kl) A ~k2) e2i!k, + k2)1] 
J.Lt ~ p.~ k2 Vktl.k2l 

X .J J.L1P.2 . 
P.t + P.2 

Now from eqn. (37) using (58) and also the fact that 

K(a) 

we get 

B(a) 

+a. P.JP.2 

P.! + P.2 
asa-+oo 

1e - e ---+ S [ · -ial ia/] P-1 + P.2 

a fu · . P.tP.2 

as a - + oo. 

i 
. .. (59) 

... (60) 

... (61) 

Taking inverse Fourier-Transform of (35) and using the results of Fresnel integrals viz. 

"' sin · 

~ cos<x+l)a ~7r' 
. da = . 
fu 2(x+ 1.) 

... (62) 

0 

We get the displacement jump across the surface of the crack as 
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AW = WI (x, 0+) .:_ W2 (X, 0 -) = 2SI (1 - i) j(L- X) 

for x- l.- 0 

AW = W 1 (x, 0+)- W2 (x, 0 -) 2S1 (1- i) j(x+/) 

for x- -I + 0 

1117 

... (63) 

... (64) 

where S1 = (JLI + JLz) · S. . .. (65) 
JLIJL2 

Next inorder to find the value of rxy near about the crack tip we use (61) in (36) and 
(32) and to obtain 

AJ (a) = ie-iat- eiat ' U = 1,2) (-1Y+
1 

·S [ ] 
.JLp Va 

... (66) 

asa-oo 

and = e-ial - ieial ' u = 1 ,2) (-1Y+ 1 ·S [ · - ] 

JLP v-a ... (67) 

as a- - oo. 
Now a w,; (x, y) 

rra (x, y) = JL· j = 1,2 /- ' ay 

= JL a [ 1 r AJ· (a) exphiiYI-iax) da]. 
J ay ..fii J . .. (68) 

-OJ 

Substituting the values of AJ (a) as lal 
the crack tip as 

oo, we can write the stress near about 

rJL (x, y) 

OJ 

= -- -- ela(x+t)- iela(x- ll- ie-la(x+() S I e--<>IYI [ . . . 
lli Va . 

0 
OJ 

= 
S( 1 - i) 

lli 
r e--<>IYI [ J ¥a cos a (x+ L) - sin a (x+ L) 

0 
+ cos a (x - 1-) +sin a 

= S (I -i) [_I_ sin .!h._ rrz 2 
+ -cos-1 ¢1 ] 

Yr.. 2 

near about the crack tips, where 

[ ]

y, 

(x - L) 
2 + Y

2 
. , r/11 

. -1 IYI sm. --
rl 

(x-L)]da 

... (69) 

... (70) 

... (71) 
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Therefore at the interface (y = 0) we obtain 

s ( 1 - i) 
l. + 0 T'fL- VX-1 

as x- ... (72) 

and 
s ( 1 - i) 

- L- o. Jz.- v'-(x+ L) 
as x- . .. (73) 

Now the stress intensity factor is defined by 

K = j(1 - t) Sjfuk;". 
Po 

. .. (74) 

The absolute value of the· complex stress intensity factordefined by (74) has been 
plotted against k1 I in Fig. 3 for values of k 1 I > 1 for the following two sets of 
materials, given by 

First Set: Steel PI 

Aluminium P2 

Second Set: Wrought iron PI 

0 

' ' 

Copper P2 

\ ' 
---~-- ...... 

.... _, 

2. J 4 5 6 '1 

7.6 gm/cm 3 
1-'1 = 8.32 X 10 11 dyne/cm 2 

2.7 gm/cm3 
1-'2 = 2.63 X 10 11 dyne/cm 2 

7.8 gm/cm3 
1-'1 = 7.7 X 10 11 dyne/cm 2 

8.96 gm/cm 3 
1-'2 = 4.5 X 10 11 dyne/cm 2

• 

Aluminium & steel 
w rou~ht iron & copper 

8 S 10 11 12 IJ 14 IS 16 11 18 19 20 
k,l --+-

FIG. 3. Stress intensity factor K versus dimensionless frequency k 1 I. 

5. CRAcK OPENING DisPLACEMENT AT POINTS AwAY FROM THE CRACK TIPS 

Next in order to obtain the displacement jump for the large values of k 1 (l- x) 
and 1k 1 (/+x) we write G+ (a) and G_(a) from (57) and (56) respectively as 

a 
i 
' 

and: G_(a) = 
... (76) 

,. 
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p = Po 
fu. i 

Po 
Q= 

fu iK_(O) 

p 

K_(O) 
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... (77) 

... (78) 

and 
e2ik) · A (kn)km J 

- Vlk,; JLnkn (km+kn) , 

w,here m = 1 

and m = 2 

when 

when 

n = 2 

n = 1. 

Again using K_ (-a) = - iK + (a) we get from (37) 

B(a) = -
Qi eial 

+ 
iR (k1, k 2) eial 

+ 
iR (kl> kd eial 

aK_(a) (k1 +a) K_(a) '(k2+a) K_(a) 
! 
i 

Q e-ial R (kl, k2) e-ial R!(kl> kd e-ial 

a K +(a) (k1 - a) K+ (a) 
I 

(~2 - a) K+ (a) 

From (35) we get the displacement jump across the surface of the crack as 

-00 

... (79) 

... (80) 

... (81) 

Now substituting the expression of B(a) from (80) in (81) and approximately 
evaluating the integrals arising in (81) term by term for large values of k1 (1- x), 
k2 (I - x), k 1 (I + x) and k2 (I + x) and neglecting terms of order higher than 
(k1 I) -3!2 and (k2 /) -J/2 ,we obtain finally the crack opening displacement across the 
cracked-surface in the following form: 

llW = W1 (x, o+)....; W2 (x, o-) = 21r Qi K+ (0) (-
1

- + · 
1 

) 
JLI kl ' JL2 k2 

+ ..[2 Qe~iri4 [(. eiJc.,(l-x) ... + -·;=e=ik=,(=:=l+=x=)=) 

vkl (I- x) vkl (/+x) 

X R + I 11 + 2 .21 + 
( 

R R e2ik,t R R e2ikzl Rl (RII)2 e4ik,r 

I v2k1 1 v2k2 1 &1 1 v2kl 1 

+ ( eik2 u - x> + 
vk2 (/- x) 
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X (R2 + 
R2 R12 e2ikf 

+ 
R, Rn e2ikl 

+ 
R2 (R22)2 e4ikf 

Y2k2 I . Vik1 I Y2k2 I ..fik2 I 

+ 

+ 

R, = 

Ru = 

'2 

\t 
3 
v-> 

R, R1l Rn e4ik11 
+ 

R2 R2l Rn e2iCk1+kz) I 
Y2k1 I ..fik1 I Y2k1 I ..fik2 I 

R, Ru R12 e2iCk1+kz) I)] 
Y2k1 I Y2k2 I 

K+ (k1) 
R2 

K+ (k2) 

..fi 1-'1 k, ..fi 1-'2 k2 

D[K+ (k1)]
2 

R12 
D[K+ (k2)] 2 

1-'1 (k+ k,) 
= 

1-'2 (k2 +k2) 

-- ... Aluminium & Steel 

Wrought iron & copper 

--------- _______ ... 
\ 
\ --------

k 1 L= 20 -------------, \ 
' I 

\ 

' ., 

0.0 0.1 o.z 0.3 0.4 o.s· 0.6 0.7 o.a 0.9 1 

Xf L ---+-

FIG. 4. Normalized crack opening displacement versus normalized distance x/1 
from the centre of the crack. 

... (82) 

... ~ 

... (83) 
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D.K + (K1) K + (k2) 

J.Lr (kr +k2) 

eir/4 

D = (-1) --. 
& 

1121 

Expressions in (63) and (64) give the displace~ent jump nearabout the crack tips 
where as the displacement jump at points away from the crack tips are given by_ (82). 

From these two results we can obtain the crack opening displacement at any point 
of the crack surface - I < x < l,y = 0. 

Here also normalized crack opening displacement has been plotted against nor
malized distance x/L from the centre of the crack for two different sets of materials 
in Fig. 4. It is interesting to note that oscillatory nature of. the crack opening displace
ment increases with the increase of frequencies as· a result of the interference of waves 
inside the crack. Further we note that amplitude of the crack opening displacement 
decreases with the increase ·of frequency. 

lm z 

t-------+--0(-:---....:...-+--- "Re % 

• -k, 

fiG. 5. Complu z- pia.~. 

Im z 

k, k:2 c, 
( 

4 . . . ·----- -·-- - ------
~ 

------+----~---..:.__ __ . ....:'·'~ Re z 

F1G.6. PcJh of' mt-e~-ro.l-r"dY) 't"Oll"Yld 

~ b)'CLI'le.h po't-nts . 
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where 

R(a) = 

Put m 

Therefore 

K(a) 

where 

R(a) 

Now 

R + (a)R_(a) 

Therefore 

APPENDIX A 

J-1.2 (a2 - kT) v, 
-------'-- R (a) 

1 +m 
... (AI) 

log R+(a)+log R_(a)=log =log R(a) 

m (a2-: kf)·v' 
+ 

l+m (m+l) (a 2 -;k~)v' 
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log R+ (a) 

= 

log R (z) 
-=------ dz 

(Z- a) 

-ic+ (X) I 
log R (z) 
----dz 

(Z- a) 
-iC-CXl , 

~h.£r-e. t6. pa.th of h,R'f"Y"o..ho'() l\ .. is shcrW'Yl m 
Putting z = - z and using the fact that R(z) = R(-z), we get 

ic+oo ;. 

I 1 log R(z) 
log R+ (a) = - --. dz 

2-x-l (z+a) 
ic-oo 

I 1 log R(z) 
dz = ---

2-x-i (z+a) 
c. 

1123 

where C1 is the contour round the branch points k 1 and k2 as shown in Fig. 6. 

So, 
. [ in (z2 - k2) y, J 

log --+ I ' 

log R+ (a) 
=_I_) m+I (m+I) (z

2
- ki)y, 

dz 
2-x-i (z+a) 

c. 

I kz log [I + 
i ( zz - kf) v, J 
m(k~- z 2) y, 

=hi) .(z+a) 
kl 

kz 
[ · i(z

2 
- k[) y, J log I - 2 2 y, 

1 m(kz - z ) 

2-x-i 
dz 

(z+a) 
kl 

[ (z
2

- e> y, J kz t -1 I 

1 
an m(k~- z2) y, 

= dz 
'X" (z+a). 

kl 

_ [ (z2 _ k2) v, J 

dzl l ,, tan 1 1 

= exp ~ 1 m(k~- z 2) '/z 

:. R+ (a) 
(z+a) 

kl 
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Similarly 

k ta -1 I 

[ 

[ 
(Z2 _ k2) v, ] ·] 

2 .n m(kz-zz)v. 

RAo:) = exp ~k ~~·--dz .. J (z- o:) 

Therefore from (AI) we can write 

and 

K_ (o:) 

v-;;.2 ( 0: + k 1) v, 

v(l + m) 
. [I · exp 1f 

Hence from (A2) and (A3) we get 

= iK_{o:) 

... (A2) 

(A4) 
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HIGH FREQUENCY SCATTERING OF PLANE 
HORIZONTAL SHEAR WAVES BY A GRIFFITH CRACK 
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Abstract-The problem of diffraction of horizontally polarized shear waves by a finite crack moving on 
a bimaterial interface is studied. In order to obtain a high frequency solution, the problem is formulated 
as an extended Wiener-Hopf problem. The expressions for the dynamic stress intensity factor at the crack 
tip and the crack opening displacement are derived for the case of wave lengths which'are short compared 
to the length of the crack. The dynamic stress intensity factor for high frequencies is illustrated graphically 
for two pairs of different types of material for different crack velocities and angles of incidence. 

I. INTRODUCTION. 

ScATTERfNG of elastic waves by a stationary or a moving crack of finite length at the interface of 
two dissimilar elastic materials is important in view of its application in fracture mechanics as well as 
in seismology. Recently. Takei eta!. [I] considered the problem of diffraction of transient horizontal 
shear waves by a finite crack lying on a bimaterial interface. The method of solution was extended 
by Ueda et a/. [2] to solve the problem of torsional impact response of a penny shaped interface 
crack. Srivastava eta/. [3] also considered the low frequency aspect of the interaction of an antiplane 
shear wave by a Griffith crack at the interface of two bonded dissimilar elastic half spaces. 

In the case of cracks of finite· size. travelling at a constant velocity, loads, for mathematical 
simplicity. are usually assumed to be independent of time. However, in practice, structures are often 
required to sustain oscillating loads where the dynamic disturbances propagate through the elastic 
medium in the form of stress waves. The problem of diffraction of a plane harmonic polarized shear 
wa~e by a half plane crack extended under anti plane strain was first studied by Jahanshahi [4]. Later 
Ch'en and Sih [5] considered the interaction of stress waves with a semi-infinite running crack under 
either the plane strain or the generalized plane stress condition. Sih and Loeber [6) and Chen and 
Sih [7] also considered the problem of scattering of plane harmonic waves by a running crack of 
finite length. In bpth the cases the problem was -reduced to a system of simultaneous Fredholm 
integral equations which were solved numerically. 

In the present paper, we have investigated the high frequ~ncy solution of the problem of 
diffraction of horizontallv polarized shear waves by a finite crack:moving on a bimaterial interface. 
The high frequency solution of the diffraction of elastic waves by: a crack of finite size is important 
in view of the fact that the transient solution close to the wave front can be represented by an integral 
of the high frequency component of the solution. In order to solve the problem, following the method 
of Chang[S], the problem has been formulated as an extended Wiener-Hopf equation and the 
asymptotic solutions for high frequencies or for wave lengths which are short compared to the length 
of the crack have been derived. Expressions for the dynamic stress intensity factor at the crack tip 
and the crack opening displacement have been derived. The dynamic stress intensity factor for high 
frequencies has been illustrated graphically for two pairs of different types of materials for different 
crack velocities and angles of incidence. 

2. FORMULATION OF THE PROBLEM AND ITS SOLUTION 

Let a plane crack of width 2L move at a constant velocity Vat the interface of two bonded 
dissimilar elastic semi-infinite media due to the incidence of the plane horizontal SH-wave 

W; =A exp[- {k 1 (X cos 81 + Y sin 81) + nT}] (I) 
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Incident SH- wave 

I I II & 
0 y y, 

Jl,(J, ~----Vt------
Running crack 

0 

V = Crock velocity 

Fig. l. Running interface crack. 

in the medium. The crack lies on the bimaterial interface along Y = 0 with respect to the fixed 
rectangular co-ordinate system (X, Y, Z) as shown in Fig. L 

We assume that the displacement and stress fields WJ, 'rzi (j = l, 2) are 

Wi = Wj(X, Y, T) 

oWJ(X, Y) 
't'yzj = J-lj ay ' 

(2) 

(3) 

in which subscripts j = I, 2 refer to the upper and lower half planes, respectively, T denotes time 
and J-li is the shear modulus of elasticity. The displacement Wi is go"!erned by the classical wave 
equation I 

a1w. o2W. 1 o1 W 
ax/+ ay/ = c2 oT2 ,u = 1' 2), 

J 

(4) 

where ci = (pi/Pi) 112 is the shear. wave velocity and pi is the density of the material. Without any 
loss of generality, we further assume that c1 > c2 • 

Due to the incident wave given by (1), reflected and transmitted waves in the absence of the 
crack may be written in the form 

W, = B exp[- i {k1 (X cos 91 - Y sin 91) + OT}] (5) 

and 

(6) 

where. 

(7) 

C _ 2k1 sin () 1 

- k 1 sin () 1 + mk2 sin ()2 A 
(8) 

m = p2 /p 1 and k 1 cos 01 = k1 cos 02 • (9) 

A, B, Care incident, reflected and transmitted wave amplitude, ki is the wave number, n = kici is 
the circular frequency and 81, 82 are the angles or'incidence and refraction, respectively. 

A set of moving co-ordinates (x, Yi• z, t) attached to the centre of the crack moving at a 
constant velocity Vis introduced in accordance with 

x =X- Vt, Yi = siY, z = Z, t = T, (10) 

where si= (l- MJ) 112 and Mi= Vfci is the Mach number. 
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In terms of the translating co-ordinates x, Yi• eq. (4) becomes 

a2Wj + a2Wj +-1-~ [2M-c_aWj- aWj] = o 
ax2 ayJ cJsJat .J J ax at . 

In the moving system (x, y, z, t) eqs (1), (5) and (6) take the form 

e-io>r W, 

A exp[ -i{k{x cos 81 +~:sin 81) + ror}J 

B ex{ -i{k{x cos 81 -~:sin 81) + ror}] 

C exp[ -t{k2(x cos 82 +~:sin 82 ) +rot} J 

where ro = na and IX= (1 + M.1 cos 81) = (1 + M2 cos 82). 
In view of eq. (12) we take the solution of (11) as 

Wj(x, y) e-imr = wj(x, yi)exp[i(MiA.ix -rot)]. 

Substitution of eq. (13) into eq. (11) yields the Helmholtz equation governing W/ 

o2wj o2wj 2 . 

-a 2 +-a· 2 +A.jwj=O U= 1,2), 
X yj 

where 

Applying Fourier transform, eq. (14) can be solvecl and the result is 

w1(x,y1) = ~~ J:oo B1 (~)exp[-i~x -(~ 2 -A.D 112y1 ]d~, y 1 >0 

From (13), (15) and (16) we obtain the displacement components due to scattered field as 

where 
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(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

A 1 (~) and A 2(0 are the unknown quantities to be determined from the following boundary 
conditions: 

(20) 

W1=W2, ixi>L, y=jO (21) 

awl awj aw, 1 
-+-+-=0, ixi<L, ly=O+. 
ay1 ayl ayl 

(22) 
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From the boundary condition (22) we obtain 

where 

awl .. -a-= A1 exp[ -rk1xcos B1], \xI< L, 
Y1 

i(A - B)k1 sin B1 
A1= . 

sl 

y =0, 

Using (17), the above equation can be written as 

-
2
1 

fCXl A1 (e)v1 exp[ -i~x] d~ = -A1 exp[ -ik1xcos B1], -'- L < x < L 
TC -CXl 

= P(x), x > L (say) 

= Q(x), x < -L (say). 

Therefore -

'(23) 

(24) 

A 
AI (Ovl = exp[i~L]G + (0 + exp[ -ieL]G- Ce)- i(e ~eo) [exp{i(e - eo)L}- exp{ -i(e - eo)L }], 

where 

G.f.(e) = LCXl P(x)exp[ie(x- L)] dx 

G_ CO= J_-~ Q(x)exp[ie(x + L)] dx 

~o = k1 cos el. 
From the boundary condition (20) we obtain 

where 

A
2
(0 = _ Mv1Ai(0' 

v2 

M = lllSl. 
Jl2S2 

Next using the boundary condition (21), we obtain 

A1 CO- A2(~) = t: (WI- W2)exp[iex1 dx 

= I :z. P 1 (x )exp[i~x] dx 

=NCO (say), i 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(3 I) 

which is. the measure of the discontinuity of displacement along the sutface of the crack. Now with 
the aid of (29) and (31), we find 

(32) 

Eliminating A1 CO from (25) and (32) we obtain an extended Wiener-Hopf equation, namely 

exp[i~L]G + (0 + exp[- ieL]G _ (0- N(OK(e) 

i(e ~eo) [exp{i(¢ - ¢0)L}- exp{- i(~ - ~0)L }], (33) 
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where 

(34) 

(35) 

In order to solve the Wiener-Hopf equation given by (33) we assume that .branch points 
~ =A.1(1-M1),A.2(1-M2), -).1(1 +M1)and -).2 (1 +M2)ofK(0possesssmallimaginaryparts, 
which would ultimately be made to tend to zero. 

Now we write K(~) = K+ (~)K_ (~), where K+ (0 is analytic in the upper-half plane 
Im ~ > Im[- A. 1 ( 1 + M 1 )], whereas K_ ( ~) is analytic in the lower-hair plane given by 
Im ~ < Im[).1 (1- M 1 )]. The ·expressions of K+ (0 and K_ (0 are derived in the Appendix. Since 
awtfay1 decreases exponentially as x-+ ±co, G + (0 and G _(~)have the same common region of 
regularity as K+ CO and K_ (~). 

Now eq. (33) can easily be. expressed as two integral equations involving G + (~), G _ (~) and 
N(O as follows: 

--- ----- +- . G (s)+ ds 
G +(e) AI e-i{oL [ 1 1 J I f e-2isL [ AI ei{oL J 
K+ (0 i(e -eo) K+ (0 K+ (~0 ) 2ni c+ (s - e)K+ (s) - i(s- eo) 

where c+ and c_ are the straight contours below the pole at~ =eo and situated within the common 
region of regularity of G + (0, G _ (0, K+ (~) and K_ (~) as shown in Fig. 2. 

The left hand side of (36) is analytic in the upper-half plane whereas the right hand side is 
analytic in the lower-half plane and both of them are equal in the common region of analyticity 
of these two functions. Therefore, by analytic continuation, both sides of (36) are analytic in the 
whole of the s-plane. Next; by Liouville's theorem, it can be shown that both sides of (36) are equal 
to zero. Thus we obtain 

Similarly, we also obtain 

(38) 

Ims 

c_ 

Res 

• • 
-.?.2C1+Mzl -;>.1(HM1l Ct 

Fig. 2. Path of integration in the complex s-plane. 
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3. HIGH FREQUENCY SOLUTION OF THE INTEGRAL EQUATIONS 

In order to obtain G +(()and G _CO from the integral equations (37) and (38) in the case when 
the normalized wave number ). 1 ( 1 + M 1 )L ~ 1, the integration along the path c + in (37)is replaced 
by the integration along the loops L_;_

1 
and L~;.2 round the branch points - ).1 (! + M1) and 

-).2 (1 + M 2 ) of K+ (s), respectively. Also, ·the integration along the path c_ in (38) is replaced by 
the integration round the circular contour L 0 , round thepple s = ~0 and by the integrations along 
the loops L;.1 and L;.2 round the branch cuts through the branch points 21 (! - M 1) and 22 (1 - M2 ) 

of the function K_ (s) as shown in Fig. 3. 
Finally evaluating the integrals along the straight line paths round the branch points for large 

values of frequency, we obtain two equations given by 

y 2 aiez;;1<l±.lti>A"'[=ti./1±Mi)]F+[+i.i(l±M)]_
0 F±(c;;)+C±(c;)+j~l 2{J.i(1±MJ-(}(i.jL)if2 -, (39) 

(40) 

Now substituting ( =i. 1(1-M1) and ).2(1-M2 ) and~= -).1(1 +M1) and -).2 (1 +M2 ) in 
(39) a system of linear equations of F+[i.1(1-M1)], F+[i.2(I-M2 )], F_[-i. 1(1 +M1)] and 
F _ [- i.2 (1 + M 2)] are obtained. Now solving them and neglecting higher order terms of (}. 1 L )- 112 

and ().2L)- 112 we obtain, finally, after some algebraic manipulation: 

F± [± i.k(l + Md] = - C± [±i.k(! + Mk)] 

[ 1 
- ~ Oj ez;;·j<l+ Mk >LA+[+ i.i(! ± MJ]C + [+ i./1 ± Mi)] J . 

X L., , k = 1,2. (41) 
j= I 2().jL) 112{J./l ± M) + i.k(l + Md}C±[±i.k(l + Mk)] 

Now using (39) we obtain from (41) 

A eHoL A e+i~oLK (0 
G + (0 = ± / . ) + / . )K. (" ) 

- I c; - t;o I c; - t;o ± c;o 

± [akezil;<l±M<lLA+[+i.k(l ±Mk)]C,;:(=ti.k(l ±Mk)]K±(() 

+ k= I 2().kL)Ii2{i.k(l ± Md ± 0 

I-I } ±-J } ±-;. } . 
( 

2 0'· ez;;·j<J + MjlLA [+ i.(l -+ M)]C [+ ).(1 + M·)] )] 

X j=I2(A.jL) 112 {J.j(I +Mj)+i.k(l ±Mk)}C+[+i.k(l ±Md] 
(42) 

Ims 

Lll, ' : Lllz 

OLO I 
I 

~ 

C~ ~0 :A1(1-M1) l\z.(1-M2) 

-----------------------r--------------------~Ree 

Fig. 3. Path of integration L0 , L,1 , L;., and L_,1 , L_;,. 



High frequency scattering of shear 'raves ll3 

4. CRACK OPENING DISPLACEMENT AT POINTS AWAY FROM THE 
CRACK TIPS f 

' i 
· In o. rder to obtain the displacement jump for the large valu~· s of A:1 (L - x ), A.2 (L - x ), ..1. 1 (L + x) 
and ..1.2(L +x), we can write G+(O and G_(O from (42) as 

where 

P± _Q±K±(O -0 K±(e)R<~> 
G±(O=±e-eo+ e-eo. +k~l{).k(l±Mk)±e}' 

A, e+i~oL 

Q± = iK±Ceo) 

Now we obtain from (J3) 

.. Q ei~L R<'> ei~L · R<]> ei~L 

N(e)=- (e -e:)K_(c;) + {e +A.1cl ~M,)}K_(O + {e +J.2(l +M2)}K_(e) 

(43) 

(44) 

(45) 

(46) 

Q_ e-i~L R<:..> e-i~L 

+ (~ -eo)K+(e) {e -A.~(l-Ml)}K+(O 
R<:.> e-i~L 

{e - A.2(l - M2)}K+ (e)" (
47

) 

From (31) we obtain the .displacement jump across the surface of the crack as 

(48) 

Substituting the expression of N(e) from (47) in (48) and approximately evaluating the integrals -
arising in ( 48) term by term for large values of )., (L -X), }.2 (L -X), A., (L +X), and ;..2 (L +X), 
and neglecting terms of order higher than ( A. 1 L)- 3

'
2and ( A.2 L)- 3

'
2

, we finally obtain the crack opening 
displacement across the cracked surface at points away from the crack tips in the following form: 

where 

.1W = WI (x, 0+)- W2(x, 0-) = - iQ+ K+ ceo) ei~o(L-x) 

T - 2 O'keii.k(l+Mk)(L+xl[Q±K±[±A.k(l +Mk)] 

±- k~l {A.k(L + x)} 112 2'12[A.k(1 + Mk) +eo] 
_ ± O'jA+[+A.j(l ±M)]K±[±A.k(l +Mk)]( Q+e2il1(1±M1 JL 

j~ I 2(2A.jL) 112{Ak(l + Mk) + ).j(l ± Mj)} Pil ± M) ±eo} 

_I O',A± [±A.,(l + M,)]Q± e2•1l,<' + M,>+•,<' ±M1 )JL )] 

r= I 2(l,L) 112{l,(l + M,) + ).j(I ± Mj)}{l,(I + M,) +eo} 
0 

5. STRESS INTENSITY FACTOR AND CRACK OPENING DISPLACEMENT 
NEAR THE CRACK TIPS 

Now considering the behaviour of e atinfinity we obtain from (42) 

A e+i~oL 
G (")~ + 1 +S ;:-'12 as "-.co, 

± .. - i(e -eo) ±.. .. 

:EFM 45/1-H 

(49) 

(50) 

(51) 
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· where 

S - 1 [_A,e'~';~oL + 2 O'.t-emt(I±Mt)LA'f[::F).t(l ±Mt)]C'f[+A.k(l +Mt)] 

± - (1 + .M)112 + iK± (~0 ) - k~l 2(A.kL) 112 

'X 1-2: ' ± 1 1 ± 1 , . 
: ( 2 u.eu;.i(l'fMilLA [±) .. (l=FM)]C [+A.(l=F.M-)] )] 

. J~ I 2(A.JL) 112{).j(l + Mj) + A.k(l ± Mk)}C'f [ +A.k(l ± Mk)] . 
(52) 

Now, from eq. (33), using (51) and also the fact that 

~ 
K(O- ± 1 + M as ~- ± oo, (53) 

we obtain 

():)- 1 + M [ i~L -i~L 
N ., - ± ~(~) 112 S+ e + S_ e ] as~-± oo. (54) 

! 
Taking the inverse Fourier transform of (31) and using the result~ of Fresnel integrals, viz. 

sin 
joocos(x+L)ad =[ 7t ]''2 

Jo (a) 112 a 2(x + Lj ' 
(55) 

we obtain the displacement jump across the surface of the crack as 

[
2(x +£)]''2 

~W=W1 (x,O+)-W2 (x,O-)= -(l+M)(l+i)S_ 1t forx--L+O (56) 

[
2(£- x)]''2 

= - (1 + M)(l - i)S+ 7t for x -L - 0. (57) 

Expressions (56) and (57) give the displacement jump near to the crack tips, whereas the 
displacement jump away from the crack tips is given by (49). 

Next, in order to find the. value of 't'yz near to the crack tip we use (54) in (32) and (29) and 
obtain · 

(58) 

as ~--oo. (59) 

Now 

( .)= _oHij(x,y1)= . _oHij(x,y1)=J-l1s1!._[foo· A.(I=) -i{x~•jlYiidJ:J tyzx,y, ll, !l J-l,s, !l 2 !l ,., e ., . 
. uy uyf 1t uyf · ·-oo 

(60) 

Now substituting the values of A1(~) as I~ 1-oo in (60) and integrating, we obtain the stress near 
to the crack tip as 

(61) 

and 

(62) 
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where 

,/, . -I iyd 
'1'2=Sln -

r2 

(63) 

Therefore at the interface (y = 0) near to the right-hand crack vertex, we obtain 

.U1S1(1- i)S+ , 
'Y=~- {2n(x- L)}l/2 as x;L + 0. (64) 

Now the normalized dynamic stress intensity factor Kat the' crack tip x =Lis defined by -I [2nkl (x - L)jl/2'Y=I- I (1 - i)S+ (kjl/21 K- -s1 for x~L +0, (65) 
.U1Al A1 _ 

. Where A 1 is given by (24). 
The absolute values of the complex stress intensity factor defined by (65) have been plotted 

' against k1 L in Fig. 4 for values k1 L. > I for different values of the Mach number M 2 and the angle 
of incidence for the following sets of materials: 

first set: steel p1 = 7.6 gm/cm3
, !-l1 = 8.32 x 1011 dynefcm2 

aluminium P2 = 2.7 gmjcm3
, !-l2 = 2.63 x 1011 dynejcm2 

second set: wrought iron Pt = 7.8 gm/cm3
, !-l1 = 7.7 x 1011 dyne/cm2 

copper P2 = 8.96 gm{cm3
, /-l2 = 4.5 x 1011 dynefcm2

• 

As the Mach number M 2 ~o the stress intensity factor K tends to the value of the stress 
intensity factor corresponding to the stationary crack. The problem for 81 = n/2 and M 2 = 0.0 was 
solved earlier by Pal and Ghosh [9]. The graph of stress intensity factor vs k 1 L corresponding to 
B1 = n/2 and M 2 = 0.0 as given in Fig. 4a is found to coincide exactly with that given by Pal and 

'2·0--r----------------'----------., 

1·6 

:.::: 0·8 

o.4 Wrought Iron &. Copper 

Aluminium & Steel 

Mz=O·O 

Fig. 4(a) (caption overleaf) 

Mz=O·S 
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(b) 2·0 

1.6 

1-2 

t 
~ 0.6 

M2=o·5 

0-4 
Wrought Iron ~ Copper ---

Aluminium & Stoel 

o.o 

3 5 7 9 11 13 15 17 19 

k
1

L -
(c) 2:0 

1-6 

r·2 
::t:! 0·8 

0·4 Wrought I ron & Copper M2=0·S 

Aluminium & Steel 

o.o 
3 5 7 9 11 13 15 1'1 19 

k
1

L -----+-

(d) Z·O 

WroughT Iron & Coppor 

Aluminium & Steel 
1.6 

1·2 

t 
:;:: 0·8 

0·4 

3 5 7 9 11 13 15 17 19 

k,L ----+-

Fig. 4. Stress intensity factor Kversus dimensionless k1 L. (a) 01 = rc/2. (b) 01 = "rcf!- (c) 01 = rc/4. (d) 01 = rc/6. 
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Ghosh [9]. It is interesting to note that for both pairs of materials, as M2 increases, the peaks of 
the curves of stress intensity factors decrease in magnitude and occur at lower values of k

1 
L. 

Further, it may be noted that for any fixed value of M 2 the stress intensity factor decreases with 
the decrease in the value of the angle of incidence. 

1 

I 
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·APPENDIX 

(AI) 

where 

Now 

Taking logs on both sides 

log R(~) =log R+ (~)+log R_ (0 =--: --- d11,. I f logR(11) 

27tl n+ru II-' 

where the paths of integration cL and cu are as shown in Fig. AI. Therefore 

log R_ (0 =--: --- d11 
I f log.R(II) 

21tt '" 11 -' 

•& Re.l'l 
--------~~----------------~--~--------------r-------~ . 

-:A2(1+Mzl -J.1(1+M1J 

Fig. A I. Complex 11 -plane. 
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lm ~ 

i 
J..1(1-M 1l C1 )1 2 (1-Jz.l 

( 

--------------.--------~--------------------~Re1 

-:?..2 (1+M2J -:A1(HM1> 

Fig. A2. Path of integration round the branch points. 

or 

Putting '1 = -'1 

therefore 

and therefore 

Similarly 

(A2) 

and 

-[~ -J.,(l-M,)]'t2 {1 J"'''--"'l I -•(M[('I +J.,M,)>-J.j]'t2) J K_(<)- . ex - --tan , 2]' 12 d'l . 
(l+M) n 1 , 11 _.~~, 1 ('1-~) [J.i-('l+J.2M2) 

(A3) 

(Received 29 May 1992) 
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Ab~1nct-ln this paper, the problem of two-dimensional oscillations of four rigid strips, situated 
on a homogeneous isotropic semi-infinite elastic solid and forced by a specified normal component 
of the displacement has been considered. The mixed boundary value problem of determining the 
unknown stress distribution just below the strips and vertical displacement outside the strips has 
been converted to the determination of the solution of quadruple integral equations by the use of 
Fourier transform. 1\n iterative solution of these integral equations valid for low frequency has 
been found by the application of the finite Hilbert transform. Th•· normal stress just below the strips 
and the vertical displacement away from the strips have b<>en obtalf\\:d. Finally, graphs are presented 

.which illustrate the salient features of the displacement and stress intensity factors at the edges of 

the strips.E~~~~(b i99~ E~se~!e!~~ic~~e ~l~:--)1 

I. INTRODUCTION 

The problem of the effect of vibrating source in different forms on the surface of an clastic 
mediuin have aroused attention in view of their application in seismology and geophysics. 
Reissner (!937), artd later Millar and Pursey (1954), treated the case of a uniform vibrating 
pressure distribution applied to a circular region on the surface of an clastic half-space. 
Analytical treatment of the dynamical response of footings and solid-structure interaction 
arc usually available in the literature only for circular and elliptical footings, and infinite 
strip loadings. Such results are important in view of their application in the design of 
foundations for machinery and buildings, and also in the study of the vibration of dams 
and large structures subjected to earthquakes. The problem of circular punch has been 
solved analytically by.'\ wojubi and Grootenhuis (1965), Robertson (1966), Gladwell ( 1968) 
and others. Roy (198Ci) considered the dynamic response of an elliptical footing in fric-

1 tionh!ss contact with a homogeneous elastic half-sp;tc~.:. Karasudhi er a/. ( 1968) obtained a 

i 

·./ 

1 low frequency solutiOJI for the vertical, horizontal and rocking vibration cr ~lii inlinilc strip 
on a semi-infinite el<tstic medium. Wickham (I ~77) workl'd out iot '~.::tail tb.:: problem of" 
forced two-dimc:nsional o:-cillation of a rigid strip in smooth contact with a semi-infinite· 
clastic medium_. Recently, Manda! and Ghosh (I Y92) treated the problem of forced vertical 
vibration of two rigid strips on a semi-infi-nite clastic medium. · 

To improve the dynamic models of buildings and other!structures, it will be fruitful to 
have analytic results for foundations of a more complicateil nature. In what follows, the 

1 problem of vertical vibration of four rigid strips in smooqh contact with a semi-infinite 
clastic medium has been considered. The problem is also imp6rtant in view or its appl:cation 
in the study of th.: vibration of an clastic medium caused by running wheels on a railway 
track. The rcsu!L ,~ mixed boundary v~llue problem has been reducl~d to the solution of 

t :\uihor hJ whom corr~c;pondence ,hould be addressed. 

u.-.f 
i 

. I . ~ 
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quadruple integral eguations, which have further been reduced to the solution of int~.gral
differential equations. Finally, an iterative s6luti0n valid for low frequency has been 
obtained. ·· 

From the solution of the integral equations, the stress just below the strips and_also 
the vertiel:ll displac:crnent at points outside the strips on the free surface have been found. 
1l1c etfects of strc~s intensity factors at the edges of the strips and vertical displacement 
outside the strips have been shown by means of graphs. 

2. FORMULATION OF THE PROBLEM 

Consider the normal vibration of frequency w of four rigid strips having smooth 
\ contact with a semi-infinite homogeneous isotropic el<~stic solid occupying the half-space 
......______ __ ---::::_C9~X.:::._~_.__r_?_Q,-=.,_co -:::.~<co. It is assumed that the motion is forced by prescribed 

displacement distribution ~~··1)10rmai to. the four infinite strips located in the region 
d1 :::;:; IX]:::;:; d2, d3 :::;:; lXI:::;:; d, Y = 0, IZI <co, where vu is a constant. 
. Normalizing all the lengths with respect to d and putting X/d = x, Yfd = y, Z/d = z, 

d1/d = a, dJd = b, d3jd = c, one finds that the rigid strips are defined by a .:::;:; lxl .:::;:; b, 
c:::;:; lxl.:::;:; l,y = 0, lzl < o:::>(Ejg. 1). ' 

-------~~~the ti_me_ fact_?Ouppressed throughout the anal~sis, the displacement com-
ponents canoe wnttenas ' ·~ 

o<f! al{l 
u(x,y) = -

3 
- -~ ; 

x oy 

a¢ oi/J 
v(x,y) =-~-+-a ; 

oy x 
ll'(x,y)=O (I) 

where the displacement potentials c/!(x, y) and l{l(x, y) satisfy the Helmholtz equations 

(2) 

in which 

In terms of •> and 1{1 the stress components are 

0 
_, -c -b -a a b c , 

y 
Fig. I. Geometry of the problem. 
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Forced vertical vibration or four rigid strips on a semi-infinite elastic solid 

r,., = 0. 

The boundary conditions are 

r .. ,.(x, 0) = 0, -.co < x < co 

. ·.· 
·,·-·--

.... -
. ' -~· . 

(3) 

(4) 

(5) 

(6) 

where I, = (0, a), 12 =(a, b), 13 = (b, c), /4 = (c, 1.), 15 = (1, co). The solution oft he Helmholtz 
equation (2) can be written as · 

where 

¢ = 21"' A(~) cos ~xe-ror d~ 

1/J = 21"' B(~) sin ~xc·-Y,r d~ 

I 

{(~
2 -m]) 112 , 1~1 ~ m1} .L 

. -i(m]-e)'fl, l~l~m1 

(7) 

Y1= , J[ 1,2 

and A(~) and B(~) are unknown functions to be determined f om the boundary conditions. 
By using the boundary condition (6), it can be shown that 

i -

Now the displacement component v and stress r,y become 

(&) 

From the boundary conditions (4) and (5) we get the following set of integral equations in 
P(~): . . 

(II) 

and 
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( 12) 

where 

1 
3. SOLUTION OF THE PROBLEM 

We consider the solution of the integral equations (11) and·(l2) in the form 

( 13) 

where f(r) and g(zr) are unknown functions to be determined. ! 

By the choice of P<e) given h\' eqn (13) the relation (12) is satisfied 1utomatically and 
eqn (II) becomes . · 

I -
I 

~---··-

using the rei a tion 

sin~xsin~t = rx f'.wvlo(~w)Jo(~v)dvdw 
~1 Jo Jo (xl-wl)lil(tl-vl)''l 

the above equation is converted t•' the form 

(15) 

where 

(16) 

By a simple contour integration technique used by Ghosh and Ghosh (1985), L 1(v, w) can . 
be written as 

'~. ·. 
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where 

and r0 is the root of the Rayleigh wave equation Qo('l) = 0. ft. r2 arc the roots of the 
equation 

Q0(11) denotes the derivative of Q0 (17) with respect to 11 and 

i,j = 0, I, 2 and i :P j. 
·.. ;;;: 
:,~ 

The corresponding expression for L 1 (v, w) for w < v follows from cqn (17) by interchanging 
wand !1. For a Poisson ratio q =~.the values of<, -r0, r 1 and r 2 arc given by 

2 2( I - q) 
2 

3 
2 

3 
2 

3 
t = (J-2q) = 3, to= (0.9194)2' t• = (2+2}3) and t2 =4· 

lienee, in this case r2 < r 1 < I < t < r0• 

By using the series expansions of J0 and H~1 l, and evaluating the integrals arising in 
cqn (17), we obtain, after some algepraie manipulation, 

. . 

w>v. 

w<v, '(18) 

wher-~-; = 0.5772157 ... is Et1lcr's constant, 

(19) 



<. 
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(21) . 

Next, differentiating both sides of relation (14) with respect to x, we obtain . . 

Following a similar procedure as for deriving eqn (15), we get 

(22) 

where 

(23) 

For small values of m 1 and m2 such that m1 = O(m2), one can use the contour integration 
technique mentioned above and obtain 

(24) 

. By a process similar to the one which led to eqn (18), eqn (24) can be written as 

(25) 

where Pis given by eqn (21). 
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Now examining rclation,s (15) and (18), we assume the expressions of the functions 
f(t 2

) and g(!l) as "" 

f(t 2
) = / 0 (!2

) +/1 (t
2 )m~ logm 1 +O(mD 

g(u2
) = g0 (u2)+g1 (u2)mf logni 1 +O(mD. (26) 

Putting the above expressions of f(t2
) and g(rr), and the value of L 2(v, w) gi~·en by eqn (25) 

· in eqn, (22) and equating t.he coefficienu. of like powers of m 1 we obtain 

(27). 

and 

{28) 

Following Srivastava and Lowengrub (1970), the solutions of the above integral equations 
(27) can be obtained as 

(29) 

and 

(30) 

where D1 and D2 arc constants \vhich can be calculated as-follows: 
'Vc substitute the value of L1(v: l,v) from cqn (18), as wc11 as the expansions of/(f) and 

g(!l) obtained from rqns (26), (29) and (30) up to O(nli Iogm1) in eqn (15). When the 
coefficients of like powers of m1 from both sides of the resillting equation are equated, after 
some algebraic manipulation we get the following · 

i 
D _ 7W0 (X2 -X1) • D _ ~~~ j (X, -XJ) 

. I- 4rl cx,x~-X2X3)' ~- 4r2 (l,x4-X2XJ) 
(31) 

where 

(32) 

(33) 
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(34) 

l I . 
(35) 

4. STRESS INTENSITY FACTORS AND DISPLACEMENT 

The normal stress -r11(x;y) on the plane y =·0 can be found from the relations (10), 
(13), (26}, (29) and (30) .as 

(36) 

Defining the stress intensity factors at the edges ol' the strip.s by the rclatioqs 

r,y(x, 0)~~; 
1tJl.Vo 

-r,;:(x, 0)~~ 
1tJIVo 

r11(x, o);x:::-c\; 
1tJWo 

-ryy(x, 0)~,. 
1tJl.Vo 

We get 



. '· 

... • 
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(37) 

(38) 

(39) 

(40) 

The vertical displacement v(x,y) on the plane y = 0 can be obtained from eqns (9), (13), 
(26), (29) and (30) as • · 

xe/.,/3,/s (41) 

where 

5. NUMERICAL RESULTS AND DISCUSSION 

The stress intensity factors (SIF) Ken Kh, K, and K1 at the edges of the strips and 
vertical displacement !v(x, 0)/vol ncar the rigid strips have been plotted against dimensionless 
frequency m1 and distance x, respectively, for a Poisson solid{r2 = 3). . 

It is found that whatever the lengths of the strips are, SIFs at the four edges of the 
strips increase with an increase in the value of mj (0.1 ~ m1 ~ 0.6). 

From the graphs, it may be further noted that with a decrease in the length of the inner 
strip, which might be induced either by increasing "a" or by decreasing "b" the SIFs 
gradually increase (Figs 2-9). 

Also, a decrease in the value of the length of the outer strip, which might be induced 
by increasing the value of c, causes an incre.1se in the values of the SIFs (Figs IO-l3),.from 
which an interesting conclusion might be drawn: i.e. that the presence of the outer strip 
suppresses the SIFs at both the c9gcs of the inner strip and the presence of the inner strip 
suppresses the SIFs at both the edges of the outer strip. 

I 
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r 

a=O·l 

m,-... 
Fig.l. Stress intensity factor K. vs dimensionless frequency m1 forb= 0.6, c = 0.8 and for ;rl:.;rent 

values of a. 

r.z b = o.6 

t 
0·6 

0·6 

0-4 L...L_...._....._t_._....._.._._L_....._,__.,,........:l-.._.__._~7--'-..._,__, 
O·l o·z O·:l . o·4 o·s o·s 

m,-+ 
Fig. 3. Stress intensity factor ~ vs dimensionless frequency m1 for b = 0.6, c = 0.8 and for different 

values of a. 
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t 
0 

:.: 

0·1 0·2 0·4 o·s 0·6 
m,~ 

Fig. 4. Stress intensity factor K, vs dimensionless frequency m1 forb = 0.6, c = 0.8 and for different 
values of a. 

t 

0·1 o·z (,-:J 

m,--+ 
Fig. 5. Stress intensity factor K1 vs dimensionleSs frequency m 1 forb = 0.6, c = 0.8 and for different 

values of a. 
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o·a 

0·7 

0·6 

·t 
Ill 
~ 

-

m;·-
Fig. 6. Suess intensity factor K. vs dimensionless frequency m1 for a= 0.2, c = 0.8 and for different 

·, values of b. · 

I 0·8 

t 
.D 

::£ . 0·6 

0·4 

0·1 0·4 0·5 o·6 -· 
Fig. 7. Stress intensity factor K. vs dimensionless frequency m1 for a= 0.2, c = 0.8 and for different 

values of b. 
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t 
0 

-:.::: 

-, 

2·5 .------~-----------'----:-i 

2 

I'S 

a=-0.2 

C=·0.8 

m,~ 

----. 

Fig. 8. Stress intensity factor K, vsdimensionless frequency m1 for a~ 0.2, c = 0.8 and for different 
values of b. 

2·5 .-------------------------------------, 

a= o-2. 
c = 0·8 

2 

t 1·5 
:.:::; . 

m,-+ 
fig. 9. Stress intensity factor K1 vs dimensionless frequency m1 for a= 0.2, c = 0.8 and for different 

values of b. 
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0-7 ,...--------------------....., 

0·6' 

a= o.z 
b = 0'4 

m,-
Fig. 10. St~ess intensity factor K. vs dimensionless frequency m1 for a "' 0.2, b = 0.4 and for different 

' · values of c. 
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' 0·1 0·2 0·3 0·4 0·5 ! 0·6 

! m,~ ·j 
Fig. II. Stress intensity factor~ VS dimensionless frequency m, for a = 0.2, b = 0.4 and rr different 

values of c. 
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o= O·Z 

b = 0·4 

t 

Fig. 12. Stress intensity factor K, vs dimensionless frequency m1 for a = 0.2, b = 0.4 and for different 
values of c. 
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Q.l 

a ::: 0·2. 
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0·2 O·J 
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Fig. 13. Stress intensity factor K1 vs dimensionless frequeiicy m1 fo; a = 0.2, b = 0.4 and for dilferent 
values of c. 

IS 

-·-

·~. 



16 

0·95 

0·9 

t 
-o·SS 

0 

~ > 

0·8 

0·75 

S .. C. Mandai 1'1 lll. · 

a= 0·2. 

e = 0·4 

b =0-6 

c = 0·8 

X.--+-

Fig. 14. Vertical displacement lv(x, 0)/Vol vs dimensionless distance x forb= 0.6, c = 0.8, a= 0.2, 
0.4 and for m1 = 0.1, 0.2, 0.3. 
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X___.. 

Fig. 15. Vertical displacement lv(x, O)/v01 vs dimensionless distance x for a = 0.2, c = 0.8, b = 0.4, 
0.6 and for m1 = 0.1, 0.2, 0.3. 
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0·85 

0 

···· c= 0·6 
- c= o·a 

a= o·z 
b= 0·4 

0·5 

X~ 

I 
m=o· 

! I 

1'5 

Fig. 16. Vertical displacement lv(x,O)vol vs dimensionless distance x for a= 0.2, b = 0.4, c .. i>'.~. 
O.S and for m 1 = ·o.\, 0.2, 0.3. 
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The vertical displacement has been plotted for different strip lengths. It is t:9und from 
Figs 14-16 that with an increase in value oTstrip lengths, the displacement increases. 
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