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INTRODUCTION

The study of wave and vibration phenomena 1in elastic solids

has a distinguished history of more than hundred years. Some

pioneer workers in %he field of wave propagation in elastic medium

and vibrating bodies are Cauchy, Rayleigh, Love, Poisson, -

Ostrogadsky, Green, Lame, Stokes, Kelvin.

Seismology has made a tremendous progress. during the Tlast

three decades, mainly because of the technological developments,
which have enabled seismologist to make measurements with far

greater precision and sophistication than was previously possible.

Here, some of the major progress 1in the field of wave

propagation are given in chronological order.

1678 : Robert Hooke (England) established the stress-strain
relation. for elastic bodies.

1821 : Louis Nevier (France) derived the differential equations
of the theory of elasticity. '

1822 : Cauchy developed most of the aspects_of the pure theory
of e1asticity 1nciud1ng the dynamical equations of
motion for a solid. |

1828 : Simeo-Denis Poisson (France) predicted theoretically the

existance of longitudinal and tranverse elastic waves.



1849

1857

1862

1872

1883

1883

1885

1887

1899

1903

1904

George Gabriel Stokés (England) conceived the first
mathematical model of an earthguake source.

First systematic attempt to apply physical principles to
earthquake effects by Robert Mallet (Ireland).
Clebsch found the general theory for the free vibratiéh
of solid bodies using normal modes.
J. Hopkinson performed'the first experiments on plastic
waves propagation in wires.
saint Venant summarized the work on impact of earlier
investigators and presented his results on transverse
impact.
Rosi-Forel scale for earthquake effects published.
C. Somigliana (Italy) produced formal solutions to Navier
equations for a wide class o% sources and boundary
conditions.

Lord Rayleigh (England) predicted the existance of
elastic surface waves.
C. G. Knott (England) aerived the general . equations for
the reflection and refraction of plane seismic waves at
plane boundaries.
A. E. H. Love (Eng1and) developed the fundamental theory
of point sources in an ﬁnfinite elastic space.
Horance Lamb (England) made thev first 1investigation of

pulse propagation in a semi-infinite soiid.
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1911 : Love developed the theory of waves 1in a thin Jlayer
overlying a solid and showed that such waves accounted
for certain anomalies in seismogram records.

1949 . ; Devies published an extensive theoretical and
experimental study on waves in bars.

1959 : Ari Ben-Menahem (Israel) discovered that the energy
release in earthquakes takes place through a propagating
rupture over the causative fault.

1967 : Global seismicity patterﬁé and earthquake generation
1inked to plate motions.

During the first two decades of this century the subject was
not given so much importance by Matheﬁaticians or Physicists. But
Tater, interest in the study of waves in elastic solids attracted
the attention of the researchers because of. applications 1in - the
field of geophysics and engingering constructions. Since that time
in seismology the wave propagation has remained an interesting area
because of the need for details information on earthquake
phenomena, prospecting techniques and the detection of nuclear
explosions. Bullen [1963], Ewing et al [1957], Cagniard [1962],
Pilant [1979] and Aki and Richards [1980] have d{scussed about
seismic waves in their books.

During last 30-40 years the development of theory of wave
propagation in elasticity has been characterized by a detailed

investigation of the classical methods of mathematical ana]ysié and



the trends to obtain specific results. The solution of many of the
problems in elastodynamics, which are frequently encountered 1in
practice need advanhce level of mathematica] techn%que, which may
roughly be grouped into the following categories:
(a) Theory of ana1yt1c function
(b) The Fredholm 1ntegra1‘equat10n
-(c) The singular 1ntégra1 equat%on
“(d) Integral transférms and Representations
(e) Dual integral and series equations
(f) Harmonic function. Potentié] theory
(g) The Drichlet and ﬁeumann problems
(h) Green’s functions
(i) The Cauchy problem
(j) Cagniard-deHoop tec%nique
(k) Wiener - Hopf technique
(1) Riemann - Hilbert problem
(m) The method of Matched Asymptotic expansions
(n) Perturbation technique
(o) Vvariational method, The Ritz method
(p) The method of finite element
(a) The method of boundary element
and others.
While earlier investigation in the theory of elasticity was

essentially reduced to the construction of particular solution; the



invention of computer technology has led to the deveiopment Qf
general and quite_universa1 methods of solving the problems of this
theory, namely, the boundafy value problems and 1initial boundary
value problems for systems of differential equations having partial
derivatives of a definite structure.

Most of the experimental works carried out on the wave
propagation are concerned with studying propagation in specimens of
compafative1y simple geometrical shape. The results of this
experiment could be compared directly with exact or approximate
theoretical predictions. The agreement, with experimental results
and theoretical predictions, inspires confidence  in taking up .
complicated problems and makes possible theoretical predictions and
interpretations of observations.

The propagation of waves through homogeneous isotropic e1aét1c
materials of unbounded extension 1is not a subject of very
complexity. The waves are either dilatiational or distortional or a
combination there of. The picture changes radicaﬁ]y as soon as
there is a boundary. Interaction Qf two types of waves occurs, when
boundary 1is present and this 1interaction presents an inherent
difficulty in the solution of elastodynamic probliems.

More over the effect of a free surface on the generation and
propagation of waves 1in e1éstic hedium has been the subject of many
investigations ever since the discovery of existance of surféce

waves by LORD RAYLEIGH.



In general, problems which mostly attract the researchers both
theoretical and experimental, in relation to the generation and
propagation of waves in an elastic medium may be c1assifiedi as
follows;

(i) diffraction of propagating waves through the medium due
to any obstacle, cavity br a crack of any shape situated
some where in the medium;

(ii) reflection, refraction and diffraction of propagating
waves due to mixed boundary conditions;

(iii) wave motion generated due to a punch on some bounded
region of the medium;

(iv) radiation of waves i.e. the wave motions generated due
to some fixed external disturbance and propagating away
from the source of disturbance;

(v) wave motion generated in a medium when a source of
disturbance moves along the medium.

Depending on the nature of the source of disturbance, shape of
the punch or normal loading on the free surfacé and the presence of
discontinuities 1in the medium,’ different complicated problems
arise. The solution of these prob]ems need an advance Tlevel of
sophisticated mathematical techniques some of which have been
mentioned earlier.

The dynamic response of an elastic half space due to an

external load or punch on the free surface and also the scattering



of elastic waves by a finite crack or a strip 1inside an e1ast1c
medium may be investigated by the use of integral transform-
technique.

fhe propagation of waves due to the application of loads at
the boundary of a semi—infinitg medium was first considered by Lamb
[1904], who studied the axisymmetric propagation of a pulse created
by transient normal point load oh the surface of the half-space. BY
means of Fourier Synthesis ofvsteady state sojutions, Lamb showed
the predominant character of the ARay]eigh wave response. Later,
Sauter [1950] derived a closed form solution by means of an
integral superposition of p1ane harmonic waves. Many authors ha&e
subsequently viewed and reviewed the problems which deal with the
disturbance produced by a point or 1line source acting on the
sufface or buried in an elastic half-space 5} means of Laplace
transform. Pekefisv[1955] derived the exact expression forA the
vertical and horizontal components of +the displacement on the
surface of a uniform elastic half-space due to a point 1load with
step function time variation, situated on the surface and also at a
finite depth below the surface. Thiruvenkatachar [1955] derived the
exact expression for the Laplace transform of the disp]acement over
a circular region which is more realistic physically. Knopoff and
Gilbert [1959] and Lang [1961] derived the wave front approximation
by the app]icétion of saddle point method +to - the Laplace

transformed solution and Timit theorems of Tauberian type. While




Cagniard [1962] developed powerful technique of finding the
Laplace inversion for this class of problems. Mitra [1964]
investigated this type of problem 1in detail, verified Pekaris’é
result and pointed out that Cagniard’s method can be applied more
widely than either Pekaris’s or Chao’s method. This type'of problem
was then 1investigated by Eason [1964, 1966], Mitra [1964],
Chakraborty and De {19711, Gakenheimer [1871], Ghosh [1971]1 and
many others. All these are axisymmétric problems.

Very few wave propagation prdb1ems of non-axisymmetric type
have been solved. Chao [1960]'der1ved the exact solution for the
half-space problem in which the disturbance is due to a tangential
surface point load. Pekeris and . Longman [1958] . investigated thg
motion of the surface of a unifofm elastic ha]f—sbace produced by
the application of torque pulse at a point below the surface. Usihg
a modification of Cagniard’s method, Gakenheimer and Miklowitz
[1969] analysed transient excitation of the elastic half-space by a
point load travelling on the surface. All these non-axisymmetric
problems deal with the point load.

For the problems dealing with the ring load we refer Maiti
[1978], Ghosh [1980-81] and éthers. Maiti [1978] treated the

problem of asymmetric finite source, examined the effect of a

half-space of impulsive shearing traction over a circular portion -

of the surface. The formal solution is obtained by expressing the

displacement components in terms of scalar and vector potentials



and using Laplace and double Fourier transforms. The inverse
transforms are evaluated by modified Cagniard’s techinque which
yields the solution within and on the half-space in a closed
integral form. Ghosh [1980-81] treated the problem of disturbance
in an elastic semi-infinite medium due to the tofsona1 motion of a
circular ring source on the free surface of homogeneous and
1nh§mogeneous medium. Using Laplace transform and the Hankel
transform and the Laplace inversion by Cagniard’s method the
integrals for displacement are evaluated numerica11y}

On the other hand Pal and Ghosh [1987] considered the elliptic
ring load prépagating over the free surface of a semi—infinife
medium. The expression for displacement at _points on the free
surface has been derived in Hntegral form by the application of
Cagnhiard-de-Hoop technique for different values of the rate df
increase of the major and minor axes of the elliptic ring source
The displacement jumps across the different wave fronts have also
been derived. A comprehensive survey of the fie]d due to extended
'source problems has been given by Scott and Miklowitz [1964].

The probiems relating to the propagation of‘e1astic waves, due
to applied boundary tractions, in semi-infinite media containing
1nﬁerna1_boundar1es are of immense importance in seismology and
geophysics rather than of point sourcg problems 1in homogeneous
semi-infinite medium. This type of problem was f%rst considered by

Johnson and Parnes [1977]. The problem, they treated, 1is that of a



semi-infinite elastic body containing a rigid 1lubricted inclusion
whose axis is perpendicular to the plane surface subjected to an
axisymmetric concentric line load applied dynamically as a step
function in time at the pltane surface. The dynamic problem was
formu1éted interms of two potential functions which satisfy
uncoupled two dimensionhal wave equations with coupled boundary
conditions. Using Laplace transform, the integral solution for the
transformed stress and disp1aceﬁent fields throughout the medium
are obtained. The behaviour near the wave fronts was analyzed and
singu]arﬁties at the load were determined.

This type of work has been treated by Pal, Ghosh and Chowdhur1i
[1985]. They solved the problem of SH-type of elastic wave
propagating in the semi-infinite medium 'due to a ring source
producing SH-waves 1in presence of circular cylindrical cavity as
we1i as circular cylindrical inclusion in the semi-infinite medium.

The diffraction of elastic waves by cracks 1is the most
1nterest1ng branch of elastodynamics. Normally cracks are present
in all structural materials, either as natural defects or asv a
result of fabrication processes. In 'many cases, the éracks are
sufficiently small so that their presence does not significantly
reduce the strength of the material. In other cases,: however, the
cracks are large enough, or they may become large enough through
fatigue, stress corrosion cracking, etc., so that they must be

taken into account 1in determining the strength. The body of
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knowledge which has been developed for the analysis of stresses in
cracked solids is known generally as fracture mechanics. In recent
years problems éf diffraction of elastic waves by cracks are of
consfderab]e importance in view of their application in seismology
énd geophysics. Indeed in geophysical stratifications, faults occur
at the interfaces while 1in manufactured laminates 1mperfections
occur at the 1interface of the adjoining Tlayers. This stress
singularity near the edge of finite crack at the bimaterial
interface is important in view of its pracfica] application. Also
the results of resear;h on dynhamic crack propégation. are re]event'
in numerous applications. For exémp]e, a priméry objective 1in
engineering structures is to avoid a running fracture, or at least
to arrest a running crack once it 13 initiated. 1Indeed there are
several kinds of large engineering structures in which rapid crack
gfowth is a definite possibi]ity; In earth science, study of ’the

elastic fieild near about the pfobagating fault 1is also 1mportéht
from the stand point of earthquake engineering.

Whithin the framework of a continuum model, such as the
homogeneous, isotropic 1linearly elastic continuum, the <classic
analytical problem of fracture mechanics consists of the
computation of the fields of stress and deformation in the vicinity
of the tip of a crack, together with the application of a Tfracture
criterioﬁ. In a conventional analysis inertia (or dynamic) effects

are neglected and the analytical work is quasi-static in nature.
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Because of Tloading bonditions and material characteristics,
however, there are many fracture mechanics problems which can not
be viewed as being quasi—stafic and for which the 1inertia of the
material must be taken into account. Also inertia effects become of
importance if the propagation of the crack is so fast, as fpr
example in essentially brittle fracture, that rapid motions are
generated in the medium. The iabel “dynamic loading"” is attached to
the effects of inertia on fracture due to rapidly applied loads.

There are fwo broad classes of fracture mecﬁanics problems
that have to be treated as dynamic¢ problems. These are concerned
with

1. cracked bodies\subjected(to rapidly varyjng,]oads,
2. bodies containing rapidly prapagating cracks.

In both the cases the crack tip is an environment disturbedﬁby
wave motion.

Impact and vibration problems fall into the first class Of,
dynamic problems. In the analysis of such prob}ems it is often
founa that at inhomogeneities in a body the dynamic stressés aFe
higher than the stresses computed from the corresponding problem of
static equilibrium. This effect occurs when a proéagating
mechanical disturbance strikesf a cavity. The dynamic stress
"overshoot"” is especiaily pronounced if the cavity contains a sharp.
edge. For a qrack ﬁhe intensity of the stress field in the Vicinity;

of the crack tip can be significantly affected by dynamic effects.

12



In view of the dynamic amplification, it is conceivable that there
are cases for which fracture at é crack tip does not occur under a
gradually applied system of joads, but where a crack does indeed
propagate when the same system of Toads is rapidly applied, and
gives rise to wave which strike the crack tip.

The second class of problems is equally important. Indeed,
there are several kinds of large engineering structure in which
rapid crack growth is a definite possibility. Examples are gas
transmission pipelines, ship hulls, aircraft fuselages ahd nueciear
reactor components. Dynamic effects affect the stress fields near
rapidly propagating cracks, and hence the conditions for further
unstable crack propagation or for crack arrest. Anothef area to
which the analysis of rapidIy propagating cracks is relevant is the
study of earthquake mechanisims.

There have been a number of comprehensive review articles in
the general area of elastodynamic fracture mechanics.'some of them
are Achenbach [1972], Freund [1975], Achenbach [1976], Freund
[1976] and Kanninen [1978],

At present, dynamic fracture mechanics So1utfons are largely
confined to conditions where Lineér Elastic Fracture Mechanics
(LEFM) is valid. These are appropriate when the plastic deformation
attending the crack tip is small enough to be dominated by the
elastic Tield surrouqding it. Prob]ems-of crack growth dnitiation

under impact loads and of rapid unstable crack propagation and

13



arrest can be treated with LEFM by using dynamically computed
fields of stress and deformation; Engineering structures requring
protection against the possibility of large-scale cétéstropic crack
propagation are, however, generally constructed of ductile, tough
materiais. For the initiation of crack growth, LEFM procedures can
éive only approximately correct pfedictions for such materials. The
elastic-piastic treatments required %0 give precise results have
not yet been developed in a compiete]y acceptable manner, even
under static conditions.

The shapes of the cracks which have been studied uptil now are
as follows

(i) Semi-infinite plane cracks;

(ii) Finite Griffith cracks;

(i1i1) Penny shaped and énnu]ar cracks;
(iv) Non-planar cracks.

A transient problem 1nvo1ying the sudden appearance of a
semi-infinite crack in a stretched elastic plate was considered by
Maue [1954]. Baker [1962] studied the problem of a semi-infinite
crack suddenly appearing and growing at constant velocity in a
stretched elastic body. The mixed boundary value problem is solved
by transform methods 1including the Weiner-Hopf and Cagniard
techniques. Atkinson.and List {1978] considered the - steady state
semi-infinite crack propagation into media with spatja]]y varying

elastic properties. The quasi-static problem of an infinite elastic

14



medium weakened by an infinite number of semi-infinite,

rectilinear, parallel and equally spaced cracks whiphl are

subjected to identical loads satisfying the conditions of amtiplane
state of strain was solved by Matczynski [1973]. Sarkar, Ghosh 'and
Mandal [1991] studied the problem ‘of scattering of horizontally
polarized shear wave by a semi-infinite crack runnihg with uniform

velocity along the interface of two dissimilar semi-infinite

elastic media.

The powerful technique to solve the diffraction prop]em of
semi-infinite crack is the Wiener-Hopf [Noble 1958] tgchnique.

The in-plane problem of finite Griffith crack propagating at a
constant velocity under a uniform load was first solved by " Yoffe
[1951]. Sih [1968] has also provided a Riemann—H11bert formulation
of the same problem where both in-plane extensional and antiplane
shear loads were considered.

Other references treating elastodynamic prbb]em involving a
single finite Griffith crack are Loebef and Sih [1967]. Ang and
Knopoff [1964]. Mal [1970, 1972], cChang [1971], Kassir and
Bandyopadhyay [1983], Kassir and Tse [1983]. Loeber and Sih [1967]
solved the problem of diffraction of antiplane shear waves by a
finite crack: - by using integral . transform method. Kassfr and
Bondyopadhyay [1983] considered the problem of impact response of a
cracked orthotropic medium. Laplace and Fourier transfor%s were

employed to reduce the transient problem to the solution of

1183&6 15 m{fﬂ S
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standard integral equation in the Laplace transform plane and was
solved by Laplace inversion technique [Krylov et al, 1957];. Miller
~and Guy [1966].

The problems of fTinite Griffith crack lying at the 1interface
of two dissimilar elastic media have been studied by Srivastava,
Palaiya and Karaulia [19801], Nishida, Shindo and Atsumi [1984] and
Bostrom [1987]. Bostrom [1987] used the method of Krenk and Schmidt
[{1982] to solve the two—dimensiéna1 scalar probiem of scattering 6?
elastic waves under antiplane strain from an interface crack
between two elastic ha1f—spaces. Sih and Chen [1980] analyzed the
dynamic response of a layered combosite containing a Griffith crack
under normal and shear impact.

The problems of diffraction of elastic waves become more
complicated when boundaries are present in the medium. Chen [1978]
considered the probiem of dynamic response of a central crack in a
finite elastic strip. The crack was assumed to appear suddenly when
the strip is being stretched at its two ends. The problem was
solved By Laplace and Fourier transform technique. Some other
references are Srivastava, Gupta and Palaiya [1981], Srivastava,
Palaiya and Karaulia [1983]}, Shindo, Nozaki and Higaki' [1986], De
and Patra [1990].

High frequency solution of the diffraction of elastic waves by
a crack of finite size is interesting in view of the fact that

transient solution close to the wave front can be represented by an
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integral of the high frequency combonant of the solution. Green’s
function method together with a function—théoretic technique based
upon an extended w1eher—Hopf argument has been developed by ' Keogh
[1985 a, 1985 b] for solving the problem of high frequency
scattering of elastic waves by a Griffith crack situated 1in an
infinite homogeneous elastic medium. Pal and  Ghosh  [1990]
considered the problem of diffraction of normally incident
antiplane shear waves by a crack of finite length situated at the
1nterface of two bonded dissimiiar elastic half-spaces. Tﬁe problem
is reduced to the solution of a Wiener-Hopf problem. The

expressions for the stress intensity factor and the crack opening

displacement have been derived for the case of wave-lengths short

compared to the iength of the crack. Recently Pal and Ghosh [1993]
have 1nvestigated the high frequency solution of the problem of
diffrac;ion of horizontally polarized shear waves by a finite crack
moving on a bimaterial interface. Fb]]owing the method of Chang
[1971], the probliem has been formujated as ah extended Wienef;Hopf
equation and the asymptotic solutions for high frequencies or for
wave lengths which are sﬁort compared to the length of the crack
have been derived. Expressions for the dynamic stress 1intensity
factor at the crack tip and the <crack opening displacement have
been derived.

Vibratory motion of a body ~on an elastic ha1f~p1ane was

treated by Karasudhi, Keer and Lee [1968]. They considered the




vertical, horizontal and rocking vibrations of a body on the
surface of an otherwise un]oaded half-plane. The problem was
formulated so that shearing stress vanishes over the entire
surface, and an oscillating displacement is prescribed 1in the
Toaded regiqn. The problems were mixed with. respect to the
prescribed displacement and the remaining stress. Each case led to
a mixed boundary value problem represented by dual integral
equations which were reduced to a single Fredholm integral
equation.

Wickham [1977] studied the problem of the forced two
dimensional oscillations of a rigid strip in smooth contact with a
semi-infinite elastic solid. He reduced the mixed boundary value
problem with the help of Green’s function to Fredholm integral
equation of the first kind involving .'disp1acement boundary
conditions. Using Noble’s [1962] method, this equation was reduced
to Fredholm integrail equation of the second kind with a kerneil
which was small in the low frequéncy limit. Then applying the
method of iteration, a simple explicit long-wave asymptotic formula
for the normal stress in terms of the prescribed displacement apd,
dimensionless wave number K was rigorously derived.

Rocking motion of, a rigid sﬁriﬁ on é semi-infinite elastic
medium has been studied by Ghosh and Ghosh [1985] by wusing ‘a
different technique. The forced roéking of the strip about the

horizontal axis has been reduced to a soiution of a dual 1integral

18
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equation. Following Tranter’s [1968] method the dual integral
equation was solved for low frequency osci]iations by reducing the
equation to a system of linear algebraic eguations. | |

Studies of single Griffith crack as well as two parallel and
coplanar Griffith cracks have been made by Mal [1970], Jain and
Kanwal [1572] and Itou [1978, 1980 a, 1980 bl]. The coreéponding
probiems of diffraction by a singlie and two parallel rigid strips
have been solved by Wickham [1977], Jain and Kanwal [1872] and
Mandal and Ghosh [1992] respectively. And three dimensionai probiem
of mbving crack was considered by Itou [1979]. In most of the cases
the probiems were solved by integral équation technidue.

The problem involving single Griffith crack in orthotropic
medium was investigated by Kassir and Bandopadhyay [1983], Shindo
‘et al [1986] and De and Patra [1990]. Sindo et al [1991] have
investigated the impact response of symmetric -edge cracks jn an
orthotropic strip. Mandal and Ghosh [1994] considered the prﬁb]em
vof interaction of elastic waves with a periodic array of coplanar
Griffith cracks in an orthotropic elastic medium.

Recently Mandal, Pal and Ghosh [1996 a] considered the
two-dimensional problems of diffraction of elastic waves by four
coplanar parallel rigid strips embedded in an infinite orthotropic
medium. The five part mixed boundary value problem 1is reduced to
the solution of a set of integral equations. The normal stress

under the strips and displacement out side the strips were derived

19



in close analytical form. In another paper, Mandal, Pal and GHosh
[1996 b] considered the vertical vibration of four rigid strips 1in
smooth contact with a semi-infinite elastic medium. The résu]ting
mixed boundary value problem has been reduced to the sq1ution of
quadruple 1nt§gra1 equations, which have further been reduced to
the solution of a integrofdifferentia1 equations. An iterative
solution valid for 1low frequency has been obtained. From the
solution, the stress just below the strips and aliso the vertical
displacement at points outside the trips on the free surfacé have
been found.

In case of low frequency oscillations Noble’s [1563] method of"
solving dual integral equations, Tranter’s [1968] technigque for’
solving dual integral equations, Matched Asymptotic Expansioh, and
variational principle are found to be very useful technigues.

Different tecﬁniques have been applied by many authors to
ﬁaok1e these type of crack problems. From thesé stand point, these
probiems may be divided into two categories : one for low frequency
osci11ation‘of the source or long wave scattering or transmission
and the other for high fregquency oscillation or short wéve
scattering or transmission in the medium. The term long and shor£
are used in compariscon to the region of the source of. distrubance
or the size of the crack or strip étc. inside 'the medium to the
wave length of disturbance. The useful techniques for Tow freguency

scattering are due to Noble [1963] and Tranter [1968]. In case of
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high frequency osciilations Wiener-Hopf [Noble, 1958] technique and

Keller’s [1958] geometrical theory are found to be most suitable.

Here we briefly discuss some of the useful methods.

GREEN’S FUNCTIONS

The general  theory of linear equations suggests two methods

which can be used to solve the equation of the type

where L is an ordinary linear  differential operator, f a khown

function, and u the unknown function.

One mefhod is to find the operator iﬁvefée to L, that 1is, té'
find an operatof L™ such that the product Lt L is the identity
operator. We shall Find‘that the inverse of a differential operator
is an integral 6perator. The kernel of that ihtegré1 opérator will
be called the Green’s function of the differential operator. The
techniques which we shali provide for finding the Green’s function
use a tool which has_broved valuable in many branches of applied
* mathematics, namely, the Dirac 5—fqnction.

Inverse of a differentia1 operator can be obtained, following

Friedman [1966], Roach [1982], as follows:

21



Suppose that ¥ and ¢ are testing functions and consider the

equation

Ly = fid (2)

Here we assume that the inverse operator L Yogs an integral

operator with some kernel G(x,t) such that

L ¢ = j G(x,t) ¢{t) dt. (3)

Now we permit G(x,t) to be symbolic function. Applying the

differential operator L to both sides of this equation, we get
LL g = ¢ = J L G ¢ dt. (4)

This equation will be satisfied if we find g such that
LG = &(x-t), - (5)

where the differentiation 1is to be understood as symbolic

differentiation.
To illustrate the method of inverting an operator, .we consider

the special case when

then (5) becomes



G(x,t) = &(x-t) | ' (6)
dx '
This equation can be so1vea by straightforward 1integration and
using the fact that the &-function 1is the derivative of ﬁhe
Heaviside unit function and we get
d

— G(x,t) = H(x-t) + a(t) (7)
dx '

where a(t) is an arbitrary function.

Integrating again, we get

G(x,t) J H(x-t)dt + xa(t) + 3(t)

(x-t)H(x-t) + xa(t) + fi(t), ‘ (8)

where ﬁ(t) is another arbitrary function. It can be proved that any
symbolic function which is a so1ution of (6) may be written in the
form (8). Note that G(x,t) s a continuous, piecewise,
differentiab]e function, and note also that if f(x) 1is . aﬁ
integrable function which vanishes outside a fiﬁite interval, then(

it is easy to show that the function

u(x) = j a(x,t) f(t) dt (9)

satisfies the differential equation
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— = f(x) . (10)°

By the suitable choice of the.function a(t) and 3(t) we can in
general find a solution of (10) which satisfies two conditions.
Thus, to find a solution of (10) which satisfies the conditions
u(0) = u(1) = 0, we proceed as féﬁ]ows

From (9) we have

X o

u(x) = J {x~t) T(t) dt + x J a(t) f(t) dt +
w _
+ [ f(t) f(t) dt. - (11)

-

Substituting x = 0 and x = 1 in (11) we get

() w

0 = —;[ t f(t) dt + 0 + #A{t) F(t) dt (12)
- -
1 ‘ w
0 = J (1-t) f(t) dt + J a(t) f(t) dt +
- ) | -
o
r fi(t) f(t) dt. (13)

")

w
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From equation (12) we get
fi(t) = t H(-t), . (14)
and then from (13) we obtéin
Lv.(ﬁ) SN t H(t), o £t 5 1 : (15)

= 0, for all other values of t.

Substituting (14) and (15) in (9) we get

bg 1
u(x) = J (x-t) F(t) dt - xJ (1-t) f(t) dt. (16)

(8] o

So, in this case the kernel ( Green’s function )

G(x,t) = (x-t) H(x-t) - x (1-t), 05 x, t=1 (17)
also satisfies the boundary conditions

G(0,t) = G(1,t) =0 (18)

The Other Method is to find the spectral representation of L

by studing the solution of the equation
Lu = Au, : ' (19)

where X is an arbitrary constant.

Let L be an ordinary self-adjoint differential operator and

suppose that U, u, ... are its eigenfunctions and kl, hz, ... the
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corresponding eigenvalues. We  shall also suppose that the
eigenfunctions span the domain of the given operator, and that, in

consequence, any square integrable function u(x) may be expanded as
u(x) 2 U (x), (20)

where @ = ( u U ). | (21)

Now, it follows that

Lu(x) = ukALuk(x) . ‘ (22)

and if f(x) denotes a function which 1is analytic 1in a region

containing the eigenvalues, we define

£ = Y (A )a . '

(L)u(x) 2 (A, ), U, (x) | (23)
For the particuiar case when

f(t) = (A - ’c,)_1 we obtain

. o u (X) |
[ ]u(x) = Z LI | (24)
A-L Ao~ A

k

The Teft hand side of (24) can be expressed in terms of the Green’s

function for the differential operator L-x. Therefore, we put
-1
wix) = (A - L) u(x);

and we have (L-XA )W = - u.



If G(x,¥,~) is the Green’s function for the operator L-A, we have
W(X) = - J G(xsf,)'-) U(E )dl’fs ’ E (25)

and consequentiy,

[ Ju(x) = - J G(x,6,n) u(é)dé (26)
A - L

Now, integrating (24) over a Tlarge circle of radius R 1in the

complex A-plane, we get

1 u(x) 1 a u (x) '
[ V' J EE oo (27)

T S—
2 )i L L oni o=k

Now, as the radius of the cifc]e approaches infinity, the
" right-hand side of (27) includes more and more residues, and we

obtain, bearing in mind that necessarily u is also a function of X,

1 U(X) —
Lt J dn = - L akuk:(X) = - u(x) . (28)
R —m 211 L - &

I4S

This result, which connects thé Green’s function with the
eigenfgnctions, was .obtained, by making a gfeat many assumpﬁions,
such as that the eigénfunctions ‘were known and that they were
compiete. In practice, we try to work it backwards. We start with a

knowledge of the Green’'s function G(x,f;\) for the operator L-A;
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then we consider the following integral in the complex h—p]ahe;

1 u(x) 1 ' :
J dh = — [ dh. jG(x,if ;R u(d )dE, (29)
i L - A 27 .

and then, by evaluating it in terms of residues, we hope to get
(28), that is, an expansion of u(x) in terms of the eigenfunctions

of L.

CAGNIARD-DEHOOP TRANSFORMATION
Following PiTant [1979] Cagniard-deHoop technique can better
be explined taking an example. We find a solution of the

inhomogeneous scalar wave equation

—_— At — = R

ax . 8z v a2

- 2n&(x)4(z2)b(t)

&(r)é(t)

R — ' (30)
r
Taking a Laplace transform with respect to-time, we get
025 625 SZ
— 4 —— - — ¢ = - 2 nd(x)(2), (31)
x> 822 V2 |
Sow
- -st
where ¢ = J ¢p(x,z,t) e dt. : ’ (32)
. _ .



In order

modified

with the

to simplify what is to come, we shall take a slightly

Fourier transform with respect to x, i.e.,

o

= - -isgx/v
¢ (q,z,s) = J d(x,z,s) e dx , (33)
-3 . '

inverse

- 1 *oz isax/v

¢ = — j #(a,z,s) e d(sqg/v). - (34)

21T o ’ :

(sa/v)Pp + %470 25 - (/)% @ = - 2n6(z) (35)

Finally,

have

where

Inverting with

taking a two-sided Lap]ace transform with respect to z, we
[ 2 2 , 2 =
1'0 - (s/v) (g + 1) y ¢ = - 2n, (36)
m
= 1 = -pz
¢ = — J #{q,z,8) e dz
2
~x
respect to p, we have
2 1/2
= ~(s/v)(a%+1)" | z| -1/2
= (q +1) (37)

(nv /s ) e



. Inverting with respect to g, we obtain

_ tS e Pzl —2 dsaxy
¢(x,z,8) = — f e (g +1) e dg
2 4
~
= Kylsr/v) ' | (38)

The ekpression-(38) is just the integral representation of the

Macdonald function Ko(sr/v).

Cagniafd-deHdop transformation involves the following change

of varijable

- 1/2
cosf (g +1) - ig sin@ = 1 = vt/r, » (39) .

where r cos? = z, r sin? = x, and T is8 the reduced time variable as

shown in Fig. 1. Note that r-¢ system is not standard cylindrical

co-ordinates. The inverse of this transformation is

» 1/2
g(t) = it sin® + cosB (7 -1) ; (40)
Therefore
dg T cosf (q‘+1)1/2
—_ = 1 SinE) + —-— = — 3 (41)
dr (T2_1)1/2 (T2_1)1/2
. . 2 /2
The last expression comes from solving for (g +1) from

(39) while substituting (40) for gq. Taking account of the symmetry
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Fig.

1.

Two dimensional co-ordinate systems.
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of the real and imaginary parts of exp(isgx/v), we can write (38)

as

w —(s/v)(q2+1)1/2]zl + isqx/v
- e
¢ = Re da (42)

o S a® s 1)?

we cah now write this using (41) in terms of the new variable T

S

and obtain

? -st
- e dg v
¢ (x,z,8) = Re ——————T7§ — = dt (43)
2 dt r
2 (g +1)
? -st .
e v
= — dt
Re - 172 - d
(r -1)

Equation ' (43) can now be recoghized as the Lapiace transform of the

function
[ 1 v
= Re | -
PN
L (q_‘ _1) r d
looked at as a function of the time variablie "t". However, we have

to look at a few details before we can say that this identification
is valid and place proper 1limits on the integral. First of all, we

want to look at the path g takes as we let the variab1e T run from
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0O tom . For T = 0 , we have that g = - 1 cosf where the sign has
been choosen in (40) to satisfy (3%9). The variab?e‘q then»moves up
the imaginary axis to g = i sing, énd then branches out ihto the
first guadrant along a hyperbola as defined by (40) and along an
asymptote at an angle & as ‘'in Fig. 2(a). Inasmuch aé the
singularities of (42) are branch points at q = * i, we see that the
original path can be deformed 1n£o tbe dashed 1ine path as 1in
Fig. 2(b). However, on the vertical s;gment from 0 to ising we seé
that the integrand of (42) has mno rea1 part. Conseqgquently .the
Timits on (43) maylbe written

o
.~st

- : e v ]

#(x,z,8) = Re J ——'2——1—/—2- — dt l (44)
(t -1) r | ‘

r/v
By inspection we have
1 : _,
¢ = ‘ H(t-r/v), . (45)
1/2 .

( t2 - r2/v2 )
where H is the Heaviside Unit Step Function defined by

H(x)

"

X
v
(=]

= 0, X <0 (46)

There is a sharp wavefront associated with the response to a

delta-function source, but in two dimensions we aiso have a tail
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Origiral  Path

T .=C0 o q — plane
g=-LCos ’

Fig. 2(a). The relationship between the originq1 path of
integration in (42) and the path which g

takes as T varies between zero and infinity.

part here

no real

—) K
% Original Path )

q - plane

Fig. 2(b) The relationship between the original path and
the deformed path ( Cagniard Path ) in  the

compiex g-plane.



associated with the waveform 1in contrast to the delta-function

which has zero width.

INTEGRAL TRANSFORM TECHNIQUE

As the equations of motion in the theory of elasticity are
partial differential equations which may be discussed with
reference either to Helmholtz equation or to Lapiace’s equation,
the method of integral transform Tis one of ‘the most effective
methods for solving such equafions:as application of this method to
such equations results in the JOWéring of the dimension of an
equation by one. There:are several forms of integral fransform and
the choice of an integral transfo?m depends on the structure of the-
equétion and the geometry of the domain.

The integral transform f(a) of a function f(x) defined on an

interval (a,w) 1is an expression of the form

w

Fla) ='j F(x) K(x,a) dx (47)
R .

where a is a real number and « isfa comp 1ex parameﬁer varying over

some region D 6f the compilex plane. K(x,a).is called the kernel of

the transformation. The transformAtion (47) becomes particularly

useful if it possesses inverse mapping. In that case oée can

express f(x) in terms of its integral transform by
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f(x) = E%? Fla) M(x,a) da (48)
wﬁere M(x,x) is a suitable function defined ih a ¢ x < wand a & D
and is called the kernel of the inverse transform, which is defined
for all x 1in the interval (a,®). The comp1ex " is a Suitab]e path
of .integration in D. Afﬁer reducing the | governing partial
differential équation, the reduced problem can be solved for F(a).
The solution of phe original equétion can be expressed in terms of
the inverse integral, which may then be evafuatéd. The 1inversion
from the transformed épace fo the space of actua]:variab1es uSua]]y
involved very-comp11cated integrations. In many cases even the
numerical integration can no£ be performed successfully because of
the highly oscillatory character of the 1integrands ( :cf. Eringen
and Suhubi [1975], chap.7; Achenbach [1975), chap.7 ). Iﬁ
particular, mixed boundary value problems 11ké.th; dynamic response
of a punch on an elastic half-space and the problem involving the
presence of a crack or a strip inside an elastic medium may be

reduced to Fredholm integral equation of first Kkind or to dual

integral equations. -
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HILBERT TRANSFORM TECHNIQUE

If P(y) & L2(a,b), then the equation

b
[ hi{x) : o
=n , = (a,b 49

| xy dx Ply) y a,b) (49)

a

has the solution
b
2 e 12 c
noo = 1 [£2] “P__lJ_ PY) gy 4+ ———— (50)
% y-a X Y 4 (x=a) (b-x)

where C is an arbitrary constant, and the first term belongs to the

class L2(a,b).

Using the above theorem, we find that the solution to the

integral eqqation

vb 2xh(x2)
I dx = nP(y), Yy € (a,b) (51)

| N
_a y

(provided that P satisfies the conditions of the above theorem) 1is

given by

2 2.2 /2 b 2 2 /2, |
hix?)y = - [ 2 2 ] J [ 7 2 ] I A
s x“-y

C

{(x2-a?) (b2-x2)

where C is an arbitrary constant.



THE WIENER-HOPF TECHNIQUE
Let a function ¢(z) analytic in the interval y < Im 2z < Y, be

defined in the plane of a complex variable z. It is required to

express ¢(z) in the form

#(2) = ¢ (2) ¢_(z) (52)

where ¢+(z) and ¢ (z) are functions analytic in the half-plane Im z
> y_ and the half-plane im z < y+ respectively. The problem '1s
called factorization probiem. In a more general case, it is
required to define two functions ¢+(z) and @;(z) which are analytic
in the same half-planes respectively and which satisfy the

following relation in the 1interval

Alz)¢ (z) + B(z)¢_(z) + C(z) =0 | : (63)

where A(z), B(z) and C(z) are given analytic functions 1in the
interval. It 1is obvious that if ¢€(z) = 0, we obtain the
representation .(52) aftter the correspondjng 'changes - 1in the
notatign.

Let us assume that the funcpion #¢(z) which is to be faqtorised
does not have any zeros in the interval y < Im z (< y+_and tends to
infinity as x —éam . In this casé; neither of the funétions ¢+(2)

and ¢_(z) will have any zero, and we can'take the logarithm of both
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sjdes of the relation (52)
Tog ¢(z) = log ¢ (z) + Tog ¢_(2) . (54)
The function F(z) = log ¢(z) satisfies the condition
, -p
| Fix+iy) | < ¢ |x] , (P>0 for x-— w) (55)

and hence the re1at10n»(54) can always be solved with the help of

the transformation
F(z) = F (z) + F_(2) (56)

Finally, we get

F (z) F (2)
$(z) = e = . e ¥ = ¢ (2)¢_(2) (57)

If the function ¢(z) has zeros in the intervals we must consider a

new funhctionh

N/2
(2°+6%)  #(2) |
¢, (2) = & (58)
1 o,
N (z- 21) !

i=1

where z, and ai are the zeros, their multiplicity in the interval
N1 < N, where N is the total number of zeros, b > (y+, Yy ). The
factor in the numerator of (58) ensures that the properties of

auxiliary functions are conserved at infinity.

Let us now consider the relation (63) and carry out its
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factorisation into L+ and 1/L_ for the same interval of the ratio

A/B. The relation (53) can be represented in the form
L+(z)¢+(z) + L (z)2 (z) + L (z)C(z)/B(z) = 0 (59)

The expression L_(z)C(z)/B(z) can ibe represented 1in the

following form in accordance with (56)
E+(z) + E (2)

where ¢+(z) and ¢ (z) are functions analytic in the half-plane
y > y_ and the half-plane y < Y, respectively. Taking this into

account, we get
L (z)¢, (z) + E (2) = -~ L _(2)¢_(z) - E_(2) (60)

It fo1iows frém the generalized Liouville’s theorem that the
left as well as right hand side of (60) repfésents “the same
polynomial Pn(z) of nth degree.

Wiener-Hopf technique and different other techniques . for
solving paftia] differential eqguation arising 1in Solid Mechanics

have been elaborately discussed by Duffy [1994] in his book.

The thesis presented here ~consists of some boundary value
probiems in elastodynamics involving wave propagation due to some
finite source or cracks. The work has been presented 1in three

chapters. The first chapter deals with problems on moving source on
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the free surface.

The problems on scattering of waves by moving 1nterfacé crack

have been presented in the second chapter.

The third chapter deals with the diffraction brob1ems in

elastic medium.
The summary of the thesis is presented here chapter wise.

The first problem of chapter-1 has been formulated -as follows:

We have considered the proB]em of the SH-type of elastic wave
propagation in the semi-infinite medium due to a ring source
producing SH-waves in the presence of a circular cylindrical cavity
and the problem of SH-wave propagation 1h the presence of rigid
circu1ar‘cy1indr1ca1 inclusion in the semi-infinite medium due a
ring source.

An jntegra1 representation of the Dirac delta functidn
required for solving the above axisymmetric boundary value brob1em
has been derived first.

In the second problem of chapter-1, an e1i1pt1cv ring - load
emanating from the origin of co-ordinates at t = 0 1is - assumed to

expand on the free-surface of an elastic half-space. The
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displacement at points on the free-surface has been derived 1in
integral form by Cagniard-De Hoop technique. Displacement Jjumps

across different wave fronts have also been derived.

In chapter-2, the problem of diffraction of normally 1ncideﬁ£
antiplane shear wave by a crack of finite length situated at the
interface of two bonded dissimilar elastic haif-spaces has been
considered in fhe first problem. The problem 1is reduced 'td' the
soﬁutién of a w1ener—Hop¥ equation. The expressions for tHe stress
- intensity factor (SIF) andvthe crack opening displacement have been
derived for the case of wave length short compared to the Tength of
the crack. The numericé1 results for two different pairs of samples
have beenlpresented graphically. -

in thé'second problem of this chapter, the diffraction of
hqrizonta]ly polarized shéar waves by a finite crack movfng' on a
bimaterial interface is studied. In order to obtain a high
frequency solution, the problem is formulated as an extended
Wiener-Hopf problem. The expressions for the dynamic stress
fntansity -factor at the crack "tip ana the crack - opening
displacement are derived for the case of wave 1e69ths§ which are
short compared to the iength of the crack. The‘ dynamic stress
intensity factor for high frequencies 1is 1illustrated graphically
for two pairs of different types of material for d{ffgrent crack

velocities and angles of incidence.
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Ih chabter—S, first paper deals -with the problem of two
dimansional oscj11ations of four rigid strips, situated on a
homogeneous isotropic semifinfinite elasitic solid and forcéd by a
specified normal component of the displacement. Thé mixed boundary
value probiem of determining the unknown stress distribution Jjust
below the strips and vertical displacement outside the strips has
been converted to the determination of the solution of quadruple
integral equations by the use of Fourier transform. An iterative
solution of these integral equatjons valid for low frequency has
been found by the application of the finite Hilbert transform. The
normal stress just below the strips and the vertical disb]acemeﬁt
away from the strips have been obtained. Finally dgraphs are
presented which illustrate the salient features of the displacement
and stress intensity factors at the edges of the strips.

The last problem of this chapter deals with the elastodynamic
response of four coplanar rigid strips embedded 1in an 1infinite
‘orthopropic medium due to elastic waves incident normally on the
strips. The resu]ﬁing mixed boundary value problem has been solved
byAIntegra1 Equation method. The normal stress and the vertical
displacement have been derived in c1ésed analytic form. . Numerical
values of stress intensity factors at the edges of the strips and
the vertical displacement at points in the plane of the strips - for
several orthotropic materials have been caliculated and plotted

graphicaiiy.
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With this much of introduction,j we how present the thesis
chapterwise. References given in the thesis do not include ail the

previous workers in this line. But attempt has been made to include

most of theh.
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Paper - 1.

Paper - 2.

CHAPTER - 1

RING SOURCE PROBLEMS

Spectral representation of a certain
class of self-adjoint differentia]
operators and 1ts application to
axisymmetric boundary value probiems

in elastodynamics.

Waves 1in a semi-infinite elastic

medium due an expanding elliptic ring:

source on the free surface.
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SPECTRAL REPRESENTATION OF A CERTAIN CLASS OF SELF-ADJOINT
DIFFERENTIAL OPERATORS AND ITS APPLICATION TO AXISYMMETRIC
BOUNDARY VALUE PROBLEMS IN ELASTODYNAMICS

1. INTRODUCTION

In this work an ijnategral representatfon of the Dirac delta
function required for solving the axisymmetric boundary value
problem has been-derived first. This representation is particularly
suitable for problems whére mixed boundary fconditions are
encountered. Following Friedmann [1966], by contour 1ntégration of
a suitable Green’s function, integral representation of &(R - Ro)
(R,Rg > 1) has been derived. This representatibn has been used to
solve a particular type of axisymmetric problem in elastodynamics.

The problem treated is that of a semi-infinite elastic body
containing a c¢ircular cylindrical cavity, whose axis is
perpendicular to the plane surface. The semi-infinite medium is
subjected to an axisymmetric concentric torque applied dynamically
as a step function in time at the piane surface.

At first Lamb [1904] investigated the classical ﬁorma] loading

problem of an elastic half-space. Similar type of problem was

PUBLISHED IN "JOURNAL OF TECHNICAL PHYSICS" V20, 1, PPO7-115, 1985,
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investigated by Eason [1964], Mitra [1964], Chakraborty and De
[1971] and many others. They are all point source problems 1in a:

homogeneous semi-infinite medium.
The propagatioq of elastic waves, due to applied boundary

tractions, in semi-infinite media containing internal boundaries

has as yet not been studied to any Targe extent.

An'ear11er and comp#éhensive survey of the field is given by
Scott and Mikiowitz [1964]. Recently this type of work has been
done by Johnson and Parnes [1977].

We have §o1ved the problem of the SH-type of elastic wave
propagation in the semj—inf1n1£e 'medium due to 4a ring source
producing SH-waves in the presence of a circular cylindrical cavity
(case 1). The prqb1em of SH-wave propagation 1in the presence of
rigid circular cylindrical inclusion in the semi-infinite medium

due to the ring source has also been treated in the case 2.
2. INTEGRAL REPRESENTATION OF A DIRAC DELTA FUNCTION

Cons‘ider the operator L with A as a complex parameter, where

_d d . 1
L=E[r-—-]+)\_r—F (1)
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whose domain, D, i1s the set of_a]] twice-differentiable functions

u(r), a < r < «w such that
(i) r—-u-==~0 at r = a > 0
(1) the behaviour of u as r — « is that of an outgoing wave.

The solutions of LG1 = 0 which satisfy (i) are

G = A [J [v‘u}v [ﬂ.a] -y [‘fi\r]J [v’);a]], a<r<r_, (2)
1 i 1 2 i 2 (8]

and Yh are .the Bessel

Where A1 is an arbitrary constant and %

functions of the first and second kind, respectively.

Again the function G2 which will satisfy LG2 = 0 and the
condition (ii) can be written as
(1 .
G, = AH [Vhr) (acr<r<w), (3)

3

where A2 is an arbitrary constant and H‘D is the Hankel function
n
of the first kind of order n.

From Egqs. (2) and (3) the Green’s function G satisfying the
equation LG = - &(r - ru) and the conditions (i) and (ii) mentioned

above is given by (e.f. Friedmann [1966])
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G(r, r. (h) =

| HH(“('ﬁ.r‘) ' "'
s i T () 4 0 89 i) -
2H, ( Vra) :

nHii) (¥ar) A
- Ji(fhro)YZ(fka] - Yiffhro)Jz(fka) H(r—ro),

(1)
2H, _[ﬁ.a)
0 < argh < 2m . (4)
Now consider
b alr,r a)rdh | (5)
271 gttt ’

where the contour of integration in the ~-plane 1is shown in Fig. 1.
Since G has a branch point at A = 0, we introduce a branch cut in
the comp]ek.h—p1ane along the positive real axis and theﬁ take the
contour as a large circle of ra&ius R:, having the centre at A~ = 0,
not crossing the branch cut. In perms of Hankel functions Eq. (4)

can be written as

T T (1 H;Z)(“/)\a) (1) (2 .
a7 | (_ﬁ'ro)Hi (Vrr) 0. - " (‘/}\.ro)Hi (Yrr) H(ro-r) *
H, (Vra )
n L i g H;2)l:fha) W g (2 |
+mln O JH T () ————— - H T (Par)H T (P Y [H(r-r ).
: H, (vra )

(6)

49



Fis. 1. Circular contour of integration ABA’ in the A-plane.
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. . - (1) (23
fzi, the asymptotic behaviour of H (z) and H (z) are

For large |

(Lebedev [1965])

(1) ~ 2 (. nm o
H, (2) nz _eXD[ ‘[Z =1 J]’

(7)

Thus, for large values of {hl, from the relations (7) we obtain

2?2
= s

1y o NENTTI M, (ha) 2 [~ 1
HY (e YUY (e )= - exp|1¥R(r + r,- 2a) + in|,
1 O i ™ (8]

K (ha ) nlrr,

W\ iz N 2 - .
HY (Yhr JH™ (YfAr ] ~ ———— exp [ IR e o J],
* ( ”) * ( ) nJI??; ( °

(8)
(1) » Fx - (2) 5 h ~ 2 . - -
H (v&r JH (fhr ) — =  exp ivA (r - r J )
1 : 1 (8] - (8]
'n-]}\.r‘rg
If we put » = 'K, then the circle 1in the A-plane becomes a

semi-circular arc ¢ of radius R1 in the upper half of the k-plane

(shown in Fig.2.) Consequentiy, for large values of R'1 the integral
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Fig. 2. DED'- the semi-circular path of integration ¢

in the K-plane.
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(5) can be written as

{5 J[eetik(r,- D= r) + exptintrer tror) ok -

2n )
[ 6]

C

1 [r .
- — _ ' + - dk
o I Ir exp{ik(r + r - 2a)}
c :

1 !r K
= - o= F; f exp(1k,r—ruj)dk +
- -R
1

R .
1
1 r . _ _
* 5 ic [ exp {ik(r + r -z2a)}dk

1

A - sinRi(r-ro) : e sinRi(r + r0—2a) -
= - — |— + J—— . (9)
e Jr r

o r-r ' o “r+r -2a
O . O

= J

-

our object is to show that the 1integral (5) represents —é(r-rﬂ)
when R;—+m. To justify the statement, consider a testing function
@¢(r), in D which 1is continuous, has a continuous derivative of
order two and vanishes outside a finite 1nterva1.5 Then, from the

relations (5) and (9)
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o

. : 1 [ L« )
Tim f ¢(r)2ﬂ1 } G(r,rU,A)rdndr
R —w A
1
f w0 — sinR (r - r )dr
= - 1im = j b(r) I__ .
n p .
| o (r - ro)

1 <

o

: - sian(r + rO -~ 2a)dr
+ i — P —_—
lim f H(r) lro

(r + r -2a)
(]

[}

where we have used the result of Dirﬁch]et integral and

Riemann-Lebesgue Lemma (Whittaker and Watson [1963]).

Therefore
A 1 ) . ”
1im — % G(r,r ;2)rdh = = &(r -~ r ).
21 s e
R1—+m

To obtain. an alternative integral representation, which will
be useful for our subsequent app]iéation in physical problems, we
consider the contour I' (Fig.3) consisting of the real axis from k =
e to k = R1’ where 0 < p <.R1; a semi-circle C.of radius R1 above
the real axis; the real axis again from - R_1 to -~ ¢; and finally a
semi-circle y of radius g above the real axis Qith the centre at
the origin. We take 2 small and R1 iarge.

The integrand 2G(r,r0,k2) kr has no singularity 1inside the

contour I , and so the value of the integratl.



ImK

Re K

Fig. 3. FDED'F'F- thr path of integration I' 1in the

K-plane.
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1 - L2 -
: J‘u(r,ro,ka y2krdk = 0,

2T
I
R
1
. 1 . 2 1 - L2
i.e. Tl f G(r,ro,k J2krdk = - Tl jﬁu(r,ro,u J2urdu +
c ) o
g
1 2Lz
+ — | a(r,r_;e" 2rudu -
T J‘u(r 5’ U )2rudu
'{_'_.'
1 2 28 2 26
- = G e o =
o I u(r,ro,p e )2roe d (10)
0

The behaviour of Yn(z) for small values of iél is described by the

formula (Lebedev [1965])

2" (n)
Y (z) ~ -
N

n
nz

and Jn(z) is bounded for small values of ‘z‘ when n is a positive

integer. Using these results we conclude

2 21e

| Glr,r se'e e |

is bounded for small values of g&. Henhce

T
. 1 2 29, zi9 2
T1im p f G(r,ro,p e Je prde = 0.

b Xa)
F 8]
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Letting o — 0 and R1 — ® in (10), we get

- _ . 1 2
&(r rU) = 1im T f G(f,ro,k Y2krdk
R —w
4 C
)

1 2 . 2 2im
= 5 f [ G(r,r k") - a(r,r ;ke™") ]Zkrdk. (11)

J (kr )+1iY (kr ) J (kr )=-1iY (kr )
n[ 1 0 1 o 1 o 1 o ] .

Jz(ka)+iY2(ka) Jz(ka) - 1Y2(ka)

x [u (kr)Y_(ka)-Y (kr)J (ka)] H(r -r) -

M A

J (kr)+iY (kr)  J (kr)-1Y (kr)
[ 1 1 1 1 ] y

Jz(ka)+1Y2(ka) Jz(ka)—in(ka)

« [ Ji(kr}’)Yz(ka)-Yi(kro)Jz(ka)]}4(r - r,)

i [ v, (kr)Y, (ka)=Y (kr)J (ka)][ J, (kr )Y, (ka)-Y (kr )J_ (ka)]
= 11

o2 (ka)+y

NN

(ka)

Substituting this expression in Eq. (11), we get

o
-~



&(r- r ) =
%)

Mo, (ke )Y, (ka)=Y (ke )d (k)] [V (kr)Y, (ka)=Y (kr)J (ka)]

=J > > - rkdk
Jo(ka) + Y (ka)
2 2

O

(12)

Substituting r/a = R, ru/a = R0 and ka = ¥, Eg.(12) can be written
as

&(R-R ) =
(4]

w & (v ) - , W T v ) —- (% Vv
[, GRY, ()-Y (¥R I, )] [V GRIY, (r)=Y (¥RIJ, ()]

Ry dy

i
e

2 2,
Jz(}') + Yz(}')

[0

(13)

Since &(R —RO) is symmetric with rgspect to R and RU, then, on the
righﬁ-hand side of Eq. (13), R and R0 can be interchanged. So we
write
é(R—RU) =
N r[dl(yRo)Yz(r)—Yi(yRO)JZ(r)J[J1<yR)Y2(r)—vi(ijJz(y)]

=R, [ . - dy .
- L)+ Y ()

(14)
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3. FORMULATION AND GENERAL SOLUTION ( CASE - 1 )
Case 1. We shall now use the integral representation 6f the delta
function given by Eg. (13) to derive the time dependent response of
an isotropic linearly elastic ha1f—space'conta1n1ng a cylindrical
cavity of radius a due to a ring source. The axis of the cylider
considered as the z-axis, which 118 perpendicular to the plane
surface, is directed downwards (Fig.4). A torque is applied on the
free surface of the half-space over the rim of a concentric circle
of radius r = r0 ( r0> a ) for t 2 0. fherefore on the cavity

surface r = a

6 - Yg -
T . = u[ _— - = J =0 (15)

‘and on the plane surface z = 0

du
(="
- =y —

= &(r -r, JH(t) ( adree, r >a ), (16)
gz

where ¢ is Lame’s constant, ¢ is the Dirac delta function and H is
the unit step function.

Now the only non-zero equation of motion is

o2 ] 22 42
du._ 1t du, d u, u, 1§ u,

=Y 2 9 9 =

. T * z Tz z ' (7
or r or gz r i3 gt
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Fig. 4. Geometry of the probiem.
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where {3 = J t/g is the shear wave velocity.

Changing the independent variables (r,z,t) to the

no-dimensional variables (R,Z,T) defined by

-~ r
- z 3 0
R = r , 2 = = , T = it , R = el . (18)
a a a - [4] a
the above equation reduces to
2 42 “2
d u. 1 du, g u. u. J u._
=y & © ) &
z o — 7 z - =z ° 2 (19)
IR R @R az R or
and boundary conditions become
oo au, ; u,
=] =) .
.I-!'.‘;_J = - —_— ——-] = O on R = 1 (20)
) a - 4R R
and
o du. 1
T, =——=—5&(R - R JH(t) on Z =0, (21)
(25 - (5]
a gz a .

Now, taking the Laplace transform with respect to
"nondimensional time (r) and assuming the Homogeneous initial

conditions

Eg. (19) takes the form
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G ——9+ °_ = . s2 u. (22)

o
where u. = f u_~eS ar . (23)
& @

0
Take solution of Eq. (22) in the form

L¥

u (R,Z,8) = | [Ai('*"'”i(""'R“Bi“")Yi(i"R)

| E— |

]

where y is real, J1 and Y1 are Bessel functions of the first and

second kind respectively.
Using the boundary condition (20), we obtain
J G

B(y) = - A() z ) (25)
! Y (#)

Substituting the value of 510’) in Ea. (24), we have

oo T
l52+'1-'2 -
! “dv, (26)

U (R, Z,8) = jA<;s--)[Jiu-ﬂwz(;v-)—ch;-fwi(}-:R)]e -

0o

whére A(y) = . | (27)

Therefore the transformed stress component reduces to
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[6.0]

~ 'L.! q - - 7
t == [AG) 74 C (¥R) o a4y, (28)
& L 2
[4])
where Cz(yR) = Jz(y) ri(rR) - Yz(y) Ji(yR). (29)

Now, using the representation (29), Eq. (14) becomes

£ ¢]
yCZ(rR) Cz(yRo)

S(R-R ) = R j . . dy . (30)
J_(y) + Y ()
[8] 2 2

Using Egs. (21), (28) and (30), the value of A(y).is'obtained as

R ycz(yRD) .
A(p) = — . (31)

z 2 172 z Z
ps (84 )T (U () + Y ()

~

Therefore u, becomes

R " C (*R) C (#R ) [ 2 2 -
2O (e -
- f z 2z 12:2 2 — 2 eV TS de’"- (32)
pus  (p4sT)TTT U r) + Yo (1))
O 2 2

On the plane boundary Z = 0

[0 4] _ . .
ey < [T 50
R - 2 2. 1/2

— 2 dr. (33)
us (y +s ) {Jz(y) + Yz(y)}

Now, introducing the change of the variable ¥ = sf into the above

expression (33), we obtain
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o

~ R {C_(s{R) C_(s{R_)
2z 2 ¢ o
U, (R,0,8) = - = [ —————— — dt . (34)
uo (L +1) {J_(si) + Y _(si)}
4] 2 2
Next, using
Y (sfR) + H 2 (sR)
o n h
J (s{R) = - (35)
] .
and
H;“(ssz) - H;‘z}(s{R)
Yn(st'R) = , (35" )
21
we obtain
C (stR) =.J (sf)Y (slR) - Y (sf)J (sfR)
2 2 1 2 1
! (13 (25 N (2> (1)
= p— [ H (stR) H (s{) - H (st{R) H (SE)] (36)
) 1 2 i 2 »
21 . :
and
- 1 - (2 - (2 . (1 - .
C (siR ) = —[H‘ "(sfR ) H P (s - P (slR ) MUY (st )]. (36" )
2 (s , 1 O 2 i [8) 2
21
Also
z . . 2, . (1 (2
X + P C = 2 I24 E N 4
JZ(SQ) Yz(sg) H2 (s) H2 (st ). (36" ")
Therefore, Eq.(34) becomes
~ RL’) N 2:
U,(R,0,8) = = — [ ——— F(R,R_,s() o[ , (37)

4
H o j(ij2+1)
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where

F(R,Ro,si.,) Fi(R’Ro’SL‘) + FZ(R,RO,SA)

Fi(RO,R,sg) + FZ(RO,R.SQ)

F(R_,R,si) (38)
¥]

and

1y, ..
{2 (1) (2 ' H2 (L) -
H; '(sfl'.‘?‘){Hl (sta) - HZ(sla) - } ,  (38")

H; (st) -

Fl(ﬂ,x‘%’,s&‘,’ )

3\
7

12 -
o [ W) - (2> - (1) . HZ (SQ) ' ’
Fz(a,;?,sz;) H, (s{f3){H, (sf{a) - H (sf[ot) ———— . (38"")

(o W)

H e
2 (s )

Using the asymptotic values of the Hankel functions for a Targe

argument, it can be shown that

(39)

[ F (R,R ,si) 2 -isf (R_~R) -isl (R+R_-2)
| 0 l- (4] 4} -]
: ————————Le + e J
-2 .
J(é.j +1) nsi JRR_
) (4]

N ¢ Fi(R,RG,st':) A
as js{, — m , showing that vanishes over a large

J('z':""m

circular arc in the forth - quadrant of the complex ({-plane for

R <R.
o]
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Also

{ F_(R,R_,sl) 2 isl (R -R) isl (R+R ~2)
bt —_ — [ e + e ] (39’ )
-2 .
l(é; +1) sl jRR_
|8}
[ F,(R,R ,sl)
showing that vanishes over a large c¢ircular arc 1in

lac2en)

the first quadrant of the complex {-plane for R<Rg. Therefore, for

R >R,
[R
{ F_(R ,R,st ) ‘ { F (R_,R,s{)
2 18] 1 18 )
and

l?en) - Lt

vanish over large circular arcs in the first and fourth quadrants,

respectively, of the complex {-plane.

Denoting the responses for field points inside (R < Ro) and
outside (R » Ro) the source by the subscripts I and O respective1y,
we have fTor points inside the source (R < Ro)

o P

. UBI(R,O’S) = - —J‘ - [ FZ(R’RO,SE) + F1(R1R0!Si: )]d(: (40)

o {@ie1)

and for points outside the source (R » Ru)

~ [s] ; - ' P o F

uéo(RvosS) - - - _—[FZ(RU,R,SQ) + F:I.(RL'J’R’SL' )]d'!-,- (40 )
-2

O (L +1)
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In order to evaluate

£
R, (.
- — [ ——— F(R,R ,sl) di, (41)
2 &)
4u

~

which is the first part of uQI(R,O,s) we note first that the

integrand has branch points at ¢ =>i i and aiso has a branch point

at the origin of coordinates due to the presence of Hankel

functions in the integrand. The integrand has also poles which

v, .. .
correspond to the zeros of H; (s{ ). From Eg. (32) we note that in

~

order that u (R,Z,s) may be fipite for large positive values of Z,

(fz+1)1/2 should have a positive real part on the path of

integration. Accordingly, we draw cuts parallel to the real axis

from +i to ~w+3j and from -i to @i to satisfy our requirement. A

cut along the negative real axis from the origin is also drawn to

make Hankel functions single valued

R £
- —= ———— F.(R,R_,s{)
2 3]
4y 2

€ +1)
is now integrated along the quadrant of a large circle lying in the

first quadrant of the complex {-plane as shown in Fig. b5a. Since

poles of the integrand are out side the path of integration,  the

integral (41) becomes
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Fig.

x

5.

bl

Branch point
Branch cut
Poles

Integration paths in the complex £ -plane.
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Using the relations

e

H1 (iv)

1

i)
1

w bty Ja -

+ f ———— F,(R,R ,isv)dv ] . (42)

FQ(R,RQ,isv)dv +

© .
v

1 1J(v2-1)

2
- - K (v)s
1
14

2 A
~ Ki(v) + ZiIi(v),

" (43)
" 21
H, (iv) = — KZ(V),
'H
2 21
HZA(1v) = - 212(v) - — KZ(V),
T
wé‘have
41 . Iz(sv)-
F (R,R ,isv) = = — K (svR ) {I (svyR) + K (svR) ——————}. (44)
2 0 1 [s) 1 1
11 : Kz(sv)

Therfore, the expression (42) becomes

LT 2
' 0 4(1 -v )

(8]
-—
S P

( I (sv)
K (sz_)1 I (svR) + K (sVvR) I }dv.
1 U\. 1 1 .

- Iz(sv)
K (sz_){ I (svR) + K (svR) ———— }dv ~
1 o] 1 1

Kz(sv)-

Kz(sv)
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The second part of u&I(R,O,s) is equal to

R m ;
- 2 [ ——— F(R,R sl )l (46)
1 g .
au ¥
o

{%en)

we draw cuts from +i to «+i and from -1 to —w-j as shown 1in Fig.

(5b). A cut from the origin along the negative real axis 1is also
drawn to make Hankei functions single valued.

Taking a quadrant of a large circular contour in the fourth
quadrant (Fig. (5b)) and noting that the poles of Fi(R,Ra,SZ) lie
outside the contour, the integral (46) takes the form

R0 ! \%
;; [ f ——————;-F1\R,RO,—1sv)dv -
' O j(1 -v )
m
. v i
- f-——-—— F (R,R ,-isv)dv J (47)
1 0

1 1'J(v2—1) ’
| |

Using the relations

N

HY(-iv) = — K (v) - 211 (v), |
1 1 1 i
T !

|

(2) 2 | ' !
H1 (=iv) = - ; i«i(V), . ‘s
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21
L)

HZ (-1iv) = - ZIZ(V) + ;— Kz(v),
\ 21
H;Z'(—iv) = - — K, (V) (48)
F14

the expression {(47) becomes

iRO Y ( IZ(SV) ~
j Kl(szU)ﬁ Ii(sz) + K1(SVR) Jdv. -
. | = :
po J(v2—1) Kz(sv)
R “ Vv Iz(sv)
8}
- j Ki(szo) { 11($VR) + Ki(sz) —_— }dv. (49)
LT ) I(V2“1) . Kz(sv)-
Adding the relations (45) and (49), we obtain
. 2R, oy
U, (R,0,8) = - | — K (VR ) x
H J(v2—1)
X {Ii(sz)+K1(sz)—————— dv (50)
' Kz(sv)-

Similarly, it can be shown that

~ ERU v
Uyo(Ri0,8) = - | ———= K (sVR) x

. Iz(sv)
X { I (svR ) + K (svVR ) ——— }dv. (50" )
1 o 1 0
Kz(sv)

71



Laplace inversion of the relations (50) is now taken to obtain

the displacement of points inside the source. Therefore

o0

1 ZRO - v ~ .
Uy (R,0,7) = = — — [ e ®ds [ ——— E(sv)av, (51)
21 un Br . i(v2—1)
where
~ : IZ(SV)-
E(sv) = K (svR ) {I (svR) + K (svR)— }. (52)
1 (8] L 1 1

Introducing the

of integration

UEI(R’O'T)

where

K (sv)
2 .

change of variable p.= sv, and changing the order

2R 1 1 -
= - o f dv [—' f e(T/V)D E_(p) ap :}
wmo l(v2—1) | 211 ar
2R oy
= - f E(t/v) dv, . (53)
oo

1 J(v2—15

1

E(r/v) = £ { E(p) }.

~

We note that E(p) possesses no poles and is analytic for p >

0. It has a branch point at the origin and therefore a cut is drawn

from the origin

along the negative real axis of the complex p-plane

~

in order to make E(p) single valued.

Drawing a large semi-circular contour to the right of the



Bromwich path AB in the complex p-plane, we conclude that E(7/v) =

0 if the integral

over the semi-circular arc BC'A (Fig. 6).

Now
1 . (T/Vip
= - E d
E(p) = | E(Pe p
BC' A
1 M . (TI/V)p
= - : dp -
271 J K1(DR0)11(DR)8 P
" BC'A
I (p)
1 2 (T~ Vi
- = f K (pR_)K (pR) e P dp. (54)
2T 1 g 1 K (p)
BC' A 2
Since
1 2 ]
— - R -R1] p
TV \Y ¢
"V K (PR IT (PR) " —— e @
ZpJRRn
and
I (p) 1 [ .- (R+R -2;]p
QT/WDKi(pRO)Ii(pR) Z ~ e 7 © as |p| — @

K, (P) 2p{RR,

then the first integral on the right hand side of Eg.(54) vanishes
for 0 < t/v < (RU— R), whereas the second integral vanishes for

0 <1/v < (R + R0 - 2).
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Fig. 6. Laplace inversion contour.



Therefore

" 0, for 0 < 7/v ¢ (R~ R),
g
E(T/v) = { e’ (t/v), for (R, - R) < 1/v ¢ (R + R -2), (55)
L EE(T/V), - for (R + R0 -2) < T/V.
where
e'(z/v) = £ [ K.(pR ) I_(pR) 1,
1 8] 1
(56)
R a1 Iz(p)
E (t/v) = & [ KI(DRU) Il(DR) + Kl(DRU) Kl(DR) Kz(p) ]

For value of T/v lying in the range (Rﬂ— R) < v/v < (R + Ra -2)

1

5} A (T 2V
E(t/v) = E(r/v) = — [ K (PR ) I (pR) & " dp.  (57)
271 .
Er
Therefore, putting r/v = (RO—R+y),‘where y >0
o . 1 ‘ pRO -pPR vp
E (RO—R+¥) = ;;: J'[ Ki(pRo) e ][,Ii(pR) e ] e’ " dp.

Br
From the Laplace inversion table Erdelyi [1954], we find that

- ‘ PR, = H(y) (y+R )
£ K, (PR = VTR
. R {y(y+2R }7

and
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T o ] ~ [H(y) - H(y-2R)1 (R-y)
27 1 1 (pR) e P =
[ ]

nR {y(2r - y)}*7?

So by the convolution theorem

[H(n)-H(n-2R)] H{y-1n)(R-11)(y-1+R )

D - r (8] "

E (RO—R+y) = ] - — dr;.  (58)
7RR [n(ZR—w)(y-n)(y-n+2R0)]

For 7/v lying in the range (R -R) < 7/v < (R+R -2), /v must be
less than (R+R0), i.e. y < 2R.
Therefore we can write

. ’ (R=1) (y=1+R) |
E (R ~Rty) = j _ — di.
TRR [w(zR—n)(y—w)(y-n+2R0)J :

So
E(T/v) = E-(1/v) =

T /u -0 D%
- o A% %

o (R=-1n)(T/v+R-71) dn :
= o (59
:HRRU[Q(ZR—n)(T/v—RU+R—W)(T/V+R0+R-n)]

for (Ro—R) < (1/v) < (R+Ru—2)'

For values of 7/v satisfying the condition 7/v > R+Ro_2’
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E(t/v) = E(T/v) =

i

I (p)
= — . . 2 (T-VIP
= - f[Kl(DRO) Ii(DR) + Ki(DRO) K1(DR) W] a dp. (50).
By

This 1integral 1is equal to the ' integral along the large

semi~circular arc on the left side of the Bromwich path AB plus the

integral on the two sides of the -branch cut (Fig.6). Since the

integral on the large semi-circular arc vanishes, then Eq. (60)

becomes

o
1

E(T/v) = — [ —f E(neuz)é*T/Wndn +
2ni

0w

.\ f E(ne—uz)eﬂranndn]_ (61)

Using the reltations

and
+in Fiwn

Kp(ﬂe ) = e Ku(n) T in Iy(n),

we obtain (for t/v > R+R0—2)
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L6

E(r/v) = E(t/v) = - |

_ ~{TsVIN
UZ(R,U) UZ(RO,n) e

2 2 2
KZ(W) + 0 I (n)

[\

where Uz(x,n) = Kz(n) Ii(x,n) + Iz(n) Ki(x,ﬁ)-

Substituting these values of E(r/v) in Eg. (53), we obtain

uQI(R,O,T) =
T

ZRO f N ry r r+r -Za] a 1 o
= -2 lH[t -] - H{t - 1 E”(1/v) dv +

Mt s rj 1 v -1

T .
_R - R+R -2 .
r+r0—2a‘ Ro R )] o 4] 1 R
+ H{t - 'f E (t/v)dv + f E (T/v)dv} ,
2 T v -1 1 vZ-1 o

(63)

where the values of ED(T/V) and ER(T/V) are given in Egs. (59) and

(62), respectively.

Similarly, taking the inverse Laplace transform of Eq. (40’'),

the displacement UQO(R,O,T) on the free surface outside the ring

source can be derived and it is found that
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T
R-B
- e}
2R [ - r—ru- . r+ru—2a. 1 D
= - == JHlt - - Hit - J f F (t/v) dv +
U l i3 i3 . Vi
T T
. R-R R+R -2
_ r+r0—2a Qa 1 D 4] 1 R :
+ Hjt - ] f F (t/v)dv + f F (t/v)dvyl|,
i3 2 2
T v -1 1 v =1
R+R -2
Q
(63")

where F (r/v) = Ex(t/v), and

T/V—m_go> (Ro—n)(T/V+R0—n)dn

FD(T/V) = 12
nRRO[n(ZRO—n)(T/v—R+RO—n)(T/V+R+R0—n)]

(64)

First, the‘integra1s of Eq. (63) are the displacements due to a
direct wave from the ring source before the arrival §f the waves
reflected from the wall of the cy1{ndrica1 cavity. The 1last two
“integrals together give the displacement after the arrival of the

reflected wave.
In order to obtain the response in the vicinity of the SH-wave
front, we consider the displacement profile immediately behind the

direct outgoing SH-wave. Accordingly, we shall have to study the
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first integral of Eg. (63’ ) because it gives the response of the
direct SH-wave before the arrival of the reflected wave front.
Let R = R + T and R = R - =R where R and R denote
s 0 s s 3! s s
points at and immediately behind the SH-wave front, respectively,
£ is a small positive quantity.

Then

= ' (65)

and

1+ —] = a(). (say) (65 )

s
I
0
-3

Substituting these values in the first integral of Eq. (63"), we

obtain
ueo(R ,0,7) = 0,
and
or  T) 1
-— 0 D -
u, (R ,0,7T) = - — { F (R ,R ,T/Vv) } dv.
20 s | &)
[T 1 {(v=1)% Jv+1
Therefore, we can write
) 2R_ atz)
Uyo(Rg +0,7) = = — . | V(v)dy, (66) .
uom v-1 ~

where V(v) is analytic portion of the integrand. For small value of
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s expanding V(v) by the Taylor’s series about the point v = 1 and

integrating term by term, we obtain

4R R

ueo(R; , 0,7T) ~ - — V(1) [ L ] Pl (say), (67)
un T

where A is a constant.

It therefore follows .that the displacement component s
continuous i.e. there is no jump in displacement across the direct
SH-wave front.

Next, in order to consider the behaviour of response Jjust
under the ring source, it should be remembered that the integral
representations of transformed displacements given by Egs. (50)

were derived from Egs. (40) assuming tha£ R #~ Rg. For R = RU the
integrals along large guarter c¢ircles 1in the firsﬁ and fourth
guadrants should be reexamined; In  this case it 1is found that
though the contributions from the integrals along large circular
arcs in the first and fourth qgadrants are not separately zero, but
the combined sum of the 1ntegfa1s along the targe arcs in the first
and fourth.quadrants of the €—p1éne ( Fig. 5a and 5b ) vanishes. So
the transformed displacements for R = Ru are also given by Egs.
(50). Making R — Rui, it can easily be shown by help of Egs. (50)

that the displacement has no jump discontinuity across the ring

source.
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Therefore, in order to derive the nature of the displacement
as R — Rg, any one of the relations (63) may be studied. Consider,
for example, the displacement at field points outside the source
given by (63" ). As R — RD, the upper 1imit of integration T/(R—Ro)
—.m,

Further, as

"

v — — w,
R-R
0
1 1
—_ - . (68)
Vi1 v
and
b 1
Fr(t/v) — — (68" )
2R
o
Thus, from Eq. (63')
2R o1 1
1im wu__(R,0,T) = - — f "= ——— dv + (69)
&0
R—R U n v 2R
Q N 0

+ a finite quantity, where N is large.

The integral is found to contribute a logarithmic singularity

to the displacement just on the ring source.
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4. FORMULATION AND GENERAL SOLUTION ( CASE - 2 )
Case. 2. 1In this case the probliem considered is the same- in all
respects with theAfirst, except that tﬁe cavity of the'radius a has
been replaced by a rigid cy11ndrica1 ‘inclusion of the same radius.
The cylindrical inclusion being in welded contact with the elastic
half-space, there is no relative displacement at the interface. 1In

this case, the condition on the cylindrical boundary is u.,=0 on r =

a. In order to solve this prob1em,.we take the solution 1in this
form:

~

u, (R.Z,8) =
w |
l 2 prd
= [ [ AW, GR) +B ()Y (R ] e S g, (10

O

~

where ue(R,Z,s) is the Laplace transform of ue(R,Z,t) with respect

to t. Now, using the boundary condition

we have

J (r)

(71)

BG) = - AG)

Y (r)
1

~

so u_ becomes
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u (R,Z,s8) =

X
2 pA
J'v +s Z
’ d

= [ A, GRY () - 9 GV R)]e v,  (72)
s/
1 AZ (;V)
where A(y) =
Y )

Therefore, the transformed stress component on the free

surface Z = 0 is

@
~ ) ‘u
T - _ _ FA | . '1-'2 2 y y
Le_Z(R,O,S) = J A () jl +s b-.l('R) d'v' (73)
a .
a
where
C (¥R) = J (yRY)Y (¥) - J (¥)Y (yR), (74)
1 1 1 1%
~ 1 |
. (R,0,s) should be equal to — &(R - R ). 1In this case, the
&z . as o

required integral representation of the delta function can be
obtained from the following expansion formula given by Titchmarsh

[196217:
0

f(r) = |

(4]

(L, CrY, (Ca) - 0 (Ca)Y, ()]

> p di X
J (fa) + Y ({a)
1 1

o

x JEFE) [V, @Oy, Ta) = 0, (Ta)y, ()] df, (75)

a
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where f(r) is a suitably restricted arbitrary function.

Putting f(r) = é(r—rg),

f(f) = &F-r ), where .r > a > 0,
4] |4
we get
&(r-r ) =
« 00 Er)Y (Ca)-Jd (fa)y (Erm]lJd Er )Y (fa)-Jd (fa)Yy ({r )]
1 1 i 1 1 0o 1 1 1 0
:r‘.f - " 2 di .
© JS(Fa) + Y (fa)
(] 1 1
(76)
r ro
Now putting, — = R, — = RO, fa =%, we have
a a
S(R-R ) =
0
o

yoLd GRIY ()= Y, PRITLY, (PRY (#)=d (#)Y (#R )]

2, 2.
Ji(?) + Yi(;)

so by the relation (74)

© c, (¥R) C_(yR.)
5(R-R_) = R, f 2' > dy . (77)
J (F) + Y (¥)
(8] 1 ‘ 1

This result can also be obtained by the following technique already

deve1oped in Section-2 of this paper.
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Now, we find the value of Al(r) as

1 RO :‘V C;l (;‘VRO) 1
CA(p) = — (78)
US 2 JZ(V)+Y2(”)
- 3 +s 1 k) 1 g
Therefore u. becomes
o
~ R, ¥ C,(yR) C (¥R))
u,(R,0,8) = — [ dr . (79)
s z 2 2 -
: o 1y +s { J (¥) + Y (¥)}
1 1
Carrying on a similar procedure as followed to obtain the

displacement in the case

ueI(R,O,T) =

1, we find that in this case

X
‘ RO—R
ZRO_’ ro—r r+r0—2a 1 o :
= — H(t - ] - H[t - ——————e] f E (t/v) dv +
, L L ;)
L f? f> 1 vi-1
T T
. R -R R+R -z -
_ r+ro—2a\ o 1 b O 1 R , [
+ H{t - j | E (t/v)dv + f Ei(T/v)va
3 L T v2—1 1 v2—1
R+R -2
Ll
(80)

and
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T
‘ R—Rn
2R I"[ . r=r - . r+r0—2a\] T L
= — H!t - j - Htt - J f F (t/v)dv +
urt HL 3 i3 j 2
1 v -1
T T
. r+r0-2a‘( R_Ru 1 5 R_R0+z 1 N ]
+ H[t - Ii [ F (t/v)dv + f F (t/v)dvyi,
L J J 1 j
i3 L 2 2
T v -1 v -1
R+R -2
(&)
(81)
D
where ED(T/V) and F (7/v) are respectively given by Eq. (59) and
(64) and
. . w U, (Rym) U_(R_,7) RARK
E (t/v) = F (t/v) = ~ dn (82)
1 1 2 2.2
0 K (n) +a I (n)
1 1
where
= (83)

UGLn) = K () I (xn) - 1 () K (xn).
1 1 1 1 1
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WAVES IN A SEMI-INFINITE ELASTIC MEDIUM DUE TO AN
EXPANDING ELLIPTIC RING SOURCE ON THE FREE SURFACE

1. INTRODUCTION
Since Lamb’s original study of the elasitc wave produced by a
time-dependent point force acting normally to the surface of an

elastic half-space, many authors have elaborated on his work.

Aggarwal and Abolw [1967] discussed the exact solution of a class
of half-space pulse propagation problems  generated by impulsive
sources. Gakenheimer and Miklowitz [1969] used a modification of .
Cagniard’s method [1962] to discuss the disturbance created by a
moving point load. In case of finite sources, tHe most widely
discussed model is that of a circular ring or disc 1load. Mitra
[1964], Tuphoime [1970] and Roy [1875] have studied the various
aspects of the same problem. Elastic waves due to uniformly
expanding disc or ring ioads on the  free surface of a semi-infinite
medium have been studied extensive1y by Gakenheimer' [19711. The
axisymmetric problem of the detefmination of the displacement due
to a stress discontinuity over a‘ uniformly expandihg circular
region at a Certain‘depth below tHe free surface has been studied

by Ghosh [1971].

PUBLISHED IN "INDIAN J. PURE APPL. MATH.", Vi8(7), PPG48-G74, 1987.
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However exact evaluation of the displacement field for finite
source other than the circular model does not seem ﬁo have been
attempted much 1in the 1literature. Burridge and Willis [1969]
obtained a solution for radiation from a growing elliptical crack
in an anisotropic medium. The problem of an elliptical shear crack
growing in prestreséed medium has been solved by Richards [1973] by
the Cagniard-de Hoop Method. Roy [1581] also attempted the same
technique to siove the probiem of elastic wave propagation due to
prescribed normal stress over an elliptic area on the free surface
of an elastic half-space.

In our probliem, we have _considered the propagation of
elastic waves due to an expanding elliptical ring 1load over thé
free surface 6f a semi-infinite medium. The expression for
displacement at points on the free surface has been derived in
integral form by the application of Cagniard-de Hoop technique for
different values of tHe rate of increase of the major and minor
axes of the elliptic ring source. The displacement jumps across the

different wave fronts have also been derived.

2. FORMULATION OF THE PROBLEM AND ITS SOLUTION
Let an elliptic ring load P acting normal to the surface of an

elastic half-space emanating from the origin of co-ordinates expand
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in such a way that the rates of increase of the major and minof
axes of the ellipse are a and b respectively, a and b being
constants. Major and minor axes of the ellipse are taken to
coincide with the x and y-axes of co-ordinates where as i—axis is

taken vertically downwards into the medium (Fig. 1.). Thus we have

on z =0
(- 2 -2 2 -2 1,2
P é[t - (x a +y b ) J
T = - ' (1)
zz oz -2 2 -2 1/2
(x a +yb )

4
13
~3
1l
(=]

where P is constant and ¢ is the Dirac delta function.

The displacement field inside the elastic medium (z 2 0) is

given interms of potentials ¢ and ¥ as

_—}
u =Vd+¥ =2V x (ey)
where
2
2 1 4@ ¢ . T g w
Vo= o — V= — — (2)
. dt cJdt
d k=

ex, e , € are unit vectors along co-ordinate axes and cd and c
v z ] .

are the p- and s-wave velocities of the medium.
In order to obtain solutions of wave equations (2), we

introduce Laplace transform with respect to t and denote it by bar

and also introduce bilateral Fourier transform with respect to x
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Fig.

1.

Geometry of the problem.
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and y to supress the time parameter t and the x, y space

co-ordinates. Taking Laplace transform with respect to t(-) and

also bilateral Fourier transform with respect to x and y (&), ‘the
transformed boundary conditions are
= Pab s X
Tzv = - 2.2 2 2 2 4.2 Twz = Tvz =0 (3)
- (a8 + by +s8 )7 C :
Then satisfying the transformed boundary conditions (3) and

performing the inverse Fourier transform, the Laplace transformed

displacement field can be written as

Ui(x,y,zfs) = Ujd(x,y,Z.s) + Uig(x,y,z,s) (4)

for j = x,y,z

where

Uj(., (x,y,2z,8) =
—11

T ow
: 1 2 Irz u " " F .;;' " ) _Z-. + 4 '.': +. - -'-v’ .-
/ ] J J o (l-, ,f),S)exp[ >o{Z 1(L:X ”y)]d;"d” (5)
1 1
-0 -w .
for \’.\{1 = d,s
and
F 4 7 = - ,f"‘ £ - o b
walloT08) w6, Fotismn,s) = 21 [ @,
Fyd(i: yi1,8) = — 'l??i.,UG, Fys({ ,71,8) = 2in (’-:ié:gG’
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Now the

£

where

. o N L2 2. .
F_,(&,m,8) = {1 G, - F__({,n,8) = - 2(§ +n ) { G,
zd d4'0 Is d
Pab :
.2 - 2
G = : s T =0 -4l L (& +n)
2 2 1.-2 d’' s
(s + r ). T 0
Fos af 4, (6)
L2 2 24,2 L2 2 2 4s2
£, = (+n +k ) = (&4n+k )
d d s
2 P z s S
{ = + 2((7 + v ), k. = K = —
“o ke X 1) d c, ’ 5 c,

De-Hoop transformation,

s/cj(q cCos € - w sin @), N = s/cd(q sin © + w cos &) (7)

1
& = tan y/Xx,

1

is applied into (5). The Laplace transformed displacement field f
1

|

|

i

(5) can be written as )
|

W W Sz
T R = 4 { _ - _ 1
%a (R,Z,s) 1/2nu f f ﬂa (g,w,s)expl S/Cd(maL igR} 1] 5 dgdw
' - - 1 Cd

where

(8)

i Pab (g cos © -~ w s1in e)mU

F\,d(q,w,S) = - T , ,
' S.s/cd(E1 + 0) " T.N j




21 Pab (q cos @ - w sin e)mdmB

F . (a,W,s) T
= S'S/Cd(E1+ 0) " T.N

i Pab (g sin @ + w cos e)"B

2z

F (Q1W!S) = -
d : 17
Y s.s/cd(E1+ 0) .N.

21 Pab (g sin & + w cos 2) m m_

H

Fvs(q,w,S) T
: s.s/cA(E1+ 0) " " .N.

Pab m
F (g,w,s) = 40
zd W - 1/2 !
s.s/c (E + 0) .N.
d 1
2 z.
» 2 Pab (g + wl)md
F_{g,w,s) = - , )
= s.s/c (E +0)1"2 N
. 4 (€, .N.
2 2 1/2 2 2 2. 1/2
m = (g +w + 1) , m = (q +w + 1) 7,
d s
2 2 2 2 2 2
m =1+ 2(qg+ w ), N = q)— M%qu + W ),
aL b2
, 2 2 2 . 2
E1 = (1t +agb + wF), D = — cos & + — sin &,
4 4
2 2
a 2z b 2 2 2 2
F = — sin & + — Cos &, O = - 2gw sin2 cos2(a - b )/cd ,
4 Ca
1 = Cd/Cs , and R2 = xz + yz. (9)
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For mathematical simplicity we confine our attention to the
derivation of the displacement field at any point on tﬁe xz-plane.
Obviously the displacement at'any point on any plane through the
z-axis can then easily be visualized. Accordingly 1in order to
obtain the displacement at any point on the xz-plane, we put ¢ = 0

in (8) which then takes the form

s
w - Ea(Q,z—iqx)
- Pab . a
lﬁg (x,z,8) = Zritc f f Re[ Kﬂg(q,w) e ]dq dw
I S d B B 1
- -0
(10)
where
1'qm0 ZiqumH
K‘_,ﬂ(q’w) - - 4,2 ? K_M(Q,W) = 1 /: —’
el EL. L.N - E-L.I— N
. '|me . Ziwmim
K (q,wW) = - —— K (q,w) = ———’ (11)
47 172 ! : s
¥ Y Y Y
2 )
m.m 2m (g + w )
. d o d
KglawW) = ——, K (QaW) = = ——— )
E°.N o E".N
and

E = (¢ - + azq2 + bzwz)/cz.
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3. DILATATIONAL CONTRIBUTION
From (10) G;d is converted to the Laplace transform of a known
function by mapping (mdz—iqx)/cd into t through a contour
integration in a complex q—p]ahe.

The singularities of the integrand of ij are branch points at

i L, 2 4,2 s ., 2 2 .1/2
q = SJ = f i(w+ 1) , g=5 =% d(w+ 1) ,
I k=]
2 2 2 1,2
N (wb +c.)
g=58 ==Ii , (12)
C
a

. and the poles at (12)

_eE L s 7 2 12
a=35 =z i(w + e ) B

o

The poles at g = S correspond to the zeros of the Rayleigh

B i+

function N, where yﬁ = Cd/CR and c# is the Rayleigh surface '~ wave
speed. The contours 6f 1ntegrat16n in the g-plane are shown in Fig}
2(a,b,c) which also show the positions of singularities 1ying in
the upper half of the g-plane.

Since the positions of the sﬁﬁgu1arities and the transformed
contour of -integration depend on different values of a and b, three

different cases arise for the evaluation of u i
z
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(a) Case a > b > Cd

The g-plane for a > b > Cd is shown in Fig. 2(a). The

+ [}
contour q = q; in the g-plane, is found by solving

(13)

= (mZ - igx)/c
t (d q )/d
for g, where t is real , we get
* iTsin ¢ +(72 Z f/zco ’ (14)
= = 7 g T - #
q a, 1Tsin ¢ vd s g
for T » T , where
wd
2 1/2
T o o={w + 1) , 1 =ct/p (15)
wd d

and (p,¢) are the polar coordinates in the xz-plane as shown 1in
Fig.1. Equations (14) define one branch of a hyperbola with vertex

/2 . o L .
! X/, which 1is parametrically described by

at q = 1'('wz + 1)
the dimensipn1ess time parameter T as T varies from Tud towards
infinity.

As shown 1in Fig. 2(a), the contour of integration has two

possibie configurations in the q—p1ane, depending upon £ and w.

For the case(1) given by:

Case(1) : ¢ < and 0 ¢ w ¢ w
ala
or

@ < ¢ < ¢ha and wda CW <o (16)

de
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fw ”
S¢f Ss"
St Sc*
Sd.' : ’ _S_d:/

a{cg {Cqfor O(WWgq Cg<a(cy for 0KW{Wda

or a{Cg for Wgg{W{Wda

© | ®

Fig. 2.
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Sq" .
I
ST
L

arcy for all w,

a{Cq for Wyg{ W~

(a)

Cagniard paths of integration in the g-plane.



- : R N , : !
where @, = sin C./a, 2 = sin b/a
da d ba

and 4
- .2 2 2, 172
I ud - a sin @ } .
= ' 17
wlz , (17)
L

dda . 2 2
a sin £ - b |

4 .
the vertex of the path g = q; does not 1ie on the branch cuts and

: +
hence the path of integration contour is simply g = q; and is
denoted by I. But for the case (2) given by

Case (2): ¢Ha < g < ¢ba and 0 < w < W
or ¢ > ¢Ld and 0 < w < w (18)

+
the vertex of the path g =,q; Ties on the branch cut between the

branch points q = Sr and q = s . Hence the integration contour s

d
, + . .
given by g = qd for T > Tvd which 1s denoted by 1II, plus
, . L, 2 2 152

g=4g, = irsind ~ i(t - T )1 cosd {(19)

da . wd

T T * T
for T da < T < Tod where

1 2, 2 2 2 2 12 2 2 2,472

: = — - + - : + + @l .
T e 3 [{w (a b )+(a Cd) } cosg¢ (wb Cd) sin ;}

(20)

Transferring the ‘path of integration from the real g-axis to

the Cagniard's path we obtain
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—_ 2 Pab l- r J~ + dq" -l -5t
u (g,¢,s) = J Re[ k (q,,Ww) — e dt dw +
zd uc, l.o t zd " 4 dt |
v d
wda twd dq
\ , ; ) da -st
+ H(g - ¢IH(g - cl’dﬂ)f f Re[kﬁi(qd,1 s W) ]e dtdw +
dt
ot
wda
[ 2] t‘“-i
o wd aq
, n '_'1'_'1 -t
+ - o
H(g iba)J J' Re[ kzd(qda VW) Yy ]e dtdw (21)
o twr:lcx

. where tud = (p/cd)Tudzand twda = (p/cd)twda' The first term of (21)

+
is the contribution from q; and the second and third terms are the

contributions from qd
(s

Now interchanging the order of integration 1in (21) and

inverting the Laplace transform, we find that

T

r 3
d +
2 Pab : + da,
uzd(p,¢,1) = m.ry H(Tt - 1) f Re[ kzd(qd,w) —_ ]dw +
) . dt 4

+ H(p - ¢, IH(@ = #IH(T - T IH(T, - T) x

Td“
) dqda
K.f Re[l;d(%m w) ]dw +
) ' dt
A
da
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where

101

+ H(¢ - ¢ JH(T - T, ) *
ba da
T,
%3 dq
) da
= f Re[kwﬁqw-w) ]dw
- ’ dt
(8]
da
T T< 1
A, 0 for aa $TS
da Td for 1471« Tda 1
o 0 for T, <t< 1 l
Ada = a2 J
T. for r>1
d
2 1.2
= (r -1
Td ( )
2 2 2 172
X - {y -(acosd - Db )Z } 1-2
d d : d
Tda [ 2 2 2.2 ]
(a cos & - b )
o 2 , 2, 2 2 2
X =7 + -
xd g bsin @ (a b }Tdcos ¢
02 4 4 2 2.2 2 4
/ = - 1 ] + - = 3 +
\d rd b sin ¢ (a b ) TdCOQ @
2 2. 2 . 2 2,
+ 2(a - b )b'FdT: sin ¢ cos ¢
2 2, .2 2, 2 2 . 2, 2
= - - oD i - - s
Z, = Ld e, sin ) tha C, ) sin¢ cos ¢
T = ag-r2 + (C2 azcosz‘)
d "~ d ' *

(22)

(23)
(24)

(25)



0 2 2 2, i
T,Fat - (C;1 - a cos ¢) (26)

1 2 2 1.2 , . 1 .
: - = - )+ 74l
Tie = 3 [ (a c,) cos¢ + C_ sin b J, (27)
’ Cz - bZ ]1.—"2
T = ' (28)

da

1
[ —

!
a2 sin2¢ —b2 ]

The first term in u"d is due to the dilatational motion behind
hemispherical wave front at T = 1 and the second and third terms

are due to the dilatational motion behind the conical wave front at

1}

T=T for ¢ > ¢h . These wave fronts are shown in Fig. 3(a), T
d (3

14

T shown in Fig 3(a) by a dashed curve, 1is not a wave front

4

da

because it is not‘ a characteristic surface for governing wave
equation for the dilatational motion. Similar non characteristic
surfaces were found by Gakenheimer and Miklowitz t196§] for a point
load travelling on an elastic half-space and also by Aggarwal and
Ablow [1967] for the motion of an acoustic half-space due to an
expanding surface load. They prerd explicitly that their solution
was analytic over the surfaces. The éame thing can be proved in our

case also.
(b) Case a > cd > b

In this case, the path of dntegration with respect to q

transforms to the simple path given by contour I (Fig.2(a)) for all
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T=Tda
T \
\
Zz
J@)fora>b> ey Jb)fora>cy>b

3(c) for @« < ¢y

Fig. 3. Wave patten for dilatational motion.
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w when ¢ <¢ba and also for O<w<wdcL when ¢ba<¢ <¢da’ whereas the

path of integration with respect to q transform to the contour 1II

(Fig.2(a)) for wd <W < w when ¢ba<¢<¢dd and also for all w when

o,

¢ > ¢Ha' The remaining details of 1inverting CLd for a > Cd> b are

exactly the same as for a > b> Cd’ and one can easily find that

T
c .

_ 2 Pab
T nuc

u (0,,7)

dt

..d ) dqj
H(T ~ 1) IRe[ kK (q.,w) ]dw +
4 zd " d
¢

+ H(d - @ JH(T - 7_) x
da da

T
dad

x‘jRe[kzd(qda W) da]de (29)
dt

o
A
da

T . : . , ,
where Ada is given by (23). The wave geometry associated with this

expression is showh 1in Fig.3(b).
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(c) Case a <« c,

For this case the path of integration with respect to g

transform to the simple path given by contour I [Figs. 2(b),2(c)]

for all w when ¢<d& and also for 0<w <w. when & >% , whereas the
ba da b

path of integration with respect to q transforms to the contour 1II

[Fig.2 (a)] for wad<w<m when ¢>¢ba. Note that 1in this case the

angle ¢Ha does not arise. Now proceding as the case a>b>c':l for

inverting U;d we get

T

d dq
2 Pab . + d
R/ B = : - —_— +
u (e,@,7) e, H(T l)f Re[ K (aW) " ]dw
o

T
An
dq ]
- rh T ~ Tf
+H(E - g JH(T - T ) fRe[ k_(a, W) — deJ. (30)
T

The wave geometry associated with this expression is shown 1in
Fig.3(c). As expected physically, contribution due to the conical
wave front does not exist for this case.

sSummary
Combining (22), .(29) and (30) one finds +that u can be

written as one expression for all value of a and b.



Uzd(f;j)c‘i’)'r) :.

where

da

s et e

e

-

MHC |
a4

T
d

2_pab Hit - 1)f Re{

4]

-+

[ o o Nuid - & OHC
+ l H(t - Ida)H(w - ¢da){H(b - Cd) +

. 3 , . x
f H(a_cd)H(Cd—b)j + H(r —‘da)H(* - *ba)

+ dqﬂ
k . (Q, W) -—] dw +
zd T d
dt

x Hlc, - b)H(d, - i) +1H(cd— a)}] "

T .
da

% f .Re{ kzd(qda,w)

A
da

= 0 for v <7 <
dat

T for 1 <r<r’
d d (s}

T for T >T
da qd

0 for T, <<l
(==}

T for 1 <T
d

T Ffor T > T
d da

dqd_

i ]dw

dt

__-—__._.,r..,._.._—l

.

g L —
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(31)

) Y Ceh
for ¢da<¢<;ba, arb>c,

for ¢ > ¢ ,a> b >C,
X '!'ba) 4 d

for & > & , a> c. >
' ﬁha d b

for ¢ < ¢ < > >
° ¢ba i (¢da’a Cd b

for ¢ > ¢ba,a<cd.

(32)



4. EQUIVOLUMINAL CONTRIBUTIONS

Inversion of G;c is complicated than the inversion of u"d
because of the appearence of head waves (Von-Schmidt waves)

otherwise it is same as u .+ Here the integration contour has more
Za

configurations 1in the g-plane though the singularities are the

* *

same. Here the hyperbola q = q arises in a similar way to g = Qs

S

but its vertex can lie on the branch cut between the branch points
+ + + + '
at g = Sd and g = SS and at q = Sc and g = SS as well as between Qq
=g and q = S:, depending on the values of w, &, a and b. In this
- ;
case, the straight line contour 1lying along the imaginary g-axis is

denoted by g which 1is similar to qd appearing in the
sa =a

dilatational contributions. Now omiting details of dinverting u ,

”o
=3

one can easily find

T
+

=1 dq
u (p,b,T) = 2280 [H(T - 1) [ Re ['k,. (q ,w) — ]dw +
-0

4= 13 ¥ Y oSN =) v
tod o dat

+ [H(r =T JH(& - ¢_){H(b = c) + H(c - b)H(a ~ c)} +

* H(T - T’ JH($ - ¢ba) {H(Cs - b)H(¢sa— @) x

=

H(a_—cs) + H(CS— a)}l] x
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Sd
dg
sd
= Re[ k_(a_ W) ]dw +
A
=1}

‘T - T JH{(T' - TI)H(¢ - & ) =
+ H( sd)H( ad JH(C ‘sd)

T
=4 dq_a] 1
,\JF Re[k (g ,w) —!dw (33)
zs Sd J
dt ]
Aﬂd

for 0 fp<w, 0= ¢ < n/2,

0 £ 1 <x, 0£ a <x and 0 = b. <w, a>b

where

0 for T < T <1
d

3

,a>c _,a>b>c_,ac >bc
v d =) = d

{ ¢ < <4 _,a>c_,arb>c ,ac <bc,
=d d = = d

T for 1<t < 1! & &b P ,c.rarbdc
S sq L ad abs d )

b e >by>
+}ba ? ¢sd a Cd ’ acs ? bcd

0 fort < T <1 [
Sd

T for t > 1
3

¢ <g <¢ ,a>c >C >b
sd ad d 8
1

0 for t < T T
sS4 |

(1]
[vD

=T TFforT  <T <71
sd ad sd

—
~
*
v

@ ,a>b>c_ , ac >bc
sd d ] d

|

h >d ‘
¢ ,gd,a> Cd> cg)b

T for Tt > T’
S sd

0 for T < T LT 1
89, sd !

T T<T’ >q >
7 . for sd< Toa } ¢ /cpgd,a/bmd,acg(bcd

=
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———

=T for v/  <tT <T' J
=} sd sa
r ¢% <p <¢ ,a>c_>c_>b
=J forT > 7T ' o =2 ¢ =
sa g g c._ra>c >
1 ¢'ba ? \;abs’ d = b
g { hleh
l— ’cba K ‘abs’a<cs
= T for ' «<r<t’ . ]
E sda |
ST for ©' . <r<F ' ¢‘Pr<w<w a’cd>a>°n>b
¢ sda sd }' .. = =
I @rf  ,a<c
b abs =
=T, for T)T;d j (34)
=0 for T <r <] 1 By ,c.>arc db,uarf
=15 ) Sd. d S
= T for 1<t <7’ l & fM<m ,C >a>c >b,f3>ary’
S sda I{ S d

¥
# & >¢,_,cparbre o
i = :

=T  for ' <11’ ba
ad sda sd 1
h o <p<kd ,c >a>bic IO
= T for T)T’d [ l;Zb':L T T Td = of !
= s

0 for t <1<t .
SC sdd

—_—

&> ,c >a>c >b,3>ady’
¥ d 2

=T  Ffor T  <1<T’

hy > c o>
ad sda ad ¢ cbx’cd arb> s’ﬁ ary

———

—

d>d ;c rarbdrc ,aly
= T for > T’ od Fo%a Ca g’

= 0 for v <r<l 4
= d <l ,c dadbdc ,afd
T £ 1¢r < Taba 7 Tba’ d CR
= or T!
sdda . N ; o -
e <¢<¢ba,cd>a>b>cg,ﬁ>u>y

———_

abs
=T  for ¢ <r<T’
sd sda sd 1 . L
’ @ . <P ,c ra>bdc o<y
i . .2 abg woood =
=T for 7@ <(1<L7T
=} ad Sd.

= 0 for t < Tt
(=1} . Sda

=T for 7" <t<T’

od s da nd ¢ <¢<¢ 27y >a>b>c , QLY .

e 3

= T for 7' <141’
s ad ad
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ad

———— e

In

0 for T

<1<
d <

T for 1<r<t!
3 sd

0 for T <7T<1
ad

T For 1<Tt<LT
=l

T for 1T’ <TKLT
Sd

sSd

’

T for 7'  X<T
=] -8

det

sSd

0 for T <KT (T
ad.

T for f

sS4

3

0 for T' . «T
gdd

T «T
a

<

/
sda

A
"
| I

sd

{
sda

R |

1

.

T for 1<t <1’
s =)
0 for T <TLT ]
=Tu} [=1=} i
T for T <1<T' L
24 ad S i
l
T rotlo<T<r’ '
s fo =1 sd ]

7 >
cp>qi’gCi ,a>b c,

D>¢ _,a>c_>c Ob
d S

sd

¢sd<¢<¢abs,cd>a>cs>b
<< ,C >a>b>c

¢sd" ¢sa}cd b s

0 <epleh {c
1bsd 10<'at~s’a s

& . <@<¢ ,c.r>a>c >b
abs S d 5}

¢ >¢ _,a< G
abs - S

@ >¢Qa,cd>a>cs>b,a>ﬁ
r (gl c . >a>c >b,i>u>
¢S ¢ qﬁxv d a 5 b,f ¥
A c >aybyc ,a>f3
*>'abs’ d b g !t

¢ @< ,c radbdc ,fHrady
abs ¥ d s

¢ _ <g<g ,c >adbdc ,aqy
X d =]

abs
¢>¢Y,Cd>a>cs>b,ﬂ>d>y'

“@>¢ ,c Yarbyc Lrady
X d S

¢>¢x,9d>a>b>cs;a<y

¢ <@<¢  ,c >arbdc
Sd abs o )
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and also where

T o= (17 - 1)7 | (36)
2 2, 2.2 1.2 1-2
X - {y -(acosg¢ -b ) Z} -
Tsa = [ 2 2 2 2 ] (37)
(a cos ¢ - b )
y 2 . 2, 2 2 2,
X = T(b sing + (a - b ) T cos ¢
=} =] S
y? 4, 2 2.2 2z 1
Y = T: b4s1n ¢ + (a - b7 COS4¢ +
=] S
2 2,2 y L 2 2,
+ 2(a - b )b?‘TU sin ¢ cos ¢
s S
2z L, 2,6 .2 2 2 2 2 , Z, . 2,
Z = (t -z2cs8ing) -4 1 c(a-c)sin ¢cos ¢
2 2 2, 2 2 2,
T _=at + 1(c_ - acos¢)
o 2 2 2, 2 2 2,
T =at- 1(c. - acosg¢) (38)
( 2 1/2 -
T = : - h + -
Ty [1(1 Tsd)cosec¢ 1} 1] (39)
2 2 172 ( ..
T = 1/a[1(a - 5" cosg + . sin ¢] (40)
sa . s d
2 172 , . .
Ty = [(1 - 1) cos ¢ + sin & ] (41)



1%(b* - &) quez |
T’ =l- 2 . 32 ] (42)
sS4 v :
L b - asin %
2 1.2 ,
o= (17 = 1) secy (43)
2 z
2 iz - G, b L 15F
T =l-(1 - 1) cos¢v+[———— J sin ¢ ] (44)
sda L 2 2
a - b
é = sin  c/a, ¢ = sin® ¢ /c -;2» = sin 'b/a (45)
=T s T Tad s’ Td’ Tha
2 2 s
-1 € ~ P ] ‘ :
abs - o0 2 2 2 2 2 (48)
1 (a - b )+c, -a /
2 2.1/2 2 2 1/2 2 1/2 2 2 172
@) e, b )T (17 -1 (ema ) Y] :
sin pa— . 5 > (47)
1'(a - b)+c. - a
2
- C,o-a iz . oz
*a =~ b
b 2 (172 1 2 2 42
po= o= (1 -1 - = - :
. a ( ) p (C,j b)) -, (48)
c a’ - & 12
s .2 172 3 z. 17
SRR E KL
a - b '
T , . 2 2 172 .
g = 17T sing t (t -1 ) cosg (49)
= ws



_ (wz + 132 (50_')

~

C ., 2 2 1/2
g = it sing - (7T - 1) cosg (51)
Sd wve

The first term in the expression (33) 1is the eqguivoluminal
motion behind the hemispherical wave front at T = 1 and the second

is due to the equivoluminal motion behind the conical wave front at

=19

T =T . The third term 1in u. represents the equivoluminal motion

due to the head wave fronts at 7 = T,q © 1he wave fronts 7 = 7_.

for ¢ >g P and T = T are shown in Figs. 4(a-1).
S5d o4

The equations T =1’ , T = 7' and T = T are shown 1in
Sd ad ada

Fig. 4 by dashed curves which are similar tot = T appearing 1in

da

the u_ . These dashed curved surfaces are not considered as wave
Za : .

fronts because it can be shownh that displacements and their

derivatives are continuous across these surfaces.

5. WAVE FRONT EXPANSI.ONS |
The wave forms of the so]ufion given 1in (31) and (33) afe
evaluted by approximate estimation of the integrais 1in the
neighbourhood of the first arrival of the different waves. To

facilitate this evaluation we put

2 2 2. .2 _1/2
w=1[A + (B - A)sin a] (52)
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in the 1integrals arising 1in uzd and uZS Qhere A and B are
respectively the lower and upper 1limits of the particu]ar integral
in question, and the range of integration with respect to @« is from
0 to n/2.

Now for the first integral of (31), we put w = Td sin « and

hence for T — 1 +, we find that for any valiue of a,

dg C ,
. . o % d cos ¢
W — O, qd — 1 81n C,D, —_— e} —_— m,
) 4
dt £y
, ' 2. . 2, 1,2 2 2,
m. — cos¢, m — (17 - sing) , m — (17 - 2sin @),
; .
1-2 1 2 2 , 2,172 ;
E — — (c. - asing) , for & < & (53)
c, A da
i z .z, z.1/2
— (asing - cj) , for & > ¢j_,

d

12
)

2 . 2, .2 2, .2 .2,
where N_1 = (1 - 2 sing) + 4 sing cos #(1 - sing (54)

Substituting these approximate values in the first integral of

(31) one can find, for & < ¢J
da

.[uvl — N71 as T — 1 + (65)

where

'Pabcd coszqiz(1Z - 281n2¢)
N = . (56)
2 2 , 2,.1r2
[¥s; (c:1 - a sin &) .N

1



Again in the second integral of (31) we put w'=Tdas1'nc1 and as T—1-

for ¢>¢da we find that

— i sing - i cosg Tda sin «

qda
dq ic T. sin @ sing + cosg
da R da .
- - . — : (57)
' o 2 ., 2 2 1-2
dat (TJ sih o + 1 ~ 71T )
da

Puting these values in the second integral of (31), we get

sz : ,
: ic
f Rel k (i sing - i cos¢ T. sina, T sin a) — x
zd da da
o o
Tdasin o sing + cos ¢ )
*® : ] T. cosa da (58)
2 , 2 2 42 da
(T sina + 1 -71")
da :
1= .
. ic
= Jf' Re[ k (1 sing =1 cos ¢ T sina, T, sina) — x
’ ' e
[a}
Tdasin o sing + cosg
x ] T cosa da +
2 , 2 2 1,2 da
(T. sin. a4 + 1 - 1)
da
T2
ic
+ isin ¢ - icosg in o ina) — =
f Re[kzdhsm : icosu quL sin a, Tda sina) ®
- o
=
Tdasin o singd + cosg¢
® T ] Tda cosa da (59)

z 2
(T sina+ 1 -7 )
da

where € is very small.
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Since the main contribution to the integral (58) as 1™ — f

arises from the first integral of (59) as T — 1, so for the

evaluation of (58) as T — 1, we consider the approximate value " of

the integral given by

e \
ic,

f Re [ kzdu sing - i cos ¢ T, Sina, T, o sin o) r X
o

Tdd sin & sing + cosg

= - : ] T. coso du (60)
2 , 2 2. 1.2 dat
(Tdd sina + 1 - 17 )

as T — 1.

Since € is very small so « 1s.a1so small. So for the evaluation of.

the integral (60) as T — 1 we also use the fact that a —0, from

which we get,

DL 2 . 2,14r2
wW— 0, g — 1sing, m — cos¢g, m —(1 - sing) -,
da_ d s
2 "y
m, (17" - 2 sin"¢), . (61).
1/2 1/2

. 2 |, 2, 2 \ .
N— N, E — 1/cd(a sing - c, ) for ¢ > ¢:da.

Now substituting these approximate values in (60) and 1integrating

we obtain the approximate value of the integral as



2 2,,.2 .2,
c, cos H(1 - 2sin @)

- log{t - 1] whenT — 1. (62)
':(azs'inzr': - Cz)i'.-;z N
e o | N,
So for ¢ » %,
da
[un] — N"4 109{ T - 1 as T — 1 (63)

where

2, . .
, 2Pabcd cos <p(12 - 2 s1nz¢)

N = - . ' (64)
-2, 2 2 1/2
aue (a sin @ —ch) .N

1

In order to obtain the value of u"d as 1T — Tda we put

w2 A2 + (T2 A2 )sfnzj
= - o,
da da da .

in the second integral of (31).

When T — T +, we find that

da
w — 0
. C
q 1 d
. 3 —
da a

2 2
C, @ " C 412
‘where Al = _— for a > ¢,
£a 2 d
1 -7
da
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mi-—->’1/a(a2 - cf)i/2 for a > c (65)

1 2 : 1
m — = (a - c:)u2 , — ~ (a =~ 2c¢ ),
N a
N — N
2
: 4f{_ 4, 2 2.2 2 2 2. 1/2 z2 2.1/2
where N = 1/a [1 (a - 2¢) + 41c. (a - ¢c.) (a~c ) ]
2 a d d s
E1/2 - 1'K1'/2('r . )1./2
: da
where
2 2 2. 1/2
cos ala - ¢ ) .
2a d
K = = 3 VD ' for a > Cd'
d ((a -ca) " sing - cdcos¢]

Using these approximate values jn the second integral of (31)

we Tind that for a > Cd

—_ T T +
[uE] N24 as — da (66)
where
Jpa 12(a2 _ CZ)1/2(82 _ ch)Afci/z
Nv4 = 3 1.2 - (67)
- 7uc, a (2KA) N2 '
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2 2 2.1s2 ,
where c 8acrT, (a-c.) sing cosg
d da d :

>
fl

2 2 2 2 2} 2.2 ., 2, o .
- S @T T + 7T + a T T, -~ 7T
a (a-b)co ¢ dd( da da) b'sin ¢ da( da da.)

-
H

. 2 2.1s2
[ cdsmcp - (a -cd) cosd:.] (68)

o

da

It may be noted that conical wave front 7 = Tda does not arise

for a « c,
L&

Next when ¢ < ¢!sa , Tor the evaluation of u_ as T —1, we put

W = quina in the first integral of (33). When T — 1, we find that

in the above 1integral

+ , ,
g — il sing
=4

dq+ c:d 1 cosd
_2 5, s |
dt g T cosco

=]

2 2 2, 2,
(g+w ) — - 1 s1n2q:r

' 2, 2, 4
m, — (1-1"sin c/f»)l ?

m— 1 cosg



. 2 2 . 2,
m, = 1 (cos ¢ - sin ¢)

172 1 2 2 2,172
—_— — - <
E S (ci a sin ¢) for ¢ ¢;ﬂ

=]

1 2, 2, 2.1/2 , ,
— = (asing - cg) for ¢ > ¢

=]

N — 13N :
g9
where N = [ 1(cos’d - sin‘g)’ + 4sin’e cosd(1 - 1°sin’g)? ]

Using these approximate values in the first integral of (33)

one can find for all values of a and b,

[QZ] — sz for ¢ <« ¢Sd as:T — 1 (70)

where

, 2 . .2, 2,472
2pabc_ sin ¢ cos¢ (1-1 sin ¢)
N _ = - - (71)
z2 2 2 ., 2, 1,2
[1re) (c_-a sin ¢) N :

3

For ¢ > ¢sa , considering approximate evaluation of Tlast two

integrals of (33) as T— 1 it cah be shown that for the case

a > b >c
d

4

u — N _ log|t - 1| for ¢sa g o< ¢9d as T — 1 (72)

z ZzZ2

’

u — N__ Tog|t - 1| for ¢ > ¢ed as T — 1 (73)

zZ
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and for the case cd >»a>b>c ,

4

u — N dog|t - 1| for ¢ <@ < ¢ as T — 1 (74)
z ZG ad s

u — N__ TogjT - 1| for ¢ > ¢ as T — 1 (75)

and also for the case ¢ > a > b ,

’

u — N loglt - 1| for¢ > ¢ as 7T — 1 (76)
o LX) sd
where
. 2 , 2, 2,.4/2
, 2pabc9 sin ¢ cos¢(1-1 sin ¢)
st = 2 2 2 12 (77)
- THpE (a sing - c ) N
B 3
. 4 2, .2 .2
, 8pabc_ sin ¢ cos ¢ (1 sin¢ - 1) -
N = - (78)
z3 2 ., 2 2 1/2
nue (a sing =-c ) N
Y 4
-y 2 ., 2 1/2 2 . 2., 2
; 2pabcd sin ¢ cos ¢ (1 sin ¢ - 1) (cos ¢ - sin @)
N = - (79)
zZ6 2 2 , 2 1/2
e (C, - a sin ¢) N4

N4 = [12(cosz¢ - sinqu)4 + 1631n4¢ cosz¢(1zsin2¢ - 1)] (80)

For the approximate evaluation of the displacements at the

wave fronts T = Tsa and T = T g Ve follow similar procedure as
S
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followed for the evaluation of u_ asT — Tdd and we find that

d
[u]l] — N as T —= T for a > ¢ (81)
z z5 . sd d
[ul] = N ast —>7 forc >a>>c (82)
z Z0 sd d -]

3.2 ’
[(u] — Nzg(r - Tsd) as T — rsd for a > cd (83)

- 4
[uZ] — Nz?(T ng) as T — 7_, for a < c (84)

where

 4Pbc. A [(a’-c)p 1'7%
d 2 d =
- _ (85)
2 . 1.2 d
mua (2K B A )

z5

3 2 ! 2 2 2
16Pa2bc (c —az) A [(a -c )D ]1/
d d s , s s
N = 2 1,2 G, 2 2.4 4, 2 2 (86)
Tu(2K 1 A ) [1 (a -2c ) = 16¢c . (c . -a )(a -c )]
3 a s d d &

4Pab . , 2 cosecd 41/2
Nza = - Asd Bsd Bsd Asd [ 2 z :i (87)
U : a - c.
d
4Pab . 2 cosecy q1-2
Nz? = Asd Bsd Asd [ 2 2 ] (88)
T - c. - a
d
- 2 1.2
. 1cd (a - C,)
A = - (89)

o

z 2 1,2 . .
g [ 1(a -c) sing - c_ cosy ]
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; . 2 2 12 '
D = 8alcr sing cos? (a - ¢ ) (90)
=) d sa 3
L 2 2 2 { 2z 2 2 2. 17*
B = — [ 19(a2 - 2c ) + 4c, {(a -c,)(a -c_)} ] (91)
) 4 s d d s
a
2, 2 2.2 2, o
A = [T azbz(T - 70 )sing + (a-b )acos g(T + T _)] (92)
3 sd . sS4 sd =13 Sd
n 2(12-1)*"% 1/2
Ag = 37 [ 2 1.2 ] (93)
B (1°=1)"" "sing - cos¢
B = (1%-2)7" | | (94)
sd .
! 2 1/2 2
= - 95
BSd 4 A (1 1) B, (95)
! Cd 2 1,2 2 42 -
A = — (1-1) [ (17-1)" " sing - cos¢»] (96)
ad e

In these expressions the notations [uﬁ] stands for the change
in u_ across a wave front and Nz1 etc. are wave front coefficients.

It may also be noted that if welput a=>b in this'problem, it
reduces to the problem of uniformly expanding circular ring source

and in that case our derived results coincide with the results

given in the paper of Gakenheimer [1971].
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4(b) fora> cy, a>>b> ¢y, ac, < beyg. '

Fig. 4. Wave pattern for equivoluminal and head wave motion.
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A

4(d) forcg>a>b> ¢, a>p.

Fig. 4. Wave pattern for equivoluminal and head wave motion.
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Yz

Yz

4 {f) forca > a>b >epu <y,

Fig. 4. wave pattern for equivoluminal and head wave motion.

126



2z

2
4t)forcg>a>cy>b,p >a>y, acs < beg.

Fig. 4. Wave pattern for equivoluminal and head wave motion.
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\ ' )
\Pba ‘ ”

) Yz

4@ forcg>a>c,>b a>8 ace> beg

-}
%oe) %sd \

\Z‘

4(j) foreca>a>ce>b, B>a> ¥, aét > beg.

Fig. 4. Wave pattern for equivoluminal and head wave motion.
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Fig.

z

4 (1) for a < cs, ace > bey.

Wave pattern for equivoluminal ang head wave motion
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CHAPTER - 11

CRACK PROBLEMS IN ELASTODYNAMICS

High Tfrequency sqattering of plane

horizontal shear waves by an

interface crack.

High frequency écattering of plane
horizontal shear waves by a Griffith
crack propagating along the

bimaterial interface.

130

Page .

131

163



HIGH FREQUENCY SCATTERING OF ANTIPLANE
SHEAR WAVES BY AN INTERFACE CRACK

1. INTRODUCTION.

Scattering of elastic waves by a crack of finite length at the
interface of two dissimilar elastic materials is important in view
of its application in Geophys&cs and in Mechanical engineering
problems. The extensive use of composite materia]s in modern
technology has created interest in tﬁe wave propagation problems 1in
layered media with interfacial discontinuities. The diffraction of
Love waves by a crack o; finite wiﬁth at the interface of a layered
half space waé studied by Neerhoff.[1979]. Kuo [1984] carried out
numerical and analytical studies' of transient response of an
interfacial crack between two dissimilar orthotropic ha]f spaces!
Following the method of Mal [1970], Srivastava et al. [1980] also
considered the 1$w frequency aspect‘of the interaction of antiplane

shear waves by a Griffith crack at the 1interface of two bonded

dissimilar elastic half space.
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But high frequency solution of the diffraction of elastic
waves by a crack of finite size is interesting in view of the fact
that transient solution close to the wave front cén be represented
by an integral of high frequency component of the solution. Green’s
function method together with a function-theoretic technique based
uﬁon an extended Wiener—-Hopf argument has been developed by Keogh
[1985 a], [1985 b] for solving the problem of' high frequency
scattering of elastic waves by a Griffith crack situated 1in an

infinite homogeneous elastic medium.

In the»present paper, we have derived the high- freduency
solution of the diffraction of SH-wave when it interacts with a
Griffith crack 1océted at the interface of two bonded dissimilar
elastic half spaces. To solve the problem, following the method of
Chang [1971], thé problem has 'beeﬁ formulated as an extended
Wiener—-Hopf equation and the gsymptotic solutions for high
frequencies or for wavelengths short compared to the 1ength of the
crack have been derived. Expreésions for the dynamic stress
intensity factor and the crack opening displacement héve beeH 
obtaihed and the results have been illustrated graphically for two

pairs of different types of material.

132



2. FORMULATION OF THE PROBLEM

Let (x,y,z) be a rectangular Cartesian coordinates. Let an
open crack of finite length 2L be located at the interface of two
~ bonded dissimi1ar e]astic-semi—inffhite solids 1ying paraliel to
x-axis. The x-axis is taken along fhe interface, y—axis verticai]y'
upwards into the mediuh and z-axis is perpendicular to the plane of
the paper. (yi,pi) and (uz,pz) are coefficients of rigidity and.
density respective]y of the upper and Tower semi—infinite medium.
The crack is subjected té a noFma11y incoming antiplane shear
wave originating at y = -w. “

We are interested in finding the high frequency solution of
the diffraction problem i.e. the solution when the 1length of the
crack is large compared to the wave length of the incident wave.

Accordingly we shall have to sqive the problem when the c¢rack

is subject to the following boundary conditions:

a(“(x,0+) = a(m(x,o—) = -P —P,eﬂwt, [x[ <L (1)
. vz -4 : S [
0 _ .
a‘l(x,o+) = alm(x,o-), ]xl > L (2)
vz vz
w (x,04) = w (x,0-), - [x| >t (3)

where w is the circular freguency and PS is the static pressure.
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Assume

W (K, y,t) = W (X,y) et (4)

it (5)

wz(x,y,t) wz(x,y) e

where w1 and w2 satisfy the following two wave equations‘

2 2
VWIx,y) + KW (x,y) =0 (6)
1 11
TW (X,y) + KW (x,y) = 0 (7)
2 X,y 2o XyY) =
.2 .z
. i o
with v = +
oz oz
gx gy

The shear wave number k1 and ko are related to the two shear wave
velocities C1 and Cé of medium (1) and (2) respectively by

k = w/C (8) K = w/C (9)

1 1 : 2 2
Without any loss of generality we assume that k2>k1;

(1) Lt

Let o (X,y,t) (10)
vz

(1) -
T (x,y) e
vz -

LWL

(2) (2} -1
T (x,y) e
vz

e (x,y,t) (11)
Yz

In the boundary condition (1), PS is the static¢ pessure assumed to
be sufficiently large so that crack faces do not come 1in contact
during vibration. Since we are interested in the dynamic part of

the stress distribution, so the boundary conditions (1), (2) and
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(3) may be written as

P x04) = T P (x,0-) = P, [x] <L (12)
vz vz s
R E B (2)
T . (X,04) =7 (x,0-), x| > L - (13)
and
W (x,0+) = W (x,0-), '- x| > L (14)
that is
v oM _ ,
“ =, — = - P, |xj<L, y =0 ~(15)
ay dy '
W M,
M =u, — , [x[>L, y=o0 (16)
dy dy
and wi(x,0+) = wz(x,o—), }x{)L ' | (17)

In order to obtain solutions of wave equations (6) and (7) we
introduce Fourier transform defined by

: 0

-— 1 ) :

Wey) = — [ wix,y) '™ ax (18)
&= |

=

Thus we obtain . the transformed wave equations as

d W 2 2.~
— - (2~k)W =0 . (19)
2 1 -
dy
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dz w'? 2 9 -
—_— - ((_\f—k ")w =0 (20)
2 2 2 :
dy : :

The solutions of (19) and (20), bounded as y tends to infinity, are

- -y
: 1
vwl(a,y) = A_l(«;g) e , Yy=0 (21)
P, ;!’2)/
Wz(d,y) = A () e , Y=0 (22)
., 5 1/2 2 1/2
z
where v, = (o —k:t ) (23) .“‘2 = (« ‘kz ) (24)
Introducing for a complex
’ 0
(1) 1O (X-Ls
6 (a) = — I T (x,0) e dx (25)
JZH L
7 TR
G (a) = J' 'Tm(x,‘O) eLa (Xﬂ"-dx (26)
= o vz - .
¢
and
1 Lo
e .
G () = — [ 1%(x,0) &7 dx (27)
i 41_2_1'[ Yz .
-1 ’

the transformed stress at the interface y = 0 can be written as

. (1)

r(a,0) = G, (a) et 4 G (o) + G (a) o oL

(28)
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Using the boundary condition (12) we note that

, b | |
Gi(a) L [ eLaL - e—u.\u; ] (29)
J2n ia

Further using the fact that

1, _
T (a,0) = uiyiAi(a) _ (30)

we obtain from (28)

| | - | P | | |
- Hy Ala) = G+(Cv()e‘-0‘lL + G_(a)e-nom o [eLOlL _ e—LOlL] (31)

Jon ia

Since from (12) and (13) stress T . is continuous at all points of

VI

the interface, so we obtain

Hy '
Az(a) = - Ai(a). (32)

So (21) and (22) take the forms

— vy .
1 - . .
wi(a,y) = Ai(d) e , y = 0 (33)
- Ly ¥y
1 2 .

Wa,y) ==~ ==a(e”, yso (34)

u ¥ L

T2t 2
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Now W (&,04) = W (&,0-) =
1 2

wich is the measure of the

1 r 1

wax

— [ P wi(x,0+) - w(x,0-) | e dk
{7 _i [ : J
B(a), (say) (35)

discontinuity of displacement along the

surface of the crack. From (35) we get
MZYZB(a)
Ai(d) = (36)
Uy + uy
1t 4 2’ 2

Eliminating Ai(a) from (31) and (36) we obtain an extended

Wiener-Hopf equation, namely

. . P . )
G+(01) ew{L + G_(a) e_wu" + B(o)K(a) = o [e"ou" - e_LqL:, (37)
' ' {2r in
where
‘ #1“2T1?2 yipz(éz_kiz)l/z '
K(at) = = R{x) (38)
By, Y (4, )
. 2 2 1-2
(y1+u2) (o —k2 )
R(x) = . (39)
(az—k 2)1/2 . u (az—k 2)1/2
‘u;l 1 ] 2 2

In order to solve the Wiener-Hopf equation given by (37) we assume

possess a small

that the branch points a = k1 and k2 of K(a)
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imaginary part such that

¢

where k1 and k2 are 1infinitesimally small positive quantities
which would ultimately be made to tend to zero.

Now we write K(a) = K+ a)K_(a) where K*(u) is analytic 1in the

’

upper half plane Im & >-k_ whereas K_(a) is analytic in the Tlower

half plane given by Im «a < Kk_. Since Tv"(x,o) decreases
exponentially as x— Zfw, G*(a) and G_(d) have the same common
region of regularity as K+(a) and'K_(a).

- Now (37) can easily be expressed as two integral equations

relating G+(a), G_(a)_and B(at) as follows:

G+(c1) P, : 1 1.
sl
K, (@) {on da K (@) K (0)
-21 8L
1 e : P
e e . T
2 c (s—a)K+(s) {2r s
+
P
OlL (8]

= - B(a) K (&) o -
: d2n ia K, (0)

-218L
1 e PO
- - f - [ G (s) + —— ] ds (40)
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and

& (&) P : estL po
- N O - f [G+(s),- ——————]ds
K (a) {2n ia K (o) 271 o (s-0) K_(s)

21 SL )

LOIL e Po

L

= -B(a)K (&) & - — f _—_ [G (s) - ——————]ds (41)
+ . + .
21 c (s-a) K (s)- {21 is
+ bl N
where C+ and C are the straight contours below the pole at s = o

and situated within the common reéion of regularity of G+(s),

G (s), K+(s), and K (s) as shown 1n.Fig. 1.

In (40), the left-hand side is analytic 1in the upper ha]fa

plane whereas the right-hand side is analytic 1in the 1lower-haif

plane and both of them are equal in the common region of

analyticity of these two functions. So by analytic continuation,

both sides of (40)‘are analytic in the whole of the s-plane. Now

since
ryz ~(x ¥ L)_i/Z as x— 1 L
Aso,
Gi(a) ~ g 2 : as ,u,——> w
and also
K, () ~ aifz .as |a|— w

i

so it follows that
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Fig. 1. Path of integration in the compiex s-plane.
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+(a)
X -1
~ @ as {a[——+ ©.

Ki(ﬁ)

G

Therefore by Liouville’s theorem, both sides of (40) are equal to

zero. Equation (41) can be treated similarly’

Therefore from (40) and (41) we obtain the system of integral

equations giVen by

P, 1 ) P,
[G (ad) - ' ] + — +
+ .
JZH ic K+(a) J2n e K+(O)
1 e-ZLSL po
o—_ - [ G (8) + — ] ds = 0 (42)
C2mi (s-a) K (s) 27 is :
C +
-+
and
PO 1
[ G_(d) + ] +
o JZN i K_(a)
| eZLSL Po
- — [G+(s)————]ds=0 (43)
J2n is

2ri c (s-2) K_(s)

. 1, , y
Since T;R(X,O) is an even function of x, so from (25) and (26)
can be shownh that G+(-m) = G_(a) and it has been shown in

Appendix that K+(—a)v_

by —a¢ and s by -s 1in (42) it can easily be shown that equations

(42) and (43) are 1identical. So G+(a) and G_(a) are :to be

determined from any one of the integral equation (42) or (43).
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3. HIGH FREQUENCY SOLUTION OF THE INTEGRAL EQUATION

To solve the integral equation (43) 1in the case when

normalized wave number kiL %» 1, the integration along the path C_

in (43) is replaced by the integration round the circular contour

C0 round the pole at s =
contours Ck and Ck round the branch .cuts through the branch
1 2 '

points k.1 and k2 of the function K_(s) as shown in Fig. 2.

Thus equation (43) takes the form

P P K_(eﬁ)
[G_mn_u_]_ o _
{zn da {21 ia K_(0)
K_(et) o 218t P
+ f —_— [G+(s) - ] ds = 0 (44)
2 Cp +Cp (s—a)K_(s) IEE is
1z
Now
o 21isL o
[G (s) - —> ] ds
c (s-o)K_(s) J2n is
k

1 e21SL K+(s) ' P0
- f 2 2z 1,2 [ G (s) =~ —— ] ds
Iz, (s=x) (s -ki) 20 is

1 C,
it
1

which can easily be evaluated when le >>1 and is found to be equal

to
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1 ﬁ e 21K1L K+ (kl ) e'lﬂ'z’4 : PU
- — [G+(k1)-—-] (45) -
u k L (k =-a) {2n ik
1 1 1 : 1
Similarly for kiL >>1
o 21sL P
: o
f [ G+(s) - — ] ds
Ck (s—t) K_(s) JZH is
2 E
1 - e 21k2L K+(k2) e1n/4 Po }
- - [ G (k) - ——-] (46) .
M, ok L ( k,-a ) den ik, ,

Using the results (45) and (46) and also the relations

G+(—a) = G_(a) and K_(—a): -1K+(q), we obtain from (44)

AR (kP gk R (K )ef Tt :
F+(—C’4) + + - = C(a). (47)

yi(ki—m)‘JkiL _uz(kz-ﬂ)JKZL

. where .
1 P
F(E)=—— [G+(£‘f) - ] (48)
K_(=£) {en it
[k (£)1% &
A(EF) = (49)
) 2ﬁ .
and
P()
C(¥) = ' (50)
{on iK_(0)¢
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Substituting o = - k1 and o = —k2 in (47), we obtain respectively

the equations

ACk ye2TKL Ak )F (k )e2 K™
1 2 + 2
[ b T ] F k) = - C(k) (51)
2,uik1 kiL uz(k1+k2)J kzL
and
A(ki)e21k1L A(k2)921k2L
F+(k1) + [1 + ]F+(k2)'= —C(kz)
U (k +k )4 k. L 2u k { K. L
11 2 1 2 2
(52).
Now solving (51) and (52) we get
- ACK) (ki—kz)ez..”(zl”
F+(k1) = C(ki) -1 ] U(ki,kz) (53)
2y2k2(k1+k2)4 kzL
and
| Alk,) (kz—ki)ezmiL ‘
F (k) = C(k)) [ - 1 ] Uk, k) (54)
2u k (k +k )| k L
where
[ A(kl) e21k1L ACK ) e21k2L
U(kj_’kz) = '- 1 + + - +
2y1k14k1L ZyZKZszL n

A(k )A(K )(K -k )2921(k1+k2)L -1
1 2 1 2

+ . (55)
4y1y2k1k2(k1+k2) JLk1 4,|Lk2
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Now expanding U(kd,kq) and neglecting higher order terms of

(kiL)_i/2 and (kzL)-M2 and using (47) we get
G (a) = - C(a) K_(O) + C(a) K (a) +
. . L
K (a)A(k Ye2 K2 otk ) Ak el TRt Ak Yk o2 %,
. 1 1 [1_ A _ 2" 1 ] N
'u:l.(k;l—a)l k1L 2“1k1| k:lL 'uzkzlkzL (k,1+kz)
. 2k, L | : 21k L 2ik_s
\ K_(r_x)A(kz)e .:: .C(kz) [1_ A(ki)kze 1 i A(kz)e z ]
,uz(kz—t.‘ﬂ.)a] kzL ,Llikiq! kiL (k1+k2) 2,uzk2<| kzL
(56)
Now replacing a by -a and using C(-a) = - C(a). We have
G+(a) = C(a) K_(O) - C(a)K_(—a) +
K (~o0A(k e K™ ek ) Ak Je2 KM Ak )k &2 KR
. T 1 [1_ ) _ "2 0 ]+
pi(k1+a)Jk1L 2u1k14k1L pzszkzL (k1+k2)
K (—e)ACk el ek ) Alk Yk el Kt Ak )e2 TRzt
. " 2 2 [1_ 1’72 _ 2 ]
pok AKL (k +k) 2wk fKCT

yz(k2+m)JkZL

(57)
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4. STRESS INTENSITY FACTOR AND CRACK OPENING DISPLACEMENT

NEAR THE CRACK TIPS

Now as a8 —

1,2 12
) 12 HH, 1/2 HH,
K (=a) = - iK (&a) = = 1(a+kl) . ~ - i
- + o
u o+ +
[ “2 “1 Mz
1.2
K (~a
-( ) , —i/2 “1“2
X - 1d .
o+ K +
1 Hy uz
1/2
K (~a) Hou
- . L =172 1"z
— X —ia
a+k +1
2 “1 "2

So as & — w we get from (56) and (57)

and
172 PU .
G (a) 8 - iSa " - —— | (58)
Jzrn '
where
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21(k‘fk2);‘

_ 1/2
Ak Ak ) et T T
. fL____J (59)
, r——————— + :
“1 k1 #2 k2 kiL kzL Mi #2
Now from equation (37) using (58) and also the fact that
_ “1P2 _
K(aa) = * o as a4 — T w (60)
+
“1 uz
we get
* 8 —-iaL jen ] Ha
B(o) = [ o ] as d — t w (61)
ol o “ou
1" 2

Taking inverse Fourier-Transform of (35) and using the results of

Fresnel 1integrals viz.

o .
sin

COS(x+L)G. n 1,2
J I dot = [ 2(x+L) J (62)

148




We get the displacement jump across the surface of the crack as

AW = wi(x,0+) - wz(x,o—) = 281(1—1) J(L—x)
and
AW = w1(x,0+) - W;(x,o—) = 281(1—1) J(x+L)
(.ul + )
where S'1 =1 2 S
y1 “2

Next in order to find the value of Txy near

use (61) in (36) and (32) and to obtain

,j%i - ’
(=1 S -iaL iaL
A ) = [ et L g ] (i =
! HLoooqa
and
(_1)J+1 5 —ioL 0L
A(O() = [e' - e ]1 (\j =
! H, od-a :
Now
éwi(x,y)
.Tyz(x’y) = u, - , J=1,2
ay
a i ® :
= u‘—— [ —_ f A (a) exp {— v.
dy Jzn ! )

-
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for x — L-0 (63)

for x — ~L+0 (64)
(65)

about the crack tip we

1,2) as a4 — ® (66)

1,2) as &« — -0 (67)

ly| - 1ax} det ] (68)



Substituting the values of A‘,(a) as |e4| — ®, wWe can write the,

stress near about the crack tip as

n

s © e—a|y|
) ia(x+L) . _ia(x-L)
ro (%) = [ — e - e ;
yz {on F
LR 0 “n
~fa(x+ —ia(x- :
o~ Tax+L) ‘e jo(x L)] o
s(i-1) @ e alvl |
= —_— —_— [ cosa(x+L) - sina(x+L) +
J en Ja
+ cosa(x-L) + sinot(x—L)]»dr.x
1 & 1 &
. . 2 1
=8 (1-1) [———s1n—+—-—cos—] : (69).
{r 2 r, 2 |

>
F s

near about the crack tips, where

\ , 142 - . [y
ro= [ (x-L) + vy ] , qﬂ?i = sin = — - (70)
r .
1
2 2 172 . -1 Iy,
r‘2 = [ (x+L) + ¥y ] , ¢72 = sin  —— : (71)
r .
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Therefore at the interface ( 'y = 0 ) we obtain

5(1-1) )
T , as x — L+0 (72)
4 {x=0)
~and
S(1-1)
T,, ™ ——— as x — -L-0 (73)
Y 4-(x+L)
Now the stress intensity factor is defined by
[(1-1) stml
K = (74)
b .

¢

The absolute value of the complex stress intensity factor

defined by (74) has been plotted against kaL in Fig.3 for values of

ka > 1 for the following two sets of materials, given by

First Set:
3 14 2
Steel poE 7.6 gm/cm HO= 8.32 x 100 dyne/cm
. '3 11 2
Aluminium g, = 2.7 gm/cm H, = 2.63 = 10 dyne/cm
Second Seﬁ:
X 3 11 2
Wrought iron pi = 7.8 gm/cm p1 = 7.7 » 10 dyne/cm
E] 11 2
Copper e, = 8.96 gm/cm b, = 4.5 x 10 dyne/cm .
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' —— - Aluminium & Steel
-—- - Wrought iron & copper

FiG. 3. Stress intensity factor K versus dimensionless frequency k; /.
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5. CRACK OPENING DISPLACEMENT AT POINTS AWAY FROM THE CRACK TIPS -
Next in order to obtain the disb1acement jump for the 1large
values of ki(L—x) and ki(L+x) we write G+(a) and Gh(m) from (57)

and (56) respectively as

P GK_(-a)  R(k_,k ) K_(-a) R(k_,k ) K_(-a)

G () = — - + + (75)
+
o A K +a K +a
1 2
and
_ P QK_(a) R(ki’kz) K_(a) R(kz’k1) K;(a)
G_(Ci) = - — + + + (76)
Qo o k -a K —-a
1 2
P
[4)
where P = (77)
{on i » -
P P *
Q = . = (78)
{2n ik (0) K (0) |
and
2ik L 21kmL ' 21er
QA(k ) e " e Ak ) e T Ak )k
R(km,kn) = [1 - - -] (79)
'urn kTﬂ Lkm ' Lkm 2'um km Lkl'v ‘uh kﬂ ( km+kﬁ ) ‘

1}
N

where m 1 when n

and 2 when n=1t.

3
"
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‘Again using K (&) = —1K+(a) we get from (37)

@ie'™ iR(k k) e'°" iR(k k) e
B(a) = - + + -
a K (a) (k1+a) K (a) (k2+a) K (&)
~ 0L — 1oL - 0L
Qe R(ki,kq) e R(kz’ki) e
- - - - (80)
o K (&) (k -a) K (&) (k_-at) K (@), '
+ 1 + z + :

From (35) we get the displacement jump across the surface of the

crack as
1 0

wi(x,0+) - wz(x,o—) = — f B(a) e_1CXX dot. (81)

JZH

-
Now substituting the expressioﬁAof B(zx) from (80) .in (81) and
approximately evaluating the 1ntegra18 arising in (81) term by term
for large values of ki(L—x), kz(L—x), ki(L+x) and kz(L+x) and
) . . -3-2 -3/2
neglecting terms of order higher than (kiL) and (k_L) , Wwe

obtain finally the crack opening displacement across the

cracked-surface in the following form:
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AW = 'wi(x,0+) - Wz(x,O—) = 2 Qi K+(O) [

155

1k1(L—X) 1k1(L+x)
-1 4 e e
+72 Qe l + } X
Jki(L—x) Jki(L+X)
2ik L 2ik L 41k L
1 2 2 1
R R .e R R e R (R ) e
1 11 2 21 1 11
X R_ + + + +
' {2k L {2k T {2k T {2k L
sik L 2i(k +k )L 2i(k +k_)n
R2R22R2~1e + R1R~12R21e + R2R21 141
42k2L 42k2L JZkiL 42k2L J2k1L JZKZL
1k2(L—x) 1k2(L+X)
e e
+ [ + ] )('
sz(L—x) JkZ(L+x) '
zik L zik L 41K L
2 1 2
RR e RR e R(R ) e
22 1 12 22
X R2 + + + +
{2k L JZkiL JzkzL JékzL
4ikiL zi(k +k_ )L 21(k1+k2)L
RR R e RR R e e
1 44 12 + 2 241 12 . + 1 12 22
42k1L 42k1L 42k1L 42k2L 42k1L 42k2L

(82)



. K+(k1) I K+(k2)
1 = T2 T =
J—z'u;lki : E‘uzkz
2 2
D [K (k )] D (K (k )]
+1 + 2
R = a Rzz -
11
“, (k1+k1) H, (k2+k2)
DK (k) K (k) D K (k) K (k)
R _ + 1 + 2 . R _ + 1 + 2
= L, = .
# wo(k 4k ) t u(k +k)
1 1z 2 1z
ins4
e

D = (-1) ' . ' (83)

{a2n

Expressions 1in (63)‘ and (64) give the disp]acement jump
nearabout the crack tips where as the displacement jump at points
away from the c?apk tips are given by (82).

From tﬁése two results we can obtain the crack opeﬁing
disptacement at any poiht of the crack surface ~-L < x <L, y =20.

Here also normalized crack opening displacement has been
plotted against normalized distance x/L from the centre of the
crack for.two different sets of materials 1in Fig. 4. It 1é
intéresting to note that oscillatory nature of the crack opening
displacement increaseé with the increase of frequencies as a result
of the interference of waves inside the crack. Further we note that

amplitude of the crack opening displacement decreases with the

increase of frequency.
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F1G. 4. Normalized crack opening displacement versus normalized distance x//

from the centre of the crack.
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where

put

Therefore

where

Now

Therefore

Appendix

2 2,172
oopu (a8 ~k)
172

K{at) = R{x)
+
(p, +o)
zZ 2. 1/2
(y1+y2)(d -kz)
R(a) = 2 2. 1.2 oz 2 1,2
S (e -k ) ’ +u (o -k )
1 1 2 2
.
T2
m= —
u
u.(az_kf)ifz
K(a) = — - R() (A1)
1 + m
2 2. 1/2
(1+m) (& —kz)
R(a) = . — 1 as |ai — w
2 2,172 2 2.1-2 ,
(o -k ) +m{ -K ) -
1 2
m (dz_kz)i/z -1
R () R_(a) = + —
; 1+m (m+1) (x —kz)

log R+(a) + log R (o) =

2 2 1.2 -9
m (a -kl) “ 1

= Log + s 2 1.2
14+m (m+1) (a _kz) o

= log R(a)
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Therefore

-1 C+m

1 log R(z) 1 log R(Zz)
log R (&) = f dz = — f —_— dz
+ , ) , J i
2n1 c (z-a) 2n i — e (z—w)

L

where the path of integration CL is shown in Fig. 5.

Putting z = -z and us{ng the fact that R(z) = R(-z), we get
ic+
1 16+ log R(z)
log R (&) = = — f —_— dz
+ .

2 . (z+a)
ic-w

1 log R(z)
= - — —_— dz
2T o+
i c (z+ol)

where C1 is the contour round the branch points k1 and k2 as

in Fig. 6.
So,
m (Zz_k:)1/2
log [ * 2 2 .1/2 ]
1 m+1 . (m+1)(z —kz)
log R+(a) = — f dz
2ni c oz @)
1
| ERICE R
log [ 1 + ]
-k
1 2 _ m(t<2—22)1,/2
= — f dz -
211 K : ( 2z +a )
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Fig.

Im z

—o - Re 2z

Fig. 5. Complex z—piane.

6.

Path of integration round the branch points.
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- i f dz
211 K (z +a)
1
(Zz_kz)x/z
-1
K tan [ 2 2.1-2 ]
1 2 m(kz—z )
= - f dz
n K (z + &)
1
2 2 .1/2
1r (Z —k'}.) 1
k'’ tan [ 2 2 1/2 J
1 2 m(kz—z )’
Therefore R+(a) = exp | — f - dz
o8 K (z + a )
1
(zz_kz)1/2
1 1
K Itan [ 2 2 1/2 ]
1 -3 m(kz—z )
Similarily R_(a) = exp - f . dz
n K (z - o)

Therefore from (A1) we can write
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. _1r (Z —kl) |
172 Kk tan l 2 2,172 J
@2 (ark )7 1 T2 m(k -z")"
K, () = exp | = | dz (A2)
§ (1+m) o (z + a )
1
and
2 2. 1/%
g @R
172 K tan [ | 2 2.1/2 ]
i (a-k ) 1 2 m(kz—z") ’
K (a) = exp - f dz (A3)
{(1+m) LI (z - a)
1
Hence from (A2) and (A3) we get
1 (Zz_ki)1/z
' k tan [ .'-.v 2 472 ]
ﬂzi(a—ki)”” 1 2 m(k, -z )"’
K+(—C\l) = exp — Jf‘ dz
J (1+m) - n K (z - « )
= 1'K_(c'.)
i.e. Kf(—a) = ‘iK_(a) (A4)
———x——_
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HIGH FREQUENCY SCATTERING OF PLANE HORIZONTAL SHEAR WAVESVBY
A GRIFFITH CRACK PROPAGATING ALONG THE BIMATERIAL INTERFACE

1. INTRODUCTION
Scattering of elastic waves by a stationary or a moving crack

of finite 1length at the interface of two dissimilar elastic

materials is important in view of its application 1in fracture

mechanics as well as in seismo1ogy.“ Recently, Takei, Shindo and
Atsumi [1982] considered the problem of d%ffraction of transient
horizontal shear waves by a finite crack lying :on a bimaterial
interface. The method of solution was extended by Ueda,. Shindo
and Atsumi [1983] to solve the problem of torsional impact response
of a penny shaped interface crack. Srivastava et al ([1980] also

considered the low frequency aspect of the . interaction of an

antiplane shear wave by a Griffith crack at the interface of two

bonded dissimilar elastic half spaces.
In the case of cracks of finite size, travelling at a
constant velocity, loads, for mathematical simplicity, are usually

assumed to be independent of time. However, in practice, structures

PUBLISHELD IN "ENGINEERING FRACTURE MECHANICS" V45, NOi, PP107-118, 1993,
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are often required to sustain oscillating loads where the dynamic

disturbances propagate through the elastic medium in the form of

stress waves. The probiem of d{ffraction of plane harmonic
polarized shear wave by a half p1ane crack extended under aniip1ane
strain was first studied by Jahanshahi [1967]. Later Chen and Sih
[1973] considered ‘the interaction of stress waves with a
semi-infinite running crack under éither the plane strain or the
generalized plane stress condition. Sih and Loeber [1970] and Chen '
and Sih [1975] also considered the problem of scattering of plane
harmonic waves by a running crack_of fihite length. In both the
cases the problem was reduced to a system of simuitaneous Fredhq]m'
integral equations which were solved numerically.

In the present paper, we have investigated the high
frequency solution of the problem of diffraction of horizontaily
polarized shear waves by a finite crack moving on a b%mater1a1
interface. The high frequency soiution of the diffraction of
eléstic waves by a crack of finite size is important in view of the
fact that transjent solution close to the‘ wave front can be
represented by an integral of the hfgh frequency component of the-
solution. In order to solve the problem, following the method of
Chang [1971], the problem has been formulated as an extended
Wiener-Hopf equation and the asymptotic solutions for high

frequencies or for wave lengths which are short compared to the

164



length of the crack have been derived. Expressions for the dynamic
stress intensity factor at the crack tip and the crack opening
displacement have been derived. The dynamic stress intensity factor
for high frequencies has been 111gstrated graphically for two pairs

of different types of materia]s~fdr different crack velocities and

angles of incidence.

2. FORMULATION OF THE PRbBLEM AND ITS SOLUTION
Let a plane crack of width 2L move at a constant velocity V at
the interface of two bonded dissimilar elastic semi-infinite media
due to the incidence of the plane horizontal SH-wave
w,L = A exp[—{ki(x cosEu+ Y sineu) + QT}] (1)
in the medium. The crack lies on the bimaterial interface along Y=0
with respect to the fixed rectangular co-ordinate system (X,Y,Z) as

shown in Fig.1.

We assume that the displacement and stress Tields W, Tyz
) .
J

(j=1,2) are

awi(X,Y)
T =, (3)
Y& sy

in which subscripts j=1,2 refer to the upper and lower half planes,
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Inciden! SH- wave
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0 X w2~ =
® G
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Fig. 1. Running interface crack.
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respectively, T denotes time and #i is shear modulus of elasticity.

The displacement wiis governed by the classical wave eguation

azwi oW 1 azwj |
— + - = — (3=1,2) (4)
ax* > ¢ ? oa1? |

]

72, . : : .
where c;zuﬂ/pjf' is shear wave velocity and pi is the density of

the material. Without any loss of "generality, we further assume

that ¢ > c .
1 2

Due to the incident wave given by (1), reflected and

transmitted waves in the absence of the crack may be written in the

form
W = B exp [-1{k1(x cos® - Y Sinél) + QT }]1 (5)
I . ) E
and
W, = C exp [—1{k2(x cosd, + Y sinez) + 07 }1, (6)
where
kisin‘a1 - mk251n62
B = A (T
kK sing + mk sine&
1 1 2 2
2k131n91
c = A (8)
kK sin@ + mk sine
1 1 2 2
mo= o /i and kcos® = k cos& (9)

A,B,C are incident, reflected and transmitted wave amplitude, k is
; ]

the wave number, {1 = kfa is the circular frequency and & , eA are
b 1 ‘

the angles of incidence and refraction, respectively.
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A set of moving co-ordinates (x,y;,z,t) attached to the
J

centre of the crack moving at a constant velocity V is introduced

in accordance with

X = X = Vt, y =sY, z = Z, t =T (10)

.2 172
where s = (1—Mj)1 and Mj= V/cj is the Mach number.
i .

In terms of the translating co-ordinates X,y , equation (4)
. i 4

becomes
W c'-‘izwi T W, IW,
ZJ + St [ oMe— - 2 ] =0 (11)
ax dy c. s, @t P ax dt

In the moving system (x,y,z,t) equations (1),(5) and (6) take the
form
. - y1 -
{ W f A exp[—i{k1(x cose + g:sinei) + wt}]
-iwt Y4
e wr = B exp[—i{ki(x cose1 - g:sinei) + wt}] , (12)
Y,
| We o | ¢ exp[—i{kz(x cosé, + g;sineé) + wt}] ]

where w = (o and o = (1+NLcose;) = (1+Mzcosez).

In view of the equation (12) we take the solution of (11) as
-dwt

wi(x,yj)e = wj(x,yj) exp[i(Mﬁjx - wt)]. (13)

Substitution of equation (13) into equation (11) yields the
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Helmholtz equation governing W,
d

dw a4 wi 5
2‘+ =+ AW =0, (3 = 1,2) (14)
5% Byi b
K .c
where A= L
i 2
S

Applying Fourier transform, equation (14) can be solved and the

result is

m
1 " iru_ g2 o 2172 .
wi(x,yi) T f 81(c, Jexp[-1&x (t:_, 7\1 ) yildt,, y, >0 (15)
—IJJ
m
1 . \e 2 . 2 172 -
= — ¢ -1 + =/ [
wz(x,yz) py= j Bz(c)eXD[ 1E x+ (& fz) yzldc, y,<0 (16)
bth o]

From (13),(15) and (16) we obtain the displacement components Adue_

to scattered field as

o
1 - N "
Wi = E J\ Ai(t_‘ )exp[ 1¢ X ?.-’1)’1](1.,, y1>0 (17)
-0
and
w
W, = ¢ J A (L)expl-ilx + v,y,1d¢, y,<0, (18)
—~u
where

AT j=1,2 . (19
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Ai(f) and Aé(f) are the unknhown quantities to be determined

the following boundary conditions:

aw1 8w2 ,
us — =us — , for all x, y=0 (20)
1 1 & 2 a
Y, Yo
W =W ix|>L, y=0 (21)
1 2
oW oW, W
1 L ¥ i :
+ + = 0, {x|<L, y=0+ (22)
dyl 6y1 dyl
From the boundary condition (22) we obtain
Bw1 .
—_ = Aiexp[—ikix cosei], |x|<L, y=0, (23)
dy
1
i(A-B)k sin®
1 1
where A_l = (24)
s
1
Using (17), the above equation can be written as
24
- £ Yy —ifx1df = - - - -
e f Ai(g)uiexp[ iEx]dé = Aiexp[ 1k1x COSHl], L<x<L
-
= P(x), X>L (say)
= Q(x), x<~L (say)
Therefore,
Ai(éf)v.JL = exp[ifL] G+(E) + exp[-i€L] G (£) -
A1 _
- —_— [exp{i(ff—if'o)L} - exp{~1({-¢ )L} ] (25)
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where
41}

G+(E) = J P(x) expl[if (x-L)]dx (26)
L
fL
G (£) = J Q(x) expl[if (x+L)1ldx (27)
-0 | |
g o=k cose . ‘ (28)
o 1 1

From the boundary condition (20) we obtain

M A (F)
1 1

A9(5) = - —_— (29)
2 )
z
Lo :
11 '
where M = . . (30)
' i s
2z

Next using the,boundéry condition (21), we obtain

T
AE) = AE) = J (W -W_) expfifX]dx

—0

L

j Pi(x) explif x]dx
-L

= N(if): (say), . (31)
which is the measure of the discontinuity of displacement along the

surface of the crack. Now with the aid of (29) and (31), we find
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v N(E)
= (32)

v +Ms
2 i

Eliminating Ai(fg from (25) and (32) we obtain an extended

Wiener-Hopf equation, namely

expl L ]G (£) + exp[-ifL ]G (£) - N(£)K(Z)

A
= — [exp{i(if-i’fo)L} - exp{-i({-{ L} ] - (33)
1(3;—:;0) :
vy, v, ,
where K(Z) = = R() ; (34)
' v oM v 14+M '
z 1
(1+M)v
R(¥) = (35)
vo+M o
2. 1

In order to solve the Wiener-Hopf equation given by (33) we

assume that branch points E=AI(1JM1), A2(1—M2)," —11(1+M1) and

wouid

-12(1+M2) of K(¥) possess small 1imaginary parts, which
ultimately be made to tend to zero.

Now we write K(¥) = K+(E)K_(E), where K+(E) is analytic in the

‘ upper-half plane Im #5>Im [-K1(1+M1)], whereas K ({) is analytic in

the lower-half plane given by Im #<Im { Ki(rdﬁ)]. Theawexpressions

of K+(E) and K_(E) are derived in the Appendix. Since - decreases

ay
ER

exponentially as x —twx, G+(E) and G_(E) have the same common
region of regularity as K+(f) and K (§).

Now equation (33) can easily be expressed as two integral
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equations involving G+(E), G () and N(&) as follows:

G (F) A e ot
+ 1

_ [ ]
K (&) 1E=§) S K (&) K ()

8]
> e—21sL . A e1':._0L
1 ’ 1
+ 'é—n—_lT J- —_— [G_(S) + — ]ds
(s=Z)K (s) - i(s-¢ )
+ 0
c .
+
~iFL Aie—wuL
= N(E)K_ (¥)e "7 + -
: i(E-¢ YK (§)
(4]
1 o2isL A1e1ioL
- — aJ S — [ G (8) + — ]ds, (36)
o2 (s—E)K+(s) 1(5—80)

C

where c, and ¢ are the straight contours below the pole at &=
and situated within the common region of regularity of G*(f),
G (£), K+(E) and K_(f) as shown in Fig.2.

The left hand side of (36) is analytic in the upper—ha]f.p1ane
whereas the right hand side is analytic in the lower-half plane and
both of them are equal in common region of analyticity of these two
functions. Therefore, by analytic continuation, both sides of (36)
are analytic in the whole of the s-plane. Next, 5y " Liouville’s
theorem, it can be shown that both s{des of (36) are equal to zero.

Thus we obtain
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oy
+

Fig. 2. Path of intcgration in the complex .s'-blunc.
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A e O A e 4]
- i 1
[G+(f ) - ] + . +
K _(£) i(E-5,) TE-E K ()
] e21sL Aie1{0L
+ — j S— [G_(s) R —— ]ds =0 (37)
21 i (s=#)K (s) " i(s-£ )
+ Q
C
g
similarly, we also obtain
1 AiewoL
[G ) + __] .
K_(£) 1(:-4‘0)
; ez1sL Aie—1qoL
+—_ J _— [G+(s) - —_— ]ds =0 (38)
2n (s-£)K_(s) i(s={ )

[&]
C

3. HIGH FREQUENCY SOLUTION OF THE INTEGRAL EQUATIONS
In order to obtain G+(E) and G_(f) from the integral equations
(37) and (38) in case when the normalized wave number
k1(1+M1)L>>1, the integration along the path c, in (37) is replaced

by thelintegration along the loops L_ and L—k

1 2

X round the branch

points ;h1(1+M1) and —A2(1+M2) of K+(s), respectively. Also, the
integration along the path c in (38) 1is replaced by the
integration round the circular contour LO, round the pole széfU and

by the integrations along the loops Lk and LK round the branch
T 2
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cuts through the branch points h1(1—M1) and K2(1—M2) of the

function K_(s) as shown in Fig. 3.

Finally evaluating the integrals along the straight 1ine paths
round the branch points for large values of frequency, we obtain

two equations given by

21k (1XM )
.e ] ]

2 g A;[Ih.(1iM.)] F;[ih,(1iM_)]
Fy (£)+C, (€)+L — =0, (39)
* * , . . - . 12 :
i=1 2{ A.l,(1IMJ, )-£1} (A.l_L)
where o =1 and OéﬁM, and
1 A1é+1coL _
Fi(ﬁ ) = - [Gi(f ) + — ]
Ki(c) 1(g—c0)
jo /4 2
ALE) = 73 [Ki(f)]
7
Ale+1coL
C . (¥) = (40)
- i(E-E YK (&)
o’ F o
Now substituting ¢ = K1(1—M1) and l2(1—M2) and ¢ = —K1(1+M1) and

-hz(1+M2) in (39) a system of 1{near equations of F+[ h1(1—M1) 1,

F+[ k2(1—M2)], F_[—A1(1+M1)] and F_[—A2(1+M2)] are obtained. Now

solving them and neglecting higher order terms of (RiLyﬁfz and

. 12 , . . . ,
(mzL) we obtain, finally, after some algebraic manipulation:
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Fi[ilk(1$Mk)] = - ci[iik(1;Mk)] -

21 ML W 150 (13M )] C[Fh . (1M )]
+ ] J al J J -!

- , k=1,2 (41)
L =0 200 020 & (12M)#a, (1M ) }C, [2A, (17M )]
] 1 1 k K X K k

Now using (39) we get from (41)

Fi8 L Fi¢€ L »
Ae o Ae "o K+(§)
1 - 1 s
G+(L’;) = + +
({-¢,) 1= K (E))

21k, (1EM )L — + — + .
2 oke k k A¢[+Ak(1‘Mk)] C;[+uk(1_Mk)] Ki(g)
* Z 1/2 ": ®
. . + 5
2(/kL) { Ak(1_Mk) £}

2iA  (1FM )L
ze e ] j
® {1-2 !

Ai_[_/j(1+Mj)] Ci'[ &j(1+Mj)] .1-‘
=4 2(AjL)*”2{ Aj(1¥Mj)+kk(1iMk)}C;[¥lk(1iMk)]JJ

(42)

4, CRACK OPENING DISPLACEMENT AT POINTS AWAY FROM THE CRACK TIPS
In order to obtain the displacement jump for the large values
of Ki(L—x), KZ(L—x),'Ki(L+x) and KZ(L+x), we can write G+(E) and

G ({) from (42) as

) « (ks
_ Py QiKi(q) 2 Ki(g) Ry
G, (£) = % + + X y (43)
- g =& &-F c= 7 t ty
A S k=1 { /\]’:(1 Mk) &}
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where

Aie+1qoL
P, = — (44)
- i
Ale+1{0L P.f
Q, = = - (45)
K (E ) K@)
v 2 ‘i'}‘"i.- ( 1iMi- L g} + FA +
o e F - Ai{'“k(1‘Mk)] CI[+“k(1“Mk)]
+ - . 1.2 *
2(-'ka)
o 2iA  (1¥M )L L - . -
2 e i ] A+[IA(1+M)] C+[if‘\.(1+M)] :
x [1—2 ! — =S ’ - ] (46)
- . .\ - + + I +
j=1 2(AjL) { Aj(1+Mj)'kk(1 Mk)} C+[+Ak(1 Mk)]
Now we obtain from (33)
Q emL W‘)ewL . wz>ewL
- + + ‘ .ot
N(E) = - + -~ + ‘ +
E-¥ E £+ + é £+ +
(E=E I (E) {E (MOIK (€) (A, (144 ) }K_(©)
Q_e—ifL Ri1>e—1fg R:Z)e—ifL
+ - - .. (47)

(E-E DK (€)  {E-A (1=M)IK_(€)  {E-h, (1-M,)}K_(§)

From (31) we obtain the displacement jump across the surface of the.

crack as

w
1 . s 4r
ey =X "
wi(x,o+) - wz(x,o—) = — J N(&)e d ¢ (48)

-0
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Substituting the expression of N() from (47) 1in (48) and
approximately evaluating the integrals arising in (48) term by term
. for large values of Ai(L-x), hz(L—x), hi(L+x), and kz(L+x), and
neglecting terms of order higher than (.?x_lL)_?’/2 and (kzL)—S/z,

finally obtain the crack opening displacement across the cracked

surface at points away from the crack tips in the following form:

AW = wl(x,o+) - wz(x,O—)'
= - ek ¢ e et
+ + 0
1 M
i [ 2 .2 1-2 * 2 .2 1,2 ] -
= - 5 1 - . 3 1/
{(50+AiM1) A } 7 {(QO+A2M2) A~
-im/4
e 1 / _ ,
-— —.'-JT [ T+ - T_ ] 13 (49)
where
' A + + ) =
2 a}e1 k(1+Mk)(L+x) Q+K+[ihk(1+Mk)]
Ti = ¥ - = -

. . - 1.2 / . - —
k=1 { A (L+x)}1 21 2[ A (1FM )FE ]
k ] k k o

- R C29h (1EM )L
i %f_j A$[+“j(1—Mj)J Ki[ihk(1+Mk)] { Q;e j j

A . 12 - . . "
izt 2(2 AjL) { Ak(1+Mk)+Aj(1iMj)} | { Aj(1iMj?i<0}

N _ i[ A ¥ +h b
o A,[Ihr(1+MP)] Q, e21[ P(1+Mr) j(1 MJ)]L

r T

(50)

[ gl AR

I

120 L)Y E0A (1TM )4 (1EM )L A (1FM ) )
i P P j i ¥ ¥ o
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5. STRESS INTENSITY FACTOR AND CRACK OPENING DISPLACEMENT
NEAR THE CRACK TIPS

‘Now considering the behaviour of ¥ at infinity we obtain from

(42)
A1e+1<uL -1,2
G (§) % ————— + 5.¢ - as {— w, (51)
gL )
1 A1e+1<oL
where §, = ——— e *
(1+M)* 72 K, (F )
+t o
Co2dx (1EM )L - -
. E,Uke I k A$[+Ak(1_Mk)] CI[+Ak(1_Mk)] |
X
- L ' } 1.2
k=1 2( -"."'-]-L)
2‘}5. ;M — Ty —
2 e PUMOIL A 5 (17M)7 ¢, [%h (17M,)]
« |1- ¢ — X j ) z J J (52)
g . 5 - ) + e +
i=1 2( AjL) { \j(1+Mj)fAk(1 Mk)}C+[+Ak(1 Mk)]
Now, from equation (33), using (51)-and also the fact that
¢
K(§) — + — as f— *w, (53)
1+M
we obtain
1+M if L
N(&) = [ sett +g5e 6 ] as {— *w (54)
e e 172 + -
TE(E)
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Taking 1nverse Fourier transform of (31) and using the results

of Fresnel integrals, viz.

o .
sin

cos (x+L)o ‘ . 1/2 _
o =

O

we obtain the displacement jump across the surface of the crack as

AW = W (x,04) - W (x,0-)
1 2
- ais2
< +
= = (1+M)(1+1)S_ ELE—El for x— -L+0 (56)
L 4
- 12
= = (1+M)(1—1')S+ Ei%—il' for X L-0. (67)
L .

Expressions (56) and (57) give the displacement jump near to

the crack tips, whereas the displacement jump away from the crack

tips is given by (49).

. hear to the crack tip

Next, in order to find the value of Ty
IS

we use (54) in (32) and (29) and obtain

j=1,2 as f—w (58)

A(EF)
’ F(F)

]+ 1

-1)° & - ‘o
( ) ) 15 L -1¢ L
1.2

}

1

+

. i+1

=1 7, ifL ~if L

A)(k.) ——“——‘1—2- [ Se - - S_e ‘ ], j=1,2 as {——w (59)
E(-£)7
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M (v ) aw (x,y.)

Now T (X,y.) = 4 ———— = s
Yz B 8] ay B ay'
[R4]
“is; 9 | ~1€ x=v | -
= 4 — [ [ acey Xyl g ] (609
2n  dy . -, !
)]
T —w
Now substituting the values of Aﬁﬁ) as || — « in (60) and
integrating, we obtain the stress near to the crack tip as
H s cos(w;/Z) sin(w2/2)
T T e e—— -9 —_—_—— +1
yz(x,yi) T [(1 1)8+ 3 (1+1)S_ o2 ] (61)
(21) NS r
1 2
and
B, S, r Cos(ii/Z) ' cos(d /2)
T _(x,y ) = - —— {{1-1)8 + (1+1)8§ ——— |, (62)
2 1.2 12 - 12
Yz (2n) | gt d ]
1 2
v, |
where ro= {(x—L)2+yf}hﬂ’ VE = sin L
r
1
ly, i
ro= (xR v = sint =2 (63)
2 1 2
-
2
: v, |
2 , s -
d = {(x-L) +y2}1/2, ¢ = sin ' ——
1 2 1
d
1
!y !
2 z 12 . A
d, = (L) )%, ¢ = sin T 2
2 2 2. q
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Therefore at the interface (y=0) near to the right-hand c¢rack

vertex, we obtain

_Liisi(1—1')8+
T — - — as x— L+0. (64)
ye { on(x-L)}"

Now the normalized dynamic stress intensity factor K at the crack

tip x = L 1is defined by

L 2k (x-1)1""% = , (1-i)s_(k )7L
K = ’ 4 = s for x—sL+0, (65)
|

1
u A : A |
1 1 1

where A_1 is given by (24).

The absolute values of the complex stress intensity factor
defined by (65) has‘been plotted against k1L in fig.4 for values
kiL>1 for different values of the Mach number M2 andﬂthe ang]g of

incidence for the following sets of materiails:

first set:
3 11 2
Steel pu='7.6 gm/cm , H = 8.32 x 10 dyne/cm
- 3 11 z
Aluminium p2= 2.7 gm/cm -, u2= 2.63 x 10 dyne/cm

second set:
. 3 11 2
Wrought iron p= 7.8 gm/cm , H = 7.7 x 10" dyne/cm

3 11 2z
Copper . PE 8.96 gm/cmo, b= 4.5 = 10 dyne/cm
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As the Mach number Mz-—+0 the‘stress intensity factor K tends to
the value of the stress intensity factor corresponding to the
stationary crack. The problem for ei: n/2 and M2=0{O was solved
earlier by Pal and Ghosh [1990]. The gfaph' of stress 1ntensiﬁy
factor vs K1L corresponding to e1=n/2 and M2=O.O as given in Fig.4a
is found to coincidelexact1y wfth +that given by Pal and Ghosh
[1990].AIt is interesting to note that for both pairs of materials,
as M2 increases, the peaks of the curves of stres; intensity
factors decrease 1in magnitude gnd occur at lower values of K1L.
Further, it may be noted that for any fixed value of~M2 the stréss

intensity factor decreases with the decrease in the value of the

anglie of 1incidence.
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0.4-] Wrought Iron & Gopper
1 Aluminium & Steel ————
O e et S M S Rt BN A S S Sam S S S e
1 3 5 7 9 n 13 15 1k 19
kL —
Fig.4(a). Stress intensity factor K versus dimensionless
k1L for 91 =n/2.
(b) 20

Wrought fron & Copper

Aluminium & Steel

Fig.4(b). Stress intensity factor K versus

k1L for &8 =

1 n/3.
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Wrought Iron & Copper Mp=05
1 Aluminium & Steel ~  ~-----
Ovo ) T T T T T T  — — T T - T
! 3 5 U 9 n 13 .15 " 19

Fig.4(c). Stress intensity factor K versus dimensionless

k1L for 81 = n/4.

@ 2o —
: Wrough! 1ron & Copper

Aluminium & Steel ————

hL —_—

Fig.4(d). Stress intensity factor K versus dimensionless

k1L for 61 = n/6.
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APPENDIX

[En M EE e
K(E) = R(&)
1+4+M
Los
11
where M =
L s
2 2
.. 2 .2 1/2
(M) {(E+A M) =~}
and R(E) = 2 ; ;,2 - 2 . 2.1/2 !
e 7 /7 e +. 3
M{(q+A1M1) Ai} +{ (¢ AZMZ) Az}
as [£] —w
1
)4 —
Now R+(E)R-(“) - 1 ML(E A M )2_}2}1/2
N STy 4
o 2 .2.,1,2
1+M (1+M){(4+A2M2) Az}
Taking l1og on both sides
1 log R(7})
log R() = 1og R (!) + Tog R(§) = — [ ————dn
: 2y n=E
[ I &)
L u

where the paths of integration cL and cU are shown in Fig.Afl.

1 1og R(%)

Therefore log R+(E) = f dn
21 n-&
c
L
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1 1og R(7)

Tog R_(§) = dr
eni |, 0
(& -
83
. 1 TicHw Tog R(#n)
or Tog R+(f) = — f —— dn
2m -ic—w e
Putting n = Fn
i %7 yog R(-%)
. log R+(€) = — — dp
2y N+
i c4tn
1 1ot log R(7%)
Tog R (§) = — | dr
21 i -4
therefore
1 1 1
log R (§) = — f 109[ ]dn
- - . 2 2.1-2
i (p~-&) 1 M{(n+A M ) =1}
< + 1 1 1
1

: . 2 2. 41/2
1+ + T+ ~7
Mo (M) {(n AZMZ) Az}

where c1 is the contour round the branch points R1(1—M1) and

. K2(1—M2)jas shown in Fig. AZ2.

Therefore
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A otd4-M 3
y ‘ . 2 .2 1/2
1 S . IM{C+A, M) A ) |
— [ J-
’ - 2 . 2 172
o (n-£) 14+M (1+M) { Az—(n+A2M2) }
A 1M )
N .
) z .2 1/2
) , : T4+ -
[ 1 iM{(+A M ) -4 .
- log - 2z 2.1/2 1
MAM O (M) A= (M)}
2 2 2
h2(1—M2> : 2 .2 .1/2
] | 1 . M{(W+A1M1) _Ai}
= — tan - P 2. 1,2 ik
n (n-¢) U A, =Gnen M)}
A (1-M
1 1

and therefore

Az(i—M P -
2 . . i,z
r 1 ' 1 M [(ﬂ+h M) -A ]
-1 11 1
R () = exp l - f tan [ ]dn ].
T (n=-8) { ﬁz—(ﬁ+l M )2 ]1/2
- i 2 g2 _
A (l—M ) .
1 1
Similariy
A (1+M ,
) ) 1.2
1 1 LML MR ] ‘L
R (§) = exp — j tan dn {.
: i (n+E) ' [ a2-(p-r M )% 1*7?
I s . 2 ! 2 2
A (1+M )
1

Therefore from (A1) we can write
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[ E+r (1+M ) 102

K (&) = | }

[ (1+M)
"\zl“Mz) 2 .2 _1/2
1 1 .M [(n=A M ) =A" 1]
, [ r tan L. Yan | (a2)
}.expl J B T 2 ) 2 1/2J _,
i (n+) CAa-G-A M) 1 .
.»'x.it;t-r-Mi)

ang
"L—a (1—M1) .'1/2
K () = | ' X
L (1+m) J
A (1""M ) 2 2 1’2
1 1 M [(n+n M ) =25 177
X exp [— J. tan r i . ]dn ] (A3)
_ L .2 2 1,2
T (n=8) [ Az—(n+K2M2) ]
A (1-M ) '
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lmT[
A

A=) Ap(-My)

¢4 '.& ReTl

= A,(1+M;) =2, (1+My)

Fig. Al. Complex np-plane.

20-M) C, A (-Mp)
(._ _____ — e ————_—-

. o
“AglHMp) =R (M)

Fig. A2. Path of integration round the branch points.
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Paper - 5.

Paper - 6.

CHAPTER - III

DIFFRACTION PROBLEMS_IN ELASTODYNAMICS

Forced vertica1. vibration of four
rigid strips on a semi-infinite

elastic solid.

Diffraction of elastic waves by four

rigid strips embedded in’ an

infinite orthotropic medium.

Page
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FORCED VERTICAL VIBRATION OF FOUR RIGID STRIPS
ON A SEMI-INFINITE ELASTIC SOLID

1. INTRODUCTION

The probiem of the effect of 'vibrating source in different
forms on the surface of an e1ast1§ medium have aroused attention 1nn*
view of»their application in seismology ‘and geophysics. Reissner
[1937], and 1ater Millar and Pursey [1954], treated the case of a
uniform vibratihg pressure distribution ~app1}ed to a circular’
region on the surface of an eIastic half-space. Analytical
treatment of the dynamical response of footings and so]id-structure
interaction are usuéi1y available 1in the 1literature only for
C1r¢u1ar and elliptical footings, and infinite strip loadings. Such
results are important 1n_view of their application in the aesign of
foundations for machinery and buildings, and é1so in the study of
the vibration of dams and targe structures subjected to
earthquakes. The prob1§m of circular punch - has been solved
analytically by Awojobi and Grootenhuis [1965], Robertson [1966],

Gladwell [1968] and others. Roy [1986] considered the dynamic

IN PRESS "INT. J. SOLIDS and STRUCTURES", 19006
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response of an elliptical footing in frictionliess contact with a
homogeneous elastic half-space. Karasudhi, Keer and Lee [1968]
obtained a low frequenc} solution for the vertical, horizontal and
rocking vibration of an infinite strip on a semi-infinite elastic
medium. wickham_[1977] worked out 1n:deta11 the pfob1em of forced
two-dimensional oscillation of a rigid strip.in smooth contact with
a semi-infinite elastic medium. Recently, Mandal and Ghosh [1992]
treated the problem of forced vertica1 vibration of two rigid
strips on a semi-infinite elastic ﬁedium.

To 1improve the dynamic méde]s of buildings and other“\
structures, it will be fruitful to have anafytic results for
foundations of a more complicated nature. In what follows, the.
problem of vertical vibration of .four rigid strips 1in smooth
contact with a semi-infinite elastic medium has been considered.
The probliem is also important in view of 1its application 1in the
study of the vibration of aﬁ elastic - medium causéd by running
wheels on a railway track. The resuTtingA mixed boundary value
problem has been reduced to the so1ut€on of quadruple 1integral
equations; which have further been reduced to the solution of
integral~differential equations. Finally, an 1te?ative solution
valid for low frequency has been obtained.

From the sé1ut10n of the integral equations, the étress just

‘below the strips and also the vertical displacement at points
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outside the strips on the free surface have been found. The effects
of stress intensity factors at the edges of the strips and vertical

displacement outside the strips have been shown by means of graphs.

2. FORMULATIONIOF THE PROBLEM
Consider the normal vibration1of frequency @ of four rigid
strips having smooth contact with a semi-infinite homoéeneoug
isotropic elastic solid occupying the half-space =-w<iX<w, Y20,

-w<Z<w. It is assumed that the motion is forced by prescribed

. , , . -jwt , .
displacement distribution voe T normal to the four infinite

strips located in the region d_ = X}Edz, d35|X|5d, Y=0, |Z|<w, where

vO is a constant.

Normalizing all the lengths with respect to d and putting

d d
= a, 2:b, —E

d

Q.
—_

Y z, C;

ol
1]
x
al <
n
[eR N
i

“ |
Q

one finds that the rigid strips are defined by at|x|%b, ¢ Z2|x]|<1,
o, . . , -iwt

y=0, |2|<m (fig.1). With the time factor e suppressed

throughout the analysis, the displacement components can be written

as

e gV dd

dd b
u(x,y) = J% " W ;0 vix,y) = W + % ;o owix,y) 0 (1)
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Fig. 1. Geometry of the problem.
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where the displacement potentials #(x,y) and w(x,y) satisfy the

Helmholtz equations

82¢ 02¢ ,
;;E + 6y2 + m1¢ =0
0% ot |
;;E + 5;5 +my =0 _(?)
mzdz . o w2d2
in which my = > and | m, = '02
1 2
In terms of ¢ and ¥ the stressjcomponents are
[ % 0% \
Txy - l : axady ' éxz'_ 6y2 j
(2 9° | 3%y | |
T, f - u {[ m, + 2 ;;5 ]¢ -2 oy } ’. (3)
Ty 7 O
The boundary cénditjons are
vix,0) = v0 , X € 12 , I4 (4)
ryy(x,o) =0 , X &€ I'1 v Iy Ig (5)
Txy(x,O) =0 , -0 { X < w (6)
where I1 = (O,a),‘I2 = (a,s), 13 = (b,c), I4 = (c,1), 15 =-(1,m)u
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The solution of the Helmholtz eqdation (2) can be written as

o

-y
- - 1 -
¢ =2 [ A(E) cosix e d?
0
o . (7)
. LY
w =2 ['B(E‘f) sinfx e dz
5 .
where
2 1/2 "
R R [T
.= s Jjg=1,2
¢ . w2 2 .
J Sim? - g HEE m,

and A(¢) and B(f) are dnknown functions, to be determined from the

boundary conditibns.

By using the boundary condition (6) it can be shown that

B(Z) = 55— AlE) | (8)

Now the displacement component v and stress Tyy become

w L2 '
o ¥,y Y
vix,y) = 2 f [ ——3 © - e ] A(¢ )cosix di (9)
_ L2 ]
0 27 m2
0 — y 2.32,'/ " y
2_.2, 1 Sl T . c
T (X,y) = —zuf [(m2-2€ Je + __5_15_ e ]A(é)costx & (10)
yy . LR |

From the boundary conditions (4) and (5) we get the following set

of integral equations in P(¥):
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K e 1 i
4 = = , X = I 11
f EI IR P(¢)cosf x df = Yo I, I, (11)
o (2 -m, Sy
and
X
f P(f)cosix df = 0 , X £ I1 , 12 , 15 (12)
0
where
._'n n A .2
(25-m )" - 4%y v,
e L od
P(£) = —~ 2 CA(S).
(28° - m)

3. SOLUTION OF THE PROBLEM
We consider the solution of the integral equations (1t1) and

(12) in the form

b 1

P() = f tf(t7)cosft dt + [ ug(u®)cosfu du (13)

Fal

|

-]

a c
) 2 2 . ,

where f(t ) and g(u ) are unknown functions to be determined.

By the choice of P(¥) given by (13) the relation (12) 1is

satisfied automatically and the equation (11) becomes
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~
[ < [ g Ft df
J tf(t )dt g (2 2 )2 4,2 - cosi x cosft df +
a o ‘< My IRETS
1 w 2 X
2 “ M Yo
+ f ug(u )du f 5 5 2 2 cosfx cosfu df = — ,
[ - 4 F % 2
c o (& my) SESLS-
X € I2 » I, (14)
‘using the relation
C o v X t . o
sinfx sinft _wao(&w) JO({V) dvdw
2 =] ] 2 2.1/2 .2 2.1/2
¥ o o (x -w ) (t -v)

the above equation is converted to the form

b X

g; [t F(t2) dt 5T 1
a 0

"Y L1(v,w) dvdw

I =7

1/2

<

2

(xZ-w?) 2 (£2oE

Q

(t )

1 . X :
xu wv L1(v,w) dvdw

d 2 & o op
+ — du —
ax J ueuau o [f 2wy 72 (2 2172
c 00 -
\'% 0 .
=— , xe 1,1 (15)
2’ T4
2
where
o ) 2
M
L, (vow) = f I RN Jo W)y (Ev)dE (16)
o " T2 R L
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By a simple contour integration technique used by Ghosh and Ghosh

(1985), L1(v,w) can be written as

- 1(1—n2)1/2(2n2—T2)2 Hé1)(m1nw) Jo(minv)

L (vow) = —it® 2 2.4 4 2 2 2 di -
(gn=t7) + 167 (n —-1)(T-11)
T 2 1/2 1
1] (n -1)(’r =) / é )(m W) J (m1nv)
- 44T f ‘ dn +
2 2.4 . -
o (2n~-t7) + 167 (n -1)(T =7} )
2 1/2 (1)
(n =1) H (mnpw) J_(m nv)
2 [ 1 0" 1 ]
+ 7T ; WOV
Qo(n) : =T,
. 2 2 1 2.1 2 1
T (1-v7) /2, )(m nw)J (m,v)
z — 2 P f O 1 dn +
16(1—?2) J T2—T2
j=0 0 T
T, 2 2.1/2 (1),
2 ] (t°-1°) / Hé )(m1nw)do(m1ﬂV)
+ S‘ S. J dn] +
L J : 2 2
. n -T, 4
J=0 0
2 1/2 (1)
5 (n -1) / H(() (m1nw) Jo(m nv) =
. 1
+ TaT [ T A 4 W>v (17) .
Qy () =T
m C
2 1 2 2.2 2 2 1 2 2.1/2
where 17 = — = — , Q1) =(2n ~-7t7) = 4n (n -1) /2 (n -t) / and,
m1 02 0
7. is the root of the Rayleigh wave equation Qo(n) = 0. ‘ T1, 72

0

are the roots of the équation
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2 2, 2 1/2, 2 21/2
(2 -1 ) + 4 (1) (-7 ) =0

Qo(n) denotes the derivative of Qo(n) with respect to 7 and

p 2
(2Tf - T )
P, = J
J 2 2 ’
mas -1
.i
2 2
4Tj (t, - 1)
S, = J , 1,J = 0,1,2 and: i # J
J (2 - %)

The corresponding expression for L1(v,w) for w < v follows from

) ) . , 1
equation (17) by interchanging w and v. For a Poisson ratio ¢ = 7
the values of T, TO, 11, and TZ are given by
o 201-) 2 8 2 8 2 3
T = — = 3, TO = ———% T1 = ————— and 72 = ik
(1-2c) (0.9194) (2+27Y3)

Hence, in this case 72 < 71 <1 <1« fo

By using the series expansions of JO and Hé1) and eVa]uating

the integrals arising in equation (17), we obtain, after some.

algebraic manipulation,
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- - mw Ti. P
L1(v,w) = iTZ{!T + log — - —IM + N - —(w2+v2)mf1ogm1] + O(mf)
Lt 2 2 4
W > V.
m,v 7. P
1 2
= ETz[{;»’-*-bg M+ N - —(w2+v2)m21ogm ] + 0(m))
n 1 1 1
2 2 4
w < v. (18)
where » = 0.5772157... 1is Euler’s constant,
n
Mz - — ' (19)
2
4(1-7 ) ‘

2 ’ 2 2
T J‘(‘I—Tj) 1 «1(1—‘!"3,)
= —— . — + ——— ——————————s
N 4709 Z Pj tan

32(1-1t7) . T, ,
J=1 J J

‘o
- SO log { ) (20)
TO T
2 2
" 1 2 72 2
P = 5 [ Y P, (= -T7) + z S (= -717) ] (21)
} L J 2 J Jj 2
32(1-1t7) :
‘ j=0 j=0
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Next, differentiating both sides of the relation (14) with respect

to x, we obtain

b 0 _
2 £ym
J efehdt [ ——
a 0 % T

sinfx sinit df +

1 w

+ f ug(uz)du f RS
0 (2¢ ~-m,

(@

Following similar procedure as done for deriving equation (15), we

get
b
tF(£2) " ugu?y
—_ + —
X I 7% dt + X f > du
X -t X —~u
a c
b t
5 3 X WV L2(v,w) dvdw
= | t f(t7) dt =— E
I (v at I (x2-w2y 172 (22172
a 0 0 ‘ M
1 X u
5 3 1A% L2(v,w) dwdv
+ du —
Jruetwhau o [ f Py 172 (22172 T I I, (22)
c 00 M
o) 2y £2(m —m2)’ '
where L (v,w) = f & - L 2 J (Fw) J _(Ev)df
2+ ' .2 2.2 L2 0" o >V
0 (2% —mz), - 4 Yi¥s
(23)
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For small values of m1 and m2 such that m1=0(m2), one can use the

contour integration technique mentioned above and obtain

1 2.1/2, 2 2.2 2 (1
a (1-n") / (2n -1 ) Hé )(m1'r;w) Jolm, nv)
L (v,w) = 2im (1-1%) [ — n 2 — dn
2 1 o (2ﬂ‘—T2) + 167 (n2—1)(T -n)
a 2n* (%=1 202 ) Y2 0 (o) 0 (mov)
. 2 2 0 1 01 .
+ 4im (1) [ - z 2.4 4 2 2 2 i -
o (2n -t)" + 16n (p“-1)(T°-1")
2 2 .1/2 (1
2 2 n (n-1) / Hé )(m1nw) Jo(m1nv)
- 2ﬂ1m1(1-r ) [ = ] y WOV
QO(T)) 77:10
(24)

By a process similar to the one which 1led to equation (18),

equation (24) can be written as

4P 2 2 '
L(V,W) = = =2 (1-1°) m° Togm, + O(m°) (25)
c T i 1 1
where P is given by eguation (21).

Now examining the relation (15) and (18) we assume the expressions

of the functions f(tz) and g(uz) as

5 , .
f(t ) 1ogm1 + O(mf)

2 2 2
fo(t ) + f1(t ) m1

(26)
g(u?)

2 2 2 2
+ .
Qo(u ) 91(u ) m, 1ogm1 + O(m1)



. 2 '
Putting the above expressions of f(tz) and g(u ) and the value of
L2(v,w) given by (25) in equation (22) and equating the

coefficients of 1ike powers of m1 we obtain

' 2
° ur (£ ug, (u®)
f 2dt+ITdu=O, XEIZ,I4 (27)
X -t X -u
a C
b tf1(t2) ug1(u2)
and [ g dvr [ du s
x -t X —u
a C
b 1
4 1
= - = P(1—12){f tfo(tz)dt + ugo(uz) duJ, x €1, I,. (28)

a o4

Fo17owing Srivastava and Lowengrub (1970) the solutions of the

above integral equations (27) can be obtained as

2 1/2 2 .2 1/2

1-a c -t 1
e (za) () —
¢ -a 1-t J(tz_az)(bz_tz)
(222 V2
- D [ ] S, tel (29)
2 | 2,2 2

1 (1-t2) (c2-12)
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and

5 1—a2 \1/2 u-c” 31/2 1
g.(u”) = D [ J [ J - +

0 1 2 2 2

~co- -u“ - 2

¢ -a 1-u J(uz_a ) (u2-b2)
2 2 1/2
u —-a 3 ’ 1
‘D [ | L ue I (30)
2 [2-p2 J 4

{(W?=c?y(1-u?)

where D, and D2 are constants which can be calculated as foliows:
We substitute the value of L1(v,w) from (18) as well as the

expansions of f(tz) and g(uz) obtained from (26), (29) and (30)

upto O(mf 1ogm%) in the equatiqn (15). When tﬁe coefficients}-of

like powers of m1 from both sides of the resulting -equation are

equated “and we get after some algebraic manipulation, the
following
nvo (X2—X1) nvo (X1—X3)
D, = ; D, = (31)
U 4 (XX -XX) ‘ at? (X X ~X.X_)
; 174 7273 ) 174 7273
where
) ' 1-a2 1/2 m1 —_ <
X, = ¥ o+ —_ - — '
’ [ CER ] [{[ 3 log 5 JM + N}(J1+J3) +
c -a 2 -
1 2 2
+ — -
2MJ11og(b a ) + MJS] (32)
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m,
[-‘v + 109— -3 ]M + N}(J —J ) - = MJ 1og(b -a ) + MJ (33)
1--a2 172 m
= f- [r:}fﬂ g—1 _ M + N}(J +J ) +
37 L 22 1{ © 5 2 J :
¢ I t0g(1=c%) + M| (34)
z v 09 © 71
. m : '
[;w + 109—; - -Q—JM + Nl(d —J ) + -2- MJ 'Iog(1 c ) - MJ (35)
b c —t2-1/2 tdt
SRR Gl
1 §-12 ' J 2 2., 2 .2
a (t -a )(b"-t")
b 2,2 1/2 tat
el (55) =
2 : 2 2 -
o b"-t l(1 _bz)(cz_tz)
_1 u2—02 1/2 udu
SR Gl
3 2
c fmu §(u2-a2) (12-b?)
! uz-a‘l2 1/2 udu
J4 ) f [ u —b2 ] 2 2 2
c J(u =c )(1 =u’)



! ulog (."uz-—b2 + Juz—a2 ) u2—62 -1/2
J. = f [ J du
5 2
c J(uz_az)(uz_bz)‘ 1 -u
1 ulog ( Juz—b2 + Juz—az ) u2—a% 1/2
J. = : ) du
= [ ==
c j(1 —uz)(uz—cz) u-b
b tlog ( 02-t2 + 11 —t2 ) 02—t2 /2
J =f [ ] dt
! 1 2 2. .2 2 .
a (t -a )(b -t")
b tlog ( \lcz—t2 + l1 —t2 ) - t2—a2 -1/2
Jo = [ J dt
8 J 2 .2
a 11 —62)(c2-12) b -t

4. STRESS INTENSITY FACTORS AND DISPLACEMENT
The normal stress Tyy(x,y) on the plane y=0 can be found - from

the relations (10), (13), (26), (29) and (30) as

LU X 1 -a [ J A

T (X,O) = [ D [ } -
Yy 1 2 2 2

J(xz—az)(bz—xz) ' !



(xz—az)

I 2 ,
- i =
0, - e —— ] + O( m Togm, ), x & I, .
J(1 -x“)(c"-x")
2 2
TLUX .1 -a Ve (x=c™)
= [Dil” J +

c —a ’

2 2 1/2

Defining the stress intensity factors at

the relations

i T (x,0)dx-a
K = Lt Yy K =
a — ! Tr 1) -
x—a+ | BV,
l T (x;O)foc i‘
K =ttt | X ‘ ; K, =

X—>C+ ! v ‘

We get

] Ya D, /v

] + O( m121ogm1 ), x eI

i(xz—az)(xz-bz)
(36)

4

the edges of the strips by

Tyy(x,O)Jb—x I

Lt l \ ’

x—b- | 7@ pvo' ,
T (x,0)41=x

Lt { Yy

X—>1- | mopv

(37)



| fb ) . D1, ’ —a2 _1/2 02—b2 _1/2 DZ (b2_a2) .I
K = |————— —_— - £
b { \% .2 [ .2 \% l
lz(bz_az) 0% c"-a 1 -b 0 J(1 b2y (c2-p%)” !
(38)
I Yc D, . 2-a2 -1/2
o | ==+ ()
' 2(1 _CE) 0 c -b ;
f 1 f (1 —02) D, -1 —a* e ’
K = { + D (40)
1 { l l1—b2‘] '2}-17‘

1201 =6 " {c=a?) (1 -b2)

The vertical displacement v(x,y) on the plane y=0 can be obtained

from equations (9), (13), (26), (29), and (30) as

In) . n 1
4t” . T - ( 1 -a“ . /2
v(x,0) = — f} + logm, - — |M + N D.{: (J,+J) +
N L 1 1\ 1 1 3
i . 2 . 2 cC —a
, 1/2
Y M ra I -a "]
+ - + = + + -
DUy Jz)} 2 {(Jg J11)[ 2 2 ] D, 0,040 J10)]
- c -a
x €1, I, I (41)
where
2 2 2 2 2
tloglt -x"] . c -t -1/
J = dt
o : |
1 -t



t1og’t2—x2‘ Lt -a
| |

a {01 -t2) (2%

1 2 2 , 1/2
ulogfu“-x"| u -c” .
= d
J11 f 2 2 2 2 [ 1 —u2 J )
c l(u -a ){(u -b")
1 [ 22 2 2 1/2
u]og,u =X - U -a .
J = [ J du
12 5 u2_b2

¢ du-c?)(1 -u?)

5. NUMERICAL éESULTS AND DISCUSSION
The stress intensity factors (SIF) Ka' Kb’ KC and K1 at the
edgés of the striés and vertical displacement {v(x,O)/vOf near
about the rigid strips have been plotted against dimensioniess

frequency m1 and distance x respectively for a Poisson solid

(12=3).

It is found that whatever the lengths of the strips are, SIFs

at the four edges of the strips increase with increase in the value

of m1( 0.1 = m1 = 0.6 ).

From the graphs, it may be noted further that with a decrease
in the length of the inner strip, which might be induced either by:
increasing ’a’ or by decreasing 'b’, the SIFs gradually dincrease

(fig.2 - fig.9).
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Also, a decrease in the vatue of lthe fength of the outer
strip, which might be induced by increasing the value of c, causes
an increase in.the values of the SIFs (fig.10 - fig.13), from which
an 1nteresﬁ1ng conclusion might be drawn: i.e, that the presence of
the outer strip suppresses the SIFs at both the edges of the inner
strfp and the preseﬁce of the inner strip suppresses the SIFs at

both the edges of the outer strip.

The vertical displacement has been plotted for different strip
lengths. It is found from fig.14 - fig.16 that with the increase in

the value of strip lengths, the displacement increases.
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Fig. 2. Stress intensity factor Ka versus dimensionliess

fregquency m, for b =

1 0.6, c = 0.8 and for

different values of a.
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Fig.

3. Stress intensity factor Kb versus dimensionless

0.8 and for

frequency m1 for b =. 0.6, ¢

different values of a.
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Fig. 4. Stress intensity factor KC versus dimensionless
frequency m, for b = 0.6, ¢ = 0.8 and for

different values of a. R
i
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Fig. 5. Stress intensity factor K1 versus dimensionless
frequency m1 for b = 0.6, ¢ = 0.8 and for

different values of a.
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Fig. 6. Stress intensity factor K&1 versus dimensionless
frequency m1 fora = 0.2, ¢ = 0.8 and for

different values of b.

219



PR VR S V) AT NN AT WS U NSNS SN TN SN SN SN SAU S WU SN NN NN WA SN T
01 02 03 0-4 05 . 06
my —>

Fig. 7. Stress intensity factor Kb versus dimensionless
frequency m1 fora = 0.2, ¢ = 0.8 and for

different values of b.
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Fig. 8. Stress intensity factor KC versus dimensionless

frequency m1 fora = 0.2, ¢ = 0.8 and for

different values of b.
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Fig. 9. Stress intensity factor K1 versus dimensionliess
freguency m1 for a = 0.2, ¢ = 0.8 and for

different values of b.
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Fig. 10. Stress intensity factor Ka versus dimensioniess

frequency m1 for a = 0.2, b = 0.4 and for

different values of C.
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Fig. 11, Stress intensity factor Kb versus dimensionless
frequency m1 fora = 0.2, b = 0.4 and for

different values of c.
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Fig. 12. Stress intensity factor KC versus dimensionijess
frequency m1 for a = 0.2, b = 0.4 and for

different values of c.
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Fig. 13. Stress intensity factor'K1 versus dimensionless
freguency m1 fora = 0.2, b = 0.4 -and for

different values of c.
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Fig.

14.

Vertical displacement | v(x,O)/v0 | versus

dimensionless distance x for b = 0.6, ¢ = 0.8,

a = 0.2, 0.4 and for m, = 0.1, 0.2, 0.3.
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Fig. 15. Vertical displacement | v(x,O)/vO | versus
dimensionless distance x for a = 0.2, ¢ = 0.8,

,b = 0.4, 0.6 and for m, = 0.1, 0.2, O.
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Fig. 16. Vertical displacement | v(x,O)/v0 { versus

dimensionless distance x for a=20.2, b=0.4,

¢ = 0.6, 0.8 and for m1 = 0.1, 0.2, 0.3.
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DIFFRACTION OF ELASTIC WAVES BY FOUR RIGID STRIPS
EMBEDDED IN AN INFINITE ORTHOTROPIC MEDIUM

1. INTRODUCTION

In recent years, the study of the problems involving cracks or
inciusions in composite and anisotropic materials has gained much
importance. The probiems of diffraction of elastic waves by Cracks.
or inclusions have aroused attention 1in the field of fracturé
mechanics 1in view of their application in Seismology and
Geophysics. Studies of a single Griffith crack as well as two
parallel and coplanar Griffith cracks have been made by Mal [1970],
Jain and Kanwal [1972] and Itou [1980]. The correspond{ng problems
of diffraction by a single and two parallel rigid strips have béen
solved by Wickham [1977], Jain and Kanwal [1972] and Mandal and
Ghosh [1992] respectively. In mostlof the cases the problems were
solved by the integral equation technique, but the solutions of
interesting problems involving the scattering of elastic waves by“
more than two coplanar Griffith cracks or strips are still Jlacking.
The problem involving single Griffith crack in orthotropic medium

was investigated by Kassir and Bandyopadhya [1983], Shindo et al

IN PRESS "JOURNAL OF ENGINEERING MATHEMATICS", 199G,
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[1986] and De and Patra [1990]. Shindo et al [1991] have
investigated the impact response of symmetric edge cracks 1in an
orthotropic strip. Mandaf and Ghosh [1994] considered ~ the problem’

of interaction of elastic waves with a periodic array of coplanar

-

!

Griffith cracks in an orthotropic elastic medium. The problem of
scattering of e1astic waves by a ‘circular crack in transversely
{sotropic medium was 1nvestﬁgated;by Kundu and Bostrom [1981].

In our case, we have Considefed the two-dimensional prob1ems
of diffraction of elastic waves by four coplanar parallel rigid‘
strips embedded in an infinite orthotropic medium. The five part
mixed boundary_va]Ue probiem was reduced to the solution of a set
of integral equations. Following the technique - developed by'
Srivastava and Lowengrub [1970], the integral equations were
solved. The normal stress under phe strips and displacement outside
the strips were derived in closed analytical form. To display the
influence of the material orthotropy numerical values of stress
intensity factors at the edges of the strips and vertical
displacement have been plotted against dimensionless freduency and
distance respectively for several orthotropic materials. This type
of problem is important in view of their application 1in detecting
the presence of inhomogeneities embedded in material structure and
in seismology while studing the scattering of e1asﬁic waves Dby

inhomogeneities 1ike rigid hard rocks inside the earth.
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2. FORMULATION OF THE PROBLEM
Consider the diffraction of nprma11y incident 1ongitudinal
wave by four coplanar and parallel rigid strips embedded in an
infinite orthotropic elastic medium and the strips occupy the
region d1S{x1|£ d,, dsif}x1 < d, x,=0, }x3 <w. Let E,, u,, and Ty
(i,j=1,2,3) denote the engineering e]astic constants of the

- material where the subscripts 1,2,3 correspond to the x X

17 X2 %3
directions which coincide with the axes of material -orthotropy.
Normalizing a1l lengths with respect to ’'d’ and putting x1/d=x,
x2/d=y, x3/d=z, d1/d=a, d2/d=b, d3/d=c, the rigid strips are
defined by as|x|<b, c£|x|1, y=0, |z|<x (Fig.1).

Let a time harmonic wave given by u1=0 and v1=v

= o =(1: ) 1/2 : -
where k L.d/cS ,022, c_S (p12/p) and vO is a constant, travelling

Oexp[ i(ky~-wt)]

in the direction of positive y-axis be 1incident normally on the

strips. The non-zero stress components Tyy and Txy are given by

T / u = c gﬁ + C QX
yy © 712 T 742 dx 22 dy
du av
z-xy / Hig = dy  8x (1)

where Cij (i,J = 1,2) are nondimensional parameters related to the

elastic constants by the relations
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Fig. 1. Geometry of the strips and incident field.



Ciq =By Sy, (V- vi, ES/E)

Cop T By /My, (1 -y, E)/E)) = c B /R, ("'j’)
=v, E_/ u (1 - vz E./JE,) = v = v

€12 T Yi2F2 1 Hyp 12 F2/517 T Pq2%2 T VYo%

The constants Ei and Pij satisfy the Maxwe11’é relation

i i g

The equations of motion for orthotropic material, interms of

N

displacements are

& u d u ' a v d d u
c + - + (1 + c,.) = = —
M dxz dy“ 12 Ox8y ci étz
(3)
. 62v 62v_ '62u d2 62v
c —_— + — + (1 + Cc, )y—m = — ——
22 2 . 2 12 2 2
ady ax dxdy Cq at

where u, v are the displacement components of the scattered field

(Fig.2).
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Fig. 2. Displacement components of the scattered field.
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The boundary conditions are

(i) u(x,y,t) = 0, v(x,y,t) + vi(x,y,t) =0 across y=0 on
the surface of the strips.

(ii) u and v arercontinuous across y=0 for |x|< w.

(iid) Tyy Txy are continuous across y=0 outside the stripsf_

Further, the scattered Tield should satisfy the radiation condition

at infinity. Substituting u(x,y,t) = u(x,ylexp(-int) and v(x,y,t) =

vix,y)exp(-iwt) our problem reduces to the solution of the

equations
82u 32u Bzv dzwz
c,, — +——=+ (1 +c_.) + —— u=20
i1 2 2 12 ) 2
ox - dy ‘ Ixay o
and
Bzv Bzv -Bzu dzﬁz
Cop Tt Tt IS ——+ 5 v =0 (4)
dy ax Axdy g

Boundary conditions on u and v suggest that u and v are odd and
even functions of y respectively. Accordingly, equations (4) are to

be solved subject to the boundary conditions
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v(x.0) = = v, x £ I, ,1, (5)

Tyy(x,O) =0 , X & I1 , I3 , I5 (6)

ux,00 =0, x| < (7)
with I, = (0,a), I, = (a,b), I, él(b,c), I, = (c,1), Iy = (1,w).

Henceforth the time factor exp(;iwt) which is common to all
‘field variables would be omitted in the sequel.
The solutions of equations (4) are taken as

o

- 2 Fy A ! w w | Tavd 7 ’
u(x,y) = * — J [A1(Q)GXD(“f1lyf) + Az(a)exp(-}2|yl)] sinfx df, vy O
0 . :
(8)
w
- 2 T A (F " 3 3 7
vix,y) = - F A, 1(t,)exp(—;t1]y]) + azAz(g)exp(—;zlyl) cosf x df,
0
- (9)
where
o, £omk2ay? | a%w?
11 s’ , 2
o, = . 1= 1,2, kK- = (10)
1 (1 + c. )r s C2
12774 s
" . ‘ 2 2
and Ai(“) (i = 1,2) are the unknowns to be solved, y1 and ¥, are

the roots of the equation

4 2 fw 2 21 2 w2 2.,.2 2
v o o+ - : - . - =
C, o {(012+2012 c11c22)& +(1+022)k8}y +(c11c kS)(q ks) =0

(11)
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From the boundary condition (7) it is found that

Az(i) = - A1(<);

Therefore displacements u, v and stresses 7 v Txy finally can be

’

written as

w
ulx,y) = é J {exp(—?1iy|) - exp(—yzlyi)]A1(E)sinEx d, y>0 (12)
0
vix,y) = —f {u exp(-y |y[) - o exp(—y ]y])]A (¢ )cosé x df (13)
w

2 C22%% 1 -
Ty M= m [[C12§ T Jexp(_y1lyl) )
0

£
3

o v

\c12& ———:——f Jexp( ,zlyi)]A1(g)COSgX g, y»>0 (14)
ro
T, =2 I f(; a Jexp(-r |y|) -
Xy 12 1 L 1 1 1
0

-, t az)eXp(-leyl)]A1(f)sin5x dé (15)

Next putting

o . 2 -
A(L:) = A1(£:)

]

the boundary conditions (5) and (6) lead to the following integral
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equations in A(¥)

2 ) arf) cosix df = - T
f [ J A(£) cosix df = - 5 v, , xel,, I, (16)
a Y = oY
0 194 2" 2
and
(e
j A(¥) cosfx df = 0 , xe I , I,, I, (17)
0

3. SOLUTION OF THE PROBLEM

We consider the solution of the integral equations (16) and

-

(17) in the form
b 1 ,
= L2 o ' 2 o
AE) = [ tf(t%)costt dt + [ ug(u)cosfu du (18)
a c '

2 2 : , ,

where f(t ) and g(u ) are unknown functions to be determined.
By the choice of A(¥) given by (18) the relation (17) is

satisfied automatically and the equatfon (16) becomes

b o o - [a]
2 P 1 - B ; o
f tf(t")dt f [ J cosfx cosft dif +
a o ¥ T %
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7 1 2 A - . - ”
+ f ug(uz)du | l J cosf x cosfu df

I ’ (19)

Using the relation

. - X t Y v
sinfx sinft waO({w)JO(fv)dvdw

22 S Py 72 (1212,

1/2

it
c,
"t

the above equation 1is converted to the form

d o o X T vwL (v,w) dw dv
[ eF(ef)de o I J 1 +
‘_ at L2 2.4/2 2 2.1/2
dx (x“=w") (t7=v7)
a 0 o0
d 1 N x u vwL (v,w) dw dv
+ — f ug(uz)du T f L
du 2 2.1/2 2 2.1/2
dx (x"=w) (u™=v7)
c g O
= -2y xe I ,I ‘ (20)
-2 70 T 2’4
o0
o, - o
where L(v,w) = ] LI J (Fw) J_(Ev) df . (21)
1 y ) . ] 0 "y O 5] )
o ¥y T 8,

By a contour integration technique (Mandal and Ghosh [1994]) the

infinite integral in L1(v,w) can be converted to the following

finite integrals
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- 1/¥c 2 ==

! PR St (1)

L (vow) = =1 | ——————— JykgVIHy T(kw) dn -
v, r t )
0 1921 2
_f 2 ' ‘
1 c11n2-1+y2 (1) IR
- j ’ JO(_kS'r;v)H0 (ksnw) dnl{, wv (22)
Y e ~f2 =2 =2 B
4 e 4+ . ]

. ' . 1/2
where ?1 = [ % { R1 - (Rf - 4R2)1/2 } ]
| | N\ 41/2 |

- 1 2_ 1/2 ;
o = [ 2 { Ry + (Ry 432) } } :

- ’ 1/2
= _ 2 1/2
¥y o= { R1 + (R1 + 4R3 . } ] |

- . : - 1/2 ‘
¢ 2 i/2 :
= { R1 + (R1 + 4R3) } ] | ;

ro|—

=
]

V]
N —

2 2
= — + - 1<+ +
Ry =g {(°12 201 T Cppfp) M * U °22)}

22

C -
%y

Ry = ot (=D G- 0f ]
22 11
©19 2°( 2 1

R3 = T (1- 7 )[ 0 - P ] (23)
22 11

The corresponding expression of L1(v,w) for w<v follows from (22)

by interchanging w and v.
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(1)

Substituting the series expansion of JO() and HO () for

small ks, in (22) we find after some aligebraic manipulation

2, 2
2[ T (w+v) 2 2
L1(v,w) ”L{} 1og(ksw/2) 2 ]M N ., Rks1ogk8] O(ks)
y WOV
2 2
2[f i (w+v) ] 2
= = ¥+ - — T+ - +
ﬁ[l\; 1og(ksv/2) 2 ]M N ; Rks1ongJ O(ks)
, VOW (24)
where y = 0.57721587....... is Euler’s constant,
Ve - — 1 —
1/,cH c11ﬁ2-1-?1?2 01102—1+?2 |
M = I — — dn - f ’ dy (25)
BT < e g . . .z 2 ! 2 _! 2
0 vyt ry) 1Yc.. ¥ oL D)
11 2 1 2
¥ | i
1 - = 1 —
gl oy 1717 T 40 T, f
N = f ———————— Jdogn dn - f logrn dn '
v B . -1 = —f
0 “1‘2(}1 ’2) 1/f211 ¥, (¥, +y22)
(26)
1/7c ' - .2 2, ='2
/ 11 T} (C11ig -1-y 1;;.-2) " (0117'] —1+;|.-2 )
and R = | ——————— dy - | — dp
;"b" ?_ (“I’ + _l- ) — _n‘ 2 _i 2 _! 2
0 2 ! P v T
1 1 2 o 1/'VC11 ¥y (3 1 T, )
(27)

Now differentiating both sides of the relation (19) with respect to

X we obtain
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b I+Y

5 - o 1 - O 5

[ tr(t%)at | E[ ] sinfx cosft df +

a o ¥y T Y

1 : o .

) a, -«
+ f ug(u)du j E[ ]sinfx cosfu df = 0 , x = I.I,
e s -

o] 0 1° 1 2" 2

Following similar procedure as done for deriving eguation (20), we

obtain
b tr(t?) ug(u®)
xf 5 dt + X — 'du
(x"=-t7) (x“-u")
b 2 P X 'VWLZ(V’W) dw dv
~
= t f t d t = +
J i) t I 2 2.1/2 .2 2.1/2
a o o Xxwio (t-v)
1 X
5 3 va2(v,w) dw dv
+ du =
JugwHau = [ ] 2 2.1/2 , 2 2.1/2
c 0 o (X =-w ) (u™=v7)
= 0, xe 1,1, - (28)
where
[
" - 2 - 4} —- - =1 ‘
Lv,w) = [ |7 - 1 2 J (Ew) J_(Fv)dé (29)
2 W T P ,.l . JJ o~ Cgte VI
& S oy - ooy
0 1% 1 22

243



g o= o 1z _ (30)
¥
N+ N,
NG = 1 f—( +2c, - )+ i( 2 +2c,.-c,.c )2 - 4c_,cC
1" | 71€1278%127%1%22 ©127°%127%11%z2 1122
2c » .
22
(31)
and
2 1 2 i 2 2 1
= - + - - + - - 4 .
Ne [ (Cy2*2C127C41%02) ~ 1(C45%2057C 1)) ©11%22 J
222

We use the contour integration technique mentioned eariier and get

from (29)
2 - 1/¥c 2 - —
ik ALTPE (e, 0 =17 i) (1)
Ly(v,w) = — ) e JolkavIHg "k nw) dip =
L0 TN T T2
1 32(611ﬁ2-1+?22) | (1) | 1
—[ J (kK nvIH' (K nw) dnl, wv (32)
b : N ' 0 S 0 [
1743 F (7. 2 9 |
"1 g )

By the process similar to the one which led to the equation (24),

(32) for small values of k8 can be written as

=R\

2 , 2
L2(v,w) = - P kS 1ogk8.f O(ks) (33)

-

R and R is given by (27).

O]

where P =
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Now, let us consider

£(t%)

fo(tz) + ki 10g(k_) f1(t2) + O(ki)

2 2 2 2 2
+ + 4
and glu) = gy (u ) + k_ 1og(ks) 91(u ) + O(k)) (34)
. . 2 2
Putting the above expressions of f(t ), g(u ) and the value of
L2(v,w) given by (33) in the equation (28) and equating the

coefficients of 1ike powers of kS we obtain,

b tfo(tz) 1 ugo(uz)
‘f‘(—xT;—é')dt + -r(_X—ZT?)du = 0, X & 12 ’ I4 (35)
a C
b tf1(t2) ! ug1(u2)
and f‘(xz——tE)dt + Jr (—-—2————2)du
a c X u
b 1
- _ 2P 2 2 S
= - = [ J e eTat + [ ug (uT)du ], x & Ty, I, (36)
a . c

Following Srivastava and Lowengrub [1970] the solutions of the

above integral equation (35j can be obtained as
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5 1 -a c -t 1
0 1 2 2
c-a 1 -t J(tz_az)(bz_tz)
£2.52 1/2 |
- D [ ] , x €1 (37)
2 2 .2 2
ot 101 -ty (c2t?)
, 4 —a2 1/2 u2—02 1/2 ’
and g.(u ) =D [ ] ( J +
0 1 2
¢ -a 1 -u jkuz_az)(uz_bz)
2 2 1/2
u -a ] 1 :
+ D [ ' , x &l (38)
2 2 .2} 4
e 101 =) (u?-c?)

where D, and 02 are constants which can be calculaed as follows.

We substitute the value of L1(v,w) from (24) as well as the
expansion of f(tz) and g(u2) obta{ned from (34), (37) and (38) wup
to O(kzlogké) in the equation (20). When the coefficients of 1like
powers of kS from both sides of the resulting equation are equated
we get after some manipulation, ﬁhe following results:

2 (X,=X) . , L2 (XmX)

L D = - v o (39)

. y
(X Xym%oXy) (X Xg=X, X y)
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wWhere

P 1/2{
=[5
172z |

. 1 2 2 ]
+ EMJ11og(b -a )+ MJ5 J

i ha

X_ = { [ ¥+ 1og(ks/2) -

1 ) 2
- EMJZH_)g(b

-2 1/2
1 -a
Ky = [ 2 2 ] [

> Cc -a

1
+_
2MJ3109(1

2

[ ¥ + log(k_/2) - =

- | i " ]
{ [ y+]og(ks/2)—5— JM + N }(J1+J3) +

(40)

]M + N }(JA—JZ) -

—a2) + MJ (41)

6

. ) _Ei _ -
{. [a|.+'|og(ks/2) 5 JM + N }(J1+J3) +

.
_c2)+ MJ J : (42)

]M + N }(J4_J2) +

1 2
+ gMJ,Tog(1 —cT) - MJg (43)
b 2 2 ,1/‘ tdt
=] { 2
1 -t -
a J(t2-a2) (b2-12)
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w

1/2

J

1/2

tdt

J1 -82) (212

udu

)

1/2
1/2
1/2

1/2

1/2

j(uz—az)(uz—bz)

udu

101 -u?)u?oe?)

2
ulog [«iuz—bz + u2—a“J
: d

J(u?-a?) (u2-p?)

du.

ulog [JTZ-—DZ + J_u?—_a2]

10t ~u?yu?-c?)

1:,”Iog[\ic2—t2 + 41 —t2J

dt

J(tziaz)(bz_tz)

——

t1og[ 02—t2 + 41 —t2

b
) gt

101 -t2)(c2-12)
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4. STRESS INTENSITY FACTORS AND DISPLACEMENT
The-norma1 stress ryy(x,y) on the p1éne y = 0 can be found

from the relations (14), (18), (34),(37) and (38) as

e (x0) = - HyoCooX { ; [ 1 -a ] [ c -X ] | )
yy U0 T ,, 1 Q.22 2
l(xz_ac)(bz_xz) c -a 1 -x
D2(x2—a2) . 5 .
- : L+ o(kZlogk ), x =1
; 5 =5 s s 2
401 =x")(c"~x")
.2 1/2 2 2
_ H12%20% {5 [ 1 -a J (x"=¢") .
1 2 2
2
*l(x _Cz)“ _xz) c -a j(xz_az)(xz_bz)
1/2
- X —a ‘ ) _
+ D2 Xz—bz ] } + O(ks1ogks) , X & I4 (44)

Defining the stress intensity factors at the edges of the strips by

the relations

| T y(><,o‘)~!m)

Y

U
012 '



we get

Tyy(x,O)J(b-x) ’

K, = Lt
b I
"ryy(x,O)JTQ?E) j
K = Lt i
© x—ct | v i C
’ ' 0712 i
Tyy(x,O)J(1—x)
K1 = Lt
Xx—r1- vo,u12 |
c,,Ya D, |
Ka = : l
| {2(6%-a%)!
c fE ] 1 -a2 11/2 02—b
22 [D [
—= Ul 2 B
Z(bz_az) c 'a 1 -b
2
i c Ve c —a2
22
K = D
c ) > 2 22
J2(1 -c )
2
c22 D1(1 -c )
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(45)

2 2
Dz(b -a’) 1!
J
{(1 -b%)(c2-b?)
(46)
(47)




‘The vertical displacement v(X,y) on the plane y

0

obtained from equations}(13), (18), (34), (37) and (38) as

where

v(x,0) =

10

11

i

[ ¥ + log(k ) - — ]M + N
S .
2
2 1/2
-1 -a .
ol 7
c-a
2 1/2
- 1. -a
D1l 2
N cf-a
X & I1 ,
2 2 172 2 2
c -t / tlog|t™=x"]
: )
1 -t 2 2
J(t2-a?) (b2-t?)
2 1/2 2
tT-a" | / tlog|t —le
2 .2
b -t 2 2 .2
" 4(1 -t )(c -t")
2 1/2 2.2
u-c” . ulog|u“~x"|
2
1 -u
{w?oa?) (u?b?)
2 2 1/2 2 2
u -a ] ulog|u”~x"|
u —b2 2

i(uz—cz)(1 ~-u

251

)

)

dt

dt

du

du

S

can

J (4, +4)) + D,(J, = J)) } "

be



In order to obtain the solution of the problem corresponding to two
rigid strips taking b — ¢ we find from (37) and (38) that 1in this

particular case

2
Von '
D =0and D, = - )
2 {

4X

where

2 1/2 ' N
1 -a / . 1/2
X =2 ¥ + log(k_/2) - LA 109(1-62) M+ N
1 2 c —a2 a s " 2

It can easily be shown that in the 1sotrop1¢ case this result is

identical with result given by Jain and Kanwal [1972].
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5. NUMERICAL RESULTS AND DISCUSSION

The stress intensity factors (SIF) Ka’ Kb’ Kr and K1 given by

-

(45) - (48) at the edges of the strips and .vertical displacement

[v(x,O)/v0] near about the rigid strips have been plotted against

dimensionless frequency kS and distance x respective1y for three

different types of orthotropic materials whose engineering

constants have been Tisted in table 1}

TABLE ~ 1. ENGINEERING ELASTIC CONSTANTS

E1(Pa) E2(Pa) y12(Pa) Y2
Type I Modu1ité II Graphite-Epoxi Compésite
15.3}:‘10_9 ?58.0%109 5.52x169 0.033
Type II E~-Type Glass—Epoxi Composite
9.79><109 42.3x109 3.66><1O9 0.063
Type III Stainless Stee]—A]uﬁinium Composite
79.76x’10g -"85.91><1O9 30.02)(109 0.31

It is found that whatever the lengths of the strips are, SIFs at-

the four edges of the strips increase with increase in the value of
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kS (O.1£k850.6). From the gr;phs, it may be noted further that with
a deérease in the length of the inner strip, which might be induced
either by increasing ’'a’ or by decreasing ’'b’, the SIF Ka atA the
innermost edge gradually decreases, wheareas the SIFs at the other
edges show just the opposite behavior (Fig.3 - Fig.4).

Also, a decrease in the value of the 1length of the outer
strip, which might be induced by 1increasing the value of ’c¢’,
caQses an increase in the values of the SIFs (Fig.5) frém which an
interesting conclusion might be drawn : i.e., the presence of the
inner strip suppresses the SIFs at both edges of the outer strip
and the presence of the outer strip suppresses the SIFs at the
edges of’the inner strip. .

The SIF Ka has been plotted ( Fig. 6) for. different
orthotropic materials to show the effect of material orthotropy.
Similar effect are being seen.for other SIFs.

The vertical displacement has been piotted for aifferent strip

lengths. It is found from Fig.7 - Fig.9 that with the increase 1in

the value of strip length, the displacement increases.

For a fixed material the variation of displacement witHﬂ

frequency 1is found to be insignificant.
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SIF

Fig. 3. Stress intensity factors

vs. frequency kS

for

generalized plane stress.

( for material of type III ).
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Fig. 4. Stress intensity factors vs. frequency kS for

generalized plane stress.

( for material of type III ).
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Fig.

5.

Stress intensity factors vs. frequency
generalized plane stress.

( for material of type 1II ).
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0-20 -

0.05

Fig. 6.

(

Stress intensity factor Ka VS.

generalized plane stress.

Type I, -.-.-. Type II, -—-—-——-
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O 0.2 0.4 0-6 0-8 1.0 1.2 - 1.4

Fig. 7. Vertical displacement [ v/v vs. distance x

o |

for generalized plane stress.

Type I, ~=-—- Type II ).
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ks= 0'1

Fig.

8. Vertical displacement l v/vO | vs. distance x

for generalized plane stress.

(

Type I, ~=—me Type II ).
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a=0.2
i b=0-4
ks=0-1
Cﬂ% 1 | | I 1 | L L | 1 ]
0 02 04 06 08 1.0 1.2

Fig. 9. Vertical displacement { v/vO [ vs. distance x

for generalized plane stress.

(

Type I, =—-—- Type II ).

261




BIBLIOGRAPHY

t

ACHENBACH, J. D. [1972]

Dynamic effect 1in' brittle fracture., Mechanics

Today, Vi; ed S, Nemat-Nasser, Pergamon Press, New -

York.

ACHENBACH, J. D. [1975]

Wave propagation in ‘elastic solids., North—Ho]and‘

Publishing Company;, Amsterdam - Oxford, American
Elsevier Pub1ishing>06mpany, INC., New York.
ACHENBACH, J. D. [1976]
Wave propagation, elastodynamic stress singularities
and fracthe., Theoritical and Applied Mechnics,.ed.
W. T. Koiter, Proc. 14th IUTM Cdngress.)
North-Ho1lland Pub1ishﬁng Co. Amsterdam.
AGGARWAL, H. R. and ABLOW, C. M. [1967]
Solution to a class of three-dimensional pulse
‘propagation problems in an elastic half-space., Int.

J. Engng. Sci., V5, P663.

262



10.

11.

AKI, K. and RICHARDS, P. G. [1980] :
Quantitative seismology ; theo}y and methods, Volume
I &YII., W. H. Freeman and Company., SAN FRANCISCO.
ANG, D. D. and KNOPOFF, L. ([1964]
Diffraction of scalar elastic waves by. a finite
crack., Proc. Nat. Acd. Sci., V51, P593.

ATKINSON, C. and LIST, R. D. [1978]

Steady state crack propagation 1into media with

spatially varying elastic properties., Int. J.

Engng. Sci., V16, P717. |
AWOJOBI, 0. A. and GROOTENHUIS, P. [1965]

Vibratioh of rigid bodies on semi-infinite elastic

media., Proc. Roy. s0c. London., V A287, P27.

BAKER, B. R. [1962]

Dynamic stress created by a movihg crack.,J. Appl.

Mech., V15, P449.

BOSTROM, A. [1987]

Elastic wave scattering from an 1infinite crack
Antiplane strain., J. Appl. Mech., V54, P503.

BULLEN, K. E. [1963]

An introduction to the theory of seismology.,

University Press, Cambridge.

263



12.

13.

14.

15.

16.

17.

BURRIDGE, R. and QILLIS, J.R. [1969]
The self-similar problem of the expanding elliptical
craék in an anisotropic solid.,Proc. Camb. Phil.
Soc., V 66, P443.

CAGNIARD, L. [1962]
Reflection and refraction of progressive seismic
waves, Translated by Flinn, E. A. and Dix, C.H.,
McGraw-Hi11 Book Co. Inc., New York.

CHAKRABORTY, S. K. and DE, T. K. [1971]
Cn stress and dispTaéement due to -a moving 1ine load
over the plane boundéry of a hetrogeneous elastic
half-space., Pure Appl. Geophys., V85, P214.

CHANG, SHIH-JUNG. [1971] :

Diffraction of plane dilatational waves by a finite .

crack., Quart. J. Mech. Appl. Math., V24, P424.

CHAO, C. C. [1960]

Dynamic response of an elastic half-space to .

tangential surface toadings.,J. Appl. Mech. E., V27,
P559, "

CHEN, E. P. and SIH, G. C. [1973]
Running crack in an incident wave field., 1Int. J.

Solids Structures., V9, P897.



18.

19.

20.

21.

22.

23.

24 .

CHEN, E. P. and SIH, G. C. [1975]
Scattering of plane waves by a propagating crack.,
J. Appl. Mech., V42, P705.

CHEN, E. P. [1978]

Sudden appearence of a crack in a stretched finite
strip., J. Appl. Mech., V45, P277.

DE, J. and PATRA, B. [1990]
Moving Griffith crack in an orthotropic strip., Int.
J. Engng. Sci., V28, P809.

DUFFY, DEAN G. ([1994]

Transform method for Solving Partial Differential
Equations., ERC Press., Londbn.

EASON, G. [1964]
On the torsional ime]sive .loading of. an elastic
half-space., Quart. J. Mech. Appl. Math., V17, P279.

EASON, G. [1966] | |
The displacement pgoduced in an elastic half-space
by a suddenly app1{ed surface force}, J. Inst. Math.
Applic., v2, P299.

ERDELYI, A (Ed), [1954]

Tables of integral transforms, v 1, Bateman

Manuscript Project, McGraw-Hill.

265



25,

26.

27.

28.

29.

30.

31.

ERINGEN, A. C. and SUHUBI, E. S. [1975]
.E1astodynam1cs,'Vo1. II, Linear theory, Academic
Press, New York.

EWING, W. M., JARDETZKY, W. S. and PRESS, F. [1957]
Elastic waves in layered media., McGraw-Hill Book
Company, New York.

FREUND, L. B. [1975]

Dynamic crack propagation. The .Mathematics of
Fracture, ed. F. Erdogan, ASME AMD, V19, American
Society of Mechanical Engineers, New York.

FREUND, L. B. [1976]

The ana]yéis of elastodynamic crack  tip stress
fields., Mechanics Today, ed.-s Nemat-Nasser, V111,
Pargamon Press, New York.

FRIEDMANN, B. [13966]

Principles and techniques of applied Mathematics,
John Wiley and Sons;

GAKENHEIMER, D.C. and MiKLOWITZ, J. [1969]

Transient exitation of .an elastic half-space by a
point Toad travelling on the surface., J. Appl.
Mech., V36, Trans. ASME 91E, P505.

GAKENHEIMER, D.C. [1971]

Response of an elastic half-space to expanding

266



32.

33.

34.

35.

36.

surface l1oads., J. Appl. Mech., Trans. ASME , V38,

P99.

GHOSH, M. L. [1971]

The axisymmetric problems of a normal stress
discontinuity in a semi-infinite elastic medium.,
Appl. Sci. Res. V24, P149.

GHOSH, M. [1980/81]

Displacement produced in an elastic half-space by
the impulsive torsional motion of a circular ring
source., Pageoph, V118, P102.

GHOSH, M. and GHOSH, M. L. [1985]
Harmonic rocking of a rigid strip on a Sem{—infinite
elastic medium., Indian J. Pure Appl. Math., V16,
P938.

GLADWELL, G. M. L. [1968]

Forced tangential and rotating vibration of a rigid
circular disc on a semi-infinite solid., 1Int. J.
Engng. Sci., V6, P591.

ITOU, S. [1978]

Dynamic stress concentration around two coplnar
Griffith cracks in an infinite elastic medium., J.

Appl. Mech., V4, P803.

267



37.

38.

39.

40.

41.

42,

ITOU,

ITOU,

ITou,

S. [1979]
Three dimensional prqb1em of running crack., Int. J.
Enghg. Sci., Vi7, P59.

S. [1980 al
Transient analysis of stress waves around two
coplanar Griffith cracks under impact load., Engng.
Frac. Mech., V13, P349.

S. [1980 b]

Diffraction of an antiplane shear Awave by two
coplanar Griffith cracks 1in an infinite elastic

medium., Int. J. Solids Structures., Vi6, P1147.

JAHANSHAHI, A. [1967]

JAIN,

JAIN,

A diffraction probliem and crack propagation., J.
Appl. Mech., V34, P100.

D. L. and KANWAL, R. P. [1972 a]

Diffraction of elastic waves by two coplanar
Griffith cracks in an infinite elastic ﬁedium., Int.
J. Solids Structures., V8, P961.

D. L. and KANWAL, R. P. [1972 b]
Diffraction of e]as£ic waves by two .coplanar and o
parallel rigid strips., Int. J. Engng. sci., V10,

P925.

268 '



43,

44,

45.

46.

47.

48.

JOHNSON, E. R.

Propagating of

and PARNES, R.

[1977]

axisymmetric waves in

half-space containing a

Part-I., Quart.

JOHNSON, E. R.

cylindrical

an elastic

inclusion.

J. Mech. Appl. Math., V30, P235,

and PARNES, R.

[1977]

Propagating of axisymmetric waves 1in an elastic

half-space

containing a

cylindrical

inclusion. -

Part-II., Quart. J. Mech. Appl. Math., V30, P255,

KANNINEN, M. F.

A critical

[1978]

appraisal of

solution technigues in

dynamic fracture mechanics., Numerical

Methods 1in

. Fracture Mechanics, ed. A. R. Luxmoore and D. R. J.

University College of Swansea, U.K

Owen,
KARASUDHI, P., KEER,
Vibratory

half-plane., J.

L. M.

motion of

Appl.

and

a

LEE, S. L. [1

body on

Mech., V35, P697.

KASSIR, M. K. and BANDYOPADHYAY, K. K. [1983

Impact response of cracked orthotropic

Appl.

KASSIR, M. K.

Mech. V50, P630.

and TSE, S.

[{1983]

Moving Griffith crack in an orthotropic

Int.

J.

Engng.

Sci.,

269

Va1,

P315.

968]

an elastic

1

medium., J.

material.,



49.

50.

51.

52.

53.

54,

55.

KELLER, J. B. [1958]

"A geometrical theory of diffraction” in calculus of.

variations and its applications. Vol. VIII
MaGraw-Hi11 Publishing Company, New York.

KEOGH, P. S. [1985 a]
High-frequency scattering by a Griffiyh crack I : A
crack Green’s function.,‘ Quart. J. Mech. Appi.
Math., V38, P185.

KEOGH, P. S. [1985 b]
High-frequency scattering by a Griffith crack 1II
Incident plane and cylindrical waves., Quart. J.
Mech. Appl. Math., V38, P205.

KNOPOFF, L. and GILBERT, F. [1959]
First motion methods in theoretical seismology., J.
Accoust. Soc. Am., V31, P1161.

KRENK, S. and SCHMIDT, H. [1982] :
Elastic wave scattering by é circular crack., Phil.

]

Trans. R. Soc. Lond., V A308, P167.

" KRYLOV, V. I. and KANTOROVICH, L. V. [1957]

Approximate methods of higher analysis.,
Interscience, New York.
KUNDU, T. and BOSTROM, A. [1991]

Axisymmetric scattering of plane 1longitudinal wave

270



56.

57.

58.

59.

60.

61.

by a circular crack 1in a transverse]y isotropic
solid., J( Appl. Mech., V58, P695.

KUo, A. Y. [1984]
Transient stress 1nteﬁsity factors of an interfacial
crack between  two dissimilar anisotropic
half-spaces., J. Appl. Mech., V51, P71.

LAMB, H. [1904]
On the propagationvof tremors over the surface of 86 
elastic solid., Phil. Trans. R. Soc. London., V
A203, P1.

LANG, H. A. [1961]
surface disp]acemeﬁts in an e1astic'ha1f—spaCe., Z.
Angew. Math. Mech., Vﬁ1, P141.

LEBDEB, N. N. [1965]
Special’ functions and their - app11catibns.,
Prentice-Hall Inc. |

LOEBER, J. F. AND SIH, G. C. [1967]
Diffraction of antiplane shear waves by finite
crack., J. Accous. Soc. Am., V44,‘P90.

MAITI, N. C. [1978]
Transient disturbance produced in an elastic
half-space by impulsive shearing traction

distributed over a circular region., Pageoph, V116,

271



62.

63.

64,

65.

66.

67.

P198,.

MAL, A. K. [1970]
Interaction of elastic waves with a Griffith crack.,
Int. J. Engng. Sci., V8, P763.

MAL, A. K. [1970]
Interaction of e1a$tic waves with a penny-shaped
crack., Int. J. Engng. Sci., V8, P381.

MAL, A. K. [1972]
A noﬁe on the low freguency diffraction of elastic
waves by a Griffith crack., Int. J. Engng. Sci.,
V10, P609.

MANDAL, S. C. and'GHOSH,.M. L. [1992]
Forced vertical vibration of two rigid strips on a
semi-infinite elastic solid., J. Sound and
Vibration., v158, P169.

MANDAL, S. C. and GHOSH, M. L. .[1994]
Interaction of elastic waves with a periodic array
of coplanar Griffith cracks 1in an orthotropic
elastic medium., Int. J. Engng. Sci., V32, P167.

MANDAL, S. C., PAL, S. C. and GHOSH, M. L. [}996 aj
Diffraction of elastic waves by four rigid strips
embedded in an infinite orthotropic medium., Journal

of Engineering Mathematics., ( IN PRESS).

272



69.

70,

72.

73.

MANDAL, S. C., PAL, S. C. and GHOSH, M. L. [1996 b]
Forced vertical vibration of four rigid strips on a
semi-infinite elastic solid., Int. J. Solids gnd
Structures., ( IN PRESS ).

MATCZYNSKI, M. [1973]

Motion of a crack in antiplane strain of an elastic
strip., Archives of Mechanfcs., V25, P823.

MAUE, A. W. [1954]

Die entspannuangswe?1e bei plotzlichen einschnitt
eines gespannten elastischen korpers, ZAMM, V34, P1.

MILLER, G. F. and PURSEY; H: t1964]':

The field and radiation impedence of mechanicaTu
radiators on- the surface of semi-infinite 1isotropic
solid., Proc. Roy. Sop. London., V A223, P521.

MILLER, M. K. and GUY, W. T. [1966] |
Numerical 1nversioﬁ of the Laplace transform by use
of Jacobi po1yﬁom1a1sl SIAM J. Numerical Analysis.,
V3, P624.=

MITRA, M. [1964]

Disturbance produced in an elastic half-space by

impulsive normal pressure., Proc. Camb. Phil. Soc.,

V60, P683.

273



74,

75.

76.

77.

78.

79.

NEERHOFF, F. L. [1978]
Diffraction of LoVe waves by astress-free crack of a
finite width in the plane 1nterfacé of a layered
composite., Appl. Sci. Res., V35, P265.

NISHIDA, Y., SHINDO, Y. ahd ATSUMI, A. [1984]

Diffréction of horizontal shear waves by a moving
interface crack., Acéa Mechanica., V54, P23.

NOBLE, B. [1958]

Method based on Wiener-Hopf technique for the
solution of partial differential equations.,
Pergammon Press. New York.

NOBLE, B. [1962]

Electromagnetic waves., ed. R. E. Langer.,
University of Wisconsin Press.

NOBLE, E. B. [1963]

The solution of Besse{ function dual integral
equations by a multiplying-factor method. Proc.
Camb. Phil. Soc., V59, P351.

PAL, S. C., GHOSH, M. L. and CHOWDHURI, P. K. [1985]
Spectral representation of a certain class of
se1f—adjointA differential operators and its
app}ication to axisymmetric boundary value problems

in elastodynamics., J. Tech. Phys., V26, 1, P97.

274



80.

81.

82.

83.

84,

85.

PAL,

PAL,

PAL,

§. C. and GHOSH, M. L. [1987]

Waves in a semi~-infinite elastic medium due to an
expanding elliptic ring source on the free surface.,
Indian J. Pure Appl. Math., Vv18(7), P648.

S. C. and GHOSH, M. L. [1990]

High fequency scattering of antiplane shear waves by
an interface crack., Indian J. Pure Appl. Math.,
v21(12), P1107.

S. C. and GHOSH, M. L. [1983]

High frequency scattering of plane horizontal shear
waves by a Griffith crack propagating along the
bimaterial interface., Engineering Fracture

Mechanics., V45, No1, P107.

PEKERIS, C. L. [1955]

The seismic surface puise., Proc. Nat. Acad. Sci.

V41, P469.

PEKERIS, C. L. and LONGMAN, I. M. [1958]

The motion of the surface of a wuniform elastic
half-space produced by a burijed torque-pulse.,

Geophysical J. Roy. Ast. Soc., V1, P146,

PILANT, WALTER L. ([1979] :

Elastic waves in the earth., Elisevier Scientific

Publishing Company, Amsterdam-Oxford-New York.

275




86.

87.

88.

89.

90.

91.

REISSNER, E. [1937]
Freie and erzwungene torsionsschwingungen den
elastischen halbraumes., Ingenien Archjv., v2, P229.
RICHARDS, PAUL G. [1973]
The dynamic field _of a growing plane elliptical
sﬁear crack., Int. J. Solids Structures.,V9, P843.
ROACH, G. F. [1982]
Green’s Functions., Second edition., Cambridge

University Press., London.

- ROBERTSON, I. A. [1966]

Forced vertical vibration of a rigid circular disc
on a semi-infinite elastic solid., Proc. Camb. Phil.
éoc., V62, P54T.

ROY, A. [1975]
First motion response of an elastic ha1f—sbace to
normal pressure over a circular area., Int. J.
Engng. Sci., V13, P641.

ROY, A. [1981]
Response of an elastic half~space to normal pressure
over an elliptic area., Int. J. Ehgng. Sci., V19,

P129.

276




92.

93.

94.

95.

96.

97.

ROY, A, [1986]
Dynamic response of elliptic footing., Int. J.
Solids Structures., V22, P293.

SARKAR, J., GHOSH, M. L. and MANDAL, S. C. [1991]

. Scattering of antiplane shear wave by a propagating
crack at the interface of two dissimilar elastic
media., Proc. Indian.Acad.'Sci. (Math. Sci.)., vi101, .
P183.

SAUTER, F. [1950]

Der elastische halbraum bei einer mechanischen
beeinflussung seiner oberflache., ZAMM, V30, P203.
SCOTT, R. A. and MIKLOWITZ, J. [1964]
Transient compressional waves in an infinite elastic
plate with a circular cylindrical cavity., J. Appl.
Mech., V, , P627. |
SHINDO, Y., NOZAKI, H. and HIGAKI, H. [1986]
Impact response of a finite crabk in an orthotropic
strip., Acta Mech., V62, P87.
SHINDO, Y., HIGAKI, H. and NOZAKI, H. [1991]
Impact response: of symmetric edge crack 1in an

orthotropic strip., JSME, Int. J., V34, P7.



- 98.

99.

100.

101.

102.

103.

SIH, G. C. [1968]

Some e1éstodynamic problems of cracks., iNT.J. Frac.
Mech., Vi, P51,

SIH, G. C. and LOEBER, J. F. [1970]

Interaction of horizontal shear waves with a running
crack., J. Appl. Mech., V37, P324.

SIH, G. C. and CHEN, E.’P. [3980]

Normal and shear ihbact of layered composite with a
crack : Dynamic sﬁress intensification., 'J. App1;\
Mech., V47, P351.

SRIVASTAVA, K. N. and LOWENGRUB, M. [1870]
Finite Hilbert tfaﬁsform technigue for triple:
integral equations with trigonometrical kernels.,
Proc. Roy. Soc. Edn.nLXVIII, P309.

SRIVASTAVA, K.N., PALAIYA, R.M. & KARAULIA, D.S. [1980]
Interaction of antiplane shear waves by a Griffith
crack at 1n£erface of two bonded dissimilar elastic
half-spaces., Int. J. Fracture., V16, P349,.

SRIVASTAVA{ K.N., GUPTA, 0.P. and PALAIYA, R.M. [1981]
Interaction of elastic waves with a Griffith crack
situated in an infinitely 1long strip., ZAMM.,V61,

P583.

278



104. SRIVASTAVA, K.N., PALAIYA, R.M. & KARAULIA, D.S. [1983]
Interaction of shear waves with a Griffith crack
situated in an.infinitely long elastic strip., Int
J. Fracture., V21, P39.

105. TAKEI, M., SHINDO. Y. aﬁd ATSUMI, A. [1982]
Diffraction of transient horizontal shear waves by a
finite crack at. the interface of two bonded
dissimiiar elastic solids., Engng. Fracture Mech.,
V. 16, P799.

306.. | THIRUVENKATACHAR, V. R. [1955]
Proc. 1st Cong. Theor. Appl. Math., P181.

107. TITCHMARSHf E. C. [1962] :

Eigenfunction expénsions, Part‘I, Oxford University
Press, London.

108. TRANTER, C. J. [1968]

Bessel functions with some physical applications.,
The English University Press Ltd., London.

109. TUPHOLME, G. E. [1970]

Puise generation in an elastic half-space by the
uniform normal Jloading of a circular surface
segment,. Iﬁt. J. EngnQ. Sci., V8, P617.

110. UEDA, S., SHINDO, Y. and ATSUMI, A. [1983]

Torsional impact response of a penny-shaped crack

279




lying on a bimateria]i interface., Engng. Fracture
Mech., Vi8, P1058,

111. WHITTAKER, E. T. and WATSON, G. N. [1963]
A course of modern analysis., The Cambridge
University Press..'

112. WICKHAM, G. R. [1977]

The forced two dimensional oscillations of a rigid
strip in smooth contact with a semi-infinite elastic
solid., Proc. Camb. Phil. Soc., V81, P291.

113. YOFFE, E. H. [1951]

The moving Griffith crack., Phil. Mag., V42, P739.

280



Journal of Technical Physics, J. Teck. Phys., 26, 1, 97-115, 198S.
Polish Academy of Sciences, Institute of Fundamental Technological Research, Warszawa.

‘SPECTRAL REPRESENTATION OF A CERTAIN CLASS OF SELF-ADJOINT DIFFERENTIAL
‘OPERATORS AND ITS APPLICATION TO AXISYMMETRIC BOUNDARY VALUE PROBLEMS
IN ELASTODYNAMICS

S.C. PAL, M.L. GHOSH and PPK. CHOWDHURI (DARJEELING)

1. Introduction

In this work an integral representation of the Dirac delta function required for solving
the axisymmetric boundary value problem has been derived first. This representation .
is particularly suitable for problems where mixed boundary conditions are encountered.
Following FRIEDMANN [1], by contour integration of a suitable Green’s function, integral
representation of d(R—R,) (R, Ry > 1) has been derived. This representation has been
used to solve a particular type of axisymmetric problem in elastodynamics.

The problem treated is that of a semi-infinite elastic body containing a circular cy-
lindrical cavity, whose axis is perpendicular to the plane surface. The semi-infinite me-
dium is subjected to an axisymmetric concentric torque applied dynamlcally as a step
function in time at the plane surface.

At first Lamp [4] investigated the classical normal loading problem of an elastic half-
space. As similar type of problem was investigated by EAson [5], MITrA [6], CHAKRA-~
BORTY and DE [7] and many others. They are all point source problems in a homogeneous
semi-infinite medium.

The propagatlon of elastic waves, due to applied boundary tractions, in seml-mﬁmte
media containing internal boundaries has as yet not been studied to any large extent.

An earlier and comprehensive survey of the field is given by ScorT and MIKLOwITZ [8].
Recently this type of work has been done by JoHNsON and PARNES [9].

We have solved the problem of the SH-type of elastic wave propagation in the semi-
infinite medium due to a ring source producing SH-waves in the presence of.a circular
cylindrical cavity (case I). The problem of SH-wave propagation in the presence of rigid
circular cylindrical inclusion in the semi-infinite medium due to the ring source -has also
been treated in the case 2.

2. Integral Representation of a Dirac Delta Function

Consider the operator L with 4 as a complex parameter, where

_d| d

whose domain, D, is the set of all twice-differentiable functions u(r), a < r < o such that

)+1r—-L
v
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. du
(i) ros U= 0 at r=a>0

(ii) the behaviour of v as r — oo is that of an outgoing wave.
The solutions of LG, = 0 which satisfy (i) are

2.2) G, = Ax[Jl(ﬁr) Yz(y'fa)—Yl(l/Ir)Jz(}/fa)], a<r<rg,
where A, is an arbitrary constant and J/, and Y, are the Bessel functions of the first and
second kind, respectively.

Again the function G, which will satisfy LG, = 0 and the condition (ii) can be writ-
ten as
(2.3) G, = A, H{V(YIr) (@a<ro<r< o),

where A, is an arbitrary constant and HS"> is the Hankel function of the first kind of
order n.

From Egs. (2.2) and (2.3) the Green’s function G satisfying the equation LG
= —&(r—rp) and the conditions (i) and (ii) mentioned above is given by (c.f. [1]).

24  Gr,ro3d) = — ;Zt”?ﬁ"’))p (Var) Yo(V 2a) = Yo (Y 2r) T, (Y ) H(ro —r) —

nH{! (V_r)
280 ) v I/Aro)Yz(‘/?.a) Y, }/Aro)Jz(‘/}.a)]H(, ro,
0 < argd < 2z.

Now consider
L
@.5) o } G(r, ro; A)rdA,

where the contour of integration in the A-plane is shown in Fig. 1. Since G has a branch
point at A = 0, we introduce a branch eut in the complex A-plane along the positive real
axis and then take the contour as a large circle of radius R?, having the centre at 4 = 0,
not crossing the branch cut.

ImA

7

- Fig. 1. Circular contour of integration ABA’ in the A-plane.
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In terms of Hankel functions Eq. (2.4) can be written as

eo  E|nwiyErw )ﬁ%ﬁ ~ B ) B/ | oo+

T g/ (/T H} (f_ﬂ)_ — (/T (/7 V _
+ 57 [Hl (V Aro) H{O(Y 2r) B, Ta) HO(Y ar) HO(Y Aro) | H(r—ro).
For large |z|, the asymptotic behaviour of H{"(z) and H{*(z) is [2]

o)~/ Lo~ -]
H¥(z) ~ ]/Eexp[ (z %ﬁ—%)]

Thus, for large values of [A], from the relations (2.7) we obtain

@.7)

. — 2/ 7, —

(2.8) H{(Y lro)H"’(W r)~ "1/ °"P[' Viro—r

- — 2 -
me(l/lf) HP(Y Arg) ~ ——— exp[i ;/].(r-—ro)].
T V}brro
If we put 4 = k2, then the circle in the A-plane becomes a semi-circular arc C of radius R,

in the upper half of the k-plane shown in Fig. 2.

ImK

E

]
0 2 Re K

FiG. 2. DED’ — the semi-circular path of integration C in the K-plane.

Consequently, for large values of R, the integral (2.5) can be written as

2.9 ]/ f lexp {ik(ro—r)YH(ro —r)+exp {ik(r—ro)} H(r — ro)ldk —

ﬂ- f ]/ T exp {ik(r+ro—2a) bk =
_ L ]/ f exp(iklr = dk -+ 5 ]/ 3 f exp {ik(r+ 7o — 20) }dk =

_ ]/r sinR,(r—ro) +_ r sin R, (r+ro—2a)
T o= ro r—ro x V re r+ro—2a

7+
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Our object is to show that the integral (2.5) represents — d(r—ry) when R; — 0. To justify
the statement, consider a testing function ¢(r), in D which is continuous, has a continuous
derivative of order two and vanishes outside a finite -interval. Then, from the relations
(2.5) and (2.9)

lim ¢(r)——} G(r, ro: Drdidr

Rx—’ao
= sinRy(r—ro)dr
—-'—Rl.]—rio—qu()]/ - (r— "o)o

SinR,(r+ro—2a)dr
+Rl;l—n~’1x l—f ¢( )V (r+ro_2a) = —4)("0)’

where we have used the result of Dirichlet integral and Riemann-Lebesgue Lemma [3].
Therefore

fG(r ro; Ardd = —0(r—rop).

Ry~ 27"

To obtain an alternative integral representation, which will be useful for our subsequent
application in physical problems, we consider the contour I" (Fig. 3) consisting of the real
axis from k = p to k = R,, where 0 < ¢ < R; a semi-circle C ti)f radius R, above the
real axis; the real axis again from — R to —g; and finally a semi-circle y of radlus o above
the real axis with the centre at the origin. We take ¢ small and Rll large.

ImK

Re K

FiG. 3. FDED'F'F — the path of integration I" in the K-plane.

The integrand 2G(r, ro, k*) kr has no singularity inside the contour I', and so the
value of the integral

(2.10) f G(r, ro; k) 2krdk = 0,

2m

. 1 s _ 1 L,
ie. Ef G(r,ro; k*)2krdk = _Z_ﬂTf G(r, ro; u?)2urdu+
- [+

1 L ;
+2_7llf G'(r,_ ro; eZn_luz)Zrudu——Ez—af G(r, ro; 9262 °)2r92e2‘°a'0.
0 .
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The behaviour of Y,(z) for small values of |z| is-described by the formula [2]

Y.(2) ~ L2 I'(n)

n - :
and J,(z) is bounded for small values of |z| when » is a positive integer. Usmg these re-
sults we conclude :

[G(r, ro; @%e**)e]
is bounded for small values of o. Hence

Iim—;—fG(r, ro; 0%€*"%)e?%%rdf = 0.

¢—0

Letting o — 0 and R, — 0 in (2 10), we get

211 o(r—ro) = — lim —— G(r ro,k2)2krdk =

Ry—00
«©
= -il;l—f [G(r, r'os kz)—G(r, o} k2€2i")]2krdk,
. 0,

From Eq. (2.4) .
G(r, ro; k¥)—G(r, ro; k?e?™) =

_ [J,(kro)wn(kro) Ty (kro)—iYy(kro)
T 2 Lka)+iYa(ka) | Jo(ka)+iYi(ka)

!

] VD Ya(ka)— Yy (k) Ty (ka)] x

Lok +iY(kr)  Ty(kr)=i¥y (k)
x H(ro—n)= [J,(ka)+tY2(ka) Jz(ka)—tY:(ka)

X[Jx(k"o)yz(ka) Yx(k’o)fz(ka)lH(" "o)_ '

[J L(k0) Y, (ka) — Yy (k1) o (ka)] I, (kro) Yy (ka) ~ Yi(kro)J, (ka)]
Ji(ka)+ Y2 (ka)
Substituting this expression in Eq. (2.11), we get _ /

_ g [J1(kro) Y, (ka)—~ Yl(k’o)Jz(ka)] [J1(kr) Y, (ka)— Yl(kr)Jz(ka)]
8r—ro) = OJ T2 (ka)+ Y2 (ka) rkdk.

’

Substituting r/a = R, ro/a = R, and ka = p, Eq. (2.12) can be written as

@19 sk = | V2R Ya)— nR) [;g)x) 1) LRI g g,

Since 8(R—R,) is symmetric with respect to R and R,, then, -on the r?ght hand side of .
Eq. (2.13), R and R, can be interchanged. So we write

Q2.14)

_ p [OR 0~ Y OR) LGOI OB L0~ VORI
HR—Ro) = £, [ ZELTe )G
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3. Formulation and General Solution

Case 1. We shall now use the integral representation of the delta function given by Eq.
(2.13) to derive the time dependent response of an isotropic linearly elastic half-space
containing a cylindrical cavity of radius a due to a ring source. The axis of the cylinder
considered as the z-axis, which is perpendicular to the plane surface, is directed downwards
(Fig. 4). A torque is applied on the free surface of the half-space over the rim of a concen-
tric circle of radius r = ro(ry > a) fort = 0.

=/

S

z

FI1G. 4. Geometry of the problem.

Therefore on the cavity surface r = a

allg Ug
3.1 =yl =) =
G.h Tro /‘( ar r ) 0
and on the plane surface z = 0
(3.2) To; =t aal:’ = §(r—rg)H() (a@a<r < o,r,> a),

where u is Lame’s constant, & is the Dirac delta function and H is the unit step function.
Now the only non-zero equation of motion is '

(33) 8%u, +i duy  0%ug _Hp _ 3%u,

1
or? r or + az2  rr Bt oz
where 8 = /o is the shear wave velocity.

Changing the independent variables (r, z, t) to the no-dimensional variables (R, Z, 1)
defined by ‘

’

(3.4) R=. zZ =", r=’3—a’, Ry =2

aj~
o

the above equation reduces to

d%u 1 du 3%u u o2u
3.5 0, __ CF0 o0 78
@-5) R YRR Tz TR T 02

and boundary conditions become

(3.6) | 7, =L (i“l_i) =0 on R=1

T a\6R R

e e g sy

v N g o e
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9uiq %6(R RO)H(t) on Z=0.

oz

To: =

SRS

Now, taking the Laplace transform with resipect to nondimensional time (r) and "

aua(Rj_Z’O) = 0 at 1 =20

assuming the homogeneous initial conditions (R, Z, 0) = e
Eq. (3.5) takes the form
g 1 U Puy Uy,

-8 R TReR Iz R T
where '

o}
(3.9) iy = [ e dr.

]

Take solution of Eq. (3.8) in the form
[ 3

(.10) (R, Z,5) = [ [A)IhGR+B0) Y (R]e™" % dy,

0

where y is real, J, and Y, are Bessel functions of the first and second kind respectively.
Using the boundary condition (3.6), we obtain

(3.11)

Ja2(p)

Bi(y) = —Ai(y) Y. ()

Substltutmg the value of B,(y) an in Eq. (3.10), we have

(3.12)

where

(3.13)

(3.14)

=)

W(R, Z,5) = [ AW LR Y2(0)=L0) Yi(pR)e™V ¥ 2 ay,
0

As ()
A(y) = 37
=3 o)
Therefore the transformed stress component reduces to
3 Vi,
- —_—— —_ 2+ lz
e =g f ARV P+ CpRe T dy,
0

where
(3.15)

C:(yR) = J,(») Y, (YR —-Y,(»)J1(¥R).

New, using the representation (3.15), Eq. (2.14) becomes

(3.16)

S(R—Ro) = R

f yCaR)Co(¥Ro)
° Jip+Yi(y)

Using Egs. (3.7), (3.14) and (3.16), the value of A(y) is obtained as

(3.17)

Ro yCa(YRo)
w5 (=) () + Y}

A@y) =
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Therefore &, becomes

Ro f ~_YC(yR) C,(yRo) e-,/;,?;?sz
B V@RS (T + Yik)} :
On the plane boundary Z = 0

(3.18) (R, Z,s) = —

@

ﬁ)_ yC, (VR) C, (‘}’Ro)
us Y@+ I+

Now, introducing the change of the variable ¥ = s{ into the above expression (3.19),
we obtain :

(3.19) (R, 0,5) = —

Ro f £C(sLR) Ca(stRo)

(3.20) (R, 0,5) = ~ w ) VT oD 60
Next, using |

(321 J.(sCR) = Hﬁ"(stR);Hf)(scR)

and

G.21) Y,(stR) — Hﬁ"(sCR)Z—iH.ﬁ”(scR) ,

we obtain

(322)  Cy(stR) = J5(st) Y, (sCR) — Y, (sE)J; (sCR) =
= 7 HEOGER HE(s2) ~ HEP(LR) BEO(E)]
and

@.22) Ca(5LRo) = 57 [H{D(sLRo) HE(s8) = HE(sE Re) HED(SL)}.
Also |
(3.22") J3(s0)+ Y3(s8) = HiV(s8) HE*(s0).

Therefore, Eq. (3.20) becomes

(323) i'la(R, o, S) = ——41'{70 f ]/—(_Z__f_m F(R, Ro, Sc)dc,
(1]

where
(3.29) (R, Rg, ) = Fi(R, Ry, s{)+ F3(R, Ry, 5{) = Fi(Ro, R, s§)+F2(Ry, R, 50) =
= F(RO) R’ st)

and

' (1)
(3.24") Fi(a, B, s2) = Hf2>(SCﬁ){Hil)(sCoc)—H{z’(sca)'-z__;hgg ,
(3.247) Fa(a, f.s0) = Hi“(sw){ﬂ ((sta) - H{ (st a) —ﬁiiE‘B }
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Using the asymptotic values of the Hankel functions for a large argument, it can be shown
that

¢ 2
—F (R , SC) — o [ —lsC(Ro—R)+e—lst(R+R,,—2)
& V(E+1) ' ¢ 7sC Y RR, ]
vV @+
quadrant of the complex ¢-plane for R < R,.
Also

(3.25)

as |s{| = oo, showing that

vanishes over a large circular arc in the fourth

(325’) CFZ(I_Q_,ﬁ“_SC) - 2____ [eisC(Rq—R)+elsC(R+Rg—2)]
V(3 +1) st YRR,

CFZ(R, RO: SC)

VEC+1)
the complex {-plane for R < R,. Therefore for R > R,,

LFy(Ro, R, st) " LFi(Ro, R, st)
G V@& +1D)

wanish over large circular arcs in the first and fourth quadrants, respectively ,of the complex
{-plane. .

Denoting the responses for field points 1n51de (R < Ry) and outside (R > Ro) the
source by the subscripts I and 0 respectively, we ha\fe for points inside the source (R < Ry)

showing that vanishes over a large circular arc in the first quadrant of

[+ +]

(326 @(R.0.5) = — 2 f L [F(R, Ro, SO+ FL(R, Ro, sl
1/ G
and points outside the source (R > Ro)

oo

O TnlR,0.9) = =gk [ s IFsRou R s+ il R, SO,

In order to evaluate

@

_Ry f ¢

3.27 T Fy(R, Ry, sO)dt,

which is the first part of 75 (R, 0, 5) we note first that the integrand has branch points
at { = +i and also has a branch point at the origin of coordinates due to the presence
of Hankel functions in the integrand. The integrand has also poles which correspond
to the zeros of H§"(s{). From Eq. (3.18) we note that in order that #(R, Z, s) may be .
finite for large positive values of Z,(¢%+1)'/? should have a positive real part on the path
of integration. Accordingly, we draw cuts parallel to the real axis from +i to —oo+i
and from —i to o —/ to satisfy our requirement. A cut along the negative real axis from
the origin is also drawn to make Hankel functions single valued .

Ry

2o S F)(R, R,
@y e

8 Journal of Techn. Physics 1/85
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~is now integréted along the quadrant of a large circle lying in the first quadrant of the
complex {-plane as shown in Fig. 5a. Since poles of the integrand are outside the path
of integration, the integral (3.27) becomes

' @

(3.28) F3(R, Ry, i F;(R, R,, is'v)dv]-

Ro " /] F v
E[J V{(1-93) 'w)dv+|f iy@2-1)

a) b)
N iz’ 1. )
, Eurand "
. o o
o o4
° ~i (1-v21¥2 J
-i{02%-1)12

x« Branch point
= Branch cut
© Poles v

FiG. 5. Integration paths in the complex {-plane.
Using the relations

HP() = -2 K@),

H() = =K, @)+ 2i0,00),

(3.29) 2
H{V(iv) = = K;(9),
(1
. 2i
H{P(iv) = ‘-212(‘0)—7 K,(v),
we have '
. N
(3.30) Fy(R, Ry, isv) = —%’- Kl(wRo){Il(mR)+K1(szj KZ(:U))}
Therefore, the expression (3.28) becomes
(3.31) _ﬁf————K (s9Rg) V1 (svR) + K (svR) T3(s0) }dv—
. }/(1 ._.1)2 1 O 1 1 Kz(S’D)

K, (svRo) {I,(s'vR)—i_-K,(sz) ;{2(( ))= v.

f V(v’—l)

The second part of u,(R, 0, s) is equal to

Ro [ ¢
(3.32) —_—— e Fl(R, R SC)dC
%!VWH) o
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we draw cuts from +i to c0+i and from —ito — oo ~i as shown in Fig.»(5b). A cut from
the origin along the negative real axis is also drawn to make Hankel functions single valued.

Taking a quadrant of a large circular contour in the fourth quadrant (Fig. (§b)) and
noting that the poles of F; (R, Ros{) lie outside the contour, the lntegral (3 32) takes
the form

_A —_— R -1 .
(339 52 [[W Fi(R, Ro, ~isv)do~ ,f i R Ko, :w)efv]
Using the relations

HO(~it) = = K@) ~2i8(0),

HP (i) = 2 K, (9),
(3.34) - oy
H{(—io) = —2L(0)+— K;(©),

. 2 b
HP (—io) = +— Ky(0),

the expression (3.35) becomes

(3.35) 'R° f ‘/TZ—K,(wRO) {Il(wR)+Kl(sz) Ilgz(("’sz)}dv—

R 0 Iz(s'v)
R f =T 5 Ki(6oRo) {I;(MRWQ(“’R) Ky(sv )}d"

Adding the relations (3.31) and (3.35), we obtain

= Ki(soRD) R+ K, ooR) ,’;fg;))}dv-

(3.36) us(R, 0,5) = — 2R° f J

(v2

Similarly, it can be shown that

I,(sv)
( 2_ K,(sv )}dv.

Laplace inversion of the relations (3.36) is now taken to obtain the displacement of
points inside the source. -

Kx(WR) {Ix(WRo)'f'Kx( Ro)o—~—+

(3.36) Ho(R, 0, 5) = — 2R° f e
LY

Therefore

R 2R° v g
(3.37) llg](R o, T) i f f l/(vz_’) E(W) v,
where

(3.38) E(sv) = K,(s0Ry) {I,(wR)+K1( R) K((“’))}

8*
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Introducing the change of variable p = sv, and changing the order of integration -

2R; 3 1 1 f ~ ]
. 0, = — - (x/v)p =
(3.39) un(R, 0, 7) 3[ , /(_v__z =5 dv[ o J e E(p)dp

o]

_ 2Ro f V(: E(z[v)do,

where E(v/v) = £~ {E(p)}. |

We note that E(p) possesses no poles and is analytic for p > 0. It has a branch point
at the origin and therefore a cut is drawn from the origin along the negative real axis
of the complex p-plane in order to make E(p) single valued.

Drawing a large semi-circular contour to the right of the Bromwich path AB in the
complex p-plane, we conclude that E(z/v) = 0.if the integral )

1 -

— (x/v) =

i fE(p)e Pdp =0
G4

over the semi-circular arc BC'A4 (Fig. 6).

FI1G. 6. Laplace inversion contour.

Now

(3.40) E(p) = — __1_ f E(p)et?dp =

= f Ky(pRo)[(PR) e“/""’dp——— f Kl(pm,) Ky(pR) 2((,,)) e dp.

" ncia BC'A
Since
e(r/”)“pr (pRo) Il (pR) ~ -——1—___-: e[%-(RO—R)] b
2p l/ RR,

and

e“"PK,(pRo) Iy (pR) Lo : e[i_(kmo_z)] " as  |plo oo

"Kx(p)  2p YRR,

then the first integral on the right hand side of Eq. (3.40) vanishes for 0 < t/v < (Ro—R),
whereas the second integral vanishes for 0 < /v < (R+Ry—2).

AR
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Therefore
0, for 0'< 7/v < (Ry—R),
(3.4 E(z[v) = [E"(r/v), for “(Ro—R) < tfv < (R+Ro—2),
ER(zjv), for (R+Ry-2) < 7/v.
Where - '
EP(t)v) = Z7'[K,(pRo)I;(R)],
(3.42) 1(p)

Ef(zfv) = £~ ‘[Kx(PRo)lx(pR)+K1(PRo)K1(pR) L)

For value of /v lying in the range (R—Ry) < 7/v < (R+Ro—2)
(3.43) E(rjv) = EP(zfv) = —2;—1 f K, (pRo) I, (pR)e™1?%dp .,
. Br
Therefore, putting vfv = (Ry—R+y), where y > 0
EP(Ry~R+3) = o= [ [Ku(pR)™I 1, (pR)e~"1e>%d)p.
Br

From the Laplace inversion table [12], we find that

H(y)(»+Ro)

L~ [Ki(pRo)ePRe] = Re /(7 +2Ry) P12’

and

[HOG)~HY~2R](R~y) -

L7 L (pRYe™ ") = % ER=)HYZ

So by the convolution theorem

[ L)~ H 2RI HO=D R=1)G=1+R)

(344)  EP(Ro—R+)) = ARRyMQR-1) —n) — 1+ 2R )7

For t/v lying in the range (R—Ry) < 1/v < (R+Ro 2) 7/v must be less than (R+Ry),
i.e.y < 2R
Therefore we can write

(R~} (p=n+Ro)dn
nRRo[W(ZR"’?)()’—71)(J’-'7I+ZR0)”2 '
So . f
(345) —:-;——(Rg-R)

(R—n) (zfo+ R=n)dn
E(zfo) = E°(zfv) = f 7RRo[NCR—17)(t/o—Ro+ R—7) (10 + Ro+ R—m)J'*

¥
© EP(Ry~R+) = |
0

For values of 7/v satisfying the condition t/v > R+ Rp—2,

(3460 Ejo) = E'Gfo) = 5 | {KI(PRO)Ix(PR)+K1(PR0)K1(PR) é’%}e‘*""dp.

Br
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This integral is equal to the integral along the large semi-circular arc on the left side of -
the Bromwich path 4B plus the integral on the two sides of the branch cut (Fig. 6). Since
the integral-on the large semi-circular arc vanishes, then Eq. (3.46) becomes

(3.47) E(zjv) = _2.17; l __.f E(neln)'e—'(r/v)ndn +_f E(né—(n) e—lom dn] .
0 0

Using the relations

I(ne*") = e*"""L(n),
and . ’ '
i K, (713*'") = e;i"’Kv(’])i'iﬂI-(ﬂ),

we obtain (for r/v-> R+ Ry—2)

(R MU R, e ()
K3 +n2I3(n) ’

(3.48) B(zfe) = EN/o) = — f U

where

Ua(x, 77) K,(m 1 (x, 71)+Iz(77)K1(x 7).
Substituting these values of E(r/v) in Eq. (3.39), we obtain -
(3.49) ) _t

- Roe—~R
wa(R,0,7) = —i’i’[{ﬁ(z*"’ﬂ’)-y(:-i’z_zﬁ)}f S E ) do+
' : 1

T
R+Ro 2

f 1/_Eb(r/w)dw J N ER(t/v)dz/”

-R+Ro 2 - -

1

2 __

+H(t r+r0—2a)

where the values of E?(t/v) and EX(z/v) are given in Egs. (3.45) and (3. 48), respectively.
Similarly, taking the inversgem Laplace transform of Eq. (3.36), the displacement
ugo(R, 0, 7) on the free surface outside the ring sourcé can be derived and it is found that

(3.49") : e
Uso(R, 0, 7) = —2:7: “H (t— ’73’°)—_H(t- ’+’°"2")} J V( — FD(r/'v)d'v+

T T

tro-2a\f i3 1
+H(r—i- o~ "){ e FP(1j0)do+ ' -—————~~F" d }
; f ey P if, S e
R+Roy—-2 |

where FR(z[) = E®(z/o), and.

-2 —(R-Ra)
v

o (Ro—n) (z/v+ Ro —m)dy
(330 P = (f ARR, {n(2Ro—7 (zJo— R+ Ro— Do+ R Ro=m]™ °
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First, the integrals of Egs. (3.49) are the displacements due to a direct wave from the
ring source before the arrival of the waves reflected fromthe wall of the cylindrical cavity.
-The last two integrals together give the displacement after the arrival of the reflected wave.

In order to obtain the response in the vicinity of the SH-wave front, we consider the
displacement profile immediately behind the direct outgoing SH-wave. Accordingly,
we shall have to study the first integral of Eq. (3.49") because it gives the fesponse of
the direct SH-wave before the arrival of the reflected wave front. '

Let R, = Ry+vand Ry = R,-—¢eR, where R, and R~ denote points at and immediately
behind the SH-wave front, respectlvely,ils a small positive quantity.

Then

(3.51) Ty T 1
and

p T &R
(3.51) TR (1 + °) = q(7).

Substituting these values in the first intégral of Eq. 3.49¥, we obtain
tao(R,, 0, 7) = 0, '

and
q(r)
_ 2R 1 1
u Rs—y 0, ) = D R ’
90( T J ]/('v—l) {I;/v+l (& o T/‘v)}
Therefore, we can write
q(r) -
: (3.52) uao(R;, 0, T) = -—ng -"‘/';1— V(‘U)d?}

where V() is an analytic portion of the integrand. For small values of ¢ expahding V(v)

by the Taylor’s series about the point » = 1 and integrating term by term, we obtain
4R 12 '

(3.53) ugo(R:,0,7) =~ T V(l)( ) g2 = A4¢? (say),

- where A is a constant. -

It therefore follows that the displacement component is continuous i.e. there is no
jump in displacement across the direct SH-wave front.

Next, in order to consider the behaviour-of response just under the ring source, it
should be remembered that the integral representations of transformed displacements
given by Egs. (3.36) were derived from Eqs. (3.26) assuming that R # R,. For R = R,
the integrals along large quarter circles in the first and fourth quadrants should be reexam-
ined. In this case it is found that though the contributions from the integrals along large
circular arcs in the first and fourth quadrants are not separately zero, but the combined
sum of the integrals along the large arcs in the first and fourth quadrants of the {-plane
(Fig. & and Bb) vanishes. So the transformed displacements for R = R, are also given
by Egs. (3.36). Making R — Ro +, it can easily by shown by help of Egs. (3.36) that the
displacement has no jump discontinuity accross the ring source.
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Therefore, in order to derive the naturé of the displacement as R —+ R,, any one
of the relations (3.49) may be studied, Consider, for example, the displacement at field
points outside the source given by (3.49"). As R—R,, the upper limit of lntegratlon

T/(R—Rp) = o,
Further, as
| v i 0
- R—Ro ’
(3.54) 1 . l
@*-1 v
and '
1
‘D
(3.54) FP(zfv) - IR,

Thus, from Eq. (3.49")

(3.55) lr{lir}: ugo(R, 0, 7) =’.— f % dv+a finite quantity,
where N is large.

The integral is found to contribute a logarithmic singularity to the displacement
just on the ring source.

Case 2.’ In this case the problem considered is the same in all respects with the first,
except that the cavity of the radius a has been replaced by a rigid-cylindrical inclusion of
the same radius. The cylindrical inclusion-being in welded contact with the elastic half-
space, there is no relative displacement at the interface. In this case, the condition on
the cylindrical boundaryisuy = Oonr = a.

In order to solve this problem, we take the solution in this form:

(3:56) (R, Z,5) = f [4:0) T, (yR)+ B,(») Y, wR)le V% gy,

where #,(R, Z, s) is the Laplace transform of ua(R Z, t) with respect to t. Now, using
the boundary condition

‘ 9 =0 on R=1,
we have ;
(3.57) B,) = —A4:() ;1’((;')) o

so i, becomes ‘ i

> I
(3.58) W(R, Z,5) = [ AW V@R LG~ LG Y, (R)e™V "+ Zay,
0

where

A:(y) ¢

A0 = Y,(»)°
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Therefore, the transformed stress component on the free surface Z = 0 is

@.59) R, 0,5) = — L [ 416) Y75 CloRY,
0

where

(360 COR) = KGR Y)Y,

T5:(R, 0, s) should be equal to —1-— 8 (R—Ry). In'this case, the required integral represen-

tation of the delta function can be obtained frorm the following expansion formula given
by Titchmarsh [11]: . |

(3.61) |

) = f B G- SANE &t [ gro Vo ViGa-HCa VGO,
b 1% ! a , '

where f(r) is a suitably restricted arbitrary function.

Putting
S(r) = 8(r—ro),
(&) = 8(§—ry), where ro>a>0,
we get _ ' .
(3.62) 3 Yy (2a)—J,(2a) Y (D) I, (Cro) Ya(2a)— T, (8a) Yk
8(r—ro) = ro f L (En Y1 (La) 1(CG)J 21((53]-5 ;(C(?a)) 1({a)—J1({a) ,1(C.fo)] dt.

0

Now putting, % = R, -%°— = Ro, {a = y, we have

f YL (yR) Y, (»)—J1(») Y1 (¥ R)} [T, (¥Ro) Yx - =J, 1 (}’) Yi(yRo)l~. dy, .

38(R—Ry) = R Ji+Yiy)

so by the relation (3.60)

r ny(yR) Ci(yRo)
Jim+Yik)

This result can also be obtained by the following technique already developed in Sect. 2
of this paper. .
Now, we find the value of A*(y) as -

& yC1(¥Ro) ) ) i
us Vyi+s® JiM+Yie)

(3.63) " 8(R—Ro) = R

(3.64) AG) =

Therefore u, becomes

f yCi(yR)Cy (YRo)
#s YR+ )+ YI0)

(3.65) (R, 0, s) =
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Carrying on a similar procedure as followed to. obtain the displacement in the case 1, we
find that in this case

{3.66) : | o : : ’_R _
_ 2R, ro—r r+ro—2a o ‘
UOI(R, 0, T) = e [{H (t— ﬂ )—H(f T)} f l/v = E ('L’/'U)dﬂr!-
. 5 'Ror—‘R ' R+Ro-2 1
r+ro—2a :
| + H(r 3 ) { ) (tjv)dv+ . _f ;/vz = __E(r/v)dv}]
: R¥Ro=2 '
:and
»(3 67) , - v : }e_:i;-- I iy
': . I —H( _r+r0-f a)
Uy (R o, 'r) pre= [{H(r ; ) t — } lr ——m}/vzfl
, a7 1 RerT B -
. r+ro—2a i b .
: +H(t— B ){ [ 1/712—TF (r/v)dvﬂ— , if Vo*—1 . }]’
R+Ro-2 :

where E”(r/v) and FP(z/v) are (respectlvely) given by Egs. (3. 45) and (3. 50) and

(G.68)  ER(zjo) = FR(xfo) = — f El‘(RIQ?ZnI)j:r(zg}?()ne).

‘where

{3.69) . _ Ui(x, ) = Ky Ii(xn) =1, () K (xn).
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Streszczenie

SPEKTRALNA REPREZENTACJA PEWNEJ KLASY SAMOSPRZEZONYCH OPERATOROW
ROZNICZKOWYCH 1 JEJ ZASTOSOWANIE DO OSIOWO-SYMETRYCZNYCH ZAGADNIEN
BRZEGOWYCH W ELASTODYNAMICE

Praca jest probg znalezienia zamknigtej postaci osiowo-symetrycznej dynamicznej funkcji Greena
typu SH dla izotropowej jednorodne;j liniowej polprzestrzeni sprezystej, zawierajacej cylindryczny otwor
kolowy prostopadly do brzegu pélprzestrzeni. Rozwazono dwa przypadki: pierwszy odpowiada swobod-
nemu od obciazen.brzegowi cylindrycznemu oraz nagle przylozonemu osiowo-symetrycznemu obcigzeniu
stycznemu, ktére jest skupione na konturze pewnego kola w plaszczyinie brzegu-pélprzmtl‘zeni; drugi
odpowiada utwierdzonemu brzegowi otworu oraz obcigzeniu takiemu jak w przypadku pierwszym. Sto-
sujac pewna calkowa reprezentacje¢ celowo-symetrycznego obcigzenia dla rozwazanego ciala oraz technike
transformacji Laplace’a, podano zamknigta posta¢ funkcji Greena tylko na brzegu poOlprzestrzéni. Prze-
prowadzono tez analize jakosciows tej postaci w otoczeniu pewnego kolowego frontu falowego.

Pesiome

CIHIEKTPAJIBHOE IIPEACTABJIEHHME HEKOTOPOT'O KJIACCA " CAMOCOITPSKEHHBIX
JHDOEPEHUHNAIBHBIX OIIEPATOPOB KM ET'O ITIPKMEHEHHUE K OCECUMMETPUYHBIM
KPAEBBIM 3AJAUAM B DJIACTOOVNHAMMKE

PaboTa ABAACTCA MNONBLITKONR HAXOMKICHUA SAMKHYTOTO BHAA OCECHMMETDHUHOH IMHAMHYECKON
¢yuxwint Ipina Tuna SH ana n3oTponHoBoro 0gHOPOAHOrO JIMHEHHOrO YIPYroro MNOJIYyIPOCTPRHCTBA,
CORepIKaBLIero UMIHHAPHYECKOE KPYrOBOE OTBEPCTHE NEPIIEANKYIAPHOE K FPaHHKBI IIOJYIIPOCTPAHCTBA,
PaccMoTpeHbl OBa Cilydad: MepBblif oTBeuaeT CBOGOMHOMY OT HAarpy3oK Kpalo IMJIHHAPHUECKOTO OT-
BEPCTBHS H BHE3AITHO NMPHJIOMKKEHHOH OCCCHMMETDUUHOH KacaTesbHOH Harpyske, KOTOpas COCpefoTOde-
_Ha Ha KOHTYPE HEKOTOPOIO KPYyTa B IVIOCKOCTH I'PaHHIIbI nonynpéc'rpaﬂcma, BTOpOii OTBEYAET 3aKpeIUIeH~-'
HOMY Kpalo OTBEPCTHA H Harpy3Ke Taxoi KaK B IIEPBOM ciayuae. .

[TpuMeHas HEKOTOpOE HHTErpaJibHOE MpPElCTaBJICHHE OCECHMMETPHUHOIN HArpY3KH [UIA PaccMaTpH-
BaeMOIo TeJia i TeXHHKY NpeobpasoBanua Jlannaca, npuBeReH 3aMKRyThIl BHA Gysxumy Iprua Toasko
Ha rpaHHIle NOAYTIpOoCTpaHCTBa. [IpoBesiel To)Ke KadYeCTBEHHLIN aHAJIH3 3TOrO BHJAZ B OKPECTHOCTH He-
KOTOPOro KpYyTOBOr0 BOJIHOBOTO (DPOHTA. ’
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WAVES IN A SEMI-INFINITE ELASTIC MEDiUM DUE TO AN
EXPANDING ELLIPTIC RING SOURCE ON THE FREE SURFACE.

S. C. PAL AND M. L. GHOSH

Department of Matiiematics, North Bengal University, Dist. Darjeeling
West Bengal 734430 '

(Received 12 May 1986)

An elliptic ring load emanaling from the origin of co-ordinates atf = 0is
assumed to expand on the free-surface of an elastic half-space. The rates
of increase of the major and minor axes of the ellipse are assumed to be
equal to a and b respectively. The displacement at points on the free-surface
has been derived in integral form by Cagniard-de Hoop technique. Displace-
ment jumps across different wave fronts have also been derived.

1. INTRODUCTION

Since Lamb’s original study of the elastic wave produced by a time-dependent
point force acting normally to the surface of an elastic half-space, many authors have
elaborated on his work. Aggarwal and Ablow! discussed the exact solution of a class
of half-space pulse propagation problems generated by impulsive sources. Gakenheimer
and Miklowitz¢ used a modification of Cagniard’s method? to discuss the disturbance
created by a moving point load. In case of finite sources, the most widely discussed
model is that of a circular ring or disc load. Mitra?, Tupholme'! and Roy® have studied
‘the various aspects of the same problem. Elastic waves due to uniformly expanding
disc or ring loads on the free surface of a semi-infinite medium have been studied ex-
tensively by Gakenheimer®. .The axisymmetric problem of the determination of the
displacement due to a stress discoﬁtinuity over a uniformly expanding circular region
at a certain depth below the free surface has been studied by Ghosh®.

However exact evaluation of the displacement field for finite source other than the
circular model does not scem to have been attempted much in the literature. Burridge
and Willis* obtained a solution for radiation from a g;rowing elliptical crack in an
anisotropic medium. The problem of an elliptical shear crack growing in prestressed
medium has been solved by Richards® by the Cagniard-c‘ie Hoop Method. Roy'° also
attempted the same technique to solve the problem of elastic wave propagation due to
prescribed normal stress over an elliptic area on the free surface of an elastic half-
space.

In our problem, we have consider¢d the propagation of elastic waves due to an -
expanding elliptical ring load over the free surface of a semi-infinite medium. The
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expression for displacement at poiats on the free surface has been derived in integral
from by the application of Cagniard-de Hoop technique for dxﬁ'ercnt values of the rate
of increase of the major and minor axes of the elliptic ring sourcc The displacement
jumps across the different wave fronts have also been derived. |

2. FORMULATION OF THE PROBLEM AND iTS SOLPTION
" Let an elliptic ring load P acting normal to the surface of an elastic half-space
emanating from the origin of co-ordinates expand in such a way that the rates of in-
crease of the major and minor axes of the ellipse are @ and b respectively, @ and b
being constants. Major and minor axes of the ellipse are taken to coincide with the
x and y-axes of co-ordinates where as z-axis is taken vertically downwards into the
medium (Flg 1).

: X
Y
z r
' Fig. L. Geometfy of the Problem.
Thus we:haveonz = 0
’ = PSt_(x- a4+ y* b9
Tz = (X' + y'b z)|/2 "_(1)

Txr = Ty = 0
where P is constant and & is the Dirac delta function.

Thé.displacement field inside the elastic medium: (z>0)is gfven interms of
potentials ¢ and ¢ as

u= yé+vxvyxe)
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where

| i P

Ca are Vew = . a-—_g "‘(2).
d C‘

V=

€x, €y, e are unit vectors along co-ordinate axes and cs and ¢, are the p — and s-wave
velocities of the medium.

In order to obtain solutions of wave equations (2), we introduce Laplace "trans-
form with respect to r and denote it'by bar and also introduce bilateral Fourier trans-
form with respect to x and y to supress the time parameter ¢ and the x, p space
co-ordinates. Taking Laplace transform with respect to ¢ (—) and also bilateral Fourier
transform with respect to x and y (=2),- the transformed boundary conditions are

o~ - o~ ~

= Pab = '
T T T (a® B2 + b2 m2 4 g2 Tar =Ty = 0. -3

_ Then satisfying the transfbrmed boundary conditions (3) and performing the inverse
Fourier _transform, the Laplace transformed displacement field can be written as

a! (x) Y, 2, S) = ﬁ]d (x) » 2z, S) + ﬂjs (x, Y, 2, S) ---(4)
forj =x,»,2
where ’
w0 oo . )
Hjay (X, 9,2, 8) = 1[2up 0{; OLFJM (&, , 5) exp [Cull' + i (§x + ny)) dE dy
...(5)
for «1 = d, S
and
F"d(E)";s):—iECDG: Fxs(Eyn!S)=2iECdCSG’ “I
Fya (€ n,8) = —in8% G, Fyu(E, n,s) =2iq%%G, ;
Fia (§,0,5) =8a8 G, Foy (E.m,8) = — 28 + )) L G, !
Pab 9 - o l
G= m i T =0 —48C (B + n°
(* )T % & @ ) L e
r?=a* 8 + b7, }
[
o = (B + wt+ky WP Qo= (€ 4+ 0P + K ), {
! f
Go= K+ 2(8 4 ) ka= ok = |

Now the De-Hoop transformation, !

§E =slca (g cos & — wsin @), % = sfea (g sir} 6 + wcos f) )]
l
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where § = tan~! y/x.

is applied into (5). The Laplace transformed displacement field (5) can be wﬁtten as

’ oo 0
e (R, Z,5) = l[2nu6[°_£°Fj.1 (4, w, s) exp [— slca (ma Z — iqR)]

st » o
X dg dw - ---(8)
c; ' '

where

’ . iPab(qcos§— wsin ) my
Fxa (9., fv) - s slca(Ey + OVF N

oy 28 Pab (g cos 8 — wsin 6) na m,
Fru g, w, ) = s.slca(B1 + O N, °

i Pab(qsin 6 + wcos 8) m
Fya (g, w, 8) = — 5. slca (E, + 0)bz, N

: .y __ _2i Pab(qsin § + wcos §) mam,
Fos (g%, 5) =5 5. slea (B, + O . N.

o Pab mam, .
Fra (@w8) = 0 B+ 0) 7 N

L _ 2 Pab (q* + w®) ma i
Fis(gyw8) = - slca (Ev + 0)* N, :
i

ma= (g2 + w D' my = (g* + W

me = I* + 2(q* + w?), N= m — d4mam,(q*|+ w?),
' A 2 2
E=(0+¢D+wF), D= -%cos?o+ sin® 6,
c; c;
2 2
F = sin® § + cos® 8, 0 = — 2gw sin § cos § (a*—b)/c;
a <
I = cale, and R* = x* + y*. . - «.{9)

For mathematical simplicity we confine our attention to the derivation of the
displacement field at any point on the xz-plane. Obviously the displacement at any point
on any plane through the z-axis can then easily be visualized. Accordingly in order to
obtain the displacement at any point on the xz-plane, we put § = 0 in (8) which then
takes the form e e )

"
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_c_s- (o z — igx)

Ty (X, 2, 5) = 2::2 T TRe [Kjul (g, w)e ]dqdw
S b
10,
where
Kua (qw) = = ity Kea (g w) = ZE00%s ]l
Ku = = e R = T
Kulg,w) = 24 g (g = — 2@ AW
and ' ' ' 7 (1)

E = 1jca® (ca® + a® q* + b2 wh).
3. DILATATIONAL CONTRIBUTION |
From (10) .4 is converted to the Laplace transform of a known function by
mapping 1/ca (maz — igx) into ¢ through a contour integration in a‘complex g-plane.
The singularities of the integrand of .4 are branch points at

g= St =i W+ I)E g=SEe g it PR,

B S N it ol
q= a ’ }
-..(12)
and the poles at

g = S} = 4 iw? +v3 )

.

The poles at g = S: correspond to the zeros of the Rayleigh function N,- where

vr = ca/cr and cr is the Rayleigh surface wave speed. The contours of integration in
the g-plane are shown in Fig. 2 (a, b, ¢} which also show the positions of singularities
lying in the upper half of the g-plane.

Since the positions of the singularities and the transformed cottour of integration
depend on different values of @ and b, three different cases arise for the evaluation

of uza.’
(@) Casea > b > C,. _ C
The g-plane for a > b > Cqis shown in Fig. 2 (a)f. The contour g = qdi in the
g-plane, is found by solving

1= 1/Ca (maZ — igx) ' ‘ _ .. (13)
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SR’ Sr* Sg"
Sc* SS"' . . SS+
+ . S + Sd-r

SS (< . \m———/tt

Se* A Sa" ‘ St
¥
3 '

a{Cg {Cy.for W Wgq cg< a(cy for OLW{Wda ‘ aycyq for all w,
or alCg for wgqdWiWdag ~ a(Cd for Wyqd{ WL~
© ®) (@)

FiG. 2. Cagniard paths of integration in the g-plane.

for g, where t is real, we get

4=9f=15m95:i:(1-—1 N2 cos ¢ . . (14)

for
T > T,4, wWhere t,a = (W2 4 1)1/2, < = cqt/P .. (15)

and (P, ¢) are the polar coordinates in the xz-plane as shown in Fig. 1. Equations (14)
define one branch of a hyperbola with vertex at g = i (w* + 1)'2 x/P, which is para-
metrically described by the dimensionless time paramcter v as T varies from t.q
towards infinity.

As shown in Fig. 2 (a), the contour of integration has two possible configurations
in the g-plane, depending upon ¢ and w. }

For the case (1) given by : ’
Case (1):¢ < $ and0 <o < oo

or
$ds < ¢ < dvaand Waa < W < 00 ...(16)

_ where ¢aa = sin™! Cafa, $sa = sin~! bfa

and
C; — atsin® ¢

Wiy = (m ')"2 .o ..(17)

the vertex of the path = qf does not lic on the branch cuts and hence the path of

integration contour is simply g = qf and is denotéql by 1.
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But for the case (2) give_n bx P .
Case (2): dda < ¢ < dpaand 0 < w < wa,
Or¢ > ¢pa and 0 < w < oo L ..(18)
the vertex of the path g -= q:f lies on the branch cut between the branch points g = S:
andé = S: . Hence the integration contour is giveo byg = qj‘ for T > Ted which
is denoted by 11, plos g =qaa=1i7sing —i -(1-3"_ — )2 cos ¢ L ...(19)

for Twaa < * < <ua, where
1 2 s ) _" ”- C e )
Twda =“‘1" [{W' (a - b) + (a- - Cd)} s
xcos ¢ + (w* b + C; )12 sin qS:] . - ‘ ...(20)

- Transferring the path of mtegranon from the real q-axns to the: Cagniard’s—path
we obtain - -

~
, , ‘
w9 = - [ jRe[kzd(qd, — ]e"dtdw
0

'wd
“da ‘wd J
+ H ($oa —8) H ($ — $a0) j j Re [k,d (e, w) 242 :Ie-" dtdw
0 n'dﬂ 1

I

+ H(¢—;,,.,)T jRe [k,d (gda, w) Lo :le'" dt dw] (21)

wda
where twa = P/C4 7wa and twia = P[{Cu tyda. The first term of (21) is the contribution

from q:‘ and the second and third terms are the contributions from qua.

Now interchanging the order of integration in (21) and inverting thc -.Laplace
transform, we find that -
gy
p ] dw

+ H($p — paa) H (@ui ;#)H(T — wda) H (v, ~ 1)

T

2#PCaf [H(-r -1 I Re[k,d @ ,w)

Uzd (p, é, T) =

(equation continued oun p. 655)
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Tdn
X I Re [k,d (gda, W) d;];;, ]dw
A

da
+ H (b — éb,) H(x — <da)

Ty
X j R. [k;d {Gaa, W) ‘i[%?-" ]dw:]
o

Ay

A: _ ‘f 0 for T4 <7 < | 1[
o J ;
L da

A =

0

| Tafor 1 <1< « L
{ 0 for Tas < % < {

N Tyfor v > | Jl
Ty = (22— DM

Ty = Xi¢ — {Ya —(a*cos* ¢ — b?) Zd}"r‘]‘/2
da = (a: cos? ¢ — bZ)'.‘

X4 = 1, b*sin® ¢ + (a2 — b?) vqcos® 4

!

Yo = -rgz bt sin* ¢ + (a® — b <} cost ¢ 4 2 (a? -(- b3)b? 4.
X 75 s'in2 $ cos? ¢ l

Zi = (xg — 2C;sin® ¢)* — 4C% (@® — C; ) sin® 6 cos® ¢

tq = a* 7* + (C5 — a® cos® §) |

Ty = a* 17 — (C; —a*cos® ¢)

Tda = ;l-[(a2 ~ C3 )% cos ¢ + Ca sin qS] s

C; -8 up
== ]

655

.(22)

(23)

...(24)

.(25)

L (26)

(27)

@2)
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The first term in w:q is due to the dilatational motion behind hemispherical wave
front at * = 1 and the second and third terms are due to the dilational motion behind
the conical wave front at * = <44 for ¢ > ¢uaa . Thege wave fronts are shown in Fig.

3 (a), ~ T

\ 7=Tda
gai
! ' T it | .\'éba
3(a) fora>b>cq S 3M) fora>ca>b
x> |

N

Y
N -
-l

-3(c) fore<es.. ., . . o
Fig. 3. Wave patten for dilatational motion.

v = 1, shown in Fig 3 (a) by a dashed curve, is not a wave front because. it
is not a characteristic surface for governing wave equation for the dilatational motion.
Similar non characteristic surfaces were found by Gakenheimer apd Miklowitz* for.a
point load travelling on an elastic half space and also by Aggarwal and Ablow! for the
motion of an acoustic half‘space due to an expanding surface load. They prove expli-
citly that their solution was analytic over the surfaces, The same thing can be proved
in our case also. '

(b) Casea>ca>b _
In this case, the path of infcgration with respect to g transforms to- the simple

path given by contour I (Fig. 2 (a)) for all w when ¢ < ¢ss and also for 0 < w << wa,.

when ¢sa < ¢ < p4a, Whereas the path of integration with respect to ¢ transform to
the contour II (Fig. 2 (a)) for wae < w < oo when ¢4 < ¢ < ¢da and also for all w
when ¢ > ¢4a. The remaining details of inverting #.a for a > ¢4 > b arc exactly
the same as for @ > b > c4, and one can casily find that :

Ta d

td (P, 3, 7) = i:’:‘b [:H (= ‘— 1) j ?Re [k:d (zq: . .W) d‘j: Ja’w

v | .
'\ (equation continued on p. -657)
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A HGE— ¢ H ($ia — ¢) H(x — 2)
”Tda ’ - )
X E Re [k,d (gda,w) dg‘“ ]dw
t
T4

+H(¢“‘¢aa)H(T'—‘\'da)‘

TRe [k 2 (qaay ) q"“ ] d ] 27

4z,

where Aﬂa is given by (23).
The wave geometry associated with this expression is shown in Fig. 3 (b).

(c) Casea < ca

For this case the path of integration with respect to ¢ transform to the simple
path given by contour I [Figs. 2(b), 2 (c)] for all w when ¢ < ¢sq and also for 0 < w
< Wia When ¢ > ¢pa, whereas the path of integration with respect to g transforms to
the contour II [Fig. 2 (a)] for wsa < w < oo when ¢ > ésa. Note that in this case
the angle #4o does not arise. Now proceeding as the -case a > b > cq4 for inverting

44 We get

. muCd

,‘-W(P b= 2 Pab [H SR X [k‘zd(qd% W) —— :Idw

: -
FHG~ ) H - — ) f
Tda - e
Tt - X IR, [k:d (qda, W) qda ] ] ' ©.(30)
. . . d , . N .
' T):e wave geometry assocnated with this expressxon 1s shown in Fig. 3 (). 'As
expected physically, contribution due to the conical wave front does not exist for this

case,
Summary

Combmmg (22) (29) and 30) one ﬁnds that U:g CAN be written as one expression
for all-values of g and 4.
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T
2 Pab

d ' dq:
wa oty = L= 0 [ R [k, 5 ]
[ l ) )
F[H (5 — va) H($ ~| dsa) (H (b — ca)
+ H(a—ca) H(ca—b)} +H(x— <., ) H (b—¢sa) {H (3~ ca)
x TH (ca — b) H ($aa — ¢) + H (ca— a)}]
da
X j Re [kzd (qda, W) dqda ] ] . ...(31)

A da

‘where
0 for Tda < T << 1

]

|
Ta for 1 y
T for < TS T l} for ¢aa < ¢ < dsa, a>b > ca
' .
]
J

Taa forv > 7,

Ofor tga< << 1y foré > dea,a>b > ca
Taforl < = }for¢>¢da, a>ca>b L
{ for $pa < ¢ < dday @ > €4 > b

for ¢ > e, a < ca. ...(32)

Tafort > 1;4

4. EqQuivoLUMINAL CONTRIBUTIONS

Inversion of i, is complicated than the inversion of #:4 because of the appearence
of head waves (Von-Schmidt waves) otherwise it is same as #,s. Here the integration
contour has more configurations in the g-plane though the singularities are the same.

Here the hyperbola g = q‘f arises in a similar wayto g = qf , but its vértex can lie
on the branch cut between the branch points at ¢ = S¥ and ¢ = S% and at ¢ = S

and ¢ = S} as well as between ¢ = S¥ and ¢ = S, depending on the values of w, 4,
a and b. In this case, the straight line contour lying along the imaginary g-axis is . de-

noted by ¢,o Wwhich is similar to gss appearing in the dilatational contributions. Now
oyﬁmiting details of inverting #;,, one can easily find

S .
S

[H(‘v _ I j R. [k @, w) —::I—:]dw.

(equation continued on p. 659)

4P
ul’: (Pl ér 1) = ab




where

0 < t<o0,0 a<ooand

0<b<oo,a>b

——————,
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+ [H (5 —7) H (p—¢4a) {H (b—c,)+H (c;—b) H(a—c,)} ~

+ H{x

— 7, ) H($ — ¢va) (H(ce — b) H($sa — $)

x Ha—c)+ Hc— )l

T

a

X S R. [k:, (q:a, W) fiq;a.] dw

‘+H(-r—‘r,d)H(T',d—T)H(d’—?sxd)

r

x 'de, [k,, (oss W) "*“] ] : (3

.";d

for0 < P < o0, 0 ¢ <2,

=0for t. <</

= T,forl < = <7,

= 0forr,e < v <!

= T,fort > 1

=0 for e < <<t
=Tsdf0rT,d<T<T
='T, for < > =,

= 0for o < 7 < 7y

= T for 10 < <7,

=Tforr <t <7,

= T for = > 7,

ba < ¢ < Psa, @ > Ca, a>b>c,, ac,>bca

Pea < <, a>ca, a>b>c,, ac,<bca
Psa<p< Pap,y Ca>a>b>c;

$ba < ¢ < ¢y, a>b>ca, acs>bca
$ra<P<dsa, a>ca>c,>b

D¢, a>b>cy, ac,>bea
é >da,a > ca> .C_, >b

i
¢ > e, 8> b > cayac, < bea
|

i
|

Pta <¢ < ¢, a>cdDSc,>b

Poa < ¢ < Pabs, Cd > a>Cg > b

Pba < ¢ <¢>ab,,a< s

¥
}
]L
K
R
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= T for-:’"<1'<1;d¢ 1{
! <¢<pmeca>a>c,Db
= Ty for =, <t< <, & fars ?¢ b €4 » >
} ¢>¢ﬂbna<c.l
=T, for > <), _iy |
=0for ra <t </ '
a [ & >4y ci>a>c,> b a > 8
‘ |
=T forl <z < v/ : :
sda f e < Pz, ca >a>c, >b,B>e>y
3 A .
= Tafor<),, <t <=+, } $ > ¢oa,ca>a>b>c,x>p
=T,f0r;r>1;d ’L¢ba<¢ <¢x,Cd>a,>b’> C,ﬁ>a>Y
= 0for re<e< 7, 1I
: _ ; d>d,ca>a>c.>b,B>a>y"
=T,dfor'r:da<1<'r"d l} >, ca>a>b>c,p>a>y -
| ¢>dpaca>a>b>ca<y
=T, for = > </, ]
=0forru<t<! 1 i
=T, forl< << . Il $abs < ¢ < ¢pa, €a > a>b> ¢, a>P
, U b Bae < 8 < dom i aSbSC, B asy
=Tufore, <<<=t), .
| bab, < ¢ <drca>a>b>c,a<y
=Tsfor =), <t < <! _JI - B
=0forre << 7,
i
= Tsafor <, << <7, '> b < ¢ < dva, Ca >8> b>cy a<y.
N
: N
=T,f0r':"d<-c <7, Jl
vV ¢>és,a>b>c
=0fortug<t</ ‘.l_,¢>¢,d,,a>(.‘d>0,">b _
S r da<d < ,ca>a>c,>b
=T, forl<t<ry, l )d $ < babs, Ca !
|' Pd < ¢ <'dyayca >a>b>c,
J Pod < ¢ < Pabs, 4 < Cs .
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[ =0forrag<t<l! 1
|
I
b =T.for I<x<,
$abs < <$sa, Ca>E>¢,>b
= Tafor %, <t<Ty | ¢ > ¢y, a<c,.
=T, for -r:“ <t<7Ty,
= 0O for Td < T < Tya 1 ¢ > ¢;a, Cd > d>{,‘,>b, 1>B
= Ty fort,a < v < 3, $10<$p<x, Ca>a>c, Db B>a>y
Aa ) $>dap,, ca>a>b>c,, a>B
‘ 3 =T, for 7/, <t< o abs <P <, Cd>a>b>c,,>ﬁ>a>'y
L dap<P<dsx, ca>a>b>e,, a<y
=0fortu<t<Ta
! .
= T,a for T a< T < 'r"d. -Il ¢>¢x’ L‘d>a>c,>b, 5>°‘>Yi
, '> ¢ > ¢z, ca>a>b>e,, P>a>y
=_,0for1"d“<'r<l | o
. S| $>%x, ca>a>b>e, a<ly
.
=T, forl< <1, Jl
= 0for tu < v < Ty "}
, ]
= T a f sa
Juwlorfa<s<r, l}, ba <Pp<da, 2 >a>b>c,
| ,
=T, forv <t << |
: L s0 (L ..(35)
and also where 7
T, = (& = P)y? ...(36)
_ X, — {¥Y, — (@® cos® ¢ — b¥)? Z 12 TNz
Ts“ - [ (a‘l COSZ ¢ —_— b!)‘ﬂ. ] i (37)
Xs = 1: b* sin? ¢ + (az - b’) Ts cos? ¢ \1'
{
2
Y, = b'sint¢ + (a* — b*)* <% cost 4 }
‘ |
+ 2 (a* — b)b* 1, 7, sin? ¢ cos® ¢ |}
Z, = (v, —2c; sin® ¢)* — 41 ¢ (a® — ¢?)sin® § cos?’ ¢ #
T, = a* 1t + I* (¢ — a® cos? §) l
|
° =at® — I (¢} — a*cost¢) j
.. (38)
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Tu = v[{(T — 7d) cosec ¢ + 1}2 — 12 S ...(39)

w0 = lfa (I a® — c? )12 cos ¢ + ca sin ] ...(40)

= [(I2 = 1)'I* cos ¢ + sin ¢] ' ...(41)
e — o

= [ b* — a%sin% :] ~-(42)

L=~ 1y seed ' ‘ (43)
c; — b 1/2

= [(1: — 1Y%cos ¢ + ( a‘:—__b_'-’ ) / sin ¢ ] C..(44)

$a = sin-!? és/a, ¢4 = sin™! ¢;lca, ¢b9 = sin~? bja .. (45)

cj - b

$abs = sin™?

142
) ' ..(46)
I*(a® — b%) + c*d—a?

i.
(@ — b2 1(02 _ bz 4 (12— DU (R =~ )
$x = sin™! l: ’ * ‘¢ ]W
I (a® — b%) + CZ I J
...(47)

: 12 _)
w= () B= =Dy = blage - 1y

'_21,:_',;=_Ci . -
o By = Sy

a* — c ‘

—tia [ - ]" | ' . (89)
qf =itsing + (v — 'r'f” Y12 cos ¢ _ ...(49)
Tus = (WP [ (50
g = itsing — iz}, — v%)'/%cos ¢. (31

The first term in the expression (33) is the equivoluminal motion behind the hemi-
spherical wave front at + = / and the second is due to the equivoluminal motion
behind the conical wave frontat s = v, The third term in u;; represents the equi-
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voluminal motion due to the head wave fronts at = = ta. The wave fronts © = 74
for ¢ > ¢4 and T = 7, are shown in Figs. 4(a—I).

FlGs. 4(a—1). Wave pattern for equivoluminal and head wave motion.

4@) fora>cqyy a>b> ¢y, acs > beg.

4(b) fora> ¢cq, a> b > cy, acs < becg.

The equationst = <, v =17, andt = 7,44 ar€ shown in Fig. 4 by dashed

3a

curve which are similar to ¢ = 7 appearing in the u:a. These dashed curved surfaces -

are not considered as wave fronts because it can be shown that displacements and their
derivatives are continuous across these surfaces. ‘
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4(d) forca>a>b>cy, a>p.

5. Wave FroONT EXPANSIONS
The wave forms of the solution given in (31) and (33) are evaluted by approximate
estimation of the integrals in the neighbourhood of the first arrival of the different
waves. To facilitate this evaluation we plit

N (4% + (B® _ A?) sin? o]' . (52)
in the integrals arising in u:« and u:; where 4 and B are respectively the lower and
upper limits of the particular integral in question, and the range of integration with
respect to « is form 0 to =/2. :

Now for the first integral of (31), we put w = Tusin « and hence for t — 1 +,
we find that for any value of a. ’ ’
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Yz
4)forcg>a>bP e, B> 2> ¥.

4 (f) forcg> a>b > ¢y, 2 < .

+
dq"__) ca cos ¢
dr P, Tacosa’

ma = cos g, my > (I — sin® )2, my —> (I* — 2sin? $),

w—0, q:—>isinq{>,

E}? —> -l (c: — a?sin? $)13, for ¢ < dua
d
— ‘—;— (a* sin® ¢ — c: N2, for ¢ > daa,

N-—> N,

F=7zda
[ L 'y(
rd
——
Pba
-

\

(53)
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Y v
-_—/K\/\
P ®ad

(2 ‘1
4h)forca>a>ce> b, 8 > «

> v, acy < beg.

where Ny = (I* — 2 sin? )° -+ 4 sin® ¢ cos ¢ (/2 — sin? ¢)1/2,

(54

Substituting these approximate values in the first integral of (31) one can find, for

(}S < (ﬁda
[us]] > N;; as ©— 1+

where .
Pabey cos® ¢ (I —~ 2sin® )
P (ci — a®sin ¢)' 2. N,

le ==

«.(55)

.. (56)
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Y,

4() forcg>a> ¢ > b, 8 >a> ¥, aci > bey.

‘Again in tne second integral of (31) we put w = Ty, sin « andast — 1 — for ¢ > Pda
we find that

Gia > isin ¢ — i cos ¢ Tds sin «

fZQda__) _iﬁgi_- Tazsin x sin g + cos ¢ . N ' L (57)
P @ st -

Puting these values ia the second integral of (31), we get
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(T3, sin® a +1—<2)1/2

>X
z
4 (k) for a < ¢, ac, < beg. .
_ J"J'éd‘ ,T-I:sda -
NS *
\
\
\¢b0
Y
Z
4 () for a < ¢4, acs > bcy.
i wfa to
¢ .. . L . icq
| j R, I:km (i sin ¢—i cos ¢ Tua sin «, Tua sin @) 5
T4a sin « sin ¢ + cos ¢ :] ?‘da cos ad a ..(58)
|

|
= I R. l:k,d (isin¢ — icos ¢ Tuasin «, Taa sin ) %cﬂ—
0

(equation continued on p. 669)
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_>< Tdasm « sin ¢ + cos 4:’) ]Tda cos ¢ {11
(T, sin* = + 1
wla .
+ j R, [k:d (isin¢ — icos ¢ Taasin a, T4q sin @) %‘d‘
% T4a sin  sin ¢ -+ cos (ﬁ] T4a coS :'1. do .. (59

(T3, sin® & 41 —<9pi2
where ¢ is very small.

Since the main contribution to the integral (58) as = — | arises from the first in-
tegral of (59) as * — 1, so for the evaluation of (58) as + — 1, we consider the approxi-
mate value of the integral given by

E R. [k,d (isind — i cos ¢ Taa sin «, Tda sin «) I;l ’ -

x T4a sin « sin ¢ + cos :lea cos o d ...(60)

(T2, sin?a + 1 —

as t — l.

Since ¢ is very small so « is also small. So for the evaluation of the integral (60) as
T — 1 we also use the fact that = — 0, from which we get,

w = 0, gaa — i sin ¢, mg — cos ¢, my — (I* — sin® ¢)} 12,

— (I - 2sin%¢), ...(61)

N — Ny, E'? — ifca (a*sin® ¢ — ¢} )M* for ¢ > da.

Now substituting these approximate values in (60) and mtegratmg we obtain the approxi-
mate value of the integral as

c; cos* ¢ (I* — 2 sin* ¢)
— - log | v+— | | whent — 1, .-.(62)
P (a*sin*¢ — cj W2 N, .

So for ¢ > ¢aa

(u:] ~>N;4 log |+ — 1| ast — 1 ‘ ...(63)
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where

2 2 T2
N = — 2Pabcy cos® ¢ (I 2 sin? ¢) ....(64)

P (@t sin? g — A NN,

In order to obtain the value of uss as v — t4a we put in the second intégral
of (31).

we = A5+ (T:a— Azn) sin® =,
When * - 7142 4+, we find that
w—>0
P
dda ] 2

dqaaldt — id’

,
a®> — 03 12
Cd
‘thre A’ = pﬂ ( ) for a > Cd,
1,
A i .(65)

myg > lja(a® — ¢} )'® for a > cq,
moo L@ Y mys @ 2e)

s a s > 0 vag 2 7
N N, J

where N, = [ja* [1‘ (@ — 222 +41ch (@ —ci 1P ]
E'? — K112 (7 — g45)t P2
where

2 b 2 2
2a cos* a (a® — ¢ )2

¢d {(a2 — ¢3)'? sin ¢—cq cos 4>}

K = for a > cd.

Using these approximate values in the second integral of (31) we find that for

a > ¢d
[;] > N:xyas © > tas + ...(66)

where

apgy (@ — NP (at—2et) 4 O

Ne = o (2KA)'2 . N, ~(67)
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where C = 8a%cg t4a (0° — ¢ ) sin ¢ cos ¢

s,

A = a* (a® — b°) cos® ¢ vda (7aa + 73, ) + a® b*sin® ¢ ta, (taa — 5.)

'cza- = 1/a [ casing — (a® — ci )7 cosdi]_ ' ...(68)

It may be noted that conical wave front r = =44 does not arise for a < cu.

Next when ¢ < #,q, for the evaluation of u;; as v+ =/, we put w = T,sin« in
the first integral of (33). When = — /, we find that in the above integral

w—0
q";—>ilsinqS
+
dq Lo ! cos ¢
dt p Tjcosax
(g2 + w?) > I*sin® ¢

mg — (1 — I? sin® ¢)1/?

mg — [ cos ¢

my = I? (cos®> ¢ — sin® ¢)

E'E — e, (¢} — a” sin® $)F for § < d.a

= ifc, (a®sin® ¢ — ¢?) V2 for ¢ > .,
N BN,
where N3 = [/ (cos® ¢ — sin® $)* 4 4 sin? ¢ cos ¢ (1 — I* sin® ¢)'/2].

Using these approximate values in the first integral of (33) one can find for ali
values of a and b.

{tz] > Nzp fOor¢d < dcas<—1/
where '
__ 2Pabc, sin* ¢ cos ¢ (1 — [% sin® ¢)'/°
nP (cf — a? sin? $ ).1/,2. N

sz = ...(71)
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For ¢ > ¢,, considering approximate evalution of last two integrals of (33) as .
v — I it can be shown that for the case a > b > ¢4

Uur — Nialoglr—Il-fbr¢sa<¢<¢,das‘r—+1 ...(7?)

u: > Nilogls—1| for¢ > paasv 1 «(73)
and for the case ca > a > b > ¢,

ur > Nilog|v — I} forgu < ¢ < psaasvt > 1/ (74)

us— N loglt—1|ford > duast I -+o(75)
and also for the case ¢, > a > b,

us—> N log|~+v—1I|[for¢ > daas~— 1 ...(76)

whefe
, 2Pabc, sin® 1 — J2 sin2 $)1/2
N = 7Tapq sin® ¢ cos ¢ ( 12 sin? ¢) » - TT)
# (@®sin® ¢ — ¢ ). N,

8Pabc, _sin' ¢ cos® ¢ exEmimEEP (L sin"$ 1)

N, = (78)
P (a*sin? ¢ —c? 2N,
, 2Pabcq sin® ¢ cos® ¢ (12 sin® ¢ f—1}/2 (cos? ¢ —sin? ¢)2 :
o - e q £ .(79)
~(c; - a’sin? #)'1 N,
N, = [I? (cos®* $ — sin® $)* + 16 sin' ¢ cos? 4 (I2sin® ¢ — 1)]. ..-(80)

For the approximate evaluation of the displacements at the wave fronts = == 7,
and * = v, we follow similar procedure as followed for the evaluation of w.s as

v — 74, and we find that ;

lt] = Nisast — T fora > ca i ' ..(81)
{us] = Nigast — vaforca > a >ll Cy .. (82)
(tz] > Nis (v — ) as v — v fora > cq ’ ...(83)
[u:] = Nig (s — ta) 38 v = 79 fora < cu ...(84)

where
4Pb cq A ,\[ (a® — c; )Ds
mpa® (2 K; By AN

N:5= —
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. . L] — . ’ ’
16 Pa® bc’, (¢c; — a@?) A’,.\/_(ag - c ), . - o

Nig = — }
np (2K, P A)VE (I8 (@ — 265 )0 — 16q4 ((:d - a-) (a2 — c 1
o A +(86)°
. ’ 4P b : . 1z .
Niy = -— = Asd B,dB;a 4 ,d( 2cosecd ) . (87) -
at — ¢2 -
d B PR
Ny = ‘”;_ab A de‘ A;d (ZM >- -"‘_(88). .
# c; —a '

Iea (@ — c2 )12
A = .. (89)
Pll(a — c2)/*sing¢ — cacosd] : ‘

D, = 8§ a® lcq v.a sin ¢ cos ¢ (@® — cf Nz S ...(90)

Bg=§[13 (a._._ch)2 + 403 J(az'_ci)(az —c? N - (91)

A = [t 6° B (v,0 — <% sin® 64 (a* — %) @® £o8® § (vpa + 7,,)]

| ...(92)
_ 2(12 — 1)1/2 172 |
Au = Z[_(P — 1)'*sin ¢ — cos ¢ ! 03
Bg = (I* — )1 l : ...(94)
B, =4Aq (IF = 1) B ' ...(26)
A;d = .Cl .(12 —_— 1)1/2 [(12 — l)”z.’sin é — cos¢]—x S : (96) . !

In these expressions the notatlons [u,] stands for the change in ug :across a wave '
front and N:, etc. are wave front cocﬁic:ents Sl TR

1t may also be poted that if we put a b in this problem, 1t rcduces to the pro- - o
blem of uniformly expanding circular ring source and in that case our denved rmults R
coincide with the results gwen in the paper of Gakenheimer®. .
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The problem of diffraction of normally incident antiplane shear wave by a crack of
finite length situated at the interface of two bonded dissimilar elastic half spaces has
been studied. The problem is reduced to the solution of a Wiener-Hopf problem.
The expressions for the stress intensity factor and the crack opening displacement
have been derived for the case of wave-lengths short compared to the length of the
crack. The numerical results for two different pairs of samples have been presented
graphically. '

1. InTrODUCTION

Scattering of elastic waves by a crack of finite length at the interface of two
dissimilar elastic materials is important in view of its application in Geophysics and
in Mechanical engineering problems. The extensivel use of composite materials in
modern technology has created interest in the wave propagation problems in layered
media with interfacial discontinuities. The diffractidn of Love waves by a crack of
finite width at the interface of a layered half space &as studied by Neerhoff?. K»uo6
carried out numerical and analytical studies of transient response of an interfacial
crack between two dissimilar orthotropic half spaces. Following the method of Mal’,
Srivastava et al.! also considered the low frequency aspect of the interaction of an-
tiplane shear waves by a Griffith crack at the interface of two bonded dissimilar elastic
half space.

But high frequency solution of the diffraction of elastic waves by a crack of
finite size is interesting in viéw of the fdct that transient solution close to the wave
front can be represented by an integral of the high frequency component of the solu-
tion. Green’s function method together with a function-theoretic technique based
upon an extended Wiener-Hopf argument has been developed by Keogh** for solv-
ing the problem of high frequency scattering.of elastic waves by a Griffith crack
situated in an infinite homogeneous elastic medium.
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In the present paper, we have derived the high frequency solution of the diffrac-
tion of SH-wave when it interacts with a Griffith crack located at the interface of
two bonded dissimilar elastic half spaces. To solve the problem, following the method
of Chang?, the problem has been formulated as an extended Wiener-Hopf equation
and the asymptotic solutions for high frequencies or for wavelengths short compared
to the length of the crack have been derived. Expressions for the dynamic stress in-
tensity factor and the crack opening displacement have been obtained and the results
have been illustrated graphically for two pairs of different types of material.

2. FormuLaTiON OF THE PrOBLEM -

Let (x, y, z) be a rectangular Cartesian coordinates. Let an open crack of finite
length 21 be located at the interface of two bonded dissimilar elastic semi-infinite solids
lying parallel to x-axis. The x-axis is taken along the interface, y-axis vertically
doypwards into the medium and z-axis is perpendicular to the plane of the paper.
(u1. p1) and (u,, py) are coefficients of rigidity and density respectively of the upper
and lower semi-infinite medium. The crack is subjected to a normally incoming an-
tiplane shear wave originating at y= - x®. i

We are interested in finding the high frequency solution df the diffraction pro-

“blem i.e. the solution when the length of the crack is large cpmpared to the wave
length of the incident wave.

Accordingly we shall have to solve the problem when the {rack is subject to the
following boundary conditions:

o (x, 0+) = o2 (x, 0-) = - P~ Py e |x| <L (D
o (x5, 04) = ai? (x, 0-), |x|>[ . )
wi(x, 0%) = wy, (x, 071), |4>/ .3

where w is the circular frequency and P; is the static pressure.
Assume

wi (%, 3, 1) = Wi (x, ) gt R (4
wy (x, y 1) = W (x, y)_e"‘“’ ...{5)

where W, and W, satisfy the following two wave equations

VAW (x p) + KO () = 0 ...(6)
ViW, (x, ¥) + k*Wa (x, y) =0 D)
2 aZ
with v?= —a‘i +
ax ay

The shear wave numbers k; and &, are related to the two shear wave velocities. C)
and C, of medium (1) and (2) respectively by

k= w/C )
kz = w/CZ o (9)
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Without any loss of generality we assume that &k, > k;.

Let ol (x, 7, 1) = 70} (x, y)y e ..(10) .
oD (x, 5, 1) = 1D (x, y) e, (D)

In the boundary condition (1), Ps is the static pressure assumed to be sufficiently
large so that crack faces do not come in contact during vibration. Since we are in-
terested in the dynamic part of the stress distribution, so the boundary conditions
(1), (2) and (3) may be written as !

W (x, 0%) = 7@ (x, 00) = - Py, |x] < ~ ...(12)
W (x 0%) =@ (x,0), |x| >L ] ..(13)
and W,(x, 0*) = Wy (x,0), |x| > L .19
that is
i34 oW- '
p—— =p—==-P0, |x| < Ly=0 (19
dy dy _ ) _
£Y:% AW ' -
po—— =gy —=, x| > Ly =0 ..(16)
dy dy
- and W, (x,0%) = W, (x, 0), |x] > L ' (17

In order to obtain solutions of wave equations (6) and (7) we mtroduce Fourier
transform defined by

W (a, y) = —1— S W(x, y) e dx. ‘ ...(18)
27 _ i B
Thus we obtain the transformed wave equatlons as
d*w, 5 ‘ .
. (- kh W =0 . ...(19)
W, ( HhW,=0 (20)
- a - K3 7 = .. en
dy? -

The solutions of (19) and (20), bounded as y tends to infinity, are

Wi (a,y) = A (@) e, y-2 0 ' .21
Wz (a, ¥) = A; () e, y =0 ‘ ...(22)
where
= (a? - kD" : (23)-

™
) = (a2 - kD)%, (24)

72
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Introducing for a complex o ‘

1
G, () = —= | 7¥ (x, 0 e“’"‘” dx ...(25
+ {a) Nors S (x, 0) | (25)
L
~L )
. 1 N
G. () = — | 7 (x 0) e™*D gx : - .26
() = — S (x, 0) . (26)
L
. 1 o . .
and G, (o) = — | ) (x, 0) e dx (27
1 ) \[2*7? S Yz l) ( )
-L -
the transformed stress at the interface y = 0.can be written as
0 (o, 00 = G, (@) € + G| (a) + G. (a) e .(28)
Using the boundary condition (12) we note that
| - & il ol |
G = e’ — e 1, : ...(29
; (a) e i l: ‘ (29

Further using the fact that
79 (o, 0) = - iy, (@) )
we obtain from (28) ' ' ' ‘
-umA (a) = G, (a) e + G () e™ - P el _ el .(31)
* - S T WN2me |

Since from (12)\and (13) stress 7, is continuous at all points of the interface so we
obtain :

A, (@) = - 221 4 () : : ' 32
’ H2 Y2 o

so (21) and (22) take the forms

!

Wo(a.y) = A, (@) e,y =0 i .(33)
|

Py (o, 9) = - 220 4 (a) 7,y < 0. | .34

M2 Y2
L :
_ _ 1 ,
Now W, (a, 0%) = ¥ (a, 07) = o S [ W, (x,0%) - W, (, o:)} e dx

-1 . .

= B(a) (say) - . ...(35)

which is the measure of the dlscommuny of displacement along the surface of the
crack. From (35) we get :
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miv1 + H2Y2
Eliminating A, («) from (31) and (36) we obtain an extengied Wiener-Hopf equa-
tion, namely .

G.(a) e + G.(a) e™ + Bla)K(a)

= —————_fo. [e"“’— e“""/] » - .37
V2m i
where
9 3 2 l - kz V:
Kla) = —frnye: . w2 (@ kD7 5o ...(38)
miyr + pav2 (1) + p2) A

. ‘o + o az—k% v ’
R(a) = AL ,“,;_)( 2) . _ ...(39)
pi (o - kD" + py (e - k3)” : '
In order to solve the Wiener-Hopf equation given by (37) we assume that the branch
points « = K, and k; of K(«) possess a small imaginary part such that

ki=k, + ik{ and ks = ky + i k3

where &/ and k5 are infinitesimally small positive quantmes Wthh would ultimately
be made to tend to zero.

. Now we write K(a) = K, (@) K. («) where K, () is analytic in the upper
half plane Im « > - k4 whereas K_ («) is analytic in the lower half plane given by
Im o < ki. Since 7, (~, 0) decreases exponentiallylas x — + o, G, («) and
G. («) have the same cominon region of regularity%s K, (a) and K_ (a).

AIms
k
.k oh2
[8=0 ! . Res
~z= -
[] C+
._kz -k'|

F1c. 1. Path of integration in the complex s-plane.

Now (37) can easily be expressed as two integral equations relatmg G, (x),
G (a) and B(«a) as follows:
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+ (@) P I 1
K, () VIria'| K, («) K, (0)

1 el P, i
G d
* 27riS (s-a) K, (s)[‘(s)+ \/i;ris] y
C B

+

[ ~faed PO _ 1 .
=B KA T KO 2w S
-
e-Zu‘l’ .
£ d ...(40
(s-a) K, (s) [G' () + \/_ils } d (40)
aﬁd
G. () Py 1 S e
+ +
K (a) V27 ia K. () 2 (s - a) K_(s)

C.

P, |

G, - d

o -]«
sl

3 w1 e . By
= Bla) K, ial _ G, - —= d.
(@ K Ao -0 S 5 - a) K. () [ AR F } °
. C .-

. . ...(41)
where C, and C. are the straight contours below the pole at s = 0 and situated

within the common region of regularity of .G, (5), G_(s), K, (s) and K_(s) as,

shown in Fig. I.

! In (40), the left-hand side is analytic in the upper half plane whereas the right-
hand side is analytic in the lower-half plane and both of them are equal in the com-
‘mon region of analyticé/@ of these two functions. So by analytic continuation, both
'sides of (40) are analytic in the whole of the s-plane. Now since

Ty ~ (x F D7 ' asx — + L,
$0 . G, (@) ~a™* as |a| — o
and also 'Ki (@) ~ a” as ia( - o

so it follows that

G, ()

~ o as |a| — .
K¢ (o) ’ L '

i
Therefore by Liouville’s theorem, both sides of (40) are equal to zero. Equanon 41)
can be treated similarly. N . .
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Therefore from (40) and (41) we obtain the systein-of i_ntegralfequatjons“given_ by

Y Py 1.1 Po_ . ‘-
[G+ ) i ‘] K (@ & VEriaK, O

4 ™ G (s; + L ds =0 ..(42)
2 -a)K, () | 77 VInis T
c.

and

= 6. (@) + -2 SRS S (SR i
T T mia | K (@) 27 ) - a) K. (5)
. C

[G+ (s) - \/ﬂ?is }ds =0." | .(43)

Since 7{}) (x, 0) is an even function of x, so from (25) and (26) it can be shown that
G, (—oz) =G_ () and it has been shown in the appendix that-X, (-a) = K- («):
Using these results and replacing « by -« and s by -s in (42) it can easily be shown -
that equations (42) and (43) are identical. So G, (a) and G_ (oz) are to be deter-
mined from any one of the integral equation (42) or (43).
3. Hicn Frequency Sorution of THE INTEGRAL EquaTion

To solve the integral equation’(43) in the casé when normalized wave number
k; L » 1, the integration along the path C_ in (43) is replaced by the integration
round the circular contour C, round the pole ats = O and by the integration along
“the contours Cs, and Gy, round the branch cuts th{ough the branch pomts k; and
k, of the functlon K (s) as sh0wn in Fig. 2.

' N :
Ims Cbo
1 HE
c ' g ckz‘
L R Y ) A
! t
! 1
Cot S=0. k(& JL T
Y\J) ' —— " Res

Fic. 2. Path of integration Cp G, Gy i- -0
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Thus eqn. (43) takes the form

Py Py K_ (a)
G. -
[ @)+ e ] Va2x i K. (0) ;
; |
K (o) exp (2isl) G P ds =
* 2xi S (s - a) K (s) [ <O Vamis | © 0
0+ ..(44)

Now

exp (2isl) . Py
— - d
g (s - a) K. (5) {G“‘ ) \/iTrts] y

___1___ ewK+ (S) | Po
Com S (s~ a) (s*- kh* [G* © @;,-SJ“’

ky

which can easily be evaluated when k; L > 1 and-is found to be equal to

1 x  exp (2ik; I) Ky (k) e/ P,
-— G, (k) - ——1|....(45
w N kgl (k, - ) + k) V27 ik, (43)
Similarly for k; / » 1
exp (2isl) P,
=" G, (5) - ds
\S (s - a) K. (s) [ - ) mw}
C,,2 .
. ; ir/4 L.
- L T exp QRik, ) K, _(kz) e_ 6, ) - Po‘ - ..(46)
w2 Nkl (ky - ) - V2r ik,

Using ‘the results (45) and (46) and also the relations G, (-a) = G_(a) and
K_(a)= - iK, (a), we obtain from (44)

A(ky) Fy (ky) €250 A(ky) F, (ky) %!

F, (-a) + = C(a).
(e uy (ky - o) Ykl By (k2 - o) Vil () ...(47)
where
1 Py
F, =—— |G, ¢ - ..(48)
(&) X D) [G (%) ox if] (48)
[K+ (2)12 ei‘l‘/“ .
- B, e” ...(49
A(£) s B “9)
and
-Po "
C - _ fo ...(50
&) V27 iK. (0)¢ 0

e =
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Substituting « = - k; and @ = - k; in (47) we obtain respectively the equations

[1 L Alky) e A(ky) F, (k) e¥
2p, ky Vil pa (ky + ky) Vil

]F+ (k) + =-C(ky)  ...(51)

and
Ak). ek
w (ky + k) Vil

A(ky) eriky
2y ko Vi

F. (k) + tl + }a (ky) = - C(ky).

...(52)
Now solving (51) and (52) we get ‘

[ A(ky) (ky - ky) 2 ] 4
(k) = Clk -1 L (k, k ...(53
F(ky) (l)_zuzkz(kl+k2)@ | (ky, k2) | (53)

and
[ A(ky) (k- k) 2!

CF.(ky) = C(k - 1| L (ky, k ...(54
’+( 2) (2)_2#1k1 (ki k) VB | (ki, k3) 54)
where
Alky) 8 A(ky) ek

L (ky, ky) = [l + — ¢
V 2#1 kl "[El_l ) 2[1.2 kz sz[

L AUDAKk) (ki - ky)? etk 5%
duy pa ky ky (ki +kp)? Viky Vik,
4
Now expanding L (k,, k,) and neglecting higher order terms of//k,l and%kzl and
using (47) we get : .
G (a) = -C(a) K. (0) + C(a) K. (a) .
L K (@A) e - Clky) [1 _ A e Aky) ky ¥
m (ki - a) Vhi! 2u, by Vi oy ky Vi (ky+ k)

K (a)A(ky) €2 . C(ky) LAk kel g (k) etk
pa (ky = o) Vhof [ _#1 ko VET (k+ky) 2#2"2‘/7(—27:‘
...(56)
Now replacing o by -« and using C(-a) = - C(«a). We have
G, (o) = C(a) K. (0) - C(a) K. (-a). .
K. (-a)A(ky) e - C(ky) [1 LA e (k) Ky e
m (K + ) V- 2uy ky VR ok ‘/Ez_l (kl+k2):|

. |
K. (~a)A (ky) e - Clky) [1 AU ke A (k) o2
m2 (kz + o) kol w ok VR (ki+ky) 20k Vio! jl
57)
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4, Stress INTENsITY Factor anp Crack OpeninG DispLACEMENT NEAR THE Crack Tips

Now as ¢ — ™

K (~a) = - iK,(a) = - i (a+k)" fﬂ‘z— =~ ja" /“—‘“2—
' it pg Byt g2
K () . _, / K142
— =
a + k ’ p1t 2
K () - . _, it
R 2 )
a+k, ' g

So as ¢ — o we get from (56) and (57)

G, () = Sa™” + \/fioia ' R
and o o~ Py ...(58)
B Y T r i«
where .
s. P [ _ Al e Aky) &
V21 K_(0) ik Vil paks Vil

_l_ <A2 (kl) e4ik11 N A; (kZ) e4ikzl> N A(kl)A (;kz) eZi(kl+k2)l
ui ki kil @2 K2kl w1 kg g ke Vil

2
5 ‘ |
w | HiE2 ...(59)
[ ’b) )

Now from eqn. (37) using (58) and also-the fact that

K(¢) - ta. —— asa — + o« . ...(60)
’ Byt ps ,
we get
+ S . . L+
B(a) = — [ie""’— e"”} Ll ..(61)
o Va ’ B2

asa — + oo.

Taking inverserFoilrier-Transform of (35) and using the results of Fresnel integrals viz.

ol sin( ‘D :

cos"* ) T :

- da= |—. ...(62
S Ja ¥ T N2+ ‘ 62)
§ .

We get the displacement jump across the surface of the crack as
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AW = W, (x, 0+) = W, (x, 0) = 28, (1 - i) J(L-x) ...(63)
forx—-L1L-0
and AW = W, (x, 04) - W3 (x, 0) = 28 (1 -i) J(x+1]) ...(64)
’ _ forx - -/+0
where §, = “ATHD ¢ ..(65)
HiH2

Next inorder to find the value of 7,, near about the crack tip we use (61) in (36) and
(32) and to obtain

—1y+! . . ] .
A4 (@) = A AT (ie"""— e, (=12 ...(66)
e Va ]
' asaq — o
(_l)ji*l .S i il L [— . .
and A (@) = —— |e™™ _ je'™|, = 1,2 ...{(67
s == | [ =12 | ©67)
‘as a — - oo,
Now .
aw; (x, y) .
= pu; 9L A; (a) exptubi-ien do |, ...(68)
Yoy | V2x /

e ;
Substituting the values of A; («) as |a| — oo, we can write the stress near about
the crack tip as ' )

Ty_(x,-y) _ T%S_T_S e:/";y' [eia(x+l) - ieia(x—l)._ jerie+ D e-ia(x—t)].da'.
= S(\}.’Z’v—r_i) Sm e'jg‘ly' ‘:cos a (x+1)-sina (x+1) |
+ cos a (x - 4)+sin @ (x - L)} do
=S (1-1) [‘/—;;_sin % + %1 cos %:I | ...(69)

near about the crack tips, where

142 2]” . 1
rp=i{(x-1L)7"+ | ,¢ = sin] — ...(70)
. rl
7 .yl
=1+ U+ y , ¢, = sint 2 ...(71)
n
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Therefore at the interface (y = 0) we obtain
S (1-1)
S L

bas Vx -1

S(1-1i)
77T VD
Now the stress intensity factor is defined by
(1 - i) S|V2xk,

P, )
The absolute value of the-.complex stress intensity factor defined by (74) has been

plotted against k; / in Fig. 3 for values of k; / > 1 for the following two sets of
materials, given by :

x—1+0 . (12)

and x—-1-0. ...(73)

K = ...(74)

First Set: Steel p1 = 7.6 gm/cm® p; = 8.32x10" dyne/cm?
3

Aluminium  p, = 2.7 gm/cm® pu, = 2.63x 10" dyne/cm?

Second Set: Wrought iron p, = 7.8 gm/cm® 4, = 7.7x 10! dyne/cm?

Copper p2 = 8.96 gm/cm?® p, = 4.5% 10! dyne/cm?2.

Il

_— Aluminium&S’!cc\‘
-=- < Wrought iron & copper
]
xX
| -
1 [ | 1 1 1 i 3 1 Iy 1 1 11 1 ) 1 1
o 1 2 3 4 S5 6 1T 8 9 W M 12 13 14 15 6 17T 1B 19 2
k e

F1G. 3. Stress intensity factor X versus dimensionless frequency k; /.

5. Crack OpenING DispLAceMENT aT Points Away From THE Crack Tips

Next in order to obtain the displacement jump for the large values of k; (/ - x)
and; k; (/+x) we write G, (a) and_ G_(«a) from (57) and (56) respectively as
P OK (-a) + R(ky, k3) K_(-a) + R (ks k) K_(-a)

G = —
+(a) [ e 4 k|+a kz + o "“(75)

i

| P, 9K (@) Rk, k) K () Rk ki) K (o)

«@ a ki -« k - o
' ...(76)



HIGH FREQUENCY SCATTERING OF ANTIPLANE 1119

P : '
where P = 9 , ...(77)

V2rx. i
0 Po P ...(78)

T Var iK(0) | K0)

and R(kn, k) = QA(km)-ez”‘""[ g2kl - Alhn) e - A(kn)kim ]

tm ko Vg | VI 2k VT ke (i + K)
‘ ...(79)
where m =1 »when n =2
and m =2 when n=1
Again-using K_ (~a) =.-iK, (a) we get from (37)
B(a) = - Qi e N iR (ky, ky) e™ N I‘iR(ky, k) e
a K_(«) (ki +a) K_(a) [(k2+a) K _(a)
_ . % .
Qe™ R (ky, ky) ™ R(ky ky) e™ (80)
a K, (@) (ki-a)Ko(@) (Bp-a) Ky(a) B
From (35) we get the displacement jump across the surface of the crack as
1 )
W, (x, 0YY - W, (x, 00) = — B e do. ...(81
1 ( ) 2 ( ) e S (a) a (81)

Now substituting the expression of B(«) from (80) in (81) and approximately
evaluating the integrals arising in (81) term by term for-large values of k; (/ - x),
k(1 - x), ki (I + x) and ky (I + x) and neglecting terms of order higher than
(k; 1)’ and (k, /)~3/2 we obtain finally the crack opening displacement across the
cracked-surface in the following form:

1 1
AW = W, (x, 0Y) =W, (x,0) = 2n Qi K, (0) < + = >
‘ _ mki « p ks

+ \/i Qé—ir/@ |:(

eikitl-x) - ik U+x) >

vk (1 - %) T

R, R elik,/ . R, R eZikzl "R (R )2 e4ikll
X R + 1 11 + 2 21 + 1 11
: V2k, 1 V2k, 1 V2k, I V2k, |

Ry Ry Ry, e*™d Ry Ry; Ry e¥thirkd ! R; Ry Ry e¥ttkd!

+ +
V2ky 1 V2ky 1 - V2k, [ V2k, [ V2k, 1 V2k; |

eika (- x) eika (1 + %)
+ +
<\/7Cz (I—X) \/Ez (I+X))
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g <R2 Ry Ryy e¥* . RiRn e?kd LR (Ryy)? e**d
\/2k21 _\/2k,1 \/2k21 V2ky 1

Ry Ryy Ry, e¥t/ Ry Ry Ry ¥tatiad !

+
V2k, [ Y2k | V2k, [ V2k; 1

Rl Rll RZZ eZi(k,+kz)I
Yok, I V2ky 1 >]

where
R, = Ks k) R, = Ke K
ﬁ "y k‘ ﬁ B2 k2
| = DX, (k))? R, - DK, (k))?
s gy = —————22
w1 (k+kp) p2 (ky+ k)
'\T -+ Aluminium & Steel
quugm iron & copper
3
v —

00 01 02 03 04 05 06 07 08 09
X/l —

FiG. 4. Normalized crack opening displacement versus normalized distance x//

from the centre of the crack.

...(82)

...(83)
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_ DK, (K) K, (k) _ DK, (K)) K, (k)
Rz] = RlZ' -
w (ky+ ko) . ua (ky+ k)
eir/4 !
D = (-1 .
N~

Expressions in (63) and (64) give the displacerq'ent jump nearabout the crack tips
where as the displacement jump at points away from the crack tips are given by (82).

From these two results we can obtain the crack opening displacement at any point
of the crack surface - { < x < L,y = 0.

Here also normalized crack opening displacement has been plotted against nor-
malized distance x/L from the centre of the crack for two different sets of materials
in Fig. 4. It is interesting to note that oscillatory nature of the crack opening displace-
ment increases with the increase of frequencies as a result of the interference of waves
inside the crack. Further we note that amplitude of the crack opening displacement
decreases with the increase of frequency.

‘} Im z
Cl.ll .k1 .ka
= — > Re 2
H° “c
kz k1 L

Imz

Fic. 6. Path of }nl'écara}{m vound
the bromech 'Po'mtS-
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ArpenDIx A
2 2V
mpy (@ -k
K(a) = P 3 ( i) R()
‘  + )
where
R(a) = (1 + ) (@ - kD)”
mo(o? = kD" 4 (o - k™
Put m = ﬁ.
y
Therefore
2 2\ 1
pa (o = k)
K(a) = R(«a) (AD
1+
where
(0 + m) (o? - kP”
R(x) = TN 22)2%—1as|a].—-oo.
( —k o+ m(a - kz) )
Now - o
1
R, (a)R_(a) =
m_ (e’ - kD"
L+m (m+1) (a? - k)"
Therefore S
! j
log R, (a) +log R_(x)=log =log R(«x)
m (? = kD

1+m (m+1) (a® -1k*

i

l
|
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1 log R
log R, (a) = — o8 R(2) dz |
2w (z-a) |
CL |
~ic+ oo l
1 1
— : og R(z) dz
27 (z - a)
-ic-o . . .
where ﬂuz.paﬂr\ of ;nba?ro,h'e‘n G 1s sShoum m an. 5.
Putting z = - z and using the fact that R(z) = R(-z), we get
. fc+oo
1 log R
: 2xi (z+a)

1 S log R(z) dz

2xi (z+a)
G

where C, is the contour round the branch points k; and k, as shown in Fig. 6.

So,
' log (22 - kH”
1 m+1  (m+1) @ - khH*|
log R, (a) = dz
2xi (z+a)
C, '
L2 LW
o log [1 + L& KD
1 m(k3 - z) %
T 2xi S (z+a)
k, )
k& log|1 - M
1 m(k3 ~ z%) %
2 (z+a) “
ky
2 _ 2%
k tan™! [t (2 2 kl)2 ‘A]
1 M(kz -z d
= — 4
x S (z+a).
&y

(22 - k)"

k tant | ——

1 [m(k%w’)”}

SR (a) =exp| — S dz
T

(z+ )
ky
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Similarly
2 2w
ky  tan! Z -k ,
1 ) m(kz _ ZZ) %]
R.(a) = exp | — dz
T (z - )
3

Therefore from (Al) we can write

. [ ky tan™ |:”(;z(2k; flzz)z:zv;:l .
K, (a) = ‘/_#_2(("/‘?___1';_1))_' exp —;lr— g (z‘+:) dz | ...(A2)
ky
and
- ) [ & tan” [ ”(Ii;_ _ki)z:/z} i
K (a) = %‘;— exp % § = :) ‘dz . ..(A3)
L 1 -

Hence from (A2) and (A3) we get

Vi (a - k) * 1
K, (~a) = 22— 17 .
(-e) V(1 +m) exp T S

= iK ()

te. K; Fa) = (K_{&) (A4)
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HIGH FREQUENCY SCATTERING OF PLANE
HORIZONTAL SHEAR WAVES BY A GRIFFITH CRACK
PROPAGATING ALONG THE BIMATERIAL INTERFACE

S. C. PAL
Computer Centre, University of North Bengal, Darjeeling District, West Bengal 734 430, India

M. L. GHOSH
Department of Mathematics, University of North Bengal. Darjeeling District, West Bengal 734 430, India

Abstract—The problem of diffraction of horizontally polarized shear waves by a finite crack moving on
a bimaterial interface is studied. In order to obtain a high frequency solution, the problem is formulated
as an extended Wiener~Hopf problem. The expressions for the dynamic stress intensity factor at the crack
tip and the crack opening displacement are derived for the case of wave lengths which are short compared
to the length of the crack. The dynamic stress intensity factor for high frequencies is illustrated graphically
for two pairs of different types of material for different crack velocities and angles of incidence.

1. INTRODUCTION’

SCATTERING of elastic waves by a stationary or a moving crack of finite length at the interface of
two dissimilar elastic materials is important in view of its application in fracture mechanics as well as
in seismology. Recently, Takei et a/. [1] considered the problem of diffraction of transient horizontal
shear waves by a finite crack lying on a bimaterial interface. The method of solution was extended
by Ueda er al. [2] 1o solve the problem of torsional impact response of a penny shaped interface
crack. Srivastava et al. [3] also considered the low frequency aspect of the interaction of an antiplane
shear wave by a Griffith crack at the interface of two bonded dissimilar elastic half spaces.

In the case of cracks of finite-size. travelling at a constant velocity, loads, for mathematical
simplicity, are usually assumed to be independent of time. However, in practice, structures are often
required to sustain oscillating loads where the dynamic disturbances propagate through the elastic
medium in the form of stress waves. The problem of diffraction of a plane harmonic polarized shear
wave by a half plane crack extended under antiplane strain was first studied by Jahanshahi [4]. Later
Chen and Sih [5] considered the interaction of stress waves with a semi-infinite running crack under
either the plane strain or the generalized plane stress condition. Sih and Loeber [6] and Chen and
Sih [7] also considered the problem of scattering of plane harmonic waves by a running crack of
finite length. In both the cases the problem was reduced to a system of simultaneous Fredholm
integral equations which were solved numerically.

In the present paper, we have investigated the high frequency solution of the problem of
diffraction of horizontally polarized shear waves by a finite crack.moving on a bimaterial interface.
The high frequency solution of the diffraction of elastic waves by a crack of finite size is important
in view of the fact that the transient solution close to the wave fronI& can be represented by an integral
of the high frequency component of the solution. In order to solve the problem, following the method
of Chang [8)], the problem has been formulated as an extended Wiener—Hopf equation and the
asymptotic solutions for high frequencies or for wave lengths which are short compared to the length
of the crack have been derived. Expressions for the dynamic stress intensity factor at the crack tip
and the crack opening displacement have been derived. The dynamic stress intensity factor for high
frequencies has been illustrated graphically for two pairs of different types of materials for different
crack velocities and angles of incidence.

2. FORMULATION OF THE PROBLEM AND ITS SOLUTION

Let a plane crack of width 2L move at a constant velocity ¥ at the interface of two bonded
dissimilar elastic semi-infinite media due to the incidence of the plane horizontal SH-wave

W,= A exp[—{k,(X cos 8, + Y sin 6,) + QT}] (1

107
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Incidenl SH- wave
/Y / /_')_91_
® Y . h Y1

Sle 4=~ -Vt =~ -~ >
Running crack

N
>

of % ~ad-—-> =

® ‘ 2

N I— V= Crack velocity

A 4

Fig. 1. Running interface crack.

in the medium. The crack lies on the bimaterial interface along Y =0 with respect to the fixed
rectangular co-ordinate system (X, Y, Z) as shown in Fig. 1.
We assume that the displacement and stress fields W, Tyz, (j=1,2) are

W,=W/(X,Y, T) : @
OW,(X, Y
Tyz; = #j% s : €)]

1
in which subscripts j = 1, 2 refer to the upper and lower half planes, respectively, T denotes time
and g; is the shear modulus of elasticity. The displacement W, is governed by the classical wave
equation i
;W W, 1w
=— =1,2), 4
Yoy —aer U=k @)

where ¢; = (y;/p;)'” is the shear wave velocity and p; is the density of the material. Without any
loss of generality, we further assume that ¢, > ¢;.

Due to the incident wave given by (1), reflected and transmitted waves in the absence of the
crack may be written in the form

W, = B exp[—i{k,(X cos 8, — Y sin 6,) + QT}] 5)
and _

W, = C expl—i{ky(X cos 6, + Y sin 6,) + QT}], ' 6)

where . A
; k, s%n 8, — mk, s?n g, )

kysin 8, 4+ mk,sin 0,

~ ¥, sin f}}f'fl;/f' sin 6, " ®)
m=,/u, and k,cos@, =k,cosb,. : 9)

A, B, C are incident, reflected and transmitted wave amplitude, k; is the wave number, Q = k;¢; is
" the circular frequency and ,, 8, are the angles of incidence and refraction, respectively.

A set of moving co-ordinates (x, y;, z,t) attached to the centre of the crack moving at a
constant velocity V is introduced in accordance with

x=X-Vt, y=s5Y, z=2, t=1T, 10)
where 5,= (1 — M})'? and M;= Vie is the Mach number. -
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In terms of the translating co-ordinates x, y;, eq. (4) becomes

o'W, o*w; 1 0 W, aw,
i) J 4 [%cja ) 1]=0.

o ot tasa | M e

In the moving system (x, y, z, t) egs (1), (5) and (6) take the form

—WJ A expl:—i{kl(x cos 91+§1sin 9,)+wt}]
. . \ . 1 .
e™\ W, =|B expl:—i{kl (x cos 6, —?sin 0,) + wt}]
. |
Wr C exp[— i{k2<x cos 8, +iﬁ sin 92) + wt}:l
- - L 2 y B

where w = Qa and « =(1 + M, cos 8,) = (1 + M, cos 6,).
In view of eq. (12) we take the solution of (11) as

Wi(x, y) €™ = wj(x, y)expli(M;4;x — o)}

Substitution of eq. (13) into eq. (11) yields the Helmholtz equation governing w;:

Pw  Owy L,
—_— - W, = j = 2
axl + ayjz +j’l w] O (J 1; ):
where
k;a
lj=—;2 )

7

Apblying Fourier transform, eq. (14) can be solved and the result is

1 L. o
wi(x, yi) =~ f B, (&)exp[—itx — (&2 — A1)y ]dE, >0

-

1 a
wo (X, y2) = — B,(&)exp[—ix + (£2— A3)y,]1d¢E, y,<0.
. 2

—

From (13), (15) and (16) we obtain the displacement components due to scattered field as

l [+ o]
=52 J- mAl(f)exP[_iix —wwyldé, y >0

1 @
Wy=5- '[ A;,(&)expl—ilx +v,,1dE, 3, <0,

‘where

V= [(é +'1]A41')2_'llz]”2’ J= 1,2.

109

(11

(12)

(13)

(19)

(1%)

(16)

)]

(18)

(19)

A, (&) and A,(£) are the unknown quantities to be determined from the following boundary

conditions:
oW, oW,
—_—= —=, forallx, y=0
Hi Sy P U259 I ora x y
i

Wi=W,, |x|>L, y=0

oW, ow, oW, |
=0, |x|<L, |y =0+.
dy, Oy, 9y

(20)
@n

(22)
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From the bouﬁdary condition (22) we obtain
Z—T=A,eXp[';ik,xcos 0}, Ix|<L  y=0, | ‘ '(23) 4

where ' .
4= i(4 — Bs)lkl sin 8, . (24)

Using (17), the above equation can be written as
1 (= : '
P J A (&), exp[—iéx]dE = — A, exp[—ik;xcos8,], —=L<x<L
=P(x), x>L (say)
=Q0(x), x<—L (say).

Therefore
A (&), =expli€L]G, (&) +exp[—iL]G_(¢) — (6 é [exp{l(f &)L} —exp{—i({ — &)L},
0
(25)
where
G, (€)= f " P(x)explic (x — L)) dx 6)
G_ (&)= j O (x)explic (x + L)] dx en
, &=k, cosb,. (28)
From the boundary condition (20) we obtain
46y = - HAE), (29)
V2 - .
where
M=EE (30)
) . Ha S5
Next using the boundary condition (21), we obtain
A(8) — 4,(8) = fm (W, — Wy)expli¢x] dx
= JL P, (x)exp[iéx] dx ,
-1 ;
—NE) (ay), | (1)

which is the measure of the discontinuity of displacement along the sultface of the crack Now with
the aid of (29) and (31) we find

VN ()

Al(f)=v2+le-

(32)

Eliminating A,(f) from (25) and (32) we obtain an extended Wiener—-Hopf equation, hamely
expliZL1G , (&) + exp[— iEL]G_ (&) — N(E)K(f) :

t(é co)[“xp{l(f co)L}—exp{—z@ ELY, (33)
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where
. vy -
KO = =153 RO - (34)
o (L M)y,
RO ==~ 37 % (35)

In order to solve the Wiener—-Hopf equation given by (33) we assume that -branch points
E=40—-M), L1 —M,), =41+ M,)and —1,(1 + M,) of K(&) possess small imaginary parts,
which would ultimately be made to tend to zero.

Now we write K(£)=K,()K_(¢), where K, (&) is analytic’ in the upper-half plane
Imé& >Im[—A,(1 + M,)], whereas K_(&) is analytic in the lower-half plane given by
Im ¢ <Im[4,(1 — M,)]. The expressions of K, (£) and K_(&) are derived in the Appendix. Since
8W,[dy, decreases exponentially as x — + o0, G (f) and G_(¢&) have the same common region of -
regularity as X, (¢) and K_(¢). - .

Now eq. (33) can easily be expressed as two integral equations involving G, (£), G_(&) and
N(¢&) as follows: .

G.&) e[ 1 1 J ™ | [ ' A.e‘f*]m

. © i(é—éo)[K+(<f) K+(¢o)}+2m T AO| RS
Ale—i{OL ) —LJ‘ e—ZLsL A ei oL

K &) ). G-OK.6) G =4

where c, and c_ are the straight contours below the pole at & = &, and situated within the common
region of regularity of G, (£), G_(&), K. () and K_(&) as shown in Fig. 2.

The left hand side of (36) is analytic in the upper-half plane whereas the right hand side is
analytic in the lower-half plane and both of them are equal in the common region of analyticity
of these two functions. Therefore, by analytic continuation, both sides of (36) are analytic in the
whole of the s-plane. Next, by Liouville’s theorem, it can be shown that both sides of (36) are equal
to zero. Thus we obtain

I 4, ek Y
G _—

=N(K_(E)e ™+ [G )+ )] ds, (36)

1 c21'.rL Al oL _
':m—ifc+(s—f)K+(s)[G )+ 6= co)]d“‘“o' 37

Similarly, we also obtain

1 A, it 1 2L ~ A, e~ %ol B
K_(c)li -6+ i(¢ —Co)} 2ni J;_ (S _é)K_(s) |:G+(S) ‘——-—l.(s —-fo)} ds =0. (38)

Ims

g, M0-M) Apli-Mp)
L4 .

I
| Res

c_
<

Y

re

[ ] [ ] . C .
=AMy =2 (14My) +

Fig. 2. Path of integration in the complex s-plane.
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3. HIGH FREQUENCY SOLUTION OF THE INTEGRAL EQUATIONS

In order to obtam G, (&)and G_(¢&) from the integral equations (37) and (38) in the case when
the normalized wave number A (1 + ML » 1, the integration along the path ¢, in (37) is replaced
by the integration along the loops L_; and L_;, round the branch points —4,(1 + M,) and
—4,(1 + M,) of K, (s), respectively. Also, the integration along the path ¢_ in (38) is replaced by
the integration round the circular contour L, round the pole s = &, and by the integrations along
the loops L;, and L;, round the branch cuts through the branch points 4,(1 — M) and 4,(1 — M,)
of the function K_(s) as shown in Fig. 3.

Finally evaluating the integrals along the straight line paths round the branch points for large
values of frequency, we obtain two equatrons given by

0, €9 E A F L1+ M)IF[F 4(1 £ M)

F )+ C, (EH,Z 24,0 % M)~ G, L7 =0, (39)
where ¢, =1 and 0, =M, and '
l L. A eFRt
+(§) K. (& )[ t(C)+i(<—§o)}
R
AAi(é)z?cl/T[Ki(é)]l
FitL .

Ci(é)z__A‘e—___ » (40)

i€ — &)K. ()
Now substituting ¢ =4,(1 —M,) and 4, (1 —M,) and ¢ = —i (1 + M,) and —4i,(1 + M;) In
(39) a system of linear equations of F [A (1 —M))], F,[%(1—M,)], F_[—4(1+ M,)] and
F_[—7,(1 + M,)] are obtained. Now solving them and neglecting higher order terms of (A L)y '”
and (4, L)™' we obtain, finally, after some algebraic manipulation:
F 240 F M) = - Co (240 F M,)]
1o A (4,0 £ M)IC (R M)
LG, DG £ M)+ 400 F MO)Cal2 5 F M)
Now using (39) we obtain from (41)
Aye¥Fiot T A, e;i:OLK: ()
i€ — &) (€ — &K, (&)
[Uk e M UMY L [F A (£ MIIC: [F A £ MK, ()
) 24 LY 20 £ M) £ &} »
(1 - 2 s, 2 FMILY A4 FMIC, [£40 ? M) ):I 42)
S 24 L) HAF M) + AL £ MOTCx [FA4(1 £ M)

:[,' k=12 (41)

G.()=+

+

¥ e
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Fig. 3. Path of integration L,, L;,, L;,and L_;, L_;,.
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4. CRACK OPENING DISPLACEMENT AT PO#NTS AWAY FROM THE

CRACK TIPS :
} l
In order to obtain the displacement jump for the large valurs of A (L — x), ,{L — x),4,(L + x)

and A,(L + x), we can write G, (¢) and G_(¢) from (42) as
' P, - 0:K@, & KQORY

= - 4
CO=2e e oy TAmaEMy £ @)
where :
Al FikoL
P, =22 (44)
A, eFiol P,
= = . (45
2T @ TG e
R0 = Ok M UEMOLY 2 [F (1 £ M)IC: [F A1 £ M)
* 2(A, L) .
« ( | o @A AL (40 F M)IC, [£4,(1 F M) ) 46)
2Ly P40 F M) + A1+ M)IC:[FAQ £ M)
Now we obtain from (33) o : -
0, et ‘ RO gkt ' RD it
NE) = - = —
= ek @ EF AU+ MK @ T G+ A+ MK ©
i (1) o—iL 2) o —i
+ Q_e kL _ RWe _  RPe "L @
(€ —&)K, (&) {E—-HA-M)}IK, () {&—4(1—-M)K, ()
From (31) we obtain the displacement jump across the surface of the crack as
Wi 040)~ il 0-) =5 [ N@eeae @

Substituting the expression of N(¢) from (47) in- (48) and approximately evaluating the integrals
arising in (48) term by term for large values of 4,(L — x), 2,(L —x), A4;(L + x), and 4,(L + x),
and neglecting terms of order higher than (1, L)~*?and (1, L)~*?, we finally obtain the crack opening
displacement across the cracked surface at points away from the crack tips in the following form:

AW = W (x,0+) — Wy(x,0-) = —iQ, K, (&)etotL—2

1 . M e~ T T ' 49
x[{(fo'*'llMJz—l%}m-*_ {(éo‘*‘;-zMz)z'—'l%}”z:l— Y) [ + —]’ ( )

where

T,

_ & o M UFMIEENNG, K [+ A,(1 F M)
_k=l {A(L ix)}m [2”2[/1»&(1 F M) F &l
_ 3 oA=L T a0 + MK, [+4,( F M»]( 0 Wz
24LY A0 F M)+ 40 £ M) \ {1+ M) &}

j=1

2 0,4, [+ 1.1 F MO o2, L F M)+ 4y (0 2 MpIL

- Z ’1/2:t — L— - * — — . (50)
1 204, L) A, (0 F M)+ 40 £ M)}H{A.(0 F M) F &}

5. STRESS INTENSITY FACTOR AND CRACK OPENING DISPLACEMENT
NEAR THE CRACK TIPS
Now considering _the behaviour of & at infinity we obtain from (42)
A, eFitoL
G,()~ +————+ 8,67 as E>oo, 51
: TR Gh

EFM 45/1—H
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“ where

S, — 1 ?Al ewe"l'_*_ L o @MEMOLY [ (1 + M)IC: [F A1 £ M,)]
1+ MR K, (&) ~ 2(A L)

| 5 (1 _ i o, 4AFMILYL [+ L1 F M)IC,[24(1 F M) >] - (52)
: 2400 F M) + A (1 MO)FCL[F A & M)
Now, from eq. (33), using (51) and also the fact that
K(&)— + d as >+ oo (53)
—_— l+ M — 3
we obtain
14+ M ] i f
N@)=—5aymlS. e+ 5S¢ “] as{odo. (54)
!
Taking the inverse Fourier transform of (31) and using the results of Fresnel integrals, viz.
Ay R "
———————eee d — ——— N
0 ()’ 2Ax + L) : oo

we obtain the displacement jump across the surface of the crack as

AW = W,(x,04+) — Wy(x,0—) = — (1 + M)(1 + i)s_[z(i_:i)]m for x> —L+0 (56)

—(1+M)(A-0)S, [2(%;1@]”2 forx-L—-0.  (57)

Expressions (56) and (57) give the displacement jump near to the crack tips, whereas the
displacement jump away from the crack tips is given by (49).

Next, in order to find the value of t,, near to the crack tip we use (54) in (32) and (29) and
obtain ’

A(é)—(;llj:ﬁ[S et § e %), j=1,2 asé—w | (58)
i\ ) = {(é)“z + - » J=1 ]
YRR A2 P
Aj(€)=%)Tf’[s+ef=L—s_e-ﬂ], j=1,2 as&-—oo. (59)
Now
' _ Wxy) W y) s [ eyl qs |
) =y D W)t ay,[ Lm'Aj(g)e de |. (60)

Now substituting the values of 4;(£) as |£ [—o0 in (60) and integrating, we obtain the stress near
to the crack tip as ' )

=~ 0=, DL 4 s TP | )

r}/2 r;/2

and

= — a0, 0B arps SREL @
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where
= (G = LY 423, gy =sint 2]
|
= (G4 L4y, gy =sin 2
' 2
&= {(x — LY+ 33}, gy =sint 2l
1
— LR, gy=sint 2 (63)
2
Therefore at the interface (y = 0) near to the right-hand crack vertex, we obtain
s (1 —1)S,
T,..—

vz —'m as X*‘II*L + 0. (64)

Now the normalized dynamic stress intensity factor K at the crack tip x = L is defined by
(2mk, (x = L), | _ (1= S, (k)"
mA, 1

for x—»L +0, : (65)

! K=

: where 4, 1s given by (24).
The absolute values of the complex stress intensity factor defined by (65) have been plotted
agamst k, L in Fig. 4 for values k,L.> 1 for different values of the Mach number M, and the angle

of incidence for the following sets of materials:
first set: steel py=T7.6gm/cm?  pu, =8.32 x 10" dyne/cm?
aluminium py=2.7gmjem?,  p,=2.63 x 10'* dyne/cm?
second set: wroﬁght iron p,=7.8gm/cm’, u, =7.7x 10" dyne/cm?
copper P, = 8.96 gm/em®, pu, =4.5 x 10" dyne/cm?.

As the Mach number M,—0 the stress intensity factor K tends to the value of the stress
intensity factor corresponding to the stationary crack. The problem for 8, = n/2 and M, = 0.0 was
solved earlier by Pal and Ghosh [9]. The graph of stress intensity factor vs k, L corresponding to
8, =n/2 and M, =0.0 as given in Fig. 4a is found to coincide exactly with that given by Pal and

2-0-

0.4 Wrought Iron & Copper —— M2=0-5
W Aluminium & Steel -————

00 T T T T T
1 3 S T 9 n 13 15 17 18

Fig. 4(2) (caption overleaf’)




116

(@

Fig. 4. Stress intensity factor Kv;:rsus dimensionless k, L. (a) 6, = n/2.(b) §, = '7z/l,3. ©)0,=n/4.(d) 8, =x/6.
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Ghosh [9]. It is interesting to note that for both pairs of materials, as M, increases, the peaks of
the curves of stress intensity factors decrease in magnitude and occur at lower values of k, L.
Further, it may be noted that for any fixed value of M, the stress intensity factor decreases with
the decrease in the value of the angle of incidence. |

|
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"APPENDIX

k(e < LG+ M MR = 1)

RE), .- @n

where

(1 + MY{(E + i, M)} — 132
M{(E + A4 MY — I3+ {(€ + 4, M) — A3}'7

R(E)= =1 as|{|-c0.

Now
1.
1 M{E+ M-
T+ M (I +M{(E+ M) -3}

R, (OR_(§)=

Taking logs on both sides

log R

og R(n) dn,.
n—2¢

where the paths of integration ¢, and ¢, are as shown in Fig. Al. Therefore

log R
logR, ()= 2:J. %gj(g—)d

I [ logR
: logR_(5)=ﬁJ. —°f_(§")d

lm’rl
|

log R({) =log R, (£} +log R_ (C)—2 IJ‘

240-My) 2\2(1—M2)

'G ) ’ R‘e.Tl

. L]
= A (14Mp) =2, (1+My) -

| Fig. Al. Complex n-plane.
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1 i
‘ i
MU-Mp €, A,0- My
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_12(1+M2) —1](1+M~|)
Fig. A2. Path of integration round the branch points.
or
1 [~%*=log R(n)
log R =_— d
og R, (¢) 2“[ L
Putting n = —n
1 [ =log R(— 'I)
1 = S S 54
og R, (&) 2’"'_[“0 P
1 (*~~logR
log R_(¢) = '[ 8 R(™) 4y,
27“ e+ N _é
therefore :
g R- ) =5 | — : ¢
8 e Mg + A My -7 |P

L+ M (1 +MY{(n+ 4, M) — A3}
where ¢, is the contour round the branch pomts A (1 —M,) and 4,(1 — M,) as shown i in Fig. A2,

Therefore
ia(l — M2) 1 | 1 + lM{(l]-}-l Ml)l }'Z}llz
AT+ M T U MO0E— (1 + 4 M, )7

1
- log R_(§)=Z—MJ.A|(I—M|) n-3)

)

1+ M (1 +MYAL—( + 4, M)}

_1J'i=<-—M=> 1 mn_,'[M{(n+A,M,)2—A%}”’]dm

Tn an—my 1 =%) {A3—(n + A, M)}

Al — M) M[(r] +1l M,)z——lf]”’) ]
R_ = -1 dn [
(f) exp[ jl(l M) ('l c) e ( [lg_(’l +12M2)2]II2 g
i Ml(n — A/ M, )"~ ﬁ]ln) ]
R, Q)= ' dn |.
0= expl:” J‘ll(wun) (n+4) . ( [A3— (1 — L, M,))'° n
Therefote from (Al) we can write

&+ A0+ MY L0 + M) o (M[(y, —).,MI)Z_}.}]lrz>d jl
K, (&)= [ T+ ) J ‘{ ,[.(1+u.) wro " = & M1= )"

and therefore

Similarly

and

C[E—A0 — M) et = _1<M[(n +A.Ml>?—zf1'“)d]
K-©= [ (L+ M) } ‘{J( ) (n—é) i e vay o Al
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Abstract—In this paper, the problem of two-dimensional oscillations of four rigid strips, situated
on a homogencous isotropic semi-infinite elastic solid and forced by a specified normal component
of the displacement has been considered. The mixed boundary value problem of determining the
unknown stress distribution just below the strips and vertical displacement outside the strips has
becn converted to the determination of the solution of quadruple integral equations by the use of
Fourier trunsform. An iterative solution of these integral equations valid for low frequency has
been found by the application of the finite Hilbert transfornn. The narmal stress just below the strips
and the vertical displucement away from the strips have been obtuined. Finally, graphs are presented
-which illustrate the salient features of the dlSplaCmenl and stress intensity factors at the edges of
the strips. \Pynghl © 19% EIsevxer Sucnce le

1. INTRODUCTION

- The problem of the eflect of vibrating source in different forms on the surface of an elastic

mediuim have aroused attention in view of their application in seismology and geophysics.
 Reissner (1937), and later Millar and Purscy (1954), treated the case of a uniform vibrating
pressure distribution applied to a circular region on the surfuce of an clastic half-space.
Anulytical treatment of the dynamical response of footings and solid-structure interaction
are ysually available in the literature only for circular and clliptical !'oolin&,s and infinite
strip loadings. Such results are important in view of their application in the design of
foundations for machinery and buildings, and also in the study of the vibration of dams
and large structures subjected to earthquakes. The problem of circular punch has been
solved analytically by Awojobit and Grootenhuis (1965), Robertson (1966), Gladwell (1968)
and others. Roy (1986) considered the dynamic response of an elliptical footing in fric-
lionless contact with a homogeneous clastic hall-space. Karasudhi er al. (1968) obtained a
low frequency solution for the vertical, horizontal and rocking vibration ¢l an infinite strip
on a semi-infinite elastic medium. Wickham (1977) worked out ia detail the problemy of

forced two-dimensionul oscillation of a rigid strip in smooth contact with a semi-infistite’

clastic medium, Recently, Mandal and Ghosh (1992) treated the problem of fora.d vertical
vibration of two rigid strips on 4 semi-infinite clastic medium.

To improve the dynamic models of buildings and other!structures, it will be fruitful to
have analytic results for foundations of a more complicalefd nature. In what follows, the
* problem of vertical vibration of four rigid strips in smooth contact with a semi-infinite
elustic medium has been considered. The problem is also impbrtant in view of its application
in the study of the vibration of an elastic medium caused by running wheels on a railway
track. The result: . mixed boundary value problem has been reduced to the solution of

t Author to whom correspondence should be addressed.
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quadruple integral equations, which have further been reduced to the solution of integral-
differential equations. Finally, an itcrative solution valid for low ['ruqucm.y has been
obtained.

From the solution of the integral equations, the stress just below the strips and also
the vertical displacement at points outside the strips on the free surface have been found.
The effects of stress intensity fuctors at the edges of the strips and vertical dlsplubcmcnt
oulsxdc the strips have been shown by micans of graphs.

2. FORMULATION OF THE PROBLEM

Consider the normal vibration of {requency w .of four rigid strips having smooth
contact with a semi-infinite homogencous isotropic elastic solid occupying the half-space
L\___\_\—oo <X<mwY2z0, —® < Z < oo. Itis assumed that the motion is forced by prescribed
dxsplaccmcnt dlsmbuuon’uoe “"’\mrmdl to. the four infinite strips located in the repion
d <X <dydy <X < h = 0, |Z| < o0, where v, is a constant.
" Normalizing all the lengths with respect to d and putting X/d = x, Y/d = y, Z|d = z,
d\/d=a, dyjd = b, d;Jd = ¢, one finds that the rigid. strips are defined by a < |x| €
c<xl € L,y=0,]z] < oo (Eig. 1).
\_\[}che time fdctowupprcssed throughout the analysxs, the displacement com-
ponents can bewritlen as

T~

l

|
a 3 d
wx) = =T o) = e G =0 W)

where the displacement potentials ¢(x, y) and x,l/(.‘c,y) satisfy the Helmholtz equations

ge 8
-+ +mip =0
axt 9t ¢
al . 62 ) . ’ :
- ——i + l{, +m3y =0 ; 93]
ax*  dy*
in which
s wid? L wid?
my =-— and m3 = —
€ L4F]

In terms of ¢ and ¥ the stress components are

|2 R 277 7 R 7 N,
-1 -c -b -a ad b C 1 '

Y
y

Fig. 1. Geometry of the problem.
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RN )

oxdy ~ ax*  oy?

: 7y S
T, =— {(nz, +2——)¢ zaxay} : o

T =0. ‘ [ON

Ty =

The boundary conditions are

v(xlo)-=b0) XE12)14 . (4)

Tyy(x,O) = 0, x€1|,13,~15 , (5)
1,(x0) =0, —0<x<® : 6)

where I, =(0, a), I, = (a, b), 1, =(b,¢c), Iy =(c, 1), 15 = (1, o). The solution of the Helmholtz
equation (2) can be written as

¢=2 qu A(&) cosExe "7 d¢

]

Y =2 J‘w B(&)sinxe 17 dE )

0

where

~ {(é*—m})'“,' 14
" i —eyn,

“and A(£) and B(£) are unknown functions to be determined ffom the boundary conditions.
By using the boundary condition (6), it can be shown that

B() =

27,6
: A(6). : ®)
& +y3 @ ' .

Now the displacement component v and stress t,, become

) £2 .
v(x,y) = ZJ [2622_5";‘3_7”“3—7"']’4 (§)cosixdg
) =3 .

—m3

T(x,y) = —-2ﬂf [("u—Zéz)e""+2§ i ‘“"]A(é)COSExdé-' '(19?,

0

From the boundary conditions (4) and (5) we get the following set of mtegral equatlons in

PEQ): A

o .'y,m§ 1 : :
P(&)coséxdE =zvy, xely, 1, (1
.L (28 —m3)* —a&%y, 7, 2 :

and
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v

j P(&)coséxdl =0, xel,,[,,/ (12)

where

_(252-’/71%)2 487, : 7
P(g) =— et i) A(8). |

3. SOLUTION OF THE PROBLEM

We consider the solution of the integral equations (11) and+(12) in the form

1

P(&) = Jh i) cos{IdH—J ug(1*) cos Eudu ; . - (13)

a <

where f{£) and g(«*) are unknown functions to be determined. “
By the choice of P(£) given bv eqn (13) the relation (12) is satisfied qutomatically and
eqn (11) becomes ’

jb % l’d’r RILE Excos £1d¢
it COS { X COS
e 0 (262—'”5)2_452}’1}’2

P ‘ ! ® y ;n? v ‘

using the relation

sin{xsin§r ‘r‘ J’ wolo (Ew)Jy(Ev) dvdw

ci 0 o(xz_w?.)l/?.('l_ul)lll

the above equation is converted (> the form

d ® .38 woL (vw)dodw
&l o] ]

0 (XZ_WZ)I/I(lz _UZ)I/Z

O x v v y dv xel
[ ombnson _u g

d 1
+ EX_J; ug(®) du—

ou 0 Jo (xz_wz)l/z(uz_vz)l/z ?’
where
Ly(ow) r i Jo(E)To(E0) E. (16)
v, W) = W .
‘ o QE—mi—4&yy, o Lo

By a simple contour integration technique used by Ghosh and Ghosh (1985), L;(v, w) can -
be written as : ,

Li(o,w) = —it? J'l (I—n®)'2@n? _12)21131)(",‘;,“,)]0(m,m))d,’

o o Q=) 16 (7 ~ D —0?)

o [P = D ) P HE ) o ()
—4itt — - dy
o =Y +10* (= D)E2 -4



b
,

'Q0(7) denotes the derivative of Qu(n) with rcépcct to n and

Forced vertical vibration of four rigid s\ﬁps on 4 semi-infinite elastic solid S

ric? ('72"l)m-HQ)-,(m"7“,)',"('"‘"%)] ’— = v.
Qo) S .

) " HE" (i, nw)Jo(mno) o

(1—
l6(l—rz) Z ,[ nt—1}

N Z s, J' (r?— )I/ZH%‘I).(”'I;IW)JO(”I,”’)' ’l}
= ,

o [[07 = 1) P o1 Jo oy o)
+it? . , W>0 (an
i [ Q5 ()
where
7= 'l'l — ﬁ, . Qo('l) =(2'12 —t2)2 _4"2(”2 _ |)|/z(;lz_.rz)|/2
ny Cy

and 14 is the root of the Rayleigh wave equation Qy(n) = 0. t,, 1, are the roots of lhe
cquation

(2’72 ~_1.2)-2 +4”:‘("2 = 1)!/2 (”2 _12)1/2 = 0.

_ (=17

G

-2 2
~1
~HOZD 20,12 and in)

>

The corresponding expression for L,(v w) for w < v follows from eqn (17) by mlerchangmg
w and ». For a Poisson ratio ¢ = 4, the values ofr 14, Ty and 1, are gwcn by

2(1—
12=( U)=3, 1 = 3

(1-20)

Hlw

2 3 2
2

091947 T 2+2/3)

Henee,inthiscase <11 <1 <1 < 1.

By using the series expansions of J, and H{", and cvaluating the integrals arising in
cqn (17), we obtain, after some algebraic manipulation,

mw o

2

2 : :
-« Ly(o,w) =;r{(y+l g—z————)M+N—-—(w +vz)m, logmlj|+0(m.) W > 0.

ny v

2 7 . .
=1 l:( 1gT—2)M+N—-z(w’+'uz)mflogrr1|]+0(mf) w<v, (18)

where 3 = 0.5772157...1s Evler's constant,

I

M _;@_,tz_)_ 19)

I
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hr=_,_n___;|:4 Og +Z P A T; \/(1—1’12) \/('C\)
T

32(1—1*

1y

+/ *\_‘""7103{10/m +2,S \/__r})
\\\ SR : _s, /(rg—r lon {ro +\/E——15}J, (20)

_____________ T

3’(1—r2)Lz ( ")szs(—z—ff)]- ey

Next, differentiating both sides of relation (14) with respect to x, we obtain

2 dt }'l'ngc
J e J ATy —afiy gy e

1 - i': N A
g
ug(u? )duJ’ sin§xsin{ud§ = 0,~xel,1
L (28 —md)* =48, 7, n

~
Cy

Following a similar procedure as for deriving eqn (15), we get : LT

2 1 x {1
XJ' ;zﬂ_t) drdx j uzg( u?) du_J‘ tf(lz)dlalj J woL, (v, w)dodw

x¥— o o(x -—-WZ)Ilz(l 2)!/2

x fu wl B
J ug(u?) du— ai ‘{ f woL@w)dwde 4 @2)

o Jo (x2 _“,2)1/2 (ul _Uz)m !

where

@ 29,82 (mi —mi) . |
L s = —_ - - - 0 o N .
2 (60) J [c T ¢'2m,]l (Ew)o(E0) A& @3)

For small values of 1, and m1, such that m;, = O(m,), one can use the contour integration
technique mentioned above and obtain

Ly (v, w) = 2imi(1—1%) J * (=) Q7 — 7y HE (i) Jo oty 10)
= ' o @P =) +16n (= D —i?)

dy

) 2'1‘('7’—1)(12—ﬂ’)"zHS”(mnHW)Jo(mnw)d

+4in1f(1—12)J

0 @2 =73 £ 160 (7 = 1) (2 = %)
02l _ '/2 ) NT
—znin,f(l—ﬁ)[” =1 ”°,('"‘"“)J"("“"")l L ow>p  (24)
Qo(’l)

" By a process similar to the one which led to eqn (18), eqn (24) can be written as
/ 4P 2 2  4yy 2
L,(v,w) = — —n—(l — %)t logm, + O(m}) (25)

where P is given by eqn (21).
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Now examining relations (15) and (18) we assume the expressions of the funclxons

J(r) and g(«) as R A -
S = fo () +1,(¢})m} log m; + O(m}) o L T T T
g(?) = go(u?)+g, (12)mt log m, + O(m?). (26)

Putting the above cxpressions of f(£*) and g(1%), and the value of Ly(v, w) gi\'/'en by eqn (25)
-in eqn, (22) and equating the coefficients of like powers of n1, we obtain

" 2 i 2 ‘ e
[ 1-/22)(1 Zdt+‘].”‘q20(“_2)du=0' xe[z,]& (27)
Ja X°—1 ¢ X" —U ’ ' -
and ’ '
5 2 2 i
[£9 0w [ 280 ~Lpa—| [y are [ wpatirau, sent
a X" —t e X _u

(28)

Following Srivastava and Lowengrub (1970), the solutions of the above integral equations
(27) can be obtained as

1 —a2 \!112 A\ i
So(1?) = (c —az) (}1_12) =G —1)

tel, . (29

12 2\1/2 ) l
—Dl ,
(b’—tz> JU=1>)(-1)

At /2 A\ I2
T 90(1?) = D, ( 12 : z) (“ : ) :
t—a l—u?) /0 —a*)(u?~b%)

p. (" —a*\'? 1 *}
| + y UE 30
: 2(11’—19) Jr =) (1 —u?) ! (30)
where D, and D, arc constants which can 'bcAc;'z_xIculatcd’ﬂsTollows:
We substitute the value'of L,(v, w) from cqn (18), as well as the expansions of f{1?) and
g(1) obtained from eqns (26), (29) and (30) up to O(m?logm,) in eqn (15). When the
cocflicients of like powers of 7, from both sides of the resulting equation are equated, after

somec algebraic manipulation we get the following  © !

- and

: , ! v
; o p =M X o me | X=Xy @1

l TN T 4 (N X=X Xs) —412(T"|X4—X2X3)

]__ 1IN\ )
X, = ( L "2> [{(,.Hog—?'_l - 5>M+ N}(J, T+ 4 5 MU, log(b’—a‘)+MJ,]

(32)

4 i A i
;= {b + log% - %)M+ N}(J. —J)— 3 M log(bt =)+ MJ, . (33)
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| -a?

i m, mi 1 . .
X, = (C2 ——a’) H(y+1og—2—' -~ —2—)M+ N}(!, +3) 4 5 My log(1 = ¢3) ,\u,}

34
- _ ; |
X, ={(}’+log'%—§>M+N}(J‘—-Jz)+ EMJ" log(l — ¢?) — MJ,
o Cl_ll 172 ldl . lz_al 12 ld’ .
J, = L
| “(“”) Je=aye-m J (b‘—1’> JAO=5E =)
o pl(uz—cl)l!. .udu . -J'x<u-. a >”z wdu
AN J @ =a) =5 ‘4, =0 S =) (1 —-u?)
;- [Puost/ie =0+ / 112_—a2)< W _Cz)”z d | |
- u ;
Ul JEmayw-)  \i-d | _
i
s ”ulog(\/”I"b2+\/u2—a2)/u2—a2>”2du 4
Tl (=)l =c?)  \u?—b? L
7 Ja (P =a*)* - 1) 1—¢
J-=f“b““&“”+Jleﬁvﬂ_fy“m a9
! a ({_(2)(02_12) \bz_lz

4. STRESS INTENSITY FACTORS AND DISPLACEMENT

The normal stress 1,,(x,) on the plane y =0 can be found from the relations (10),
(13), (26), (29) and (30) as

T N 1—a*\'? cz_‘xz 172
e = () (22)
JE=a)B =)L \?—a 1—x

22,2 . - -
> —a) ]+O(mflogm,), xel,

P S=) (=)

o TR [D (l—a2 )"1 (x*=c?)
JE— -l \d-at) JF-a)( b

2

x*—a*\'? ‘ \
+D, <___) ]+O(nxf lognm,), xel,. (36)
xt—b?) : '

Defining the étrcss intensity factors at the edges of the strip‘s _by the relations

1, (x,0)/x—a|
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K, = }_M ' (37)
2(b? —a?) '

_ b D, 1=—a? \'12 et — p2\'12 Dz:' b2 — »
N {_<2a’ <cl—b’> —K../(lib)(ac) )}l G
RIS
C /2T =c?) bo \?—p?

(39

| { (I=ehD, %(1-(11)'/% }l (46)
lf—cl) Je=au—e \i-et)

" The vertical displacement v(x,y) on the plane y = 0 can be obtained from eqns (9), (13),
(26), (29) and (30) as -

o(x, 0) = it._[{(}v +logni, — %i)M+N}{ o lzi‘ZIZ)l/z(J. +73)

2 ll2

+Dy(Ji— Jz) + 5 &é/-]n)

D, +‘D2(Jl2—Jl0)}j| xel, 1), I (41)

where

*b 2 2 2 2\1/2
tlog|tt —x ct—t - - -
Jy = gl l ( > d¢ A

Ja S —a?) (B —1?)
. tlog|r* —x?| [1’—a’)”2
’ ‘IIO_

Jo JU=) @ —H\b* =1
)

.o ulog |u? — x?| (u’—c"’ uzd
1= T2 2_.2\1_2 u
Je ﬁl at)(u* —b%) u

1 ulogluw? —x?| (u?—a*\'?
J|z = gl l ( 2 g 2) du
Je J 2= =) \u*—b

1—¢2

5. NUMERICAL RESULTS AND DISCUSSION

The stress infcnsity factors (SIF) K,, K,, K. and K, at the edges of the strips and -~

vertical displacement |v(x, 0)/v;| near the rigid strips have been plotted against dimensionless
frequency n1, and distance x, respectively, for a Poisson solid (1% = 3).

it is found that whatever the lengths of the strips are, SIFs at the four edges of the
strips increase with an increase in the value of iy (0.1 € my < 0.6),

From the graphs, it may be further noted that with a decrease in the length of the inner .

~ strip, which might be induced cither by increasing “a” or by decreasing “b” the SIFs
gradually increase (Figs 2-9).

Also, a decrcase in the value of the length of the outer strip, which might be induced
by increasing the value of ¢, causes an increasc in the values of the SIFs (Figs {0-13),.from
which an interesting conclusion might be drawn: i.c. that the presence of the outer strip
suppresses the SIFs at both the edpes of the inner steip and the presence of the inner strip
suppresses the SIFs at both the edges of the outer strip.

-—



10

S. C. Mandal ¢t al.

Lo o

- N P SR " P
04 02 - 03 04 0'S 06
ml —_—

Fig. 2. Stress intensity factor K, vs dimensionless frequency m, for b = 0.6, c = 0.8 and for &'iicrent
- values of a.
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Fig. 3. Stress intensity factor K, vs dimensionless frequency m, for b = 0.6, ¢ = 0.8 and for different
values of a.
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?:’g. 4. Stress intensity fuctor K, vs dimensionless frequency m, for b = 0.6, ¢ = 0.8 and for different
values of a.
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Fig. 5. Stress intensity factor X, vs dimensionless frequency m, for & = 0.6, ¢ = 0.8 and for different
values of a. .
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Fig. 7. Stress intensity factor K, vs dimensionless frequency m, for a = 0.2, ¢ = 0.8 and for different

valuesofb. - B
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Fig. 8. Stress intensity factor K, vs-dimensionless frequency m, for a = 0.2, ¢ = 0.8 and for different

values of b.
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Fig. 9. Stress intensity factor X vs dimensionless frequency m, for a == 0.2, ¢ = 0.8 and for different

values of .
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Fig. 10. Slr:ess intensity factor X, vs dimensionless frequency 1, for a = 0.2, b = 0.4 and for different

values of ¢.
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Fig. 11. Stress intensity factor K, vs dimensionless frequency m fora = 0.2, b = 0.4 and or different
: . values of c.
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Fig. 12. Stress intensity factor K, vs dimersionless frequency m, fora = 0.2, 6 = 0.4 and for different
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Fig. 13. Stress intensity factor X, vs dimensionless frequeiicy m, fora = 0.2, b = 0.4 and for different
values of ¢.
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Fig. 14. Vertical displacement Iv(x. 0)/vq| vs dimensionless distance x for b = 0.6, ¢ = 0.8, a = 0.2,
0.4 and for m, = 0.1,0.2,0.3.
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Fig. 15. Vertical displacement |v(x, 0)/v,] vs dimensionless distance x for a = 0.2, c = 0.8, b = 0. 4
0.6 and for m, = 0.1, 0.2, 0.3.
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Fig. 16. Vertical displacement |v(x,0)vo| vs dimensionless distance x for a =0.2,b = 04, c = 0 6
0.8 and for m; =0.1,0.2,0.3.

The vertical displacement has been plotted for different strip lengths. It is found from
Figs 14-16 that with 4n increase in value of strip lengths, the displacement increases.
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