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‘SPECTRAL REPRESENTATION OF A CERTAIN CLASS OF SELF-ADJOINT DIFFERENTIAL
‘OPERATORS AND ITS APPLICATION TO AXISYMMETRIC BOUNDARY VALUE PROBLEMS
IN ELASTODYNAMICS

S.C. PAL, M.L. GHOSH and PPK. CHOWDHURI (DARJEELING)

1. Introduction

In this work an integral representation of the Dirac delta function required for solving
the axisymmetric boundary value problem has been derived first. This representation .
is particularly suitable for problems where mixed boundary conditions are encountered.
Following FRIEDMANN [1], by contour integration of a suitable Green’s function, integral
representation of d(R—R,) (R, Ry > 1) has been derived. This representation has been
used to solve a particular type of axisymmetric problem in elastodynamics.

The problem treated is that of a semi-infinite elastic body containing a circular cy-
lindrical cavity, whose axis is perpendicular to the plane surface. The semi-infinite me-
dium is subjected to an axisymmetric concentric torque applied dynamlcally as a step
function in time at the plane surface.

At first Lamp [4] investigated the classical normal loading problem of an elastic half-
space. As similar type of problem was investigated by EAson [5], MITrA [6], CHAKRA-~
BORTY and DE [7] and many others. They are all point source problems in a homogeneous
semi-infinite medium.

The propagatlon of elastic waves, due to applied boundary tractions, in seml-mﬁmte
media containing internal boundaries has as yet not been studied to any large extent.

An earlier and comprehensive survey of the field is given by ScorT and MIKLOwITZ [8].
Recently this type of work has been done by JoHNsON and PARNES [9].

We have solved the problem of the SH-type of elastic wave propagation in the semi-
infinite medium due to a ring source producing SH-waves in the presence of.a circular
cylindrical cavity (case I). The problem of SH-wave propagation in the presence of rigid
circular cylindrical inclusion in the semi-infinite medium due to the ring source -has also
been treated in the case 2.

2. Integral Representation of a Dirac Delta Function

Consider the operator L with 4 as a complex parameter, where

_d| d

whose domain, D, is the set of all twice-differentiable functions u(r), a < r < o such that

)+1r—-L
v

7 Journal of Techn. Physics 1/85
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. du
(i) ros U= 0 at r=a>0

(ii) the behaviour of v as r — oo is that of an outgoing wave.
The solutions of LG, = 0 which satisfy (i) are

2.2) G, = Ax[Jl(ﬁr) Yz(y'fa)—Yl(l/Ir)Jz(}/fa)], a<r<rg,
where A, is an arbitrary constant and J/, and Y, are the Bessel functions of the first and
second kind, respectively.

Again the function G, which will satisfy LG, = 0 and the condition (ii) can be writ-
ten as
(2.3) G, = A, H{V(YIr) (@a<ro<r< o),

where A, is an arbitrary constant and HS"> is the Hankel function of the first kind of
order n.

From Egs. (2.2) and (2.3) the Green’s function G satisfying the equation LG
= —&(r—rp) and the conditions (i) and (ii) mentioned above is given by (c.f. [1]).

24  Gr,ro3d) = — ;Zt”?ﬁ"’))p (Var) Yo(V 2a) = Yo (Y 2r) T, (Y ) H(ro —r) —

nH{! (V_r)
280 ) v I/Aro)Yz(‘/?.a) Y, }/Aro)Jz(‘/}.a)]H(, ro,
0 < argd < 2z.

Now consider
L
@.5) o } G(r, ro; A)rdA,

where the contour of integration in the A-plane is shown in Fig. 1. Since G has a branch
point at A = 0, we introduce a branch eut in the complex A-plane along the positive real
axis and then take the contour as a large circle of radius R?, having the centre at 4 = 0,
not crossing the branch cut.

ImA

7

- Fig. 1. Circular contour of integration ABA’ in the A-plane.
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In terms of Hankel functions Eq. (2.4) can be written as

eo  E|nwiyErw )ﬁ%ﬁ ~ B ) B/ | oo+

T g/ (/T H} (f_ﬂ)_ — (/T (/7 V _
+ 57 [Hl (V Aro) H{O(Y 2r) B, Ta) HO(Y ar) HO(Y Aro) | H(r—ro).
For large |z|, the asymptotic behaviour of H{"(z) and H{*(z) is [2]

o)~/ Lo~ -]
H¥(z) ~ ]/Eexp[ (z %ﬁ—%)]

Thus, for large values of [A], from the relations (2.7) we obtain

@.7)

. — 2/ 7, —

(2.8) H{(Y lro)H"’(W r)~ "1/ °"P[' Viro—r

- — 2 -
me(l/lf) HP(Y Arg) ~ ——— exp[i ;/].(r-—ro)].
T V}brro
If we put 4 = k2, then the circle in the A-plane becomes a semi-circular arc C of radius R,

in the upper half of the k-plane shown in Fig. 2.

ImK

E

]
0 2 Re K

FiG. 2. DED’ — the semi-circular path of integration C in the K-plane.

Consequently, for large values of R, the integral (2.5) can be written as

2.9 ]/ f lexp {ik(ro—r)YH(ro —r)+exp {ik(r—ro)} H(r — ro)ldk —

ﬂ- f ]/ T exp {ik(r+ro—2a) bk =
_ L ]/ f exp(iklr = dk -+ 5 ]/ 3 f exp {ik(r+ 7o — 20) }dk =

_ ]/r sinR,(r—ro) +_ r sin R, (r+ro—2a)
T o= ro r—ro x V re r+ro—2a

7+
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Our object is to show that the integral (2.5) represents — d(r—ry) when R; — 0. To justify
the statement, consider a testing function ¢(r), in D which is continuous, has a continuous
derivative of order two and vanishes outside a finite -interval. Then, from the relations
(2.5) and (2.9)

lim ¢(r)——} G(r, ro: Drdidr

Rx—’ao
= sinRy(r—ro)dr
—-'—Rl.]—rio—qu()]/ - (r— "o)o

SinR,(r+ro—2a)dr
+Rl;l—n~’1x l—f ¢( )V (r+ro_2a) = —4)("0)’

where we have used the result of Dirichlet integral and Riemann-Lebesgue Lemma [3].
Therefore

fG(r ro; Ardd = —0(r—rop).

Ry~ 27"

To obtain an alternative integral representation, which will be useful for our subsequent
application in physical problems, we consider the contour I" (Fig. 3) consisting of the real
axis from k = p to k = R,, where 0 < ¢ < R; a semi-circle C ti)f radius R, above the
real axis; the real axis again from — R to —g; and finally a semi-circle y of radlus o above
the real axis with the centre at the origin. We take ¢ small and Rll large.

ImK

Re K

FiG. 3. FDED'F'F — the path of integration I" in the K-plane.

The integrand 2G(r, ro, k*) kr has no singularity inside the contour I', and so the
value of the integral

(2.10) f G(r, ro; k) 2krdk = 0,

2m

. 1 s _ 1 L,
ie. Ef G(r,ro; k*)2krdk = _Z_ﬂTf G(r, ro; u?)2urdu+
- [+

1 L ;
+2_7llf G'(r,_ ro; eZn_luz)Zrudu——Ez—af G(r, ro; 9262 °)2r92e2‘°a'0.
0 .
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The behaviour of Y,(z) for small values of |z| is-described by the formula [2]

Y.(2) ~ L2 I'(n)

n - :
and J,(z) is bounded for small values of |z| when » is a positive integer. Usmg these re-
sults we conclude :

[G(r, ro; @%e**)e]
is bounded for small values of o. Hence

Iim—;—fG(r, ro; 0%€*"%)e?%%rdf = 0.

¢—0

Letting o — 0 and R, — 0 in (2 10), we get

211 o(r—ro) = — lim —— G(r ro,k2)2krdk =

Ry—00
«©
= -il;l—f [G(r, r'os kz)—G(r, o} k2€2i")]2krdk,
. 0,

From Eq. (2.4) .
G(r, ro; k¥)—G(r, ro; k?e?™) =

_ [J,(kro)wn(kro) Ty (kro)—iYy(kro)
T 2 Lka)+iYa(ka) | Jo(ka)+iYi(ka)

!

] VD Ya(ka)— Yy (k) Ty (ka)] x

Lok +iY(kr)  Ty(kr)=i¥y (k)
x H(ro—n)= [J,(ka)+tY2(ka) Jz(ka)—tY:(ka)

X[Jx(k"o)yz(ka) Yx(k’o)fz(ka)lH(" "o)_ '

[J L(k0) Y, (ka) — Yy (k1) o (ka)] I, (kro) Yy (ka) ~ Yi(kro)J, (ka)]
Ji(ka)+ Y2 (ka)
Substituting this expression in Eq. (2.11), we get _ /

_ g [J1(kro) Y, (ka)—~ Yl(k’o)Jz(ka)] [J1(kr) Y, (ka)— Yl(kr)Jz(ka)]
8r—ro) = OJ T2 (ka)+ Y2 (ka) rkdk.

’

Substituting r/a = R, ro/a = R, and ka = p, Eq. (2.12) can be written as

@19 sk = | V2R Ya)— nR) [;g)x) 1) LRI g g,

Since 8(R—R,) is symmetric with respect to R and R,, then, -on the r?ght hand side of .
Eq. (2.13), R and R, can be interchanged. So we write

Q2.14)

_ p [OR 0~ Y OR) LGOI OB L0~ VORI
HR—Ro) = £, [ ZELTe )G
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3. Formulation and General Solution

Case 1. We shall now use the integral representation of the delta function given by Eq.
(2.13) to derive the time dependent response of an isotropic linearly elastic half-space
containing a cylindrical cavity of radius a due to a ring source. The axis of the cylinder
considered as the z-axis, which is perpendicular to the plane surface, is directed downwards
(Fig. 4). A torque is applied on the free surface of the half-space over the rim of a concen-
tric circle of radius r = ro(ry > a) fort = 0.

=/

S

z

FI1G. 4. Geometry of the problem.

Therefore on the cavity surface r = a

allg Ug
3.1 =yl =) =
G.h Tro /‘( ar r ) 0
and on the plane surface z = 0
(3.2) To; =t aal:’ = §(r—rg)H() (a@a<r < o,r,> a),

where u is Lame’s constant, & is the Dirac delta function and H is the unit step function.
Now the only non-zero equation of motion is '

(33) 8%u, +i duy  0%ug _Hp _ 3%u,

1
or? r or + az2  rr Bt oz
where 8 = /o is the shear wave velocity.

Changing the independent variables (r, z, t) to the no-dimensional variables (R, Z, 1)
defined by ‘

’

(3.4) R=. zZ =", r=’3—a’, Ry =2

aj~
o

the above equation reduces to

d%u 1 du 3%u u o2u
3.5 0, __ CF0 o0 78
@-5) R YRR Tz TR T 02

and boundary conditions become

(3.6) | 7, =L (i“l_i) =0 on R=1

T a\6R R

e e g sy

v N g o e
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9uiq %6(R RO)H(t) on Z=0.

oz

To: =

SRS

Now, taking the Laplace transform with resipect to nondimensional time (r) and "

aua(Rj_Z’O) = 0 at 1 =20

assuming the homogeneous initial conditions (R, Z, 0) = e
Eq. (3.5) takes the form
g 1 U Puy Uy,

-8 R TReR Iz R T
where '

o}
(3.9) iy = [ e dr.

]

Take solution of Eq. (3.8) in the form
[ 3

(.10) (R, Z,5) = [ [A)IhGR+B0) Y (R]e™" % dy,

0

where y is real, J, and Y, are Bessel functions of the first and second kind respectively.
Using the boundary condition (3.6), we obtain

(3.11)

Ja2(p)

Bi(y) = —Ai(y) Y. ()

Substltutmg the value of B,(y) an in Eq. (3.10), we have

(3.12)

where

(3.13)

(3.14)

=)

W(R, Z,5) = [ AW LR Y2(0)=L0) Yi(pR)e™V ¥ 2 ay,
0

As ()
A(y) = 37
=3 o)
Therefore the transformed stress component reduces to
3 Vi,
- —_—— —_ 2+ lz
e =g f ARV P+ CpRe T dy,
0

where
(3.15)

C:(yR) = J,(») Y, (YR —-Y,(»)J1(¥R).

New, using the representation (3.15), Eq. (2.14) becomes

(3.16)

S(R—Ro) = R

f yCaR)Co(¥Ro)
° Jip+Yi(y)

Using Egs. (3.7), (3.14) and (3.16), the value of A(y) is obtained as

(3.17)

Ro yCa(YRo)
w5 (=) () + Y}

A@y) =
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Therefore &, becomes

Ro f ~_YC(yR) C,(yRo) e-,/;,?;?sz
B V@RS (T + Yik)} :
On the plane boundary Z = 0

(3.18) (R, Z,s) = —

@

ﬁ)_ yC, (VR) C, (‘}’Ro)
us Y@+ I+

Now, introducing the change of the variable ¥ = s{ into the above expression (3.19),
we obtain :

(3.19) (R, 0,5) = —

Ro f £C(sLR) Ca(stRo)

(3.20) (R, 0,5) = ~ w ) VT oD 60
Next, using |

(321 J.(sCR) = Hﬁ"(stR);Hf)(scR)

and

G.21) Y,(stR) — Hﬁ"(sCR)Z—iH.ﬁ”(scR) ,

we obtain

(322)  Cy(stR) = J5(st) Y, (sCR) — Y, (sE)J; (sCR) =
= 7 HEOGER HE(s2) ~ HEP(LR) BEO(E)]
and

@.22) Ca(5LRo) = 57 [H{D(sLRo) HE(s8) = HE(sE Re) HED(SL)}.
Also |
(3.22") J3(s0)+ Y3(s8) = HiV(s8) HE*(s0).

Therefore, Eq. (3.20) becomes

(323) i'la(R, o, S) = ——41'{70 f ]/—(_Z__f_m F(R, Ro, Sc)dc,
(1]

where
(3.29) (R, Rg, ) = Fi(R, Ry, s{)+ F3(R, Ry, 5{) = Fi(Ro, R, s§)+F2(Ry, R, 50) =
= F(RO) R’ st)

and

' (1)
(3.24") Fi(a, B, s2) = Hf2>(SCﬁ){Hil)(sCoc)—H{z’(sca)'-z__;hgg ,
(3.247) Fa(a, f.s0) = Hi“(sw){ﬂ ((sta) - H{ (st a) —ﬁiiE‘B }
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Using the asymptotic values of the Hankel functions for a large argument, it can be shown
that

¢ 2
—F (R , SC) — o [ —lsC(Ro—R)+e—lst(R+R,,—2)
& V(E+1) ' ¢ 7sC Y RR, ]
vV @+
quadrant of the complex ¢-plane for R < R,.
Also

(3.25)

as |s{| = oo, showing that

vanishes over a large circular arc in the fourth

(325’) CFZ(I_Q_,ﬁ“_SC) - 2____ [eisC(Rq—R)+elsC(R+Rg—2)]
V(3 +1) st YRR,

CFZ(R, RO: SC)

VEC+1)
the complex {-plane for R < R,. Therefore for R > R,,

LFy(Ro, R, st) " LFi(Ro, R, st)
G V@& +1D)

wanish over large circular arcs in the first and fourth quadrants, respectively ,of the complex
{-plane. .

Denoting the responses for field points 1n51de (R < Ry) and outside (R > Ro) the
source by the subscripts I and 0 respectively, we ha\fe for points inside the source (R < Ry)

showing that vanishes over a large circular arc in the first quadrant of

[+ +]

(326 @(R.0.5) = — 2 f L [F(R, Ro, SO+ FL(R, Ro, sl
1/ G
and points outside the source (R > Ro)

oo

O TnlR,0.9) = =gk [ s IFsRou R s+ il R, SO,

In order to evaluate

@

_Ry f ¢

3.27 T Fy(R, Ry, sO)dt,

which is the first part of 75 (R, 0, 5) we note first that the integrand has branch points
at { = +i and also has a branch point at the origin of coordinates due to the presence
of Hankel functions in the integrand. The integrand has also poles which correspond
to the zeros of H§"(s{). From Eq. (3.18) we note that in order that #(R, Z, s) may be .
finite for large positive values of Z,(¢%+1)'/? should have a positive real part on the path
of integration. Accordingly, we draw cuts parallel to the real axis from +i to —oo+i
and from —i to o —/ to satisfy our requirement. A cut along the negative real axis from
the origin is also drawn to make Hankel functions single valued .

Ry

2o S F)(R, R,
@y e

8 Journal of Techn. Physics 1/85
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~is now integréted along the quadrant of a large circle lying in the first quadrant of the
complex {-plane as shown in Fig. 5a. Since poles of the integrand are outside the path
of integration, the integral (3.27) becomes

' @

(3.28) F3(R, Ry, i F;(R, R,, is'v)dv]-

Ro " /] F v
E[J V{(1-93) 'w)dv+|f iy@2-1)

a) b)
N iz’ 1. )
, Eurand "
. o o
o o4
° ~i (1-v21¥2 J
-i{02%-1)12

x« Branch point
= Branch cut
© Poles v

FiG. 5. Integration paths in the complex {-plane.
Using the relations

HP() = -2 K@),

H() = =K, @)+ 2i0,00),

(3.29) 2
H{V(iv) = = K;(9),
(1
. 2i
H{P(iv) = ‘-212(‘0)—7 K,(v),
we have '
. N
(3.30) Fy(R, Ry, isv) = —%’- Kl(wRo){Il(mR)+K1(szj KZ(:U))}
Therefore, the expression (3.28) becomes
(3.31) _ﬁf————K (s9Rg) V1 (svR) + K (svR) T3(s0) }dv—
. }/(1 ._.1)2 1 O 1 1 Kz(S’D)

K, (svRo) {I,(s'vR)—i_-K,(sz) ;{2(( ))= v.

f V(v’—l)

The second part of u,(R, 0, s) is equal to

Ro [ ¢
(3.32) —_—— e Fl(R, R SC)dC
%!VWH) o
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we draw cuts from +i to c0+i and from —ito — oo ~i as shown in Fig.»(5b). A cut from
the origin along the negative real axis is also drawn to make Hankel functions single valued.

Taking a quadrant of a large circular contour in the fourth quadrant (Fig. (§b)) and
noting that the poles of F; (R, Ros{) lie outside the contour, the lntegral (3 32) takes
the form

_A —_— R -1 .
(339 52 [[W Fi(R, Ro, ~isv)do~ ,f i R Ko, :w)efv]
Using the relations

HO(~it) = = K@) ~2i8(0),

HP (i) = 2 K, (9),
(3.34) - oy
H{(—io) = —2L(0)+— K;(©),

. 2 b
HP (—io) = +— Ky(0),

the expression (3.35) becomes

(3.35) 'R° f ‘/TZ—K,(wRO) {Il(wR)+Kl(sz) Ilgz(("’sz)}dv—

R 0 Iz(s'v)
R f =T 5 Ki(6oRo) {I;(MRWQ(“’R) Ky(sv )}d"

Adding the relations (3.31) and (3.35), we obtain

= Ki(soRD) R+ K, ooR) ,’;fg;))}dv-

(3.36) us(R, 0,5) = — 2R° f J

(v2

Similarly, it can be shown that

I,(sv)
( 2_ K,(sv )}dv.

Laplace inversion of the relations (3.36) is now taken to obtain the displacement of
points inside the source. -

Kx(WR) {Ix(WRo)'f'Kx( Ro)o—~—+

(3.36) Ho(R, 0, 5) = — 2R° f e
LY

Therefore

R 2R° v g
(3.37) llg](R o, T) i f f l/(vz_’) E(W) v,
where

(3.38) E(sv) = K,(s0Ry) {I,(wR)+K1( R) K((“’))}

8*
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Introducing the change of variable p = sv, and changing the order of integration -

2R; 3 1 1 f ~ ]
. 0, = — - (x/v)p =
(3.39) un(R, 0, 7) 3[ , /(_v__z =5 dv[ o J e E(p)dp

o]

_ 2Ro f V(: E(z[v)do,

where E(v/v) = £~ {E(p)}. |

We note that E(p) possesses no poles and is analytic for p > 0. It has a branch point
at the origin and therefore a cut is drawn from the origin along the negative real axis
of the complex p-plane in order to make E(p) single valued.

Drawing a large semi-circular contour to the right of the Bromwich path AB in the
complex p-plane, we conclude that E(z/v) = 0.if the integral )

1 -

— (x/v) =

i fE(p)e Pdp =0
G4

over the semi-circular arc BC'A4 (Fig. 6).

FI1G. 6. Laplace inversion contour.

Now

(3.40) E(p) = — __1_ f E(p)et?dp =

= f Ky(pRo)[(PR) e“/""’dp——— f Kl(pm,) Ky(pR) 2((,,)) e dp.

" ncia BC'A
Since
e(r/”)“pr (pRo) Il (pR) ~ -——1—___-: e[%-(RO—R)] b
2p l/ RR,

and

e“"PK,(pRo) Iy (pR) Lo : e[i_(kmo_z)] " as  |plo oo

"Kx(p)  2p YRR,

then the first integral on the right hand side of Eq. (3.40) vanishes for 0 < t/v < (Ro—R),
whereas the second integral vanishes for 0 < /v < (R+Ry—2).

AR
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Therefore
0, for 0'< 7/v < (Ry—R),
(3.4 E(z[v) = [E"(r/v), for “(Ro—R) < tfv < (R+Ro—2),
ER(zjv), for (R+Ry-2) < 7/v.
Where - '
EP(t)v) = Z7'[K,(pRo)I;(R)],
(3.42) 1(p)

Ef(zfv) = £~ ‘[Kx(PRo)lx(pR)+K1(PRo)K1(pR) L)

For value of /v lying in the range (R—Ry) < 7/v < (R+Ro—2)
(3.43) E(rjv) = EP(zfv) = —2;—1 f K, (pRo) I, (pR)e™1?%dp .,
. Br
Therefore, putting vfv = (Ry—R+y), where y > 0
EP(Ry~R+3) = o= [ [Ku(pR)™I 1, (pR)e~"1e>%d)p.
Br

From the Laplace inversion table [12], we find that

H(y)(»+Ro)

L~ [Ki(pRo)ePRe] = Re /(7 +2Ry) P12’

and

[HOG)~HY~2R](R~y) -

L7 L (pRYe™ ") = % ER=)HYZ

So by the convolution theorem

[ L)~ H 2RI HO=D R=1)G=1+R)

(344)  EP(Ro—R+)) = ARRyMQR-1) —n) — 1+ 2R )7

For t/v lying in the range (R—Ry) < 1/v < (R+Ro 2) 7/v must be less than (R+Ry),
i.e.y < 2R
Therefore we can write

(R~} (p=n+Ro)dn
nRRo[W(ZR"’?)()’—71)(J’-'7I+ZR0)”2 '
So . f
(345) —:-;——(Rg-R)

(R—n) (zfo+ R=n)dn
E(zfo) = E°(zfv) = f 7RRo[NCR—17)(t/o—Ro+ R—7) (10 + Ro+ R—m)J'*

¥
© EP(Ry~R+) = |
0

For values of 7/v satisfying the condition t/v > R+ Rp—2,

(3460 Ejo) = E'Gfo) = 5 | {KI(PRO)Ix(PR)+K1(PR0)K1(PR) é’%}e‘*""dp.

Br
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This integral is equal to the integral along the large semi-circular arc on the left side of -
the Bromwich path 4B plus the integral on the two sides of the branch cut (Fig. 6). Since
the integral-on the large semi-circular arc vanishes, then Eq. (3.46) becomes

(3.47) E(zjv) = _2.17; l __.f E(neln)'e—'(r/v)ndn +_f E(né—(n) e—lom dn] .
0 0

Using the relations

I(ne*") = e*"""L(n),
and . ’ '
i K, (713*'") = e;i"’Kv(’])i'iﬂI-(ﬂ),

we obtain (for r/v-> R+ Ry—2)

(R MU R, e ()
K3 +n2I3(n) ’

(3.48) B(zfe) = EN/o) = — f U

where

Ua(x, 77) K,(m 1 (x, 71)+Iz(77)K1(x 7).
Substituting these values of E(r/v) in Eq. (3.39), we obtain -
(3.49) ) _t

- Roe—~R
wa(R,0,7) = —i’i’[{ﬁ(z*"’ﬂ’)-y(:-i’z_zﬁ)}f S E ) do+
' : 1

T
R+Ro 2

f 1/_Eb(r/w)dw J N ER(t/v)dz/”

-R+Ro 2 - -

1

2 __

+H(t r+r0—2a)

where the values of E?(t/v) and EX(z/v) are given in Egs. (3.45) and (3. 48), respectively.
Similarly, taking the inversgem Laplace transform of Eq. (3.36), the displacement
ugo(R, 0, 7) on the free surface outside the ring sourcé can be derived and it is found that

(3.49") : e
Uso(R, 0, 7) = —2:7: “H (t— ’73’°)—_H(t- ’+’°"2")} J V( — FD(r/'v)d'v+

T T

tro-2a\f i3 1
+H(r—i- o~ "){ e FP(1j0)do+ ' -—————~~F" d }
; f ey P if, S e
R+Roy—-2 |

where FR(z[) = E®(z/o), and.

-2 —(R-Ra)
v

o (Ro—n) (z/v+ Ro —m)dy
(330 P = (f ARR, {n(2Ro—7 (zJo— R+ Ro— Do+ R Ro=m]™ °
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First, the integrals of Egs. (3.49) are the displacements due to a direct wave from the
ring source before the arrival of the waves reflected fromthe wall of the cylindrical cavity.
-The last two integrals together give the displacement after the arrival of the reflected wave.

In order to obtain the response in the vicinity of the SH-wave front, we consider the
displacement profile immediately behind the direct outgoing SH-wave. Accordingly,
we shall have to study the first integral of Eq. (3.49") because it gives the fesponse of
the direct SH-wave before the arrival of the reflected wave front. '

Let R, = Ry+vand Ry = R,-—¢eR, where R, and R~ denote points at and immediately
behind the SH-wave front, respectlvely,ils a small positive quantity.

Then

(3.51) Ty T 1
and

p T &R
(3.51) TR (1 + °) = q(7).

Substituting these values in the first intégral of Eq. 3.49¥, we obtain
tao(R,, 0, 7) = 0, '

and
q(r)
_ 2R 1 1
u Rs—y 0, ) = D R ’
90( T J ]/('v—l) {I;/v+l (& o T/‘v)}
Therefore, we can write
q(r) -
: (3.52) uao(R;, 0, T) = -—ng -"‘/';1— V(‘U)d?}

where V() is an analytic portion of the integrand. For small values of ¢ expahding V(v)

by the Taylor’s series about the point » = 1 and integrating term by term, we obtain
4R 12 '

(3.53) ugo(R:,0,7) =~ T V(l)( ) g2 = A4¢? (say),

- where A is a constant. -

It therefore follows that the displacement component is continuous i.e. there is no
jump in displacement across the direct SH-wave front.

Next, in order to consider the behaviour-of response just under the ring source, it
should be remembered that the integral representations of transformed displacements
given by Egs. (3.36) were derived from Eqs. (3.26) assuming that R # R,. For R = R,
the integrals along large quarter circles in the first and fourth quadrants should be reexam-
ined. In this case it is found that though the contributions from the integrals along large
circular arcs in the first and fourth quadrants are not separately zero, but the combined
sum of the integrals along the large arcs in the first and fourth quadrants of the {-plane
(Fig. & and Bb) vanishes. So the transformed displacements for R = R, are also given
by Egs. (3.36). Making R — Ro +, it can easily by shown by help of Egs. (3.36) that the
displacement has no jump discontinuity accross the ring source.
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Therefore, in order to derive the naturé of the displacement as R —+ R,, any one
of the relations (3.49) may be studied, Consider, for example, the displacement at field
points outside the source given by (3.49"). As R—R,, the upper limit of lntegratlon

T/(R—Rp) = o,
Further, as
| v i 0
- R—Ro ’
(3.54) 1 . l
@*-1 v
and '
1
‘D
(3.54) FP(zfv) - IR,

Thus, from Eq. (3.49")

(3.55) lr{lir}: ugo(R, 0, 7) =’.— f % dv+a finite quantity,
where N is large.

The integral is found to contribute a logarithmic singularity to the displacement
just on the ring source.

Case 2.’ In this case the problem considered is the same in all respects with the first,
except that the cavity of the radius a has been replaced by a rigid-cylindrical inclusion of
the same radius. The cylindrical inclusion-being in welded contact with the elastic half-
space, there is no relative displacement at the interface. In this case, the condition on
the cylindrical boundaryisuy = Oonr = a.

In order to solve this problem, we take the solution in this form:

(3:56) (R, Z,5) = f [4:0) T, (yR)+ B,(») Y, wR)le V% gy,

where #,(R, Z, s) is the Laplace transform of ua(R Z, t) with respect to t. Now, using
the boundary condition

‘ 9 =0 on R=1,
we have ;
(3.57) B,) = —A4:() ;1’((;')) o

so i, becomes ‘ i

> I
(3.58) W(R, Z,5) = [ AW V@R LG~ LG Y, (R)e™V "+ Zay,
0

where

A:(y) ¢

A0 = Y,(»)°
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Therefore, the transformed stress component on the free surface Z = 0 is

@.59) R, 0,5) = — L [ 416) Y75 CloRY,
0

where

(360 COR) = KGR Y)Y,

T5:(R, 0, s) should be equal to —1-— 8 (R—Ry). In'this case, the required integral represen-

tation of the delta function can be obtained frorm the following expansion formula given
by Titchmarsh [11]: . |

(3.61) |

) = f B G- SANE &t [ gro Vo ViGa-HCa VGO,
b 1% ! a , '

where f(r) is a suitably restricted arbitrary function.

Putting
S(r) = 8(r—ro),
(&) = 8(§—ry), where ro>a>0,
we get _ ' .
(3.62) 3 Yy (2a)—J,(2a) Y (D) I, (Cro) Ya(2a)— T, (8a) Yk
8(r—ro) = ro f L (En Y1 (La) 1(CG)J 21((53]-5 ;(C(?a)) 1({a)—J1({a) ,1(C.fo)] dt.

0

Now putting, % = R, -%°— = Ro, {a = y, we have

f YL (yR) Y, (»)—J1(») Y1 (¥ R)} [T, (¥Ro) Yx - =J, 1 (}’) Yi(yRo)l~. dy, .

38(R—Ry) = R Ji+Yiy)

so by the relation (3.60)

r ny(yR) Ci(yRo)
Jim+Yik)

This result can also be obtained by the following technique already developed in Sect. 2
of this paper. .
Now, we find the value of A*(y) as -

& yC1(¥Ro) ) ) i
us Vyi+s® JiM+Yie)

(3.63) " 8(R—Ro) = R

(3.64) AG) =

Therefore u, becomes

f yCi(yR)Cy (YRo)
#s YR+ )+ YI0)

(3.65) (R, 0, s) =
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Carrying on a similar procedure as followed to. obtain the displacement in the case 1, we
find that in this case

{3.66) : | o : : ’_R _
_ 2R, ro—r r+ro—2a o ‘
UOI(R, 0, T) = e [{H (t— ﬂ )—H(f T)} f l/v = E ('L’/'U)dﬂr!-
. 5 'Ror—‘R ' R+Ro-2 1
r+ro—2a :
| + H(r 3 ) { ) (tjv)dv+ . _f ;/vz = __E(r/v)dv}]
: R¥Ro=2 '
:and
»(3 67) , - v : }e_:i;-- I iy
': . I —H( _r+r0-f a)
Uy (R o, 'r) pre= [{H(r ; ) t — } lr ——m}/vzfl
, a7 1 RerT B -
. r+ro—2a i b .
: +H(t— B ){ [ 1/712—TF (r/v)dvﬂ— , if Vo*—1 . }]’
R+Ro-2 :

where E”(r/v) and FP(z/v) are (respectlvely) given by Egs. (3. 45) and (3. 50) and

(G.68)  ER(zjo) = FR(xfo) = — f El‘(RIQ?ZnI)j:r(zg}?()ne).

‘where

{3.69) . _ Ui(x, ) = Ky Ii(xn) =1, () K (xn).
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Streszczenie

SPEKTRALNA REPREZENTACJA PEWNEJ KLASY SAMOSPRZEZONYCH OPERATOROW
ROZNICZKOWYCH 1 JEJ ZASTOSOWANIE DO OSIOWO-SYMETRYCZNYCH ZAGADNIEN
BRZEGOWYCH W ELASTODYNAMICE

Praca jest probg znalezienia zamknigtej postaci osiowo-symetrycznej dynamicznej funkcji Greena
typu SH dla izotropowej jednorodne;j liniowej polprzestrzeni sprezystej, zawierajacej cylindryczny otwor
kolowy prostopadly do brzegu pélprzestrzeni. Rozwazono dwa przypadki: pierwszy odpowiada swobod-
nemu od obciazen.brzegowi cylindrycznemu oraz nagle przylozonemu osiowo-symetrycznemu obcigzeniu
stycznemu, ktére jest skupione na konturze pewnego kola w plaszczyinie brzegu-pélprzmtl‘zeni; drugi
odpowiada utwierdzonemu brzegowi otworu oraz obcigzeniu takiemu jak w przypadku pierwszym. Sto-
sujac pewna calkowa reprezentacje¢ celowo-symetrycznego obcigzenia dla rozwazanego ciala oraz technike
transformacji Laplace’a, podano zamknigta posta¢ funkcji Greena tylko na brzegu poOlprzestrzéni. Prze-
prowadzono tez analize jakosciows tej postaci w otoczeniu pewnego kolowego frontu falowego.

Pesiome

CIHIEKTPAJIBHOE IIPEACTABJIEHHME HEKOTOPOT'O KJIACCA " CAMOCOITPSKEHHBIX
JHDOEPEHUHNAIBHBIX OIIEPATOPOB KM ET'O ITIPKMEHEHHUE K OCECUMMETPUYHBIM
KPAEBBIM 3AJAUAM B DJIACTOOVNHAMMKE

PaboTa ABAACTCA MNONBLITKONR HAXOMKICHUA SAMKHYTOTO BHAA OCECHMMETDHUHOH IMHAMHYECKON
¢yuxwint Ipina Tuna SH ana n3oTponHoBoro 0gHOPOAHOrO JIMHEHHOrO YIPYroro MNOJIYyIPOCTPRHCTBA,
CORepIKaBLIero UMIHHAPHYECKOE KPYrOBOE OTBEPCTHE NEPIIEANKYIAPHOE K FPaHHKBI IIOJYIIPOCTPAHCTBA,
PaccMoTpeHbl OBa Cilydad: MepBblif oTBeuaeT CBOGOMHOMY OT HAarpy3oK Kpalo IMJIHHAPHUECKOTO OT-
BEPCTBHS H BHE3AITHO NMPHJIOMKKEHHOH OCCCHMMETDUUHOH KacaTesbHOH Harpyske, KOTOpas COCpefoTOde-
_Ha Ha KOHTYPE HEKOTOPOIO KPYyTa B IVIOCKOCTH I'PaHHIIbI nonynpéc'rpaﬂcma, BTOpOii OTBEYAET 3aKpeIUIeH~-'
HOMY Kpalo OTBEPCTHA H Harpy3Ke Taxoi KaK B IIEPBOM ciayuae. .

[TpuMeHas HEKOTOpOE HHTErpaJibHOE MpPElCTaBJICHHE OCECHMMETPHUHOIN HArpY3KH [UIA PaccMaTpH-
BaeMOIo TeJia i TeXHHKY NpeobpasoBanua Jlannaca, npuBeReH 3aMKRyThIl BHA Gysxumy Iprua Toasko
Ha rpaHHIle NOAYTIpOoCTpaHCTBa. [IpoBesiel To)Ke KadYeCTBEHHLIN aHAJIH3 3TOrO BHJAZ B OKPECTHOCTH He-
KOTOPOro KpYyTOBOr0 BOJIHOBOTO (DPOHTA. ’
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WAVES IN A SEMI-INFINITE ELASTIC MEDiUM DUE TO AN
EXPANDING ELLIPTIC RING SOURCE ON THE FREE SURFACE.

S. C. PAL AND M. L. GHOSH

Department of Matiiematics, North Bengal University, Dist. Darjeeling
West Bengal 734430 '

(Received 12 May 1986)

An elliptic ring load emanaling from the origin of co-ordinates atf = 0is
assumed to expand on the free-surface of an elastic half-space. The rates
of increase of the major and minor axes of the ellipse are assumed to be
equal to a and b respectively. The displacement at points on the free-surface
has been derived in integral form by Cagniard-de Hoop technique. Displace-
ment jumps across different wave fronts have also been derived.

1. INTRODUCTION

Since Lamb’s original study of the elastic wave produced by a time-dependent
point force acting normally to the surface of an elastic half-space, many authors have
elaborated on his work. Aggarwal and Ablow! discussed the exact solution of a class
of half-space pulse propagation problems generated by impulsive sources. Gakenheimer
and Miklowitz¢ used a modification of Cagniard’s method? to discuss the disturbance
created by a moving point load. In case of finite sources, the most widely discussed
model is that of a circular ring or disc load. Mitra?, Tupholme'! and Roy® have studied
‘the various aspects of the same problem. Elastic waves due to uniformly expanding
disc or ring loads on the free surface of a semi-infinite medium have been studied ex-
tensively by Gakenheimer®. .The axisymmetric problem of the determination of the
displacement due to a stress discoﬁtinuity over a uniformly expanding circular region
at a certain depth below the free surface has been studied by Ghosh®.

However exact evaluation of the displacement field for finite source other than the
circular model does not scem to have been attempted much in the literature. Burridge
and Willis* obtained a solution for radiation from a g;rowing elliptical crack in an
anisotropic medium. The problem of an elliptical shear crack growing in prestressed
medium has been solved by Richards® by the Cagniard-c‘ie Hoop Method. Roy'° also
attempted the same technique to solve the problem of elastic wave propagation due to
prescribed normal stress over an elliptic area on the free surface of an elastic half-
space.

In our problem, we have consider¢d the propagation of elastic waves due to an -
expanding elliptical ring load over the free surface of a semi-infinite medium. The
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expression for displacement at poiats on the free surface has been derived in integral
from by the application of Cagniard-de Hoop technique for dxﬁ'ercnt values of the rate
of increase of the major and minor axes of the elliptic ring sourcc The displacement
jumps across the different wave fronts have also been derived. |

2. FORMULATION OF THE PROBLEM AND iTS SOLPTION
" Let an elliptic ring load P acting normal to the surface of an elastic half-space
emanating from the origin of co-ordinates expand in such a way that the rates of in-
crease of the major and minor axes of the ellipse are @ and b respectively, @ and b
being constants. Major and minor axes of the ellipse are taken to coincide with the
x and y-axes of co-ordinates where as z-axis is taken vertically downwards into the
medium (Flg 1).

: X
Y
z r
' Fig. L. Geometfy of the Problem.
Thus we:haveonz = 0
’ = PSt_(x- a4+ y* b9
Tz = (X' + y'b z)|/2 "_(1)

Txr = Ty = 0
where P is constant and & is the Dirac delta function.

Thé.displacement field inside the elastic medium: (z>0)is gfven interms of
potentials ¢ and ¢ as

u= yé+vxvyxe)
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where

| i P

Ca are Vew = . a-—_g "‘(2).
d C‘

V=

€x, €y, e are unit vectors along co-ordinate axes and cs and ¢, are the p — and s-wave
velocities of the medium.

In order to obtain solutions of wave equations (2), we introduce Laplace "trans-
form with respect to r and denote it'by bar and also introduce bilateral Fourier trans-
form with respect to x and y to supress the time parameter ¢ and the x, p space
co-ordinates. Taking Laplace transform with respect to ¢ (—) and also bilateral Fourier
transform with respect to x and y (=2),- the transformed boundary conditions are

o~ - o~ ~

= Pab = '
T T T (a® B2 + b2 m2 4 g2 Tar =Ty = 0. -3

_ Then satisfying the transfbrmed boundary conditions (3) and performing the inverse
Fourier _transform, the Laplace transformed displacement field can be written as

a! (x) Y, 2, S) = ﬁ]d (x) » 2z, S) + ﬂjs (x, Y, 2, S) ---(4)
forj =x,»,2
where ’
w0 oo . )
Hjay (X, 9,2, 8) = 1[2up 0{; OLFJM (&, , 5) exp [Cull' + i (§x + ny)) dE dy
...(5)
for «1 = d, S
and
F"d(E)";s):—iECDG: Fxs(Eyn!S)=2iECdCSG’ “I
Fya (€ n,8) = —in8% G, Fyu(E, n,s) =2iq%%G, ;
Fia (§,0,5) =8a8 G, Foy (E.m,8) = — 28 + )) L G, !
Pab 9 - o l
G= m i T =0 —48C (B + n°
(* )T % & @ ) L e
r?=a* 8 + b7, }
[
o = (B + wt+ky WP Qo= (€ 4+ 0P + K ), {
! f
Go= K+ 2(8 4 ) ka= ok = |

Now the De-Hoop transformation, !

§E =slca (g cos & — wsin @), % = sfea (g sir} 6 + wcos f) )]
l
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where § = tan~! y/x.

is applied into (5). The Laplace transformed displacement field (5) can be wﬁtten as

’ oo 0
e (R, Z,5) = l[2nu6[°_£°Fj.1 (4, w, s) exp [— slca (ma Z — iqR)]

st » o
X dg dw - ---(8)
c; ' '

where

’ . iPab(qcos§— wsin ) my
Fxa (9., fv) - s slca(Ey + OVF N

oy 28 Pab (g cos 8 — wsin 6) na m,
Fru g, w, ) = s.slca(B1 + O N, °

i Pab(qsin 6 + wcos 8) m
Fya (g, w, 8) = — 5. slca (E, + 0)bz, N

: .y __ _2i Pab(qsin § + wcos §) mam,
Fos (g%, 5) =5 5. slea (B, + O . N.

o Pab mam, .
Fra (@w8) = 0 B+ 0) 7 N

L _ 2 Pab (q* + w®) ma i
Fis(gyw8) = - slca (Ev + 0)* N, :
i

ma= (g2 + w D' my = (g* + W

me = I* + 2(q* + w?), N= m — d4mam,(q*|+ w?),
' A 2 2
E=(0+¢D+wF), D= -%cos?o+ sin® 6,
c; c;
2 2
F = sin® § + cos® 8, 0 = — 2gw sin § cos § (a*—b)/c;
a <
I = cale, and R* = x* + y*. . - «.{9)

For mathematical simplicity we confine our attention to the derivation of the
displacement field at any point on the xz-plane. Obviously the displacement at any point
on any plane through the z-axis can then easily be visualized. Accordingly in order to
obtain the displacement at any point on the xz-plane, we put § = 0 in (8) which then
takes the form e e )

"
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_c_s- (o z — igx)

Ty (X, 2, 5) = 2::2 T TRe [Kjul (g, w)e ]dqdw
S b
10,
where
Kua (qw) = = ity Kea (g w) = ZE00%s ]l
Ku = = e R = T
Kulg,w) = 24 g (g = — 2@ AW
and ' ' ' 7 (1)

E = 1jca® (ca® + a® q* + b2 wh).
3. DILATATIONAL CONTRIBUTION |
From (10) .4 is converted to the Laplace transform of a known function by
mapping 1/ca (maz — igx) into ¢ through a contour integration in a‘complex g-plane.
The singularities of the integrand of .4 are branch points at

g= St =i W+ I)E g=SEe g it PR,

B S N it ol
q= a ’ }
-..(12)
and the poles at

g = S} = 4 iw? +v3 )

.

The poles at g = S: correspond to the zeros of the Rayleigh function N,- where

vr = ca/cr and cr is the Rayleigh surface wave speed. The contours of integration in
the g-plane are shown in Fig. 2 (a, b, ¢} which also show the positions of singularities
lying in the upper half of the g-plane.

Since the positions of the singularities and the transformed cottour of integration
depend on different values of @ and b, three different cases arise for the evaluation

of uza.’
(@) Casea > b > C,. _ C
The g-plane for a > b > Cqis shown in Fig. 2 (a)f. The contour g = qdi in the
g-plane, is found by solving

1= 1/Ca (maZ — igx) ' ‘ _ .. (13)
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SR’ Sr* Sg"
Sc* SS"' . . SS+
+ . S + Sd-r

SS (< . \m———/tt

Se* A Sa" ‘ St
¥
3 '

a{Cg {Cy.for W Wgq cg< a(cy for OLW{Wda ‘ aycyq for all w,
or alCg for wgqdWiWdag ~ a(Cd for Wyqd{ WL~
© ®) (@)

FiG. 2. Cagniard paths of integration in the g-plane.

for g, where t is real, we get

4=9f=15m95:i:(1-—1 N2 cos ¢ . . (14)

for
T > T,4, wWhere t,a = (W2 4 1)1/2, < = cqt/P .. (15)

and (P, ¢) are the polar coordinates in the xz-plane as shown in Fig. 1. Equations (14)
define one branch of a hyperbola with vertex at g = i (w* + 1)'2 x/P, which is para-
metrically described by the dimensionless time paramcter v as T varies from t.q
towards infinity.

As shown in Fig. 2 (a), the contour of integration has two possible configurations
in the g-plane, depending upon ¢ and w. }

For the case (1) given by : ’
Case (1):¢ < $ and0 <o < oo

or
$ds < ¢ < dvaand Waa < W < 00 ...(16)

_ where ¢aa = sin™! Cafa, $sa = sin~! bfa

and
C; — atsin® ¢

Wiy = (m ')"2 .o ..(17)

the vertex of the path = qf does not lic on the branch cuts and hence the path of

integration contour is simply g = qf and is denotéql by 1.
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But for the case (2) give_n bx P .
Case (2): dda < ¢ < dpaand 0 < w < wa,
Or¢ > ¢pa and 0 < w < oo L ..(18)
the vertex of the path g -= q:f lies on the branch cut between the branch points g = S:
andé = S: . Hence the integration contour is giveo byg = qj‘ for T > Ted which
is denoted by 11, plos g =qaa=1i7sing —i -(1-3"_ — )2 cos ¢ L ...(19)

for Twaa < * < <ua, where
1 2 s ) _" ”- C e )
Twda =“‘1" [{W' (a - b) + (a- - Cd)} s
xcos ¢ + (w* b + C; )12 sin qS:] . - ‘ ...(20)

- Transferring the path of mtegranon from the real q-axns to the: Cagniard’s—path
we obtain - -

~
, , ‘
w9 = - [ jRe[kzd(qd, — ]e"dtdw
0

'wd
“da ‘wd J
+ H ($oa —8) H ($ — $a0) j j Re [k,d (e, w) 242 :Ie-" dtdw
0 n'dﬂ 1

I

+ H(¢—;,,.,)T jRe [k,d (gda, w) Lo :le'" dt dw] (21)

wda
where twa = P/C4 7wa and twia = P[{Cu tyda. The first term of (21) is the contribution

from q:‘ and the second and third terms are the contributions from qua.

Now interchanging the order of integration in (21) and inverting thc -.Laplace
transform, we find that -
gy
p ] dw

+ H($p — paa) H (@ui ;#)H(T — wda) H (v, ~ 1)

T

2#PCaf [H(-r -1 I Re[k,d @ ,w)

Uzd (p, é, T) =

(equation continued oun p. 655)
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Tdn
X I Re [k,d (gda, W) d;];;, ]dw
A

da
+ H (b — éb,) H(x — <da)

Ty
X j R. [k;d {Gaa, W) ‘i[%?-" ]dw:]
o

Ay

A: _ ‘f 0 for T4 <7 < | 1[
o J ;
L da

A =

0

| Tafor 1 <1< « L
{ 0 for Tas < % < {

N Tyfor v > | Jl
Ty = (22— DM

Ty = Xi¢ — {Ya —(a*cos* ¢ — b?) Zd}"r‘]‘/2
da = (a: cos? ¢ — bZ)'.‘

X4 = 1, b*sin® ¢ + (a2 — b?) vqcos® 4

!

Yo = -rgz bt sin* ¢ + (a® — b <} cost ¢ 4 2 (a? -(- b3)b? 4.
X 75 s'in2 $ cos? ¢ l

Zi = (xg — 2C;sin® ¢)* — 4C% (@® — C; ) sin® 6 cos® ¢

tq = a* 7* + (C5 — a® cos® §) |

Ty = a* 17 — (C; —a*cos® ¢)

Tda = ;l-[(a2 ~ C3 )% cos ¢ + Ca sin qS] s

C; -8 up
== ]

655

.(22)

(23)

...(24)

.(25)

L (26)

(27)

@2)
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The first term in w:q is due to the dilatational motion behind hemispherical wave
front at * = 1 and the second and third terms are due to the dilational motion behind
the conical wave front at * = <44 for ¢ > ¢uaa . Thege wave fronts are shown in Fig.

3 (a), ~ T

\ 7=Tda
gai
! ' T it | .\'éba
3(a) fora>b>cq S 3M) fora>ca>b
x> |

N

Y
N -
-l

-3(c) fore<es.. ., . . o
Fig. 3. Wave patten for dilatational motion.

v = 1, shown in Fig 3 (a) by a dashed curve, is not a wave front because. it
is not a characteristic surface for governing wave equation for the dilatational motion.
Similar non characteristic surfaces were found by Gakenheimer apd Miklowitz* for.a
point load travelling on an elastic half space and also by Aggarwal and Ablow! for the
motion of an acoustic half‘space due to an expanding surface load. They prove expli-
citly that their solution was analytic over the surfaces, The same thing can be proved
in our case also. '

(b) Casea>ca>b _
In this case, the path of infcgration with respect to g transforms to- the simple

path given by contour I (Fig. 2 (a)) for all w when ¢ < ¢ss and also for 0 < w << wa,.

when ¢sa < ¢ < p4a, Whereas the path of integration with respect to ¢ transform to
the contour II (Fig. 2 (a)) for wae < w < oo when ¢4 < ¢ < ¢da and also for all w
when ¢ > ¢4a. The remaining details of inverting #.a for a > ¢4 > b arc exactly
the same as for @ > b > c4, and one can casily find that :

Ta d

td (P, 3, 7) = i:’:‘b [:H (= ‘— 1) j ?Re [k:d (zq: . .W) d‘j: Ja’w

v | .
'\ (equation continued on p. -657)
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A HGE— ¢ H ($ia — ¢) H(x — 2)
”Tda ’ - )
X E Re [k,d (gda,w) dg‘“ ]dw
t
T4

+H(¢“‘¢aa)H(T'—‘\'da)‘

TRe [k 2 (qaay ) q"“ ] d ] 27

4z,

where Aﬂa is given by (23).
The wave geometry associated with this expression is shown in Fig. 3 (b).

(c) Casea < ca

For this case the path of integration with respect to ¢ transform to the simple
path given by contour I [Figs. 2(b), 2 (c)] for all w when ¢ < ¢sq and also for 0 < w
< Wia When ¢ > ¢pa, whereas the path of integration with respect to g transforms to
the contour II [Fig. 2 (a)] for wsa < w < oo when ¢ > ésa. Note that in this case
the angle #4o does not arise. Now proceeding as the -case a > b > cq4 for inverting

44 We get

. muCd

,‘-W(P b= 2 Pab [H SR X [k‘zd(qd% W) —— :Idw

: -
FHG~ ) H - — ) f
Tda - e
Tt - X IR, [k:d (qda, W) qda ] ] ' ©.(30)
. . . d , . N .
' T):e wave geometry assocnated with this expressxon 1s shown in Fig. 3 (). 'As
expected physically, contribution due to the conical wave front does not exist for this

case,
Summary

Combmmg (22) (29) and 30) one ﬁnds that U:g CAN be written as one expression
for all-values of g and 4.
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T
2 Pab

d ' dq:
wa oty = L= 0 [ R [k, 5 ]
[ l ) )
F[H (5 — va) H($ ~| dsa) (H (b — ca)
+ H(a—ca) H(ca—b)} +H(x— <., ) H (b—¢sa) {H (3~ ca)
x TH (ca — b) H ($aa — ¢) + H (ca— a)}]
da
X j Re [kzd (qda, W) dqda ] ] . ...(31)

A da

‘where
0 for Tda < T << 1

]

|
Ta for 1 y
T for < TS T l} for ¢aa < ¢ < dsa, a>b > ca
' .
]
J

Taa forv > 7,

Ofor tga< << 1y foré > dea,a>b > ca
Taforl < = }for¢>¢da, a>ca>b L
{ for $pa < ¢ < dday @ > €4 > b

for ¢ > e, a < ca. ...(32)

Tafort > 1;4

4. EqQuivoLUMINAL CONTRIBUTIONS

Inversion of i, is complicated than the inversion of #:4 because of the appearence
of head waves (Von-Schmidt waves) otherwise it is same as #,s. Here the integration
contour has more configurations in the g-plane though the singularities are the same.

Here the hyperbola g = q‘f arises in a similar wayto g = qf , but its vértex can lie
on the branch cut between the branch points at ¢ = S¥ and ¢ = S% and at ¢ = S

and ¢ = S} as well as between ¢ = S¥ and ¢ = S, depending on the values of w, 4,
a and b. In this case, the straight line contour lying along the imaginary g-axis is . de-

noted by ¢,o Wwhich is similar to gss appearing in the dilatational contributions. Now
oyﬁmiting details of inverting #;,, one can easily find

S .
S

[H(‘v _ I j R. [k @, w) —::I—:]dw.

(equation continued on p. 659)

4P
ul’: (Pl ér 1) = ab




where

0 < t<o0,0 a<ooand

0<b<oo,a>b

——————,
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+ [H (5 —7) H (p—¢4a) {H (b—c,)+H (c;—b) H(a—c,)} ~

+ H{x

— 7, ) H($ — ¢va) (H(ce — b) H($sa — $)

x Ha—c)+ Hc— )l

T

a

X S R. [k:, (q:a, W) fiq;a.] dw

‘+H(-r—‘r,d)H(T',d—T)H(d’—?sxd)

r

x 'de, [k,, (oss W) "*“] ] : (3

.";d

for0 < P < o0, 0 ¢ <2,

=0for t. <</

= T,forl < = <7,

= 0forr,e < v <!

= T,fort > 1

=0 for e < <<t
=Tsdf0rT,d<T<T
='T, for < > =,

= 0for o < 7 < 7y

= T for 10 < <7,

=Tforr <t <7,

= T for = > 7,

ba < ¢ < Psa, @ > Ca, a>b>c,, ac,>bca

Pea < <, a>ca, a>b>c,, ac,<bca
Psa<p< Pap,y Ca>a>b>c;

$ba < ¢ < ¢y, a>b>ca, acs>bca
$ra<P<dsa, a>ca>c,>b

D¢, a>b>cy, ac,>bea
é >da,a > ca> .C_, >b

i
¢ > e, 8> b > cayac, < bea
|

i
|

Pta <¢ < ¢, a>cdDSc,>b

Poa < ¢ < Pabs, Cd > a>Cg > b

Pba < ¢ <¢>ab,,a< s

¥
}
]L
K
R
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= T for-:’"<1'<1;d¢ 1{
! <¢<pmeca>a>c,Db
= Ty for =, <t< <, & fars ?¢ b €4 » >
} ¢>¢ﬂbna<c.l
=T, for > <), _iy |
=0for ra <t </ '
a [ & >4y ci>a>c,> b a > 8
‘ |
=T forl <z < v/ : :
sda f e < Pz, ca >a>c, >b,B>e>y
3 A .
= Tafor<),, <t <=+, } $ > ¢oa,ca>a>b>c,x>p
=T,f0r;r>1;d ’L¢ba<¢ <¢x,Cd>a,>b’> C,ﬁ>a>Y
= 0for re<e< 7, 1I
: _ ; d>d,ca>a>c.>b,B>a>y"
=T,dfor'r:da<1<'r"d l} >, ca>a>b>c,p>a>y -
| ¢>dpaca>a>b>ca<y
=T, for = > </, ]
=0forru<t<! 1 i
=T, forl< << . Il $abs < ¢ < ¢pa, €a > a>b> ¢, a>P
, U b Bae < 8 < dom i aSbSC, B asy
=Tufore, <<<=t), .
| bab, < ¢ <drca>a>b>c,a<y
=Tsfor =), <t < <! _JI - B
=0forre << 7,
i
= Tsafor <, << <7, '> b < ¢ < dva, Ca >8> b>cy a<y.
N
: N
=T,f0r':"d<-c <7, Jl
vV ¢>és,a>b>c
=0fortug<t</ ‘.l_,¢>¢,d,,a>(.‘d>0,">b _
S r da<d < ,ca>a>c,>b
=T, forl<t<ry, l )d $ < babs, Ca !
|' Pd < ¢ <'dyayca >a>b>c,
J Pod < ¢ < Pabs, 4 < Cs .
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[ =0forrag<t<l! 1
|
I
b =T.for I<x<,
$abs < <$sa, Ca>E>¢,>b
= Tafor %, <t<Ty | ¢ > ¢y, a<c,.
=T, for -r:“ <t<7Ty,
= 0O for Td < T < Tya 1 ¢ > ¢;a, Cd > d>{,‘,>b, 1>B
= Ty fort,a < v < 3, $10<$p<x, Ca>a>c, Db B>a>y
Aa ) $>dap,, ca>a>b>c,, a>B
‘ 3 =T, for 7/, <t< o abs <P <, Cd>a>b>c,,>ﬁ>a>'y
L dap<P<dsx, ca>a>b>e,, a<y
=0fortu<t<Ta
! .
= T,a for T a< T < 'r"d. -Il ¢>¢x’ L‘d>a>c,>b, 5>°‘>Yi
, '> ¢ > ¢z, ca>a>b>e,, P>a>y
=_,0for1"d“<'r<l | o
. S| $>%x, ca>a>b>e, a<ly
.
=T, forl< <1, Jl
= 0for tu < v < Ty "}
, ]
= T a f sa
Juwlorfa<s<r, l}, ba <Pp<da, 2 >a>b>c,
| ,
=T, forv <t << |
: L s0 (L ..(35)
and also where 7
T, = (& = P)y? ...(36)
_ X, — {¥Y, — (@® cos® ¢ — b¥)? Z 12 TNz
Ts“ - [ (a‘l COSZ ¢ —_— b!)‘ﬂ. ] i (37)
Xs = 1: b* sin? ¢ + (az - b’) Ts cos? ¢ \1'
{
2
Y, = b'sint¢ + (a* — b*)* <% cost 4 }
‘ |
+ 2 (a* — b)b* 1, 7, sin? ¢ cos® ¢ |}
Z, = (v, —2c; sin® ¢)* — 41 ¢ (a® — ¢?)sin® § cos?’ ¢ #
T, = a* 1t + I* (¢ — a® cos? §) l
|
° =at® — I (¢} — a*cost¢) j
.. (38)
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Tu = v[{(T — 7d) cosec ¢ + 1}2 — 12 S ...(39)

w0 = lfa (I a® — c? )12 cos ¢ + ca sin ] ...(40)

= [(I2 = 1)'I* cos ¢ + sin ¢] ' ...(41)
e — o

= [ b* — a%sin% :] ~-(42)

L=~ 1y seed ' ‘ (43)
c; — b 1/2

= [(1: — 1Y%cos ¢ + ( a‘:—__b_'-’ ) / sin ¢ ] C..(44)

$a = sin-!? és/a, ¢4 = sin™! ¢;lca, ¢b9 = sin~? bja .. (45)

cj - b

$abs = sin™?

142
) ' ..(46)
I*(a® — b%) + c*d—a?

i.
(@ — b2 1(02 _ bz 4 (12— DU (R =~ )
$x = sin™! l: ’ * ‘¢ ]W
I (a® — b%) + CZ I J
...(47)

: 12 _)
w= () B= =Dy = blage - 1y

'_21,:_',;=_Ci . -
o By = Sy

a* — c ‘

—tia [ - ]" | ' . (89)
qf =itsing + (v — 'r'f” Y12 cos ¢ _ ...(49)
Tus = (WP [ (50
g = itsing — iz}, — v%)'/%cos ¢. (31

The first term in the expression (33) is the equivoluminal motion behind the hemi-
spherical wave front at + = / and the second is due to the equivoluminal motion
behind the conical wave frontat s = v, The third term in u;; represents the equi-
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voluminal motion due to the head wave fronts at = = ta. The wave fronts © = 74
for ¢ > ¢4 and T = 7, are shown in Figs. 4(a—I).

FlGs. 4(a—1). Wave pattern for equivoluminal and head wave motion.

4@) fora>cqyy a>b> ¢y, acs > beg.

4(b) fora> ¢cq, a> b > cy, acs < becg.

The equationst = <, v =17, andt = 7,44 ar€ shown in Fig. 4 by dashed

3a

curve which are similar to ¢ = 7 appearing in the u:a. These dashed curved surfaces -

are not considered as wave fronts because it can be shown that displacements and their
derivatives are continuous across these surfaces. ‘
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4(d) forca>a>b>cy, a>p.

5. Wave FroONT EXPANSIONS
The wave forms of the solution given in (31) and (33) are evaluted by approximate
estimation of the integrals in the neighbourhood of the first arrival of the different
waves. To facilitate this evaluation we plit

N (4% + (B® _ A?) sin? o]' . (52)
in the integrals arising in u:« and u:; where 4 and B are respectively the lower and
upper limits of the particular integral in question, and the range of integration with
respect to « is form 0 to =/2. :

Now for the first integral of (31), we put w = Tusin « and hence for t — 1 +,
we find that for any value of a. ’ ’
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Yz
4)forcg>a>bP e, B> 2> ¥.

4 (f) forcg> a>b > ¢y, 2 < .

+
dq"__) ca cos ¢
dr P, Tacosa’

ma = cos g, my > (I — sin® )2, my —> (I* — 2sin? $),

w—0, q:—>isinq{>,

E}? —> -l (c: — a?sin? $)13, for ¢ < dua
d
— ‘—;— (a* sin® ¢ — c: N2, for ¢ > daa,

N-—> N,

F=7zda
[ L 'y(
rd
——
Pba
-

\

(53)
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Y v
-_—/K\/\
P ®ad

(2 ‘1
4h)forca>a>ce> b, 8 > «

> v, acy < beg.

where Ny = (I* — 2 sin? )° -+ 4 sin® ¢ cos ¢ (/2 — sin? ¢)1/2,

(54

Substituting these approximate values in the first integral of (31) one can find, for

(}S < (ﬁda
[us]] > N;; as ©— 1+

where .
Pabey cos® ¢ (I —~ 2sin® )
P (ci — a®sin ¢)' 2. N,

le ==

«.(55)

.. (56)
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Y,

4() forcg>a> ¢ > b, 8 >a> ¥, aci > bey.

‘Again in tne second integral of (31) we put w = Ty, sin « andast — 1 — for ¢ > Pda
we find that

Gia > isin ¢ — i cos ¢ Tds sin «

fZQda__) _iﬁgi_- Tazsin x sin g + cos ¢ . N ' L (57)
P @ st -

Puting these values ia the second integral of (31), we get
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(T3, sin® a +1—<2)1/2

>X
z
4 (k) for a < ¢, ac, < beg. .
_ J"J'éd‘ ,T-I:sda -
NS *
\
\
\¢b0
Y
Z
4 () for a < ¢4, acs > bcy.
i wfa to
¢ .. . L . icq
| j R, I:km (i sin ¢—i cos ¢ Tua sin «, Tua sin @) 5
T4a sin « sin ¢ + cos ¢ :] ?‘da cos ad a ..(58)
|

|
= I R. l:k,d (isin¢ — icos ¢ Tuasin «, Taa sin ) %cﬂ—
0

(equation continued on p. 669)
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_>< Tdasm « sin ¢ + cos 4:’) ]Tda cos ¢ {11
(T, sin* = + 1
wla .
+ j R, [k:d (isin¢ — icos ¢ Taasin a, T4q sin @) %‘d‘
% T4a sin  sin ¢ -+ cos (ﬁ] T4a coS :'1. do .. (59

(T3, sin® & 41 —<9pi2
where ¢ is very small.

Since the main contribution to the integral (58) as = — | arises from the first in-
tegral of (59) as * — 1, so for the evaluation of (58) as + — 1, we consider the approxi-
mate value of the integral given by

E R. [k,d (isind — i cos ¢ Taa sin «, Tda sin «) I;l ’ -

x T4a sin « sin ¢ + cos :lea cos o d ...(60)

(T2, sin?a + 1 —

as t — l.

Since ¢ is very small so « is also small. So for the evaluation of the integral (60) as
T — 1 we also use the fact that = — 0, from which we get,

w = 0, gaa — i sin ¢, mg — cos ¢, my — (I* — sin® ¢)} 12,

— (I - 2sin%¢), ...(61)

N — Ny, E'? — ifca (a*sin® ¢ — ¢} )M* for ¢ > da.

Now substituting these approximate values in (60) and mtegratmg we obtain the approxi-
mate value of the integral as

c; cos* ¢ (I* — 2 sin* ¢)
— - log | v+— | | whent — 1, .-.(62)
P (a*sin*¢ — cj W2 N, .

So for ¢ > ¢aa

(u:] ~>N;4 log |+ — 1| ast — 1 ‘ ...(63)
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where

2 2 T2
N = — 2Pabcy cos® ¢ (I 2 sin? ¢) ....(64)

P (@t sin? g — A NN,

In order to obtain the value of uss as v — t4a we put in the second intégral
of (31).

we = A5+ (T:a— Azn) sin® =,
When * - 7142 4+, we find that
w—>0
P
dda ] 2

dqaaldt — id’

,
a®> — 03 12
Cd
‘thre A’ = pﬂ ( ) for a > Cd,
1,
A i .(65)

myg > lja(a® — ¢} )'® for a > cq,
moo L@ Y mys @ 2e)

s a s > 0 vag 2 7
N N, J

where N, = [ja* [1‘ (@ — 222 +41ch (@ —ci 1P ]
E'? — K112 (7 — g45)t P2
where

2 b 2 2
2a cos* a (a® — ¢ )2

¢d {(a2 — ¢3)'? sin ¢—cq cos 4>}

K = for a > cd.

Using these approximate values in the second integral of (31) we find that for

a > ¢d
[;] > N:xyas © > tas + ...(66)

where

apgy (@ — NP (at—2et) 4 O

Ne = o (2KA)'2 . N, ~(67)
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where C = 8a%cg t4a (0° — ¢ ) sin ¢ cos ¢

s,

A = a* (a® — b°) cos® ¢ vda (7aa + 73, ) + a® b*sin® ¢ ta, (taa — 5.)

'cza- = 1/a [ casing — (a® — ci )7 cosdi]_ ' ...(68)

It may be noted that conical wave front r = =44 does not arise for a < cu.

Next when ¢ < #,q, for the evaluation of u;; as v+ =/, we put w = T,sin« in
the first integral of (33). When = — /, we find that in the above integral

w—0
q";—>ilsinqS
+
dq Lo ! cos ¢
dt p Tjcosax
(g2 + w?) > I*sin® ¢

mg — (1 — I? sin® ¢)1/?

mg — [ cos ¢

my = I? (cos®> ¢ — sin® ¢)

E'E — e, (¢} — a” sin® $)F for § < d.a

= ifc, (a®sin® ¢ — ¢?) V2 for ¢ > .,
N BN,
where N3 = [/ (cos® ¢ — sin® $)* 4 4 sin? ¢ cos ¢ (1 — I* sin® ¢)'/2].

Using these approximate values in the first integral of (33) one can find for ali
values of a and b.

{tz] > Nzp fOor¢d < dcas<—1/
where '
__ 2Pabc, sin* ¢ cos ¢ (1 — [% sin® ¢)'/°
nP (cf — a? sin? $ ).1/,2. N

sz = ...(71)
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For ¢ > ¢,, considering approximate evalution of last two integrals of (33) as .
v — I it can be shown that for the case a > b > ¢4

Uur — Nialoglr—Il-fbr¢sa<¢<¢,das‘r—+1 ...(7?)

u: > Nilogls—1| for¢ > paasv 1 «(73)
and for the case ca > a > b > ¢,

ur > Nilog|v — I} forgu < ¢ < psaasvt > 1/ (74)

us— N loglt—1|ford > duast I -+o(75)
and also for the case ¢, > a > b,

us—> N log|~+v—1I|[for¢ > daas~— 1 ...(76)

whefe
, 2Pabc, sin® 1 — J2 sin2 $)1/2
N = 7Tapq sin® ¢ cos ¢ ( 12 sin? ¢) » - TT)
# (@®sin® ¢ — ¢ ). N,

8Pabc, _sin' ¢ cos® ¢ exEmimEEP (L sin"$ 1)

N, = (78)
P (a*sin? ¢ —c? 2N,
, 2Pabcq sin® ¢ cos® ¢ (12 sin® ¢ f—1}/2 (cos? ¢ —sin? ¢)2 :
o - e q £ .(79)
~(c; - a’sin? #)'1 N,
N, = [I? (cos®* $ — sin® $)* + 16 sin' ¢ cos? 4 (I2sin® ¢ — 1)]. ..-(80)

For the approximate evaluation of the displacements at the wave fronts = == 7,
and * = v, we follow similar procedure as followed for the evaluation of w.s as

v — 74, and we find that ;

lt] = Nisast — T fora > ca i ' ..(81)
{us] = Nigast — vaforca > a >ll Cy .. (82)
(tz] > Nis (v — ) as v — v fora > cq ’ ...(83)
[u:] = Nig (s — ta) 38 v = 79 fora < cu ...(84)

where
4Pb cq A ,\[ (a® — c; )Ds
mpa® (2 K; By AN

N:5= —
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. . L] — . ’ ’
16 Pa® bc’, (¢c; — a@?) A’,.\/_(ag - c ), . - o

Nig = — }
np (2K, P A)VE (I8 (@ — 265 )0 — 16q4 ((:d - a-) (a2 — c 1
o A +(86)°
. ’ 4P b : . 1z .
Niy = -— = Asd B,dB;a 4 ,d( 2cosecd ) . (87) -
at — ¢2 -
d B PR
Ny = ‘”;_ab A de‘ A;d (ZM >- -"‘_(88). .
# c; —a '

Iea (@ — c2 )12
A = .. (89)
Pll(a — c2)/*sing¢ — cacosd] : ‘

D, = 8§ a® lcq v.a sin ¢ cos ¢ (@® — cf Nz S ...(90)

Bg=§[13 (a._._ch)2 + 403 J(az'_ci)(az —c? N - (91)

A = [t 6° B (v,0 — <% sin® 64 (a* — %) @® £o8® § (vpa + 7,,)]

| ...(92)
_ 2(12 — 1)1/2 172 |
Au = Z[_(P — 1)'*sin ¢ — cos ¢ ! 03
Bg = (I* — )1 l : ...(94)
B, =4Aq (IF = 1) B ' ...(26)
A;d = .Cl .(12 —_— 1)1/2 [(12 — l)”z.’sin é — cos¢]—x S : (96) . !

In these expressions the notatlons [u,] stands for the change in ug :across a wave '
front and N:, etc. are wave front cocﬁic:ents Sl TR

1t may also be poted that if we put a b in this problem, 1t rcduces to the pro- - o
blem of uniformly expanding circular ring source and in that case our denved rmults R
coincide with the results gwen in the paper of Gakenheimer®. .
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The problem of diffraction of normally incident antiplane shear wave by a crack of
finite length situated at the interface of two bonded dissimilar elastic half spaces has
been studied. The problem is reduced to the solution of a Wiener-Hopf problem.
The expressions for the stress intensity factor and the crack opening displacement
have been derived for the case of wave-lengths short compared to the length of the
crack. The numerical results for two different pairs of samples have been presented
graphically. '

1. InTrODUCTION

Scattering of elastic waves by a crack of finite length at the interface of two
dissimilar elastic materials is important in view of its application in Geophysics and
in Mechanical engineering problems. The extensivel use of composite materials in
modern technology has created interest in the wave propagation problems in layered
media with interfacial discontinuities. The diffractidn of Love waves by a crack of
finite width at the interface of a layered half space &as studied by Neerhoff?. K»uo6
carried out numerical and analytical studies of transient response of an interfacial
crack between two dissimilar orthotropic half spaces. Following the method of Mal’,
Srivastava et al.! also considered the low frequency aspect of the interaction of an-
tiplane shear waves by a Griffith crack at the interface of two bonded dissimilar elastic
half space.

But high frequency solution of the diffraction of elastic waves by a crack of
finite size is interesting in viéw of the fdct that transient solution close to the wave
front can be represented by an integral of the high frequency component of the solu-
tion. Green’s function method together with a function-theoretic technique based
upon an extended Wiener-Hopf argument has been developed by Keogh** for solv-
ing the problem of high frequency scattering.of elastic waves by a Griffith crack
situated in an infinite homogeneous elastic medium.
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In the present paper, we have derived the high frequency solution of the diffrac-
tion of SH-wave when it interacts with a Griffith crack located at the interface of
two bonded dissimilar elastic half spaces. To solve the problem, following the method
of Chang?, the problem has been formulated as an extended Wiener-Hopf equation
and the asymptotic solutions for high frequencies or for wavelengths short compared
to the length of the crack have been derived. Expressions for the dynamic stress in-
tensity factor and the crack opening displacement have been obtained and the results
have been illustrated graphically for two pairs of different types of material.

2. FormuLaTiON OF THE PrOBLEM -

Let (x, y, z) be a rectangular Cartesian coordinates. Let an open crack of finite
length 21 be located at the interface of two bonded dissimilar elastic semi-infinite solids
lying parallel to x-axis. The x-axis is taken along the interface, y-axis vertically
doypwards into the medium and z-axis is perpendicular to the plane of the paper.
(u1. p1) and (u,, py) are coefficients of rigidity and density respectively of the upper
and lower semi-infinite medium. The crack is subjected to a normally incoming an-
tiplane shear wave originating at y= - x®. i

We are interested in finding the high frequency solution df the diffraction pro-

“blem i.e. the solution when the length of the crack is large cpmpared to the wave
length of the incident wave.

Accordingly we shall have to solve the problem when the {rack is subject to the
following boundary conditions:

o (x, 0+) = o2 (x, 0-) = - P~ Py e |x| <L (D
o (x5, 04) = ai? (x, 0-), |x|>[ . )
wi(x, 0%) = wy, (x, 071), |4>/ .3

where w is the circular frequency and P; is the static pressure.
Assume

wi (%, 3, 1) = Wi (x, ) gt R (4
wy (x, y 1) = W (x, y)_e"‘“’ ...{5)

where W, and W, satisfy the following two wave equations

VAW (x p) + KO () = 0 ...(6)
ViW, (x, ¥) + k*Wa (x, y) =0 D)
2 aZ
with v?= —a‘i +
ax ay

The shear wave numbers k; and &, are related to the two shear wave velocities. C)
and C, of medium (1) and (2) respectively by

k= w/C )
kz = w/CZ o (9)
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Without any loss of generality we assume that &k, > k;.

Let ol (x, 7, 1) = 70} (x, y)y e ..(10) .
oD (x, 5, 1) = 1D (x, y) e, (D)

In the boundary condition (1), Ps is the static pressure assumed to be sufficiently
large so that crack faces do not come in contact during vibration. Since we are in-
terested in the dynamic part of the stress distribution, so the boundary conditions
(1), (2) and (3) may be written as !

W (x, 0%) = 7@ (x, 00) = - Py, |x] < ~ ...(12)
W (x 0%) =@ (x,0), |x| >L ] ..(13)
and W,(x, 0*) = Wy (x,0), |x| > L .19
that is
i34 oW- '
p—— =p—==-P0, |x| < Ly=0 (19
dy dy _ ) _
£Y:% AW ' -
po—— =gy —=, x| > Ly =0 ..(16)
dy dy
- and W, (x,0%) = W, (x, 0), |x] > L ' (17

In order to obtain solutions of wave equations (6) and (7) we mtroduce Fourier
transform defined by

W (a, y) = —1— S W(x, y) e dx. ‘ ...(18)
27 _ i B
Thus we obtain the transformed wave equatlons as
d*w, 5 ‘ .
. (- kh W =0 . ...(19)
W, ( HhW,=0 (20)
- a - K3 7 = .. en
dy? -

The solutions of (19) and (20), bounded as y tends to infinity, are

Wi (a,y) = A (@) e, y-2 0 ' .21
Wz (a, ¥) = A; () e, y =0 ‘ ...(22)
where
= (a? - kD" : (23)-

™
) = (a2 - kD)%, (24)

72
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Introducing for a complex o ‘

1
G, () = —= | 7¥ (x, 0 e“’"‘” dx ...(25
+ {a) Nors S (x, 0) | (25)
L
~L )
. 1 N
G. () = — | 7 (x 0) e™*D gx : - .26
() = — S (x, 0) . (26)
L
. 1 o . .
and G, (o) = — | ) (x, 0) e dx (27
1 ) \[2*7? S Yz l) ( )
-L -
the transformed stress at the interface y = 0.can be written as
0 (o, 00 = G, (@) € + G| (a) + G. (a) e .(28)
Using the boundary condition (12) we note that
| - & il ol |
G = e’ — e 1, : ...(29
; (a) e i l: ‘ (29

Further using the fact that
79 (o, 0) = - iy, (@) )
we obtain from (28) ' ' ' ‘
-umA (a) = G, (a) e + G () e™ - P el _ el .(31)
* - S T WN2me |

Since from (12)\and (13) stress 7, is continuous at all points of the interface so we
obtain :

A, (@) = - 221 4 () : : ' 32
’ H2 Y2 o

so (21) and (22) take the forms

!

Wo(a.y) = A, (@) e,y =0 i .(33)
|

Py (o, 9) = - 220 4 (a) 7,y < 0. | .34

M2 Y2
L :
_ _ 1 ,
Now W, (a, 0%) = ¥ (a, 07) = o S [ W, (x,0%) - W, (, o:)} e dx

-1 . .

= B(a) (say) - . ...(35)

which is the measure of the dlscommuny of displacement along the surface of the
crack. From (35) we get :
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miv1 + H2Y2
Eliminating A, («) from (31) and (36) we obtain an extengied Wiener-Hopf equa-
tion, namely .

G.(a) e + G.(a) e™ + Bla)K(a)

= —————_fo. [e"“’— e“""/] » - .37
V2m i
where
9 3 2 l - kz V:
Kla) = —frnye: . w2 (@ kD7 5o ...(38)
miyr + pav2 (1) + p2) A

. ‘o + o az—k% v ’
R(a) = AL ,“,;_)( 2) . _ ...(39)
pi (o - kD" + py (e - k3)” : '
In order to solve the Wiener-Hopf equation given by (37) we assume that the branch
points « = K, and k; of K(«) possess a small imaginary part such that

ki=k, + ik{ and ks = ky + i k3

where &/ and k5 are infinitesimally small positive quantmes Wthh would ultimately
be made to tend to zero.

. Now we write K(a) = K, (@) K. («) where K, () is analytic in the upper
half plane Im « > - k4 whereas K_ («) is analytic in the lower half plane given by
Im o < ki. Since 7, (~, 0) decreases exponentiallylas x — + o, G, («) and
G. («) have the same cominon region of regularity%s K, (a) and K_ (a).

AIms
k
.k oh2
[8=0 ! . Res
~z= -
[] C+
._kz -k'|

F1c. 1. Path of integration in the complex s-plane.

Now (37) can easily be expressed as two integral equations relatmg G, (x),
G (a) and B(«a) as follows:



1112 . S. C. PAL AND M. L. GHOSH

+ (@) P I 1
K, () VIria'| K, («) K, (0)

1 el P, i
G d
* 27riS (s-a) K, (s)[‘(s)+ \/i;ris] y
C B

+

[ ~faed PO _ 1 .
=B KA T KO 2w S
-
e-Zu‘l’ .
£ d ...(40
(s-a) K, (s) [G' () + \/_ils } d (40)
aﬁd
G. () Py 1 S e
+ +
K (a) V27 ia K. () 2 (s - a) K_(s)

C.

P, |

G, - d

o -]«
sl

3 w1 e . By
= Bla) K, ial _ G, - —= d.
(@ K Ao -0 S 5 - a) K. () [ AR F } °
. C .-

. . ...(41)
where C, and C. are the straight contours below the pole at s = 0 and situated

within the common region of regularity of .G, (5), G_(s), K, (s) and K_(s) as,

shown in Fig. I.

! In (40), the left-hand side is analytic in the upper half plane whereas the right-
hand side is analytic in the lower-half plane and both of them are equal in the com-
‘mon region of analyticé/@ of these two functions. So by analytic continuation, both
'sides of (40) are analytic in the whole of the s-plane. Now since

Ty ~ (x F D7 ' asx — + L,
$0 . G, (@) ~a™* as |a| — o
and also 'Ki (@) ~ a” as ia( - o

so it follows that

G, ()

~ o as |a| — .
K¢ (o) ’ L '

i
Therefore by Liouville’s theorem, both sides of (40) are equal to zero. Equanon 41)
can be treated similarly. N . .
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Therefore from (40) and (41) we obtain the systein-of i_ntegralfequatjons“given_ by

Y Py 1.1 Po_ . ‘-
[G+ ) i ‘] K (@ & VEriaK, O

4 ™ G (s; + L ds =0 ..(42)
2 -a)K, () | 77 VInis T
c.

and

= 6. (@) + -2 SRS S (SR i
T T mia | K (@) 27 ) - a) K. (5)
. C

[G+ (s) - \/ﬂ?is }ds =0." | .(43)

Since 7{}) (x, 0) is an even function of x, so from (25) and (26) it can be shown that
G, (—oz) =G_ () and it has been shown in the appendix that-X, (-a) = K- («):
Using these results and replacing « by -« and s by -s in (42) it can easily be shown -
that equations (42) and (43) are identical. So G, (a) and G_ (oz) are to be deter-
mined from any one of the integral equation (42) or (43).
3. Hicn Frequency Sorution of THE INTEGRAL EquaTion

To solve the integral equation’(43) in the casé when normalized wave number
k; L » 1, the integration along the path C_ in (43) is replaced by the integration
round the circular contour C, round the pole ats = O and by the integration along
“the contours Cs, and Gy, round the branch cuts th{ough the branch pomts k; and
k, of the functlon K (s) as sh0wn in Fig. 2.

' N :
Ims Cbo
1 HE
c ' g ckz‘
L R Y ) A
! t
! 1
Cot S=0. k(& JL T
Y\J) ' —— " Res

Fic. 2. Path of integration Cp G, Gy i- -0
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Thus eqn. (43) takes the form

Py Py K_ (a)
G. -
[ @)+ e ] Va2x i K. (0) ;
; |
K (o) exp (2isl) G P ds =
* 2xi S (s - a) K (s) [ <O Vamis | © 0
0+ ..(44)

Now

exp (2isl) . Py
— - d
g (s - a) K. (5) {G“‘ ) \/iTrts] y

___1___ ewK+ (S) | Po
Com S (s~ a) (s*- kh* [G* © @;,-SJ“’

ky

which can easily be evaluated when k; L > 1 and-is found to be equal to

1 x  exp (2ik; I) Ky (k) e/ P,
-— G, (k) - ——1|....(45
w N kgl (k, - ) + k) V27 ik, (43)
Similarly for k; / » 1
exp (2isl) P,
=" G, (5) - ds
\S (s - a) K. (s) [ - ) mw}
C,,2 .
. ; ir/4 L.
- L T exp QRik, ) K, _(kz) e_ 6, ) - Po‘ - ..(46)
w2 Nkl (ky - ) - V2r ik,

Using ‘the results (45) and (46) and also the relations G, (-a) = G_(a) and
K_(a)= - iK, (a), we obtain from (44)

A(ky) Fy (ky) €250 A(ky) F, (ky) %!

F, (-a) + = C(a).
(e uy (ky - o) Ykl By (k2 - o) Vil () ...(47)
where
1 Py
F, =—— |G, ¢ - ..(48)
(&) X D) [G (%) ox if] (48)
[K+ (2)12 ei‘l‘/“ .
- B, e” ...(49
A(£) s B “9)
and
-Po "
C - _ fo ...(50
&) V27 iK. (0)¢ 0

e =
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Substituting « = - k; and @ = - k; in (47) we obtain respectively the equations

[1 L Alky) e A(ky) F, (k) e¥
2p, ky Vil pa (ky + ky) Vil

]F+ (k) + =-C(ky)  ...(51)

and
Ak). ek
w (ky + k) Vil

A(ky) eriky
2y ko Vi

F. (k) + tl + }a (ky) = - C(ky).

...(52)
Now solving (51) and (52) we get ‘

[ A(ky) (ky - ky) 2 ] 4
(k) = Clk -1 L (k, k ...(53
F(ky) (l)_zuzkz(kl+k2)@ | (ky, k2) | (53)

and
[ A(ky) (k- k) 2!

CF.(ky) = C(k - 1| L (ky, k ...(54
’+( 2) (2)_2#1k1 (ki k) VB | (ki, k3) 54)
where
Alky) 8 A(ky) ek

L (ky, ky) = [l + — ¢
V 2#1 kl "[El_l ) 2[1.2 kz sz[

L AUDAKk) (ki - ky)? etk 5%
duy pa ky ky (ki +kp)? Viky Vik,
4
Now expanding L (k,, k,) and neglecting higher order terms of//k,l and%kzl and
using (47) we get : .
G (a) = -C(a) K. (0) + C(a) K. (a) .
L K (@A) e - Clky) [1 _ A e Aky) ky ¥
m (ki - a) Vhi! 2u, by Vi oy ky Vi (ky+ k)

K (a)A(ky) €2 . C(ky) LAk kel g (k) etk
pa (ky = o) Vhof [ _#1 ko VET (k+ky) 2#2"2‘/7(—27:‘
...(56)
Now replacing o by -« and using C(-a) = - C(«a). We have
G, (o) = C(a) K. (0) - C(a) K. (-a). .
K. (-a)A(ky) e - C(ky) [1 LA e (k) Ky e
m (K + ) V- 2uy ky VR ok ‘/Ez_l (kl+k2):|

. |
K. (~a)A (ky) e - Clky) [1 AU ke A (k) o2
m2 (kz + o) kol w ok VR (ki+ky) 20k Vio! jl
57)
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4, Stress INTENsITY Factor anp Crack OpeninG DispLACEMENT NEAR THE Crack Tips

Now as ¢ — ™

K (~a) = - iK,(a) = - i (a+k)" fﬂ‘z— =~ ja" /“—‘“2—
' it pg Byt g2
K () . _, / K142
— =
a + k ’ p1t 2
K () - . _, it
R 2 )
a+k, ' g

So as ¢ — o we get from (56) and (57)

G, () = Sa™” + \/fioia ' R
and o o~ Py ...(58)
B Y T r i«
where .
s. P [ _ Al e Aky) &
V21 K_(0) ik Vil paks Vil

_l_ <A2 (kl) e4ik11 N A; (kZ) e4ikzl> N A(kl)A (;kz) eZi(kl+k2)l
ui ki kil @2 K2kl w1 kg g ke Vil

2
5 ‘ |
w | HiE2 ...(59)
[ ’b) )

Now from eqn. (37) using (58) and also-the fact that

K(¢) - ta. —— asa — + o« . ...(60)
’ Byt ps ,
we get
+ S . . L+
B(a) = — [ie""’— e"”} Ll ..(61)
o Va ’ B2

asa — + oo.

Taking inverserFoilrier-Transform of (35) and using the results of Fresnel integrals viz.

ol sin( ‘D :

cos"* ) T :

- da= |—. ...(62
S Ja ¥ T N2+ ‘ 62)
§ .

We get the displacement jump across the surface of the crack as
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AW = W, (x, 0+) = W, (x, 0) = 28, (1 - i) J(L-x) ...(63)
forx—-L1L-0
and AW = W, (x, 04) - W3 (x, 0) = 28 (1 -i) J(x+1]) ...(64)
’ _ forx - -/+0
where §, = “ATHD ¢ ..(65)
HiH2

Next inorder to find the value of 7,, near about the crack tip we use (61) in (36) and
(32) and to obtain

—1y+! . . ] .
A4 (@) = A AT (ie"""— e, (=12 ...(66)
e Va ]
' asaq — o
(_l)ji*l .S i il L [— . .
and A (@) = —— |e™™ _ je'™|, = 1,2 ...{(67
s == | [ =12 | ©67)
‘as a — - oo,
Now .
aw; (x, y) .
= pu; 9L A; (a) exptubi-ien do |, ...(68)
Yoy | V2x /

e ;
Substituting the values of A; («) as |a| — oo, we can write the stress near about
the crack tip as ' )

Ty_(x,-y) _ T%S_T_S e:/";y' [eia(x+l) - ieia(x—l)._ jerie+ D e-ia(x—t)].da'.
= S(\}.’Z’v—r_i) Sm e'jg‘ly' ‘:cos a (x+1)-sina (x+1) |
+ cos a (x - 4)+sin @ (x - L)} do
=S (1-1) [‘/—;;_sin % + %1 cos %:I | ...(69)

near about the crack tips, where

142 2]” . 1
rp=i{(x-1L)7"+ | ,¢ = sin] — ...(70)
. rl
7 .yl
=1+ U+ y , ¢, = sint 2 ...(71)
n
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Therefore at the interface (y = 0) we obtain
S (1-1)
S L

bas Vx -1

S(1-1i)
77T VD
Now the stress intensity factor is defined by
(1 - i) S|V2xk,

P, )
The absolute value of the-.complex stress intensity factor defined by (74) has been

plotted against k; / in Fig. 3 for values of k; / > 1 for the following two sets of
materials, given by :

x—1+0 . (12)

and x—-1-0. ...(73)

K = ...(74)

First Set: Steel p1 = 7.6 gm/cm® p; = 8.32x10" dyne/cm?
3

Aluminium  p, = 2.7 gm/cm® pu, = 2.63x 10" dyne/cm?

Second Set: Wrought iron p, = 7.8 gm/cm® 4, = 7.7x 10! dyne/cm?

Copper p2 = 8.96 gm/cm?® p, = 4.5% 10! dyne/cm?2.

Il

_— Aluminium&S’!cc\‘
-=- < Wrought iron & copper
]
xX
| -
1 [ | 1 1 1 i 3 1 Iy 1 1 11 1 ) 1 1
o 1 2 3 4 S5 6 1T 8 9 W M 12 13 14 15 6 17T 1B 19 2
k e

F1G. 3. Stress intensity factor X versus dimensionless frequency k; /.

5. Crack OpenING DispLAceMENT aT Points Away From THE Crack Tips

Next in order to obtain the displacement jump for the large values of k; (/ - x)
and; k; (/+x) we write G, (a) and_ G_(«a) from (57) and (56) respectively as
P OK (-a) + R(ky, k3) K_(-a) + R (ks k) K_(-a)

G = —
+(a) [ e 4 k|+a kz + o "“(75)

i

| P, 9K (@) Rk, k) K () Rk ki) K (o)

«@ a ki -« k - o
' ...(76)
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P : '
where P = 9 , ...(77)

V2rx. i
0 Po P ...(78)

T Var iK(0) | K0)

and R(kn, k) = QA(km)-ez”‘""[ g2kl - Alhn) e - A(kn)kim ]

tm ko Vg | VI 2k VT ke (i + K)
‘ ...(79)
where m =1 »when n =2
and m =2 when n=1
Again-using K_ (~a) =.-iK, (a) we get from (37)
B(a) = - Qi e N iR (ky, ky) e™ N I‘iR(ky, k) e
a K_(«) (ki +a) K_(a) [(k2+a) K _(a)
_ . % .
Qe™ R (ky, ky) ™ R(ky ky) e™ (80)
a K, (@) (ki-a)Ko(@) (Bp-a) Ky(a) B
From (35) we get the displacement jump across the surface of the crack as
1 )
W, (x, 0YY - W, (x, 00) = — B e do. ...(81
1 ( ) 2 ( ) e S (a) a (81)

Now substituting the expression of B(«) from (80) in (81) and approximately
evaluating the integrals arising in (81) term by term for-large values of k; (/ - x),
k(1 - x), ki (I + x) and ky (I + x) and neglecting terms of order higher than
(k; 1)’ and (k, /)~3/2 we obtain finally the crack opening displacement across the
cracked-surface in the following form:

1 1
AW = W, (x, 0Y) =W, (x,0) = 2n Qi K, (0) < + = >
‘ _ mki « p ks

+ \/i Qé—ir/@ |:(

eikitl-x) - ik U+x) >

vk (1 - %) T

R, R elik,/ . R, R eZikzl "R (R )2 e4ikll
X R + 1 11 + 2 21 + 1 11
: V2k, 1 V2k, 1 V2k, I V2k, |

Ry Ry Ry, e*™d Ry Ry; Ry e¥thirkd ! R; Ry Ry e¥ttkd!

+ +
V2ky 1 V2ky 1 - V2k, [ V2k, [ V2k, 1 V2k; |

eika (- x) eika (1 + %)
+ +
<\/7Cz (I—X) \/Ez (I+X))
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g <R2 Ry Ryy e¥* . RiRn e?kd LR (Ryy)? e**d
\/2k21 _\/2k,1 \/2k21 V2ky 1

Ry Ryy Ry, e¥t/ Ry Ry Ry ¥tatiad !

+
V2k, [ Y2k | V2k, [ V2k; 1

Rl Rll RZZ eZi(k,+kz)I
Yok, I V2ky 1 >]

where
R, = Ks k) R, = Ke K
ﬁ "y k‘ ﬁ B2 k2
| = DX, (k))? R, - DK, (k))?
s gy = —————22
w1 (k+kp) p2 (ky+ k)
'\T -+ Aluminium & Steel
quugm iron & copper
3
v —

00 01 02 03 04 05 06 07 08 09
X/l —

FiG. 4. Normalized crack opening displacement versus normalized distance x//

from the centre of the crack.

...(82)

...(83)
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_ DK, (K) K, (k) _ DK, (K)) K, (k)
Rz] = RlZ' -
w (ky+ ko) . ua (ky+ k)
eir/4 !
D = (-1 .
N~

Expressions in (63) and (64) give the displacerq'ent jump nearabout the crack tips
where as the displacement jump at points away from the crack tips are given by (82).

From these two results we can obtain the crack opening displacement at any point
of the crack surface - { < x < L,y = 0.

Here also normalized crack opening displacement has been plotted against nor-
malized distance x/L from the centre of the crack for two different sets of materials
in Fig. 4. It is interesting to note that oscillatory nature of the crack opening displace-
ment increases with the increase of frequencies as a result of the interference of waves
inside the crack. Further we note that amplitude of the crack opening displacement
decreases with the increase of frequency.

‘} Im z
Cl.ll .k1 .ka
= — > Re 2
H° “c
kz k1 L

Imz

Fic. 6. Path of }nl'écara}{m vound
the bromech 'Po'mtS-
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ArpenDIx A
2 2V
mpy (@ -k
K(a) = P 3 ( i) R()
‘  + )
where
R(a) = (1 + ) (@ - kD)”
mo(o? = kD" 4 (o - k™
Put m = ﬁ.
y
Therefore
2 2\ 1
pa (o = k)
K(a) = R(«a) (AD
1+
where
(0 + m) (o? - kP”
R(x) = TN 22)2%—1as|a].—-oo.
( —k o+ m(a - kz) )
Now - o
1
R, (a)R_(a) =
m_ (e’ - kD"
L+m (m+1) (a? - k)"
Therefore S
! j
log R, (a) +log R_(x)=log =log R(«x)
m (? = kD

1+m (m+1) (a® -1k*

i

l
|
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1 log R
log R, (a) = — o8 R(2) dz |
2w (z-a) |
CL |
~ic+ oo l
1 1
— : og R(z) dz
27 (z - a)
-ic-o . . .
where ﬂuz.paﬂr\ of ;nba?ro,h'e‘n G 1s sShoum m an. 5.
Putting z = - z and using the fact that R(z) = R(-z), we get
. fc+oo
1 log R
: 2xi (z+a)

1 S log R(z) dz

2xi (z+a)
G

where C, is the contour round the branch points k; and k, as shown in Fig. 6.

So,
' log (22 - kH”
1 m+1  (m+1) @ - khH*|
log R, (a) = dz
2xi (z+a)
C, '
L2 LW
o log [1 + L& KD
1 m(k3 - z) %
T 2xi S (z+a)
k, )
k& log|1 - M
1 m(k3 ~ z%) %
2 (z+a) “
ky
2 _ 2%
k tan™! [t (2 2 kl)2 ‘A]
1 M(kz -z d
= — 4
x S (z+a).
&y

(22 - k)"

k tant | ——

1 [m(k%w’)”}

SR (a) =exp| — S dz
T

(z+ )
ky
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Similarly
2 2w
ky  tan! Z -k ,
1 ) m(kz _ ZZ) %]
R.(a) = exp | — dz
T (z - )
3

Therefore from (Al) we can write

. [ ky tan™ |:”(;z(2k; flzz)z:zv;:l .
K, (a) = ‘/_#_2(("/‘?___1';_1))_' exp —;lr— g (z‘+:) dz | ...(A2)
ky
and
- ) [ & tan” [ ”(Ii;_ _ki)z:/z} i
K (a) = %‘;— exp % § = :) ‘dz . ..(A3)
L 1 -

Hence from (A2) and (A3) we get

Vi (a - k) * 1
K, (~a) = 22— 17 .
(-e) V(1 +m) exp T S

= iK ()

te. K; Fa) = (K_{&) (A4)
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HIGH FREQUENCY SCATTERING OF PLANE
HORIZONTAL SHEAR WAVES BY A GRIFFITH CRACK
PROPAGATING ALONG THE BIMATERIAL INTERFACE
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M. L. GHOSH
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Abstract—The problem of diffraction of horizontally polarized shear waves by a finite crack moving on
a bimaterial interface is studied. In order to obtain a high frequency solution, the problem is formulated
as an extended Wiener~Hopf problem. The expressions for the dynamic stress intensity factor at the crack
tip and the crack opening displacement are derived for the case of wave lengths which are short compared
to the length of the crack. The dynamic stress intensity factor for high frequencies is illustrated graphically
for two pairs of different types of material for different crack velocities and angles of incidence.

1. INTRODUCTION’

SCATTERING of elastic waves by a stationary or a moving crack of finite length at the interface of
two dissimilar elastic materials is important in view of its application in fracture mechanics as well as
in seismology. Recently, Takei et a/. [1] considered the problem of diffraction of transient horizontal
shear waves by a finite crack lying on a bimaterial interface. The method of solution was extended
by Ueda er al. [2] 1o solve the problem of torsional impact response of a penny shaped interface
crack. Srivastava et al. [3] also considered the low frequency aspect of the interaction of an antiplane
shear wave by a Griffith crack at the interface of two bonded dissimilar elastic half spaces.

In the case of cracks of finite-size. travelling at a constant velocity, loads, for mathematical
simplicity, are usually assumed to be independent of time. However, in practice, structures are often
required to sustain oscillating loads where the dynamic disturbances propagate through the elastic
medium in the form of stress waves. The problem of diffraction of a plane harmonic polarized shear
wave by a half plane crack extended under antiplane strain was first studied by Jahanshahi [4]. Later
Chen and Sih [5] considered the interaction of stress waves with a semi-infinite running crack under
either the plane strain or the generalized plane stress condition. Sih and Loeber [6] and Chen and
Sih [7] also considered the problem of scattering of plane harmonic waves by a running crack of
finite length. In both the cases the problem was reduced to a system of simultaneous Fredholm
integral equations which were solved numerically.

In the present paper, we have investigated the high frequency solution of the problem of
diffraction of horizontally polarized shear waves by a finite crack.moving on a bimaterial interface.
The high frequency solution of the diffraction of elastic waves by a crack of finite size is important
in view of the fact that the transient solution close to the wave fronI& can be represented by an integral
of the high frequency component of the solution. In order to solve the problem, following the method
of Chang [8)], the problem has been formulated as an extended Wiener—Hopf equation and the
asymptotic solutions for high frequencies or for wave lengths which are short compared to the length
of the crack have been derived. Expressions for the dynamic stress intensity factor at the crack tip
and the crack opening displacement have been derived. The dynamic stress intensity factor for high
frequencies has been illustrated graphically for two pairs of different types of materials for different
crack velocities and angles of incidence.

2. FORMULATION OF THE PROBLEM AND ITS SOLUTION

Let a plane crack of width 2L move at a constant velocity ¥ at the interface of two bonded
dissimilar elastic semi-infinite media due to the incidence of the plane horizontal SH-wave

W,= A exp[—{k,(X cos 8, + Y sin 6,) + QT}] (1
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Incidenl SH- wave
/Y / /_')_91_
® Y . h Y1

Sle 4=~ -Vt =~ -~ >
Running crack

N
>

of % ~ad-—-> =

® ‘ 2

N I— V= Crack velocity

A 4

Fig. 1. Running interface crack.

in the medium. The crack lies on the bimaterial interface along Y =0 with respect to the fixed
rectangular co-ordinate system (X, Y, Z) as shown in Fig. 1.
We assume that the displacement and stress fields W, Tyz, (j=1,2) are

W,=W/(X,Y, T) : @
OW,(X, Y
Tyz; = #j% s : €)]

1
in which subscripts j = 1, 2 refer to the upper and lower half planes, respectively, T denotes time
and g; is the shear modulus of elasticity. The displacement W, is governed by the classical wave
equation i
;W W, 1w
=— =1,2), 4
Yoy —aer U=k @)

where ¢; = (y;/p;)'” is the shear wave velocity and p; is the density of the material. Without any
loss of generality, we further assume that ¢, > ¢;.

Due to the incident wave given by (1), reflected and transmitted waves in the absence of the
crack may be written in the form

W, = B exp[—i{k,(X cos 8, — Y sin 6,) + QT}] 5)
and _

W, = C expl—i{ky(X cos 6, + Y sin 6,) + QT}], ' 6)

where . A
; k, s%n 8, — mk, s?n g, )

kysin 8, 4+ mk,sin 0,

~ ¥, sin f}}f'fl;/f' sin 6, " ®)
m=,/u, and k,cos@, =k,cosb,. : 9)

A, B, C are incident, reflected and transmitted wave amplitude, k; is the wave number, Q = k;¢; is
" the circular frequency and ,, 8, are the angles of incidence and refraction, respectively.

A set of moving co-ordinates (x, y;, z,t) attached to the centre of the crack moving at a
constant velocity V is introduced in accordance with

x=X-Vt, y=s5Y, z=2, t=1T, 10)
where 5,= (1 — M})'? and M;= Vie is the Mach number. -
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In terms of the translating co-ordinates x, y;, eq. (4) becomes

o'W, o*w; 1 0 W, aw,
i) J 4 [%cja ) 1]=0.

o ot tasa | M e

In the moving system (x, y, z, t) egs (1), (5) and (6) take the form

—WJ A expl:—i{kl(x cos 91+§1sin 9,)+wt}]
. . \ . 1 .
e™\ W, =|B expl:—i{kl (x cos 6, —?sin 0,) + wt}]
. |
Wr C exp[— i{k2<x cos 8, +iﬁ sin 92) + wt}:l
- - L 2 y B

where w = Qa and « =(1 + M, cos 8,) = (1 + M, cos 6,).
In view of eq. (12) we take the solution of (11) as

Wi(x, y) €™ = wj(x, y)expli(M;4;x — o)}

Substitution of eq. (13) into eq. (11) yields the Helmholtz equation governing w;:

Pw  Owy L,
—_— - W, = j = 2
axl + ayjz +j’l w] O (J 1; ):
where
k;a
lj=—;2 )

7

Apblying Fourier transform, eq. (14) can be solved and the result is

1 L. o
wi(x, yi) =~ f B, (&)exp[—itx — (&2 — A1)y ]dE, >0

-

1 a
wo (X, y2) = — B,(&)exp[—ix + (£2— A3)y,]1d¢E, y,<0.
. 2

—

From (13), (15) and (16) we obtain the displacement components due to scattered field as

l [+ o]
=52 J- mAl(f)exP[_iix —wwyldé, y >0

1 @
Wy=5- '[ A;,(&)expl—ilx +v,,1dE, 3, <0,

‘where

V= [(é +'1]A41')2_'llz]”2’ J= 1,2.
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(11

(12)

(13)

(19)

(1%)

(16)

)]

(18)

(19)

A, (&) and A,(£) are the unknown quantities to be determined from the following boundary

conditions:
oW, oW,
—_—= —=, forallx, y=0
Hi Sy P U259 I ora x y
i

Wi=W,, |x|>L, y=0

oW, ow, oW, |
=0, |x|<L, |y =0+.
dy, Oy, 9y

(20)
@n

(22)
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From the bouﬁdary condition (22) we obtain
Z—T=A,eXp[';ik,xcos 0}, Ix|<L  y=0, | ‘ '(23) 4

where ' .
4= i(4 — Bs)lkl sin 8, . (24)

Using (17), the above equation can be written as
1 (= : '
P J A (&), exp[—iéx]dE = — A, exp[—ik;xcos8,], —=L<x<L
=P(x), x>L (say)
=Q0(x), x<—L (say).

Therefore
A (&), =expli€L]G, (&) +exp[—iL]G_(¢) — (6 é [exp{l(f &)L} —exp{—i({ — &)L},
0
(25)
where
G, (€)= f " P(x)explic (x — L)) dx 6)
G_ (&)= j O (x)explic (x + L)] dx en
, &=k, cosb,. (28)
From the boundary condition (20) we obtain
46y = - HAE), (29)
V2 - .
where
M=EE (30)
) . Ha S5
Next using the boundary condition (21), we obtain
A(8) — 4,(8) = fm (W, — Wy)expli¢x] dx
= JL P, (x)exp[iéx] dx ,
-1 ;
—NE) (ay), | (1)

which is the measure of the discontinuity of displacement along the sultface of the crack Now with
the aid of (29) and (31) we find

VN ()

Al(f)=v2+le-

(32)

Eliminating A,(f) from (25) and (32) we obtain an extended Wiener—-Hopf equation, hamely
expliZL1G , (&) + exp[— iEL]G_ (&) — N(E)K(f) :

t(é co)[“xp{l(f co)L}—exp{—z@ ELY, (33)
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where
. vy -
KO = =153 RO - (34)
o (L M)y,
RO ==~ 37 % (35)

In order to solve the Wiener—-Hopf equation given by (33) we assume that -branch points
E=40—-M), L1 —M,), =41+ M,)and —1,(1 + M,) of K(&) possess small imaginary parts,
which would ultimately be made to tend to zero.

Now we write K(£)=K,()K_(¢), where K, (&) is analytic’ in the upper-half plane
Imé& >Im[—A,(1 + M,)], whereas K_(&) is analytic in the lower-half plane given by
Im ¢ <Im[4,(1 — M,)]. The expressions of K, (£) and K_(&) are derived in the Appendix. Since
8W,[dy, decreases exponentially as x — + o0, G (f) and G_(¢&) have the same common region of -
regularity as X, (¢) and K_(¢). - .

Now eq. (33) can easily be expressed as two integral equations involving G, (£), G_(&) and
N(¢&) as follows: .

G.&) e[ 1 1 J ™ | [ ' A.e‘f*]m

. © i(é—éo)[K+(<f) K+(¢o)}+2m T AO| RS
Ale—i{OL ) —LJ‘ e—ZLsL A ei oL

K &) ). G-OK.6) G =4

where c, and c_ are the straight contours below the pole at & = &, and situated within the common
region of regularity of G, (£), G_(&), K. () and K_(&) as shown in Fig. 2.

The left hand side of (36) is analytic in the upper-half plane whereas the right hand side is
analytic in the lower-half plane and both of them are equal in the common region of analyticity
of these two functions. Therefore, by analytic continuation, both sides of (36) are analytic in the
whole of the s-plane. Next, by Liouville’s theorem, it can be shown that both sides of (36) are equal
to zero. Thus we obtain

I 4, ek Y
G _—

=N(K_(E)e ™+ [G )+ )] ds, (36)

1 c21'.rL Al oL _
':m—ifc+(s—f)K+(s)[G )+ 6= co)]d“‘“o' 37

Similarly, we also obtain

1 A, it 1 2L ~ A, e~ %ol B
K_(c)li -6+ i(¢ —Co)} 2ni J;_ (S _é)K_(s) |:G+(S) ‘——-—l.(s —-fo)} ds =0. (38)

Ims

g, M0-M) Apli-Mp)
L4 .

I
| Res

c_
<

Y

re

[ ] [ ] . C .
=AMy =2 (14My) +

Fig. 2. Path of integration in the complex s-plane.
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3. HIGH FREQUENCY SOLUTION OF THE INTEGRAL EQUATIONS

In order to obtam G, (&)and G_(¢&) from the integral equations (37) and (38) in the case when
the normalized wave number A (1 + ML » 1, the integration along the path ¢, in (37) is replaced
by the integration along the loops L_; and L_;, round the branch points —4,(1 + M,) and
—4,(1 + M,) of K, (s), respectively. Also, the integration along the path ¢_ in (38) is replaced by
the integration round the circular contour L, round the pole s = &, and by the integrations along
the loops L;, and L;, round the branch cuts through the branch points 4,(1 — M) and 4,(1 — M,)
of the function K_(s) as shown in Fig. 3.

Finally evaluating the integrals along the straight line paths round the branch points for large
values of frequency, we obtain two equatrons given by

0, €9 E A F L1+ M)IF[F 4(1 £ M)

F )+ C, (EH,Z 24,0 % M)~ G, L7 =0, (39)
where ¢, =1 and 0, =M, and '
l L. A eFRt
+(§) K. (& )[ t(C)+i(<—§o)}
R
AAi(é)z?cl/T[Ki(é)]l
FitL .

Ci(é)z__A‘e—___ » (40)

i€ — &)K. ()
Now substituting ¢ =4,(1 —M,) and 4, (1 —M,) and ¢ = —i (1 + M,) and —4i,(1 + M;) In
(39) a system of linear equations of F [A (1 —M))], F,[%(1—M,)], F_[—4(1+ M,)] and
F_[—7,(1 + M,)] are obtained. Now solving them and neglecting higher order terms of (A L)y '”
and (4, L)™' we obtain, finally, after some algebraic manipulation:
F 240 F M) = - Co (240 F M,)]
1o A (4,0 £ M)IC (R M)
LG, DG £ M)+ 400 F MO)Cal2 5 F M)
Now using (39) we obtain from (41)
Aye¥Fiot T A, e;i:OLK: ()
i€ — &) (€ — &K, (&)
[Uk e M UMY L [F A (£ MIIC: [F A £ MK, ()
) 24 LY 20 £ M) £ &} »
(1 - 2 s, 2 FMILY A4 FMIC, [£40 ? M) ):I 42)
S 24 L) HAF M) + AL £ MOTCx [FA4(1 £ M)

:[,' k=12 (41)

G.()=+

+

¥ e

k

X

i
Ims ! |
1
t 1
1 [l
Hhao Agbae
! i
Lo i !
LN
o Go MU-MY AR (1-Mp)
N > Res
= A (HM) -2, (14My) : Ct+
.
L}
d
i~ L
; A, N
!

Fig. 3. Path of integration L,, L;,, L;,and L_;, L_;,.
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4. CRACK OPENING DISPLACEMENT AT PO#NTS AWAY FROM THE

CRACK TIPS :
} l
In order to obtain the displacement jump for the large valurs of A (L — x), ,{L — x),4,(L + x)

and A,(L + x), we can write G, (¢) and G_(¢) from (42) as
' P, - 0:K@, & KQORY

= - 4
CO=2e e oy TAmaEMy £ @)
where :
Al FikoL
P, =22 (44)
A, eFiol P,
= = . (45
2T @ TG e
R0 = Ok M UEMOLY 2 [F (1 £ M)IC: [F A1 £ M)
* 2(A, L) .
« ( | o @A AL (40 F M)IC, [£4,(1 F M) ) 46)
2Ly P40 F M) + A1+ M)IC:[FAQ £ M)
Now we obtain from (33) o : -
0, et ‘ RO gkt ' RD it
NE) = - = —
= ek @ EF AU+ MK @ T G+ A+ MK ©
i (1) o—iL 2) o —i
+ Q_e kL _ RWe _  RPe "L @
(€ —&)K, (&) {E—-HA-M)}IK, () {&—4(1—-M)K, ()
From (31) we obtain the displacement jump across the surface of the crack as
Wi 040)~ il 0-) =5 [ N@eeae @

Substituting the expression of N(¢) from (47) in- (48) and approximately evaluating the integrals
arising in (48) term by term for large values of 4,(L — x), 2,(L —x), A4;(L + x), and 4,(L + x),
and neglecting terms of order higher than (1, L)~*?and (1, L)~*?, we finally obtain the crack opening
displacement across the cracked surface at points away from the crack tips in the following form:

AW = W (x,0+) — Wy(x,0-) = —iQ, K, (&)etotL—2

1 . M e~ T T ' 49
x[{(fo'*'llMJz—l%}m-*_ {(éo‘*‘;-zMz)z'—'l%}”z:l— Y) [ + —]’ ( )

where

T,

_ & o M UFMIEENNG, K [+ A,(1 F M)
_k=l {A(L ix)}m [2”2[/1»&(1 F M) F &l
_ 3 oA=L T a0 + MK, [+4,( F M»]( 0 Wz
24LY A0 F M)+ 40 £ M) \ {1+ M) &}

j=1

2 0,4, [+ 1.1 F MO o2, L F M)+ 4y (0 2 MpIL

- Z ’1/2:t — L— - * — — . (50)
1 204, L) A, (0 F M)+ 40 £ M)}H{A.(0 F M) F &}

5. STRESS INTENSITY FACTOR AND CRACK OPENING DISPLACEMENT
NEAR THE CRACK TIPS
Now considering _the behaviour of & at infinity we obtain from (42)
A, eFitoL
G,()~ +————+ 8,67 as E>oo, 51
: TR Gh

EFM 45/1—H
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“ where

S, — 1 ?Al ewe"l'_*_ L o @MEMOLY [ (1 + M)IC: [F A1 £ M,)]
1+ MR K, (&) ~ 2(A L)

| 5 (1 _ i o, 4AFMILYL [+ L1 F M)IC,[24(1 F M) >] - (52)
: 2400 F M) + A (1 MO)FCL[F A & M)
Now, from eq. (33), using (51) and also the fact that
K(&)— + d as >+ oo (53)
—_— l+ M — 3
we obtain
14+ M ] i f
N@)=—5aymlS. e+ 5S¢ “] as{odo. (54)
!
Taking the inverse Fourier transform of (31) and using the results of Fresnel integrals, viz.
Ay R "
———————eee d — ——— N
0 ()’ 2Ax + L) : oo

we obtain the displacement jump across the surface of the crack as

AW = W,(x,04+) — Wy(x,0—) = — (1 + M)(1 + i)s_[z(i_:i)]m for x> —L+0 (56)

—(1+M)(A-0)S, [2(%;1@]”2 forx-L—-0.  (57)

Expressions (56) and (57) give the displacement jump near to the crack tips, whereas the
displacement jump away from the crack tips is given by (49).

Next, in order to find the value of t,, near to the crack tip we use (54) in (32) and (29) and
obtain ’

A(é)—(;llj:ﬁ[S et § e %), j=1,2 asé—w | (58)
i\ ) = {(é)“z + - » J=1 ]
YRR A2 P
Aj(€)=%)Tf’[s+ef=L—s_e-ﬂ], j=1,2 as&-—oo. (59)
Now
' _ Wxy) W y) s [ eyl qs |
) =y D W)t ay,[ Lm'Aj(g)e de |. (60)

Now substituting the values of 4;(£) as |£ [—o0 in (60) and integrating, we obtain the stress near
to the crack tip as ' )

=~ 0=, DL 4 s TP | )

r}/2 r;/2

and

= — a0, 0B arps SREL @
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where
= (G = LY 423, gy =sint 2]
|
= (G4 L4y, gy =sin 2
' 2
&= {(x — LY+ 33}, gy =sint 2l
1
— LR, gy=sint 2 (63)
2
Therefore at the interface (y = 0) near to the right-hand crack vertex, we obtain
s (1 —1)S,
T,..—

vz —'m as X*‘II*L + 0. (64)

Now the normalized dynamic stress intensity factor K at the crack tip x = L is defined by
(2mk, (x = L), | _ (1= S, (k)"
mA, 1

for x—»L +0, : (65)

! K=

: where 4, 1s given by (24).
The absolute values of the complex stress intensity factor defined by (65) have been plotted
agamst k, L in Fig. 4 for values k,L.> 1 for different values of the Mach number M, and the angle

of incidence for the following sets of materials:
first set: steel py=T7.6gm/cm?  pu, =8.32 x 10" dyne/cm?
aluminium py=2.7gmjem?,  p,=2.63 x 10'* dyne/cm?
second set: wroﬁght iron p,=7.8gm/cm’, u, =7.7x 10" dyne/cm?
copper P, = 8.96 gm/em®, pu, =4.5 x 10" dyne/cm?.

As the Mach number M,—0 the stress intensity factor K tends to the value of the stress
intensity factor corresponding to the stationary crack. The problem for 8, = n/2 and M, = 0.0 was
solved earlier by Pal and Ghosh [9]. The graph of stress intensity factor vs k, L corresponding to
8, =n/2 and M, =0.0 as given in Fig. 4a is found to coincide exactly with that given by Pal and

2-0-

0.4 Wrought Iron & Copper —— M2=0-5
W Aluminium & Steel -————

00 T T T T T
1 3 S T 9 n 13 15 17 18

Fig. 4(2) (caption overleaf’)




116

(@

Fig. 4. Stress intensity factor Kv;:rsus dimensionless k, L. (a) 6, = n/2.(b) §, = '7z/l,3. ©)0,=n/4.(d) 8, =x/6.
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Ghosh [9]. It is interesting to note that for both pairs of materials, as M, increases, the peaks of
the curves of stress intensity factors decrease in magnitude and occur at lower values of k, L.
Further, it may be noted that for any fixed value of M, the stress intensity factor decreases with
the decrease in the value of the angle of incidence. |

|
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"APPENDIX

k(e < LG+ M MR = 1)

RE), .- @n

where

(1 + MY{(E + i, M)} — 132
M{(E + A4 MY — I3+ {(€ + 4, M) — A3}'7

R(E)= =1 as|{|-c0.

Now
1.
1 M{E+ M-
T+ M (I +M{(E+ M) -3}

R, (OR_(§)=

Taking logs on both sides

log R

og R(n) dn,.
n—2¢

where the paths of integration ¢, and ¢, are as shown in Fig. Al. Therefore

log R
logR, ()= 2:J. %gj(g—)d

I [ logR
: logR_(5)=ﬁJ. —°f_(§")d

lm’rl
|

log R({) =log R, (£} +log R_ (C)—2 IJ‘

240-My) 2\2(1—M2)

'G ) ’ R‘e.Tl

. L]
= A (14Mp) =2, (1+My) -

| Fig. Al. Complex n-plane.
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. . . Im ‘ |
1 i
‘ i
MU-Mp €, A,0- My
("‘"""“'— e )
I ’ < > Rcrl
_12(1+M2) —1](1+M~|)
Fig. A2. Path of integration round the branch points.
or
1 [~%*=log R(n)
log R =_— d
og R, (¢) 2“[ L
Putting n = —n
1 [ =log R(— 'I)
1 = S S 54
og R, (&) 2’"'_[“0 P
1 (*~~logR
log R_(¢) = '[ 8 R(™) 4y,
27“ e+ N _é
therefore :
g R- ) =5 | — : ¢
8 e Mg + A My -7 |P

L+ M (1 +MY{(n+ 4, M) — A3}
where ¢, is the contour round the branch pomts A (1 —M,) and 4,(1 — M,) as shown i in Fig. A2,

Therefore
ia(l — M2) 1 | 1 + lM{(l]-}-l Ml)l }'Z}llz
AT+ M T U MO0E— (1 + 4 M, )7

1
- log R_(§)=Z—MJ.A|(I—M|) n-3)

)

1+ M (1 +MYAL—( + 4, M)}

_1J'i=<-—M=> 1 mn_,'[M{(n+A,M,)2—A%}”’]dm

Tn an—my 1 =%) {A3—(n + A, M)}

Al — M) M[(r] +1l M,)z——lf]”’) ]
R_ = -1 dn [
(f) exp[ jl(l M) ('l c) e ( [lg_(’l +12M2)2]II2 g
i Ml(n — A/ M, )"~ ﬁ]ln) ]
R, Q)= ' dn |.
0= expl:” J‘ll(wun) (n+4) . ( [A3— (1 — L, M,))'° n
Therefote from (Al) we can write

&+ A0+ MY L0 + M) o (M[(y, —).,MI)Z_}.}]lrz>d jl
K, (&)= [ T+ ) J ‘{ ,[.(1+u.) wro " = & M1= )"

and therefore

Similarly

and

C[E—A0 — M) et = _1<M[(n +A.Ml>?—zf1'“)d]
K-©= [ (L+ M) } ‘{J( ) (n—é) i e vay o Al

(Received 29 May 1992)
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Abstract—In this paper, the problem of two-dimensional oscillations of four rigid strips, situated
on a homogencous isotropic semi-infinite elastic solid and forced by a specified normal component
of the displacement has been considered. The mixed boundary value problem of determining the
unknown stress distribution just below the strips and vertical displacement outside the strips has
becn converted to the determination of the solution of quadruple integral equations by the use of
Fourier trunsform. An iterative solution of these integral equations valid for low frequency has
been found by the application of the finite Hilbert transfornn. The narmal stress just below the strips
and the vertical displucement away from the strips have been obtuined. Finally, graphs are presented
-which illustrate the salient features of the dlSplaCmenl and stress intensity factors at the edges of
the strips. \Pynghl © 19% EIsevxer Sucnce le

1. INTRODUCTION

- The problem of the eflect of vibrating source in different forms on the surface of an elastic

mediuim have aroused attention in view of their application in seismology and geophysics.
 Reissner (1937), and later Millar and Purscy (1954), treated the case of a uniform vibrating
pressure distribution applied to a circular region on the surfuce of an clastic half-space.
Anulytical treatment of the dynamical response of footings and solid-structure interaction
are ysually available in the literature only for circular and clliptical !'oolin&,s and infinite
strip loadings. Such results are important in view of their application in the design of
foundations for machinery and buildings, and also in the study of the vibration of dams
and large structures subjected to earthquakes. The problem of circular punch has been
solved analytically by Awojobit and Grootenhuis (1965), Robertson (1966), Gladwell (1968)
and others. Roy (1986) considered the dynamic response of an elliptical footing in fric-
lionless contact with a homogeneous clastic hall-space. Karasudhi er al. (1968) obtained a
low frequency solution for the vertical, horizontal and rocking vibration ¢l an infinite strip
on a semi-infinite elastic medium. Wickham (1977) worked out ia detail the problemy of

forced two-dimensionul oscillation of a rigid strip in smooth contact with a semi-infistite’

clastic medium, Recently, Mandal and Ghosh (1992) treated the problem of fora.d vertical
vibration of two rigid strips on 4 semi-infinite clastic medium.

To improve the dynamic models of buildings and other!structures, it will be fruitful to
have analytic results for foundations of a more complicalefd nature. In what follows, the
* problem of vertical vibration of four rigid strips in smooth contact with a semi-infinite
elustic medium has been considered. The problem is also impbrtant in view of its application
in the study of the vibration of an elastic medium caused by running wheels on a railway
track. The result: . mixed boundary value problem has been reduced to the solution of

t Author to whom correspondence should be addressed.
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quadruple integral equations, which have further been reduced to the solution of integral-
differential equations. Finally, an itcrative solution valid for low ['ruqucm.y has been
obtained.

From the solution of the integral equations, the stress just below the strips and also
the vertical displacement at points outside the strips on the free surface have been found.
The effects of stress intensity fuctors at the edges of the strips and vertical dlsplubcmcnt
oulsxdc the strips have been shown by micans of graphs.

2. FORMULATION OF THE PROBLEM

Consider the normal vibration of {requency w .of four rigid strips having smooth
contact with a semi-infinite homogencous isotropic elastic solid occupying the half-space
L\___\_\—oo <X<mwY2z0, —® < Z < oo. Itis assumed that the motion is forced by prescribed
dxsplaccmcnt dlsmbuuon’uoe “"’\mrmdl to. the four infinite strips located in the repion
d <X <dydy <X < h = 0, |Z| < o0, where v, is a constant.
" Normalizing all the lengths with respect to d and putting X/d = x, Y/d = y, Z|d = z,
d\/d=a, dyjd = b, d;Jd = ¢, one finds that the rigid. strips are defined by a < |x| €
c<xl € L,y=0,]z] < oo (Eig. 1).
\_\[}che time fdctowupprcssed throughout the analysxs, the displacement com-
ponents can bewritlen as

T~

l

|
a 3 d
wx) = =T o) = e G =0 W)

where the displacement potentials ¢(x, y) and x,l/(.‘c,y) satisfy the Helmholtz equations

ge 8
-+ +mip =0
axt 9t ¢
al . 62 ) . ’ :
- ——i + l{, +m3y =0 ; 93]
ax*  dy*
in which
s wid? L wid?
my =-— and m3 = —
€ L4F]

In terms of ¢ and ¥ the stress components are

|2 R 277 7 R 7 N,
-1 -c -b -a ad b C 1 '

Y
y

Fig. 1. Geometry of the problem.
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RN )

oxdy ~ ax*  oy?

: 7y S
T, =— {(nz, +2——)¢ zaxay} : o

T =0. ‘ [ON

Ty =

The boundary conditions are

v(xlo)-=b0) XE12)14 . (4)

Tyy(x,O) = 0, x€1|,13,~15 , (5)
1,(x0) =0, —0<x<® : 6)

where I, =(0, a), I, = (a, b), 1, =(b,¢c), Iy =(c, 1), 15 = (1, o). The solution of the Helmholtz
equation (2) can be written as

¢=2 qu A(&) cosExe "7 d¢

]

Y =2 J‘w B(&)sinxe 17 dE )

0

where

~ {(é*—m})'“,' 14
" i —eyn,

“and A(£) and B(£) are unknown functions to be determined ffom the boundary conditions.
By using the boundary condition (6), it can be shown that

B() =

27,6
: A(6). : ®)
& +y3 @ ' .

Now the displacement component v and stress t,, become

) £2 .
v(x,y) = ZJ [2622_5";‘3_7”“3—7"']’4 (§)cosixdg
) =3 .

—m3

T(x,y) = —-2ﬂf [("u—Zéz)e""+2§ i ‘“"]A(é)COSExdé-' '(19?,

0

From the boundary conditions (4) and (5) we get the following set of mtegral equatlons in

PEQ): A

o .'y,m§ 1 : :
P(&)coséxdE =zvy, xely, 1, (1
.L (28 —m3)* —a&%y, 7, 2 :

and
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v

j P(&)coséxdl =0, xel,,[,,/ (12)

where

_(252-’/71%)2 487, : 7
P(g) =— et i) A(8). |

3. SOLUTION OF THE PROBLEM

We consider the solution of the integral equations (11) and+(12) in the form

1

P(&) = Jh i) cos{IdH—J ug(1*) cos Eudu ; . - (13)

a <

where f{£) and g(«*) are unknown functions to be determined. “
By the choice of P(£) given bv eqn (13) the relation (12) is satisfied qutomatically and
eqn (11) becomes ’

jb % l’d’r RILE Excos £1d¢
it COS { X COS
e 0 (262—'”5)2_452}’1}’2

P ‘ ! ® y ;n? v ‘

using the relation

sin{xsin§r ‘r‘ J’ wolo (Ew)Jy(Ev) dvdw

ci 0 o(xz_w?.)l/?.('l_ul)lll

the above equation is converted (> the form

d ® .38 woL (vw)dodw
&l o] ]

0 (XZ_WZ)I/I(lz _UZ)I/Z

O x v v y dv xel
[ ombnson _u g

d 1
+ EX_J; ug(®) du—

ou 0 Jo (xz_wz)l/z(uz_vz)l/z ?’
where
Ly(ow) r i Jo(E)To(E0) E. (16)
v, W) = W .
‘ o QE—mi—4&yy, o Lo

By a simple contour integration technique used by Ghosh and Ghosh (1985), L;(v, w) can -
be written as : ,

Li(o,w) = —it? J'l (I—n®)'2@n? _12)21131)(",‘;,“,)]0(m,m))d,’

o o Q=) 16 (7 ~ D —0?)

o [P = D ) P HE ) o ()
—4itt — - dy
o =Y +10* (= D)E2 -4



b
,

'Q0(7) denotes the derivative of Qu(n) with rcépcct to n and

Forced vertical vibration of four rigid s\ﬁps on 4 semi-infinite elastic solid S

ric? ('72"l)m-HQ)-,(m"7“,)',"('"‘"%)] ’— = v.
Qo) S .

) " HE" (i, nw)Jo(mno) o

(1—
l6(l—rz) Z ,[ nt—1}

N Z s, J' (r?— )I/ZH%‘I).(”'I;IW)JO(”I,”’)' ’l}
= ,

o [[07 = 1) P o1 Jo oy o)
+it? . , W>0 (an
i [ Q5 ()
where
7= 'l'l — ﬁ, . Qo('l) =(2'12 —t2)2 _4"2(”2 _ |)|/z(;lz_.rz)|/2
ny Cy

and 14 is the root of the Rayleigh wave equation Qy(n) = 0. t,, 1, are the roots of lhe
cquation

(2’72 ~_1.2)-2 +4”:‘("2 = 1)!/2 (”2 _12)1/2 = 0.

_ (=17

G

-2 2
~1
~HOZD 20,12 and in)

>

The corresponding expression for L,(v w) for w < v follows from eqn (17) by mlerchangmg
w and ». For a Poisson ratio ¢ = 4, the values ofr 14, Ty and 1, are gwcn by

2(1—
12=( U)=3, 1 = 3

(1-20)

Hlw

2 3 2
2

091947 T 2+2/3)

Henee,inthiscase <11 <1 <1 < 1.

By using the series expansions of J, and H{", and cvaluating the integrals arising in
cqn (17), we obtain, after some algebraic manipulation,

mw o

2

2 : :
-« Ly(o,w) =;r{(y+l g—z————)M+N—-—(w +vz)m, logmlj|+0(m.) W > 0.

ny v

2 7 . .
=1 l:( 1gT—2)M+N—-z(w’+'uz)mflogrr1|]+0(mf) w<v, (18)

where 3 = 0.5772157...1s Evler's constant,

I

M _;@_,tz_)_ 19)

I
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hr=_,_n___;|:4 Og +Z P A T; \/(1—1’12) \/('C\)
T

32(1—1*

1y

+/ *\_‘""7103{10/m +2,S \/__r})
\\\ SR : _s, /(rg—r lon {ro +\/E——15}J, (20)

_____________ T

3’(1—r2)Lz ( ")szs(—z—ff)]- ey

Next, differentiating both sides of relation (14) with respect to x, we obtain

2 dt }'l'ngc
J e J ATy —afiy gy e

1 - i': N A
g
ug(u? )duJ’ sin§xsin{ud§ = 0,~xel,1
L (28 —md)* =48, 7, n

~
Cy

Following a similar procedure as for deriving eqn (15), we get : LT

2 1 x {1
XJ' ;zﬂ_t) drdx j uzg( u?) du_J‘ tf(lz)dlalj J woL, (v, w)dodw

x¥— o o(x -—-WZ)Ilz(l 2)!/2

x fu wl B
J ug(u?) du— ai ‘{ f woL@w)dwde 4 @2)

o Jo (x2 _“,2)1/2 (ul _Uz)m !

where

@ 29,82 (mi —mi) . |
L s = —_ - - - 0 o N .
2 (60) J [c T ¢'2m,]l (Ew)o(E0) A& @3)

For small values of 1, and m1, such that m;, = O(m,), one can use the contour integration
technique mentioned above and obtain

Ly (v, w) = 2imi(1—1%) J * (=) Q7 — 7y HE (i) Jo oty 10)
= ' o @P =) +16n (= D —i?)

dy

) 2'1‘('7’—1)(12—ﬂ’)"zHS”(mnHW)Jo(mnw)d

+4in1f(1—12)J

0 @2 =73 £ 160 (7 = 1) (2 = %)
02l _ '/2 ) NT
—znin,f(l—ﬁ)[” =1 ”°,('"‘"“)J"("“"")l L ow>p  (24)
Qo(’l)

" By a process similar to the one which led to eqn (18), eqn (24) can be written as
/ 4P 2 2  4yy 2
L,(v,w) = — —n—(l — %)t logm, + O(m}) (25)

where P is given by eqn (21).
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Now examining relations (15) and (18) we assume the expressions of the funclxons

J(r) and g(«) as R A -
S = fo () +1,(¢})m} log m; + O(m}) o L T T T
g(?) = go(u?)+g, (12)mt log m, + O(m?). (26)

Putting the above cxpressions of f(£*) and g(1%), and the value of Ly(v, w) gi\'/'en by eqn (25)
-in eqn, (22) and equating the coefficients of like powers of n1, we obtain

" 2 i 2 ‘ e
[ 1-/22)(1 Zdt+‘].”‘q20(“_2)du=0' xe[z,]& (27)
Ja X°—1 ¢ X" —U ’ ' -
and ’ '
5 2 2 i
[£9 0w [ 280 ~Lpa—| [y are [ wpatirau, sent
a X" —t e X _u

(28)

Following Srivastava and Lowengrub (1970), the solutions of the above integral equations
(27) can be obtained as

1 —a2 \!112 A\ i
So(1?) = (c —az) (}1_12) =G —1)

tel, . (29

12 2\1/2 ) l
—Dl ,
(b’—tz> JU=1>)(-1)

At /2 A\ I2
T 90(1?) = D, ( 12 : z) (“ : ) :
t—a l—u?) /0 —a*)(u?~b%)

p. (" —a*\'? 1 *}
| + y UE 30
: 2(11’—19) Jr =) (1 —u?) ! (30)
where D, and D, arc constants which can 'bcAc;'z_xIculatcd’ﬂsTollows:
We substitute the value'of L,(v, w) from cqn (18), as well as the expansions of f{1?) and
g(1) obtained from eqns (26), (29) and (30) up to O(m?logm,) in eqn (15). When the
cocflicients of like powers of 7, from both sides of the resulting equation are equated, after

somec algebraic manipulation we get the following  © !

- and

: , ! v
; o p =M X o me | X=Xy @1

l TN T 4 (N X=X Xs) —412(T"|X4—X2X3)

]__ 1IN\ )
X, = ( L "2> [{(,.Hog—?'_l - 5>M+ N}(J, T+ 4 5 MU, log(b’—a‘)+MJ,]

(32)

4 i A i
;= {b + log% - %)M+ N}(J. —J)— 3 M log(bt =)+ MJ, . (33)
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| -a?

i m, mi 1 . .
X, = (C2 ——a’) H(y+1og—2—' -~ —2—)M+ N}(!, +3) 4 5 My log(1 = ¢3) ,\u,}

34
- _ ; |
X, ={(}’+log'%—§>M+N}(J‘—-Jz)+ EMJ" log(l — ¢?) — MJ,
o Cl_ll 172 ldl . lz_al 12 ld’ .
J, = L
| “(“”) Je=aye-m J (b‘—1’> JAO=5E =)
o pl(uz—cl)l!. .udu . -J'x<u-. a >”z wdu
AN J @ =a) =5 ‘4, =0 S =) (1 —-u?)
;- [Puost/ie =0+ / 112_—a2)< W _Cz)”z d | |
- u ;
Ul JEmayw-)  \i-d | _
i
s ”ulog(\/”I"b2+\/u2—a2)/u2—a2>”2du 4
Tl (=)l =c?)  \u?—b? L
7 Ja (P =a*)* - 1) 1—¢
J-=f“b““&“”+Jleﬁvﬂ_fy“m a9
! a ({_(2)(02_12) \bz_lz

4. STRESS INTENSITY FACTORS AND DISPLACEMENT

The normal stress 1,,(x,) on the plane y =0 can be found from the relations (10),
(13), (26), (29) and (30) as

T N 1—a*\'? cz_‘xz 172
e = () (22)
JE=a)B =)L \?—a 1—x

22,2 . - -
> —a) ]+O(mflogm,), xel,

P S=) (=)

o TR [D (l—a2 )"1 (x*=c?)
JE— -l \d-at) JF-a)( b

2

x*—a*\'? ‘ \
+D, <___) ]+O(nxf lognm,), xel,. (36)
xt—b?) : '

Defining the étrcss intensity factors at the edges of the strip‘s _by the relations

1, (x,0)/x—a|
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K, = }_M ' (37)
2(b? —a?) '

_ b D, 1=—a? \'12 et — p2\'12 Dz:' b2 — »
N {_<2a’ <cl—b’> —K../(lib)(ac) )}l G
RIS
C /2T =c?) bo \?—p?

(39

| { (I=ehD, %(1-(11)'/% }l (46)
lf—cl) Je=au—e \i-et)

" The vertical displacement v(x,y) on the plane y = 0 can be obtained from eqns (9), (13),
(26), (29) and (30) as -

o(x, 0) = it._[{(}v +logni, — %i)M+N}{ o lzi‘ZIZ)l/z(J. +73)

2 ll2

+Dy(Ji— Jz) + 5 &é/-]n)

D, +‘D2(Jl2—Jl0)}j| xel, 1), I (41)

where

*b 2 2 2 2\1/2
tlog|tt —x ct—t - - -
Jy = gl l ( > d¢ A

Ja S —a?) (B —1?)
. tlog|r* —x?| [1’—a’)”2
’ ‘IIO_

Jo JU=) @ —H\b* =1
)

.o ulog |u? — x?| (u’—c"’ uzd
1= T2 2_.2\1_2 u
Je ﬁl at)(u* —b%) u

1 ulogluw? —x?| (u?—a*\'?
J|z = gl l ( 2 g 2) du
Je J 2= =) \u*—b

1—¢2

5. NUMERICAL RESULTS AND DISCUSSION

The stress infcnsity factors (SIF) K,, K,, K. and K, at the edges of the strips and -~

vertical displacement |v(x, 0)/v;| near the rigid strips have been plotted against dimensionless
frequency n1, and distance x, respectively, for a Poisson solid (1% = 3).

it is found that whatever the lengths of the strips are, SIFs at the four edges of the
strips increase with an increase in the value of iy (0.1 € my < 0.6),

From the graphs, it may be further noted that with a decrease in the length of the inner .

~ strip, which might be induced cither by increasing “a” or by decreasing “b” the SIFs
gradually increase (Figs 2-9).

Also, a decrcase in the value of the length of the outer strip, which might be induced
by increasing the value of ¢, causes an increasc in the values of the SIFs (Figs {0-13),.from
which an interesting conclusion might be drawn: i.c. that the presence of the outer strip
suppresses the SIFs at both the edpes of the inner steip and the presence of the inner strip
suppresses the SIFs at both the edges of the outer strip.

-—
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Fig. 2. Stress intensity factor K, vs dimensionless frequency m, for b = 0.6, c = 0.8 and for &'iicrent
- values of a.
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Fig. 3. Stress intensity factor K, vs dimensionless frequency m, for b = 0.6, ¢ = 0.8 and for different
values of a.
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?:’g. 4. Stress intensity fuctor K, vs dimensionless frequency m, for b = 0.6, ¢ = 0.8 and for different
values of a.
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Fig. 5. Stress intensity factor X, vs dimensionless frequency m, for & = 0.6, ¢ = 0.8 and for different
values of a. .
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Fig. 8. Stress intensity factor K, vs-dimensionless frequency m, for a = 0.2, ¢ = 0.8 and for different

values of b.
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Fig. 9. Stress intensity factor X vs dimensionless frequency m, for a == 0.2, ¢ = 0.8 and for different

values of .
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Fig. 11. Stress intensity factor K, vs dimensionless frequency m fora = 0.2, b = 0.4 and or different
: . values of c.
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Fig. 12. Stress intensity factor K, vs dimersionless frequency m, fora = 0.2, 6 = 0.4 and for different
values of c. :
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Fig. 13. Stress intensity factor X, vs dimensionless frequeiicy m, fora = 0.2, b = 0.4 and for different
values of ¢.
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Fig. 14. Vertical displacement Iv(x. 0)/vq| vs dimensionless distance x for b = 0.6, ¢ = 0.8, a = 0.2,
0.4 and for m, = 0.1,0.2,0.3.
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Fig. 15. Vertical displacement |v(x, 0)/v,] vs dimensionless distance x for a = 0.2, c = 0.8, b = 0. 4
0.6 and for m, = 0.1, 0.2, 0.3.
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Fig. 16. Vertical displacement |v(x,0)vo| vs dimensionless distance x for a =0.2,b = 04, c = 0 6
0.8 and for m; =0.1,0.2,0.3.

The vertical displacement has been plotted for different strip lengths. It is found from
Figs 14-16 that with 4n increase in value of strip lengths, the displacement increases.
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