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SPECTRAL REPRESENTATION OF A CERTAIN CLASS OF SELF-ADJOINT DIFFERENTIAL 
·OPERATORS AND ITS APPLICATION TO AXISYMMETRIC BOUNDARY VALUE PROBLEMS 

IN ELASTODYNAMICS 

S. C. P A L, M. L. G H 0 S H and P. K. C H 0 W D H U R I (DARJEELING) 

1. Introduction 

In this work an integral representation of the Dirac delta function required for solving 
the axisymmetric boundary value problem has been derived first. This representation 
is particularly suitable for problems where mixed boundary conditions are encountered. 
Following FRIEDMANN [I], by contour integration of a suitable Green's function, integral 
representation of c5(R- R0) (R, R0 > 1) has been derive_d. This representation haS been 
used to solve a particular type of axisymmetric problem in elastodynamics. 

The problem treated is that of a semi-infinite elastic body containing a circular cy
lindrical cavity, whose axis is perpendicular to the plane surface. The semi-infinite me
dium is subjected to an axisymmetric concentric torque applied dynamically as a step 
function in time at the plane surface. . 

At first LAMB [4) investigated the classical normal loading problem of an elastic half
space. As similar type of problem was investigated by EASON [5], MITRA [6], CHAKRA
BORTY and DE [7] and many others. '[hey are all point source problems in a homogeneous 
semi-infinite medium. 

The propagation of elastic waves, due to applied boundary tractions, in semi-infinite 
media containing internal boundaries has as yet not been studied to any· large extent. 

An earlier and comprehensive survey of the field is given by Scorr and MIKLOWITZ [8]. 
Recently this type of work has been done by JoHNSON and PARNES [9). 

We have solved the problem of the SH-type of elastic wave propagation in the semi
infinite medium due to a ring source producing SH-waves in the presence ·or.a circular 
cylindrical cavity (case I). The problem of SH-wave propagation in the presence of rigid 
circular cylindrical inclusion in the semi-infinite medium due to the ring source has also 
been treated in the case 2. 

2. Integral Representation of a Dirac Delta Function 

Consider the operator L with A as a complex parameter, where 

(2.1) L = .!!_ (r !!_) + .tr- .!_ 
dr dr r 

whose domain, D, is the set of all twice-differentiable functions u(r), a < r < oo such that 

7 Journal of Techn. Physics 1/85 
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(i) 

---··-------- --- ___ _._ ___________ _ 

S. C. Pal, M. L. Ghosh mui P. K. Chowdhuri 

du 
r-- -u = 0 at r =a > 0 dr 

(ii) the behaviour of u as r ~ co is that of an outgoing wave. 
The solutions of LG1 = 0 which satisfy (i) are 

(2.2) G1 = At[lt((Ir) Yz(r'Ia)- Yt(V'Ir)J2(tlfa)], a< r < r0 , 

where A 1 is an arbitrary constant and J. and Y. are the Bessel functions of the first and 
second kind, respectively. 

Again the function G2 which will satisfy LG2 = 0 and the condition (ii) can be writ
ten as 

(2.3) G A H (l)( .. -") 
2. = 2 1 V /.r (a < r 0 < r < co), 

where A2 is an arbitrary constant and H~ 1' is the Hankel function of the first kind of 
order n. 

From Eqs. (2.2) and (2.3) the Green's function G satisfying the equation LG 
= -b(r-r0 ) and the conditions (i) and (ii) mentioned above is given by (c.f. [I]). 

(2.4) G(r, r0 ; ).) = - 1tHP'(v'Iro)[l1(yir)Yl(yia)-:-Y1(yir)J2(yia)]H(r0 -r)-
2Hi1>(JI ).a) 

1tHII)(y'}:r) .r .r- .r .r _ _::_.o...:__,_<-[Jt( v Aro) Y2(v ).a)- Yt(V Aro)Jz( v Aa)]H(r-r0 ), 

2Hi 1>(l/ Aa) . 
0 < arg). < 2n. 

Now consider 

(2.5) 1 j--2 . G(r, r0 ; A)rd)., 
:ru 

where the contour of integration in the ).-plane is shown in Fig. 1. Since G has a branch 
point at ). = 0, we introduce a branch eut in the complex A-plane along the positive real 
axis and then take the contour as a large circle of radius Ri, having the centre at ). = 0, 
not crossing the branch cut. 

' 1m:>. 

FIG. 1. Circular contour of integration ABA; in the ).-plane. 
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In terms of Hankel functions Eq. (2.4) can be written as 

(2.6) -4~ [HP>(y'Iro)HP>(v'Ir) H~2>(~Ia) Hfi>({Iro) HF>({Ir)]H(r0 -r)+ 
I H~'l( Ail) 

+ ~ [H''>(liJ.r )H<'>(r.IIr) Hf<>(VJa) -H0 >(J/Xr)H<2>(•1J.r)]H(r-r) 
4; , o 1 , • H~ 1 >(y'J.a) , 1 " o o . 

For large JzJ, the asymptotic behaviour of m'>(z) and H~2 >(z) is [2] 

m'>(z) 'V y 1t~ exp [i ( z- n; - ~)], 

H~2 >(z) 'V V :z exp[ -i( z- n; _ ~)]. 
(2.7) 

Thus, for large values of J).J, from the relations (2.7) we obtain 

{2.8) 

y'- ,- H12'(yia) 2 .r 
Hi'>( l.ro)HP>(vJ.r) ~ 'V exp[iy J.(r+ro-2a)+i7t], 

H1'>( -A.a) Jl J.rro7t 

Hf'l( JIIro)Hf2>(VJr),.., --.7 ~xp[i y'I(r0 -r)], 
7t I' A.rro 

Hf'>(y'Ir) Hf2>( y'Ir0 ),..,-} exp(i y'I(r-r0 )]. 

7t r A.rr0 

If we put }. = k 2 , then the circle in the A.-plane becomes a semi-ci_rcular arc C of radius R 1 

in the upper half of the k-plane shown in Fig. 2. 

lmK 

E 

F1G. 2. DED'- the semi-circular path of integration C in the K-plane. 

Consequently, for large values of R 1 the integral (2.5) can be written as 

(2.9) _J_-.. //:.j [exp{ik(r0 -r)}H(r0 -r)+exp{ik(r-r0 )}H(r-r0 )]dk-
21t V ro 

7• 

,. 

--
1-J-. i !-exp{ik(r+r0 -2a)}dk = 

27t V ro 
c 

R, R, 

- -~-1/ T J exp(ikJr--r0 J) dk+-
1
--. / !.__ J exp{ik(r+r0 -2a)}dk = 

2rr r0 27t V r0 
-R 1 -R, 
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Our .object is to show that the integral (2.5) represents - t5(r- r0 ) when R 1 -+ oo. To justify 
the statement, consider a testing function ¢(r), in D which is continuous, has a continuous 
d~rivative of order two and vanishes outside a finite :interval. Then, from the relations 
(2.5) and (2.9) 

00 

lim J ¢(r)-
2
1

. j" G(r, r0 ; ).)rdA.dr 
R 1-.ro 7tl 

a 
00 

= _lim _!__ J ¢(r)-. / r !.inR1(r-r0 )dr + 
R,-•oo n V ro (r- r0 ) 

a 

00 . 

I . I f ..l.( )vr sinR1 (r+r0 -2a)dr ..l.( ) + 1m - 'I' r - - -'1' r0 
R,-x rc r0 (r+r0 -2a) - . ' 

a 

where we have used the result of Dirichlet integral and Riemann-Lebesgue Lemma [3]. 
Therefore 

lim -
2
1 

. f G(r, r0 ; J..)rd). = - b(r-r0) •. 
R 1__,.oo l'tl 

To obtain an alternative integral representation, which will be useful for our subsequent 
application in physical problems, we consider the contour r (Fig. ~)consisting of the real 
axis from k = e to k = R 1 , where 0 < e < R; a semi-circle C 0f radius R 1 above the 
real axis; the real axis again from - R to - e; and finally a semi-citcle r of radius e above 
the real axis with the centre at the origin. We take e small and R 1ilarge. 

JmK 

E 

FIG. 3. FDED' F' F- the path of integration F in the K-plane. 

The integrand 2G(r, r0 , k 2 ) kr has no singularity inside the contour r, and so the 
value of the integral 

(2.10) 

i.e. 

2~i f G(r,r0 ;P)2krdk = 0, 
r 

R, 

2~i J G(r, r 0 ; F)2krdk = - ~i J G(r, r0 ; u2)2urdu+ 
~ 

~ ~ 

+ 2~i f G(r, ro; e2"1u2)2rudu- 2~ J G(r, ro; e2e2'o)2re2e210d(). 
. 0 
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" 
lim_!_ J G(r, r0 ; r/e211f)e218e2rd8 = 0. 
-on

0 
_ . 

Letting e --+ 0 and R 1 --+ oo in (2.1 0), we get 

(2.11) . I J .. o(r-r0 ) = - hm -
2 

. G(r, r0; P)2krdk = 
R1-•ro 1tl 

From Eq. (2.4) 

c 

<Xl 

= -
2
1

. J· [G(r, r0 ; P)-G(r, r0 ; Pe21")]2krdk. 
31 • 

0 

' 
x H(r -r)-~ [ J1(kr)+iY1(kr) _ J1(kr)...:...iY1(kr)] x 

· 
0 2 J2(ka)+iY2(ka) J2(ka)-iY2(ka) · 

x [J1 (kro)Y2(ka)-Y1 (kro)J2(ka)~H(r-ro) = 
• <' ..... .., 

. [J1(kr) Y2(ka)- Y1 (kr)J2 (k~)] [Jt(kro) Y2(ka)~ Y1(k~o)J2(ka)] · 
= 13 

. Ji(ka) + Yi(ka) · · 

Substituting this expression ii_J- Eq. (2.11)," we get / 
<Xl 

.ll( _ ) = j' [J1 (kr0) Y2(ka)- Y1 (kr0)J2(ka)] [J1(kr) Y2(ka)- Y1(kr)J2(ka)] k . ..z'k· 

u r r0 . J2(k )· Y2(k ) · · · · r: "' • . 2 a+ 2 a . . . 
0 ' 

Substituting rfa = R, r 0 /a = R0 and ka = y, ·Eq. (2.12) can be written as 

<Xl 

(2.13) CJ(R-Ro) = J [JI(YRo) Y2(y)- Yl(yRo)J2(y)] [J1(yR)Y2(y)- Y1(yR)J2(y)] Rydy. 
noo+~M . · ··· 

0 

Since d(R-R0 ) is symmetric with respect to R and R 0 , then, .on the rlght hand ~ide of 
Eq. (2.13), Rand R0 can be interchanged. So we write 
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3. Formulation and General Solution 

Case 1. We shall now use the integral representation of the delta function given by Eq. 
(2.13) to derive the time dependent response of an isotropic linearly elastic half-space 
containing a cylindrical cavity of radius a due to a ring source. The axis of the cylinder 
considered as the z-axis, which is perpendicular to the plane surface, is directed downwards 
(Fig. 4). A torque is applied on the free surface of the half-space over the rim ofa concen· 
tric circle of_radius r = r 0 (r0 > a) for t ;;::: 0. 

z 

FIG. 4. Geometry of the problem. 

Therefore on the cavity surface r = a 

(3.1) T,o=f-l(ouo_~)=o 
or r 

and on the plane surface z = 0 

(3.2) 
ou6 

T6: = ~-'¥ = IJ(r-r0)H(t) (a< r < oo, r0 >a), 

where p is Lame's constant, o is the Dirac delta function and H is the unit step function. 
Now the only non-zero equation of motion is 

(3.3) iFuo. + J_ _ou0 + o2u0 _ ~ = _1_ o2u0 
or2 r or oz2 r2 {32 ot 2 , 

where {3 = {ii1(i is the shear wave velocity. 
Changing the independent variables (r, z, t) to the no-dimensional variables (R, Z, 1') 

defined by 
; 

(3.4) 
r 

R = ·-·, 
a 

the above equation reduces to 

Z = ~z·, 
a 

{3t 
T=-, 

a 
ro 

Ro = -a 

(3.5) o2 uo 1 Olio 02 Uo Uo o2 uo 
oR2 +R oR + oZ2 -f'iZ = o-cz 

and boundary conditions become 

(3.6) T 0 = !:!:_ ( 0110 
- ~) = 0 on R = 1 

' a oR R 
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and 
I 

(3.7) _I!_ -
01

-16 = _!_ b(R-R0 )R(t) To. = a oz a on z = 0. 

I 
Now, taking the Laplace transform with re~pect to nondimensional time (•) and· 

ou0(R, Z, 0) · 
assuming the homogeneous initial conditions u0(R, Z, 0) = --· · --rfr ---·- = 0 at t = 0 

Eq. (3.5) takes the form 

(3.8) 

where 
co 

(3.9) ~ J -.nd uo = uoe T. 
0 

Take solution of Eq. (3.8) in the form 
co 

(3.10) iio(R, Z, s) = f [A 1(y)J1(yR)+Bt(y)Y1 (yR)]e-Y•'+r•z dy, 
0 

where y is real, J 1 and Y1 are Bessel functions of the first and second kind respectively. 
Using the boundary condition (3.6), we obtain 

J2(y) 
(3.11) B1 (y) = -Ax(Y) Y

2
(y). 

Substituting the value of B1 (y) an in Eq. (3.10), we have 
' co 

(3.12) ii0(R, Z., s) = j A(y)[J1 (yR) Y2 (y)-J2 (y) Y1 (yR)]e- 11
'

2

+r•z dy, 
0 

where 

(3.13) 

Therefore the transformed stress component reduces to 

(3.14) 

where 

(3.15) 

New, using the representation (3.15), Eq. (2.14) becomes 

(3.16) 

.. 
Using Eqs. (3.7), (3.14) and (3.16), the value of A(y) is obtained as 

A(y) = ~ yC2(YRo) 
(3.17) flS y'(s2-yz) {Ji(r)+YHy)}. 
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Therefore u8 becomes 
ct) 

(3.18) iio(R, Z, s) = - Ro J - yC;z(yR)C:z(rRo) e-Jfy'+s' zdy 
flS 0 y'(y2 +s2) {Ji(y)+ YHy)} · 

On the plane boundary Z = 0 
co 

(3.19) uo(R, o, s) = - Ro f yC;z(yR)C:z(YRo) dy. 
flS o y(yl+sl) {J~(y)+Yi(y)} 

Now, introducing the change of the variable y = s?; into the above expression (3.19), 
we obtain 

(3.20) u0(R,o,s) = 

Next, using 

(3.21) 

and 

(3.21') 

we obtain 

(3.22) C 2 (si;R) = J 2 (s?;)Y1 (si;R)-Y2 (s?;)J1 (s?;R) = 

1 • 
= 2/[Hp>(s?;R)Hf>(s?;) -Hf2 >(si;R)Hi1>(si;)] 

and 

(3.22') 

Also 

(3.22") 

Therefore, Eq. (3.20) becomes 
ct) 

(3.23) uo(R, o, s) = -
4
Ro f V ?; F(R, R0 , s?;)d?;, 

' fl 0 ( 1;2 + 1 ) 

where 

(3.24) (R, R0 , s?;) = F 1 (R, R 0 , si;)+F2 (R, R0 , s?;) = F 1 (R0 , R, si;)+F2 (R0 , R, s?;) = 
= F(R0 , R, st) 

and 

(3.24') 

(3.24") 
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Using the asymptotic values of the Hankel functions for a large argument, it ean be shown 
that 

~ 2 
(3.25) 1, -= F, (R, Ro' sl;) --+ ----= [e-lsC(Ro-R) + e-I•C(R+Ro-2>] 

'ti y ( 1;2 + I) nsl; V RRo 

as I sCI --+ oo, showing that ~~ (R' Ro' .sC) vanishes over a large circular arc in the fourth 
(!;2 + 1) . . 

quadrant of the complex !;-plane for R < R0 • 

Also 

(3.25') CF2(R, Ro. sl;) 2 [e'•C<Ro-R>+e"C<R+Ro-2>] 
l/ (1;2 +I) --+ nsC V RRo 

h . h CF2(R, Ro, sl;) . h 1 . I . . h fi d f s owmg t at varus es over a arge c1rcu ar arc m t e rst qua rant o 
.;ce+l) 

the complex C -plane for R < R0 • Therefore, for R > R0 , 

CF2(R0 , R, sl;) 

y' (C2 +I) 
and 

l;F1 (R0 , R, sl;) 

y(l;2 +1) 

,vanish over large circular arcs in the first and fourth quadrants, respectively ,of the complex 
!;-plane. 

Denoting the responses for field points inside (R < R0 ) and outside (R > R0 ) the 
I 

source by the subscripts I and 0 respectively, WI! ha'o[e for points inside the source (R < R0) 
I 

00 

(3.26) R f I; ! ii8,(R,o,s) = --
4
° -:o.=[F2aR,Ro,sC)+F1 (R,Ro,sC)]dl; 
flo y(C2+1) 

and points outside the source (R > R0 ) 

(3.26') 

In order to evaluate 
00 

(3.27) Ro r C --
4 

I F2 (R, R0 , sl;)dl;, 
fl 0 JU?+I) · 

which is the first part of it01 (R, 0, s) we note first that the integrand has branch points 
at I; = ± i and also has a branch point at the origin of coordinates due to the presence 
of Hankel functions in the integrand. The integrand has also poles which correspond 
to the zeros of H~1 '(sl;). From Eq. (3.18) we note that in order that ii0(R, Z, s) may be 
finite for large positive values of Z,(l;2 + 1)112 should have a positive real part on the path 
of integration. Accordingly, we draw cuts parallel to· the r~al axis from + i to - oo + i 
and from - i to oo- i to satisfy our requirement. A cut along the negative real axis from 
the origin is also drawn to make Hankel functions single valued 

8 Journal of Tecbn. Physics 1/85 
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is now integrated along the quadrant of a large circle lying in the first quadrant of the 
complex C-plane as shown in Fig. 5a. Since poles of the integrand are outside the path 
of integration, the integral (3.27) becomes 

(3.28) 

_ 1 <X> - e 
Ro [ J~ v F2(R, R0 , isv)dv+ J v F2 (R, R0 , isv)dv]. 
4p, - o V (1-vz) I i y (v2 -1) . 

a) 

i (~2-1 )1/2 

11-~ ) 

0 
0 

-i+----

• Branch point 
- Branch cut 
o Poles 

b) 

11 _
11

21v2 

-i(l12·1)1/2 

FIG. 5. Integration paths in the complex C-plane. 

Using the relations 

(3.29) 

we have 

ml>(iv) = -~ K,(v), 
:n 

H\ 21 (iv) = 2_K,(v)+2il1 (v), 
:n 

. 4i { . ~ l2(sv) } 
(3.30) F2 (R, R0 , rsv) = --;-K1(svR 0 ) 11 (svR)+Kt~svRJ K

2
(sv) · 

Therefore, the expression (3.28) becomes 

1 

(3.31) - iRo J Y v K 1 (svR0 ){/1(svR)+K1(svR) ::<~)) }dv-
p.n o (1-:- v2) 2 sv 

R0 J"" v { /2(sv) } --- -- K 1(svR0 ) / 1 (svR)+K1 (svR) K ( ) dv. 
_p,7t

1 
y(v2-l) - 2SV 

The second part of u61 (R, 0, s) is equal to 

(3.32) 
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we draw cuts from +ito co+ i and from -ito -co- i as shown in Fig;1 (Sb). A cut from 
the origin along the negative real axis is also drawn to make Hankel functions single valued. 

Taking a quadrant of a large circular contour in the fourth quadrant (Fig. (Jb)) and 
noting that the poles of F_1 (R, R0 sC) lie outside the contour, the integral (3.32) takC;s 
the form 

(3.J3) Ro r f ____ v- F1(R, R0 , -isv)dv-Jco I v F1 (R, R0 , -isv)dv]. 
41' o y'(I -v2) J ; J (v2-1) , 

Using the relations 

(3.34) 

H~ 1'( -;iv) = .3_ K1(v) -2i/1(v), 
7t 

.2 . 
H121(-iv) = --K1(v),. 

n 

the expression (3.33) becomes 

I 

(3.35) iRo J y v K1(svR0 ) J 11 (~R)+K1 (svR) i~sv)) }dv-
l'n 

0 
( v 2 - 1) \ · 2 sv 

\co 

-~J v K1 (svR0){11(svR)+K1(svR) KI2 ~(sv))··}dv. 
l'7l 

0 
y' (v2 -1) · 2 sv 

Adding the relations (3.31) and (3.35), we obtain 

co -

- 2R0 J v { /2(sv) }dv (3.36) u81(R, o, s) = -- K1(svR0 ) 11 (svR)+K1(svR) K ( ) · 
flll 1 y(v2-f!) 2 sv 

Similarly, it can be shown that 

(3.36') Uoo(R, o, s) = - 2
Ro Joo v_ · K1(~m {/1 (svR0)+K1 (svRo) ~2~sv~ }dv. 

' ftn I y ( v2 - 1) 2 sv 

Laplace inversion of the relations (3.36) is now taken to o)tain the displacement of 
points inside the source. 
Therefore 

(3.37) 

where 

(3.38) 

s· 
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Introducing the change of variable p = sv, and changing the order of integration 

(3.39) 

00 

Uo1 (R, 0, •) = - 2
Ro f. ··----1 

- dv [-
1
-. J e<rf•>P E(p) dp] = 

J-m · ll(v 2 _ l) 2m 
I Br • 

00 

2R .f l = ---0 
1 =.=::;:;-E(•fv)dv, 

p:n l' Jl (vl- 1) 

whereE(•/v) = ..2'_- 1 {E(p)}. 1 
We note that E(p) possesses no poles and is analytic for p > 10. It has a branch point 

at the origin and therefore a cut is drawn from the origin along the negative real axis 
of the complex p-plane in order to make E(p) single valued. 

Drawing a large semi-circular contour to the right of the Bromwich path AB in the 
complex p-plane, we conclude that E( -c fv) = 0 -if the integral · 

~i J E(p)e<rtu>Pdp = 0 
BC'A 

over the semi-circular arc BC' A (Fig. 6). 

,/ 
__ .,. p-plane 

A 

FIG. 6. Laplace inversion contour. 

Now 

(3.40) E(p) = 

Since 

and 

e<ri•P>Kl(PRo)lr(pR) ! 2 (p) ""-- l J.;.-(R+Ro-l)J P as IPI-+ 00 
K 2 (p) 2p V RR0 

then the first integral on the right hand side of Eq. (3.40) vanishes for 0 < -c fv < (Ro- R), 
whereas the second integral vanishes for 0 < -cfv < (R+R0 -2). 

:-_: 
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Therefore 

(3.41) 

Where 

(3.42) 

I 

0, 

E(rjv) = ED(r-/v), 
ER(-r:fv), 

for o· < rfv < (R0 -R), 
for · (R0 -R) < T/V < (R+R0 -2), 

for (R+R0 -2) < T/V. 

£D(T/v) = 9'-1[Kl(pRo)/l(R)), 

ER(T/v) = _5f-~[x~(pRo)I1(pR)+Kl(PRo)x1(pR) _iY;)]. 
For value of r fv lying in the range (R- R0) < T Jv < (R + R0 - 2) 

(3.43) E(rjv) = ED(rfv) = ~i J K1(pR0)11(pR)e'*>Pdp . 
. Br 

Therefore, putting r/v = (R0 -R+y), where y > 0 

ED(Ro-R+y) = 
2
!i Jrx~(pR)e"Ro][J1 (pR)e-"R]eY"dp. 

Br 

From the Laplace inversion table [12], we find that 

9'~1[K ( R) pR0] _ H(y)(y+Ro) 
1 p 0 e - Ro{y(y+2Ro)P 12 ' 

and 

..2'-l[J ( R) -pRJ= [H(y)-H(y-2R)](R-y) 
1 p e 1tR {y(2R- y) )112. 

So by the convolution theorem 
y 

(-3.44) ED(R -R+ ) _ J" [H(rJ)-H(1].-2R)]H(y-rJ}(R-rJ)(y-'1]+R0 ) d 
0 y - nRR0 [1)(2R-1J)(y-'1})(Y-'1J+2Ro)]112 '1/· 

. 0 

For r/v lying in the range (R-R0 ) < T/v < (R+R0-2)T/v must be less than (R+R0 ), 

i.e. y < 2R. 
Therefore we can write 

So 

(3.45) 

E(-cfv) = £D(-r:fv) = 

!..-(Ro-R) 
v 

f 
0 

(R- rJ) ( -r:fv + R -1j)d'1J 

For values of -c fv satisfying the condition r fv > R + R0 - 2, 

(3.46) E(-r:fv) = £R(-cfv) = ~i 1 {Kt(pR0)lt(pR)+Kl(PRo)Kl(pR) ~:~)}e'*)"dp. 
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This integral is equal to the integral along the large semi-circular arc on the left side of 
the Bromwich path AB plus the integral on the two sides of the branch cut (Fig. 6). Since 
the integral-on the large semi-cir9ul~r ar?. vanishes, then Eq .. (3.46~ becomes 

(3.47) 

Using the relations 

and 
K.('T}e±1") = e~ 1."K.(rJ)±inl.(rJ), 

we obtain (for -rfv ·> R+R0 -2) 

where 

U2(x, rJ) = K2(YJ)l1(x, rJ)+l2(1J)Kl(x, rJ). 

Substituting these values of E(-rfv) in Eq. (3.39), we obtain . 

(3.49) . -~-

Uot(R, 0, -r) = -
2
:: [{ H( t- 'apr)- H(r- r+rp-

2
a )} J-R V v~-l £D(-rjv)dv+ 

. 1 

T ~ 

+H(t- ,+,p-2")1 '( v~E0(<fv)dv+ 'T' y.: -1 E'(<fv)dv)], 

· R+Ro-Z · 

where the.val.ues of ED(-rfv) and £R(T/v) are given in Eqs. (3.45) and (3.48), respectively. 
Similarly, taking the inverse=. Laplace transform. of Eq. (3.36'), the displacement 

iloo(R, 0, T) o·n the free surface outside'the ring source can be derived and it is found that 

(3.49') -·-

Uoo(R, o -r) = - 2Ro [{H (r- r-ro )-.H(t- r+ro-2~)}RJ-:.Ra 1 FD(-rfv)dv+ 

(3.50) 

' pn {3 {3 
1 

. y (vz -1) 

• T I 

.t-H(r-.!..7-'{3o-2a){ RJ-Ru ·,· __ ! ___ FD(rfv)dv+ R+[RoT2 
•· v 2 -l · · I 

~=·~ r 1 I 
R+Ro-2 

y 
---(R-Ro) 
v 

FD(-rfv) = J 
0 

(Ro- 1}) ( -rfv + Ro- rJ)drJ 
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First, the integrals of Eqs. (3.49) are the displacements due to a direct wave from the 
ring source before the arrival of the waves reflected from ·.the wall of the cylindrical cavity. 
The last two integrals together give the displacement after the arrival of the reflected wave. 

In order to obtain the response in the vicinity of the SH-wave front, we consider the 
displacement profile immediately behind the direct outgoing SH-wave. Accordingly, 
we shall have to study the first integral of Eq. (3.49') because it gives the response of 
the direct SH-wave before the arrival of the reflected wave front. · 

Let R, = R0 + -r: and R.; = R. -- eR0 where R. and R- denote points at and immediately 
behind the SH-wave front, respectively~is a small positive quantity. 

Then 

(3.51) 

and 

(3.51') ~;~Ro = (1+ e~o) = q(-r). 
. . . f 

Substituting these values in the first integral of Eq. 3.49~, we obtain 

uo0 (R., o, -r) = 0, 
anci i 

q(T) 

Uoo(R;, o, -r) = -
2

Ro j" .. ! 1 -{1./ 1
-- · FD(lf,Ro, -rfv)}dv• 

p.n y ( v- 1) y v + 1 · 
I 

Therefore, we can write 
q(r) . 

(3.52) 2R0 J 1 lloo(R;,O,-r)= --- -==V(v)dv, 
p.n 

1 
yv-1·. 

where V(v) is an analytic portion of the integrand. For small values of e expanding V(v) 
by the Taylor's series about the point v = 1 and integrating term by ~erm, we ob~n 

(3.53) 4R (R )112 

Uoo(R;, o, r) :: --- V(l) - 0 e112 = Ae112 

p.n • , 
(say), 

where A is a constant. 
It therefore follows that the displacement component is continuous i.e. there is no 

jump in displacement across the direct SH-wavc front. 
Next, in order to consider the behaviour-of response just under the ring source, it 

should be remembered that the integral representations of transformed displacements 
given by Eqs. (3.36) were derived from Eqs. (3.26) <~ssuming that R -# Ro. For R =:= Ro 
the integrals along large quarter circles in the first and fourth quadrants should be reexam
ined. In this case it is found that though the contributions from the integrals along large 
circular arcs in the first and fourth quadrants are not separately zero, but the combined 
sum of the integrals along the large arcs in the first and fourth qu·adrants of the C-plane 
(Fig. pi and fb) vanishes. So the transformed displacements for R = R 0 are also given 
by Eqs. (3.36). Making R --t R 0 ±, it can easily by shown by help of Eqs. (3.36) that the 
displacement has no jump discontinuity accross the ring source. 
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Therefore, in order to derive the nature of the displacement as R -+ R0 , any one 
of the relations (3.49) may be studied. Consider, for example, the displacement at field 
points outside the source given by (3.49'). As R-+R0 , the upper limit of integration 
-r/(R-Ro)-+ oo. 

Further, as 

(3.54) 

and 

(3.54') 

Thus, from Eq. (3.49') 

T 

1 1 
-y'r.( v=;2c=-=1==) _. v 

~ 

R-Ro 

(3.55) 1. (R ) 2R0 J 1 1 -~. r· . . 1m Ueo , o, T =· --- -· -- uv+a mite quantity 
R-Ro J-l3'& V 2Ro · ' . N 

where N is large. 
The integral is found to contribute a logarithmic singularity to the displacerrtent 

just on the ring source. 
Case 2.' In this case the problem considered is the same in all respects with the first, 

except that the cavity of t~e radius a has been replaced by a rigid. cylindrical inclusion of 
the same radius. The cylindrical inclusion-being in welded contact with the elastic half
space, there is no relative displacement at the interface. In this case, the condition on 
the cylindrical boundary is u6 = 0 on r = a. 
In order to solve this problem, we take the solution in this form: 

co 

(3.56) iie(R, Z, s) = j [A 2 (y)J1(yR)+B2 (y)Y1 (yR)]e-yy•+s•z dy, 
0 

where u6(R, Z, ·s) is the Laplace transform of u6(R, Z, t) with respect to t. Now, ·using 
the boundary condition 

iio = 0 on R = 1 , 

we have 

(3.57) 

so iie becomes 1 

co I 
(3.58) ii6(R, Z, s) = j A1(y)[Jl(yR)Yl(y)-J1 (y)Y1(yR)]e-Yr'+s'Zdy, 

0 

where 
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Therefore, the transformed stress component on the free surface Z = 0 is 

(3.59) 

where 

(3.60) 

00 

'i:o,(R, o, s) = - ~ f A 1 (y) yy2 +Sl C1(yR)dy, 
0 

-ro.,(R, O,s) should be equal to ~ t5 (R-R0 ). In; this case, the required integral repreSen

tation of ~he delta function can be obtained fromj the following expansion formula given 
by Titchmarsh [11]: . I I . 
(3.61) 00 00 

f(r) = J C[J1 (Cr)Jtc~i;:~~~~Y1 (Cr)J dC J JfC~HltCCE)Yt(Ca)-Jt(Ca)YtCC~JdE. 
0 G 

where f(r) is a suitably restricted arbitrary function. 
Putting 

f(r) = t5{r-r0), 

f(l;) = t5a-ro). where r0 > a > 0, 

we get 

Now putting, !_ = R, !!>_ = R0 , Ca = y, we have 
a a 

00 . . 

lJ(R-R) = R J y[Jl(yR)Yt(y)-Jt(y)Yt(yR)][Jt(YRo)Yt(Y)-Jt(1')fi(YRo)l~ .. 
o o o JHy)+YHy) .. r. 

so by the relation (3.60) 

(3.63) 

This result can also be obtained by th~ -following technique already developed in Sect. 2 
of this paper. -

Now, we find·the value of A1 (y) as . 

(3.64) A1 (y) = Ro yCt(YRo) __ 1 __ 
p/l YY 2 +s2 Ji(y)+YHy) 

Therefore ii0 becomes 

(3.65) 
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Carrying on a similar procedure as followed to. obtain the displacement in the case 1, we 
find that in this case 

{3.66) . -11-· 

2R0 [{ ( r0-r) ( r+r0-2a)}Rfo-R 1 
u01(R, o, -r) = f.J-t~ H t--13- -H t- fJ 

1 

y'v
2

...:.
1 
E0(-rfv)~~ 

T T 

+H(t- r+rp-2a ){ R·"IR 
T 

y I E(-r-/v)dv}] 
v 2 -I·· 

:and 

.(3.67) _ _;_ R-Ro· 
uo~(J~, o, -r) = 2Ro [{H(r- r-ro )-H(r- r+ro-2a)} ( __ 1_ FD(rfv)dv+ 

flTt fJ fJ i' y' v2 
- 1 

R+Ro-2 

1 D . 

/
--=- F ("r:fv)dv+ 

l v2-l 

T R-Ro+2 
J 

. 1 .. 

y' 
1 

Ff(-rfv) dv}]. 
v 2 -l · 

-where £D(-rfv) and F0 (-r:fv) are (respectively) given by Eqs. (3.45) and (3.50) and 

c(3.68~ Ef(-r:/v) = Ff(-r:fv) = -I"' ui_(R, 7]) U,(Ro, rJ)e :...H·)'l dn 
Ki(rJ)+n 2 Ji(7J) ., 

0 

·where 

<(3.69) 
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Streszczenie 

SPEKTRALNA REPREZENTACJA PEWNEJ KLASY SAMOSPRZ~ZONYCH OPERATOR6W 
R6i:NICZKOWYCH I JEJ ZASTOSOWANIE DO OSIOWO-SYMETRYCZNYCH ZAGADNIEN 

BRZEGOWYCH W ELASTODYNAMICE 

Praca jest pr6bq znalezienia zamkni~tej postaci osiowo-symetrycznej dynamicznej funkcji Greena 
typu SH dla izotropowej jednorodnej liniowej p61przestrzeni spr~:iystej, zawieraj11cej cylindryczny otw6r 
kolowy prostopadly do brzegu p61przestrzeni. Rozwaiono dwa przypadki: pierwszy odpowiada swobod
nemu od obci!li:en.brzegowi cylindryczilemu oraz nagle przyloi:onemu osiowo-symetrycznemu obcii\Zeniu 
stycznemu, kt6re jest skupione na konturze pewnego kola w. plaszczyinie brzegu · p61przestizeni; drugi 
odpowiada utwierdzonemu brzegowi otworu oraz obci!li:eniu takiemu jak w przypadku pierwszym. Sto
suj!lc pewn!l calkow!l reprezentacj~ celowo-symetrycznego obcii\Zenia dla rozwa.i:anego ciala oraz technik~ 
transformacji Laplace'a, podano zamkni~t!l postac funkcji Greena tylko na brzegu p61przestrzeni. Prze
prowadzono tei: analiz~ jakosciow!l tej postaci w otoczeniu pewnego kolowego frontu falowego. 

Pe3JOAte 

CITEKTPAJihHOE ITPE.IJ;CTABJIEHHE HEKOTOPOrO ISJIACCA CAMOCOITPJDKEHHhiX 
.lll1ct><t>EPEHUHA.TlhHhiXOITEPATOPOB 11 ErO ITPHMEHEHHE K OCECHMMETPHl.J:HhiM 

KP AEBhiM 3A,UA l.J:AM B 3JIACTO,UHHAMHKE 

Pao(JTa HDJJHCTCH DOllblTI<Oii HaXO>J<J:(CHIIH 38MI<HyTOl'O BIIJ:(8 OCCCII.'II.:\IeTpU'IH0$1 AHHaMHtteCl<OH 
<I>YHI<I..IIIIl rpnHa Tltna SH MH JI30T{JOUHODO!'O OJ:(HOpOJ:(HOl'O nHHeiiHOl'O ynpyroro nonynpoCTpaHCTDa, 
co.z:tepmaBruero I..IHmm.z:tpnttecHoe HpyroBoe OTBepCTne nepneJ:tHI<YDHpnoe I< rpaHHJthi nonynpOCTIJI!JICTBa. 
PaCC,\IOT{JeHhl J:(B8 cnyttaH: nepBhlH OTDettaeT CB060J:(HOMY OT Harpy30J{ I<pa!O lUfJlllliAI)H'IeCI<OrO OT
BepCTDUfl u aHe3anno npnnomemwii ocecuM~!CTpH'IHoii KacaTt;JlhHOH narpy3I<e, KOTOpaH cocpe~orotte
.na ua l<OHT}'Pe HCIWToporo l<pyra B UJIOCHOCTII rj)aHHI~bi nonynpocrpaHCTBa, BTOpo$1 OTBettaeT 33l<peDJJeH
HOMy !<palO OTBepCTHH II Harpy3He Tai<Olt 1<8!< B nepBOM cnyttae. 

ilpimennn neHoTopoe mrrerpam,noe npe.z:tCTaDneHHe ocecmmeTputmoli uarpy31<H wm pacCAtaTPH
aae.uoro Tena II TeXHHKY npeo6pa30BaHilfl Jlarmaca, npu~e.z:teH 33.\U<H}'ThiH Blf.l( <jJyHJ<ItHH rpHHa TOJU.KO 
Ha rpam!lle DOJiyTipocrpaliCTDa. fipoDeJ:(ell Tome I<a'leCTBeHHbJii aHaJJH3 3TO!'O BH~a B OKpeCTHOCTH He
l<OToporo HpyroBoro BOJlHOBoro <!>pmrra. 

DEPARTMENT OF MATHE.'\IATICS 
NORTH BENGAL UNIVERSITY, DIST-DARJEELING, WEST B~GAL, INDIA. 

Receil·etl August ~· 1984., 
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WAVES IN A SEMI-INFINITE ELASTIC MEDIUM DUE TO AN 
EXPANDING ELLIPTIC RING SOURCE ON THE FREE SURFACE. 

S.c. PAL AND M~ L. GHOSH 

Department of MatiteJ;,atics, North Bengal Unirersity, Dist. Darjeeling 
West Bengal 734430 

(Received 12 May 1986) 

An elliptic ring load emanating from the origin of co-ordinates at I = 0 is 
assumed to expand on the free-surface of an elastic half-space. The rates 
of increase of the major and minor axes of the ellipse are assumed to be 
equal to a and b respectively. The displacement at points on the free-surface 
has been derived in integral form by Cagniard-de· Hoop technique. Displace
ment jumps across different wave fronts have also been derived. 

1. INTRODUCTION 

Since Lamb's original study of the elastic wave produced by a time-dependent 
point force acting normally to the surface of an elastic half-space, many authors have 
elaborated on his work. Aggarwal and A blow' discussed the exact solution of a class 
of half-space pulse propagation problems generated by impulsive sources. Gakenheimer 
and Miklowitz4 used a modification of Cagniard's method3 to discu~s the disturbance 
created by a moving point l0ad. In case of finite sources, the most widely discussed 
model is that of a circular ring or disc load. Mitra', Tupholme11 and Roy9 have studied 
the various aspects of the same problem. Elastic waves due to uniformly expanding 
disc or ring loads on the free surface of a semi-infinite medium have been studied ex
tensively by Gakenheimer5

• The axisymmetric problem of the determination of the 
displacement due to a stress discontinuity over a uniformly expanding circular region 
at a certain depth below the free surface has been studied by Ghosh6

• 

However exact evaluation of the displacement field for finite source other than the 
circular model docs not seem to have been attempted much in the literature. Burridge 
and Willis' obtained a solution for radiation from a g'rowing elliptical crack in an 

I 

anisotropic medtum. The problem of an elliptical she;ar crack growing in prestressed 
medium has been solved by Richards8 by the Cagniard-ae Hoop Method. Roy10 also 
attempted the same technique to solve the problem of ejastic wave propagation due to 
prescribed normal stress over an elliptic area on the free surface of an elastic half
space. 

In our problem, we have considen d the propagation of elastic waves due to an 
expanding elliptical ring load over the free surface of a semi-infinite medium. The 
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expression for displacement at points on the free surface has been derived in integral 
from by the application .of Cagniard-de Hoop technique for different values of the rate 

. I 

of increase of the major and minor axes of the elliptic ring source. The displacement 
jumps across the different wave fronts have also been derived. ! 

! 
2. FORMULATION OF THE PROBLEM AND ITS SOLfTION 

· Let an elliptic ring load P acting normal to the surface of an elastic half-space 
emanating from the origin of co-ordinates expand in such a way that the rates of in
crease of the major and minor axes of the ellipse are a and b respectively, a and b 
being constants. Major and minor axes of the ellipse are taken to coincide with the 
x and y-axes of co-ordinates where as z-axis is taken vertically downwards into the 
medium (Fig.l ). 

Thus we;have on z ~ 0 

"tzz--:-" -. 

z 
Fro. 1. Geometry of the Problem. 

p o t - (x: a-2 + y~ b-2)\fZ 
. (x" u -: + ytb-2)1f2 

';zz = ';yz = 0 

where P is constant and cS is the Dirac delta function. 

... (I) 

The displacement field inside the elastic medium· (z > 0) is given interms of 
potent~als cp and ~ as 

U = V ,P + V X V X ( ez •;} 
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where 

... (2). 

ex, Cy, e, are unit vectors along co-ordinate axes and Cd and c. are the p - and s-wave 
velocities of the medium. 

In order to obtain solutions of wave equations (2), we introduce Laplace trans
form with respect tor and denote it·by bar and also introduce bilateral Fourier trans
form with respect to x andy to supress the time parameter t and the x, y space 
co-ordinates. Taking laplace transform with respect tot (-)and also bilateral Fourier 
transform with respect to x andy(~),. the transformed boundary conditions are 

Pob 
'rzz = - ~-::--.=--:--,....,...-=---, (a2 ;! + b2 lJz + s2)112 , 't,n = 'ryz = 0. •.. (3) 

Then satisfying the transformed boundary conditions (3) and performing the inverse 
Fourier transform, the Laplace transformed displacement field can be written as 

where 

and 

ii1 (x, y, z, s) = ii1d (x, y, z, s) + ii1• (x, y, z, s) ... (4) 

for j = x, y, z 

co 00 . 

u i''• 1 (x, y, z, s) = J /2rrJ.L I I F}':q (;, lJ, s) exp [~ .. z + i (~ + "'jY)] d~ d'T) 
-00 00 1 

for ext = d, s 

Fxd (~, '1, s) = - i ~ ~ 0 G, Fx, (~, '1), s) = 2i~ ~d ~. G, 

Fyd (~. lJ, s) = - i71 ~o G, Fy: (~. '1J, s) = 2i"' ~d ~. G, 

Fzd (~. lJ, s) = ~d ~o G, F •• (;, lJ, s) = - 2 (~2 + 'TJ~) ~d G, 

G = (-;2-:~~).'FT' T = ~~ - 4 ~d ~. (E;2 + 11 2) 

,2 = a2 c;2 + b2 r,~, 

k s k = :_s_ 
d = -., s 

Cd c. 

Now the De-Hoop transformation, ! 

c; = ·s{cd (q cos 8 - w sin e), Y, = s/cd (q sid e + II' cos 8) 
I 
I 

l 
I 
I 
i 
I 
I 

I 
I 
>
\ 
I 
I 
I 
I 
i 
I 
J 

... (5) 

... (6) 

... (7) 



ELLIPTIC RING SOURCE ON THE FREE SURFACE 651 

where 6 = tan-1 yfx. ::·. ·-·· 

is applied into (5). The Laplace transformed displacement field (5) can be written as 

where 

00 00 

(R, Z, s) = lf2rrp. f I Fr~.l (q, w, s) exp [- s/cd (m.,. Z - iqR)] 
-00-00 . 

s:i 
x -- dqdw 

c~ 
d 

i Pab (q cos 6 - IV sin 6) m0 
Fxd (q, w, s) = - s. s/cd (E

1 
+ O)f/: .N 

2i Pab (q cos 6 - IV sin 6) md m. 
F:x. (q, w, s) = s. sfca (E1 + 0) 1 '~. N. 

i Pab (q sin 6 + w cos 6) m0 Fyd ( q, IV. s) = - ------0-'----.,------,-,,.:..____:__:_:_~____o'--
s. s/cd (E1 + 0)1 •2. N. 

2i Pab (q sin 8 + w cos 8) ma ms 
Fy~ (q, II', s) = · s. s{cd (E1 + 0)112 • N. 

Pab ma m 0 
Fzd (q, W, s) = / (E 0) 1 ., N , 

S.SCd 1+ '- .. . 
- 2 Pab (q2 + w3) ffld 

Fz, (q, w, s) = s. S/Cd (E
1 
+ 0)1/ 2 .N. ' 

I 

i 
ms = (q2 + IV~ + /:)1J2j 

E 1 = (I + q2 D + IV
2 F), . D = 

... (8) 

a= • • b~ 
F -= -- sm- 6 + -- cos2 9, 0 = - 2qiV sin 8 cos 6 (a2-b2)fc; 

z ·- c2 
cd d 

... (9) 

For mathematical simplicity Wf? confine our attention to the derivation of the 
displacement field at any point on the xz-plane. Obviously tlie displacement at any point 
on any plane through the z-:Jxis can then easily be visualized. Accordingly in order to 
obtain the displacement at any point on the xz-plane, we put 6 = 0 in (8) which then 
takes the form 

---
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S- : 

p b OOJ OOJ [ -- (m01 z - iqx) J 
u1.,1 (x_, z, __ s) = 

2
__!!___ Re K1.,

1 
(q,w)e CtJ dq dw 

7TiJ-Cd ·· · 

where 

and 

-oo - oo 

) . iwmn ) 
Kyd (q, w = - £11Z.N' Ky. (q, w = 

E = 1/cd2 (cd2 + a2 q2 + b2 w2
). 

2iwmdm., 
£lfz.N. 

3. DILATATIONAL CONTRIBUTION 

1 

-I 

~ 
i 
I 
I 

' J 

... (10). 

••• (II} 

From (I 0) ii~d is converted to the Laplace transform of a known function by 

mapping lfcd (mdz - iqx) into t through a contour integration in a complex q-plarie~ 

The singularities of the integrand of iizd are branch points at 

and the poles at 

± i (w2 + 1) 1 1~, ~ - s;= 
. (wz b~ + Cd2)•f2 

±z ---
a ' 

q = s; = ± i(w2 +r~ )112. 

± i"(wz + /2)'/2, l 
I 
I 
I 

>-
' ... (12) 
l 
I 
I 
J 

The poles at q = s; correspond to the zeros of the Rayleigh function N, · where 

YR = Cd/CR and CR is the Rayleigh surface wave speed. The contours of integration in 
the q-plane are shown in Fig. 2 (a, b, c) which also show the positjons of singularities 
lying in the upper half of the q-plane. 

Since the positions of the singularities and the transformed cottour of integration 
depend on different values of a and b, three different cases arise for the evaluation 
of Uzd.· 

(a) Case a > b > c.~. 

The q-plane for a > b > C d is shown in Fig. 2 (a)~ The contour q = q; in the 

q-plane, is found by solving 

.. (13} 
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I 

(c) 

Cs(O(Cd for O(w(WdQ 

oP a<.cs fop wso<"'<.Wda 

(b) 
FIG. 2. Cagniard paths of integration in the q-plane. 

for q, where tis real, we get 

for 

a.> CcJ fo1' all w, 

Q(Cd foPWda(W.(.O 

(a) 

.. (14) 

.. (15) 

and (P, rp) are the polar coordinates in the xz-plane as shown in Fig. I. Equations (14) 
1;\efine one branch of a hyperbola with vertex at q = i (wz + l)llz xJP, which is para
metrically described by the dimensionleSS time parameter: 't" as T VarieS from 'tMd 

towards infinity. 

As shown in Fig. 2 (a), the contour of integration has two possible configurations 
in the q-plane, depending upon .p and w. I 

For the case (I} given by: 

Case (I): 4> < 4>da and 0 < w < oo 

or 

¢da < rp < cf>ba and ll'da < w < 00 

where t/>da = sin-1 Cd/a, r/>ba = sin- 1 bfa 

and 

... (16) 

... (17) 

the vertex of the path = q; does not lie on the bra·nch cuts and hence the path of 

integration contour is simply q = q; and is denotec:i by /. 
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But for the case (2) given by : 

Case (2): tpd" < .P < tpba and 0 < w < Wda 

Or rp > tpba arid 0 <: IV < oo 

the vertex of the path q = q'/: lies on the branch cut betwee·n the branch poin~_q = s; 
and q = s; . Hence the integration contour is given by q = q;i f~r -r > -rwd which 

is denoted by II, plus q = qda = i -r sin .p - i (-r~,. - -r 2) 1 / 2 cos .p ... (19) 

for "t"wda < -r < -.,.d, where 

X cos rfo + (w2 b2 + C~ )1 1% sin rfo J . . .. (20) 

Transferring the path of integration from the real q-axis to the Cagniard's-path 
we obtain 

2 Pab 
ii:d (P, r{l, s) = 

r.,_.Cd 

"'da 1wd 

dq; J 
w) - e-., dt dw 

J dt 

+ H (</>ba -cp) f{ (,P - </Jda) I J Re [ kzd (qda, w) -- e-•t dtdw dqda J 
dt 

0 1
.·da 

00 
1
wd 

+ H (.P-.Pba) J J Re [kzd (qda, w) d~~a-] e-•1 dt dw J 
Q 1wda . . 

... (21) 

where fwd = P/Cd "t"wd and fwd a = P/Cd "t"wda. The first term of(21} is the. contribution 

from q; and the second and third terms are the contributions from qdq. 

Now interchanging the order of integration in (21) and inverting the .Laplace 
transform, we find that 

2 Pab [ 
ll:d (P, ,P, •) = --C- . H (• -

1T P. cl 

.I 

+ H (cp - t/>da) H (cPb••l- t/>) H (• .- Tda) H (T~., ~ -r) ' 

/ ( equar io11 rom inuetl 011 p. 655) 
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Tda 

X J Re [kzd (qda, w) d~;" J dw 

A~., 

r 0 for 'rda < .. < 1 I . 
~ 
I Td for l < 1: < "~a 
L 

A~ =. { 0 for """ < -r < 
Td for -r > I 

TJ = (-.: _ !)1/2 

l 
I 

l 
I 
I 
I 
J 

[ 
Xd - {YJ - (a2 cos2 rfo - b2) Zd}1 PJ112 

TJo = (a2 cos2 rp - b2)2 

1 

Yc1 = -r~ b4 sin4 .P + (a2 
- b2

)
2 

Tda = ~ [ (a 2 
- c~ )112 cos 4> + Ca sin "'J ' 

655 

... (22) 

... (23) 

... (24) 

... (25) 



------------------- ·- ---------

656 S.C. PAL AND M. L. GHOSH 

The first term in Uzd is due to the dilatational motion behind hemisphe~cal wave 
front at or = 1 and the second and third terms arc due to the dilationaJ motion behind 
the conical wave front at or = orda for ,P > t/>Ja • These wave fronts are shown in Fig. 
3 (a), 

3 (a) for a > b > Ctl 

z 

\ 
\ 

\~ba 

3 (b) for « > cr~ > b 

·.'% 

\ 
I 
\ 

\4' bca 

3 (c) for « < C4 . . • 

Fro. 3. Wave .patten for dilatational motion.~ 

or = -r:~,. shown in Fig 3 (a) by a dashed curve, is not a wave front because- it 

is not a characteristic surface for governing wave equation for the dilatatio.nal motion. 
Similar non characteristic surfaces were found by Gakenheimer and Miklowitz' for,a 
point load travelling on an elastic half space and also by Aggarwal and Ablow1 for the 
motion of an acoustic half;space due to an expanding surface load. They prove expli
citly that their solution was analytic over the surfaces. The same thing can be proved 
in our case also. 
(b) Case a > Cd > b 

In this case, the path of integration with respect to q transforms to- the simple 
path given by contour I (Fig. 2 (a)) for all w when t/> < t/>ba and also for 0 < w < Wda 

wben ~ba < cp < ¢da; whereas the path of'integration with respect to q transform to 
the contour II tFig. 2 (a)) for Wda < w < oo when rPba < ,P < r/>tia and also for all w 
when ~ > </>da· The remaining details of inverting. ilzd for a > C4 > b arc exactly 
the same as for a > b > CJ, and one can easily find :that 

2 Pab [ - JT d: [ dq: J . 
Uzd (P, ,P, -r:) = -- H (-r:- 1) ~~ kzd (q;, w)-d- dw 

1TJ-L Cd II ;! ! . _1 

(equation contlnu•d on Jl, ·657) 
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+ H (</> - tPba) H (r/>da - </>) H ('t - .1.~) 

··rda 

X J Re [kzd (qda,w) d~:4 J dw 

Td 

+ H ( tP - </>a a) H ( 'r - 'tda) , 

T da 

X J Re [ k"d (qda, w) d~~a J dw J 

where A~" is given by (23). 

Av 
da 

. • I 

The wave geometry associated with this expression is shown in Fig. 3 (b). 

(c) Case a < Cd 

657 

... (27) 

For this case the path of integration with respect to q transform to the simple 
path given by contour I [Figs. 2(bJ, 2 (c)] for all w when cJ, < cpba and also for 0 < w 
< Wda when cp > tPba, whereas the path of integration with respect to q transforms to 
the contour II [Fig. 2 (a)] for Wda < w < oo when cp >. c/>ba. Note that in this case 
the angle cpda does not arise. Now proceeding as the· case a > b > Cd for inverting 

llzd we get 

. u,,j (P, .p, -r) - 2 Pab [H (• -
. 1TfJ.Cd . 

Td ·. 

l) JR;[ k.~ (q; l w) 
Q I 

! 
I 
I 

·.:_ . 

.. (30) 

T,b.~ wave ge()IJietry associated with this expression is sho:ovn in Fi~. 3 (c). As 
expec~ed physically, contribution due to th(! conical wave front does not exist for this 
case. 

Summary 

Combining (22), (29) and (30) one finds that"Uzd cart be written as one expression 
for all values of a and b. · 
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Td: 
i dq; 

Uzd (P, </>, -r) =-
2 ~:~ [ H ('r - I)! f?.~ [kzd(q;, w) dt J dw 

o I 

+ [H (-r - Tda) H (rp -1 cPba) {H (b - Cd) -

+ H (a-cd) H (cd-b)} ~H(-r- -.~ .. ) H (r/>-r/>ba) {H (a- cd) 

x TH (cd - b) H (r/>da - rp) + H (cd- a)}] 
da 

X J Re [kzd (qda, w) 7tda J dw J 
-~da 

... (31) 

f 0 for "da < -r < 1 
I 

1 
I 

I 
I 
l 
I 
I 
~ 
I 

I 
Td for I < -r < ... ~.. ~ 

I 
J 

for cPda < </> < rPba, a > b > Cd 

I · 0 for -rda < -r < I } for </> > r/>ba, a > b > Cd 

for r/> > r/>da, a_ .:> Cd >.: fJ_ 
I 

Td for 1 <-. I 
I 
I 
1 Td for -r > -r~ .. 
l 

{ for t/>ba < r/> < c/>da, a > Cd > b 

for ,P > rPba, a < Cd. • •• (~2) 

4. EQUIVOLUMINAL CONTRIBUTIONS 

Inversion of iiz. is complicated than the inversion of iizd because pfthe appearence 
of head waves (Von-Schmidt waves) otherwise it is same as iizd. Here the integration 
contour bas more configurations in the q·plane though the singularities are the same. 

Here the hyperbola q = q~ aris~s in ~ similar way to q = q; , but its vertex can lie 

on the branch cut between the branch points at q = S~ and q = s: and at q = s: 
and q = s; as well as between q = s; and q = s; , depending on the values of w, q,, 
a and b. In this case, the straight line contour lying along the imaginary q~axis is _de
noted by q,a which is similar to qda appearing in the dilatational contributions. Now 
o¥uniting details of inverting iiz., one can easily find 

. T -

Uz, (P, cP, -r) = 
• d + 

4 Pab [ J [ + q, J H (-r - I) R~ kz~ (q , w) ""d dw 
rrpCd 

0 
• • t 

(equation continued 011 p. 659) 
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+ [H(T-•,a) H(,P--cp,a) {H(b-c,)+H(c,-b) H(a-c,)}-

-+ H(T - •:a) H(,P- cpba) {H(c,- b) H(cp,a- if>} 

x H (a - c,) + H (c. - a)}] 

T 

X r Re [kz, (q,a, w) ~~·" _ J dw 
~ ,a 

r,d 

X J Re [ kz, (q,a, w) ~~·a J dw J 
,: ,d 

for 0 ~ P < oo, 0 ~ .p < ":/2, 

•.. (33) 

0 ~ ' < oo, 0 ~ a < oo and 

0 ~ b < oo, a> b 

( = 0 for T ,a < T < I 
I 
I 
I 
\ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
i 
I 
I 
I 
I 
I 
I 
I 
I 
I 

= T~ for l < ~ < T' 
IQ 

= 0 for T,a < T <I 

= T, for • > l 

= 0 for '•" ...::::;: -.:<-r,d 

{ 

cp5 a < cp < t/>ba, a> Cd, a>b>c, ac,>bcd 

,P,a < .P<t/>,d, a>cd, a>b>c, ac,<bcd 

,P,a<t/><.cpob., Cd>a>b>c, 

} 
,Pba < .P < cp,J, a>b>cd, ac,>bcd 

,P,a<.P<r/J,d, a>cd>c,>b . 

1 

l r r/J>r/>,d, a>~>Cd, ac,>bca 

: .P >cp,d, a> Cd > 'c, >b 
j 

I 
I 
I 
> 
I 
I 

j 

I 

if> > </>.d, a > b > Cd~ ac, <bed 
I 

i" 
) cpba <cf> < cp,a, a > c4 > c, > b 

1 cpba < cp < cPab., Cd > a > Cs > b 

cpba < rP < cPab., a < c, 
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I 
I 
I 

= T, for -r' < "' < -r'a 
'" J " 

l 
I 
I 

I 
I 
I 

-r' 1a 
I .Pa~. < "' < ,P,a, Cd > a > c, > b 
~ 
I rf.>cpab., a < c, I 

I 
l 
I 
I 
~ 

A 1 a I 
I 
I 
I 
I 

= T. for"'> <a 
= 0 for -r,a < -r < I 

= T, for I < ·-r < -r 'a 
1 a 

-1 =T,afor•'a <-r<-r' 
1 . 1 a 1d 

I 
I 
l 
I 
I 
I 
I 
I 

I 
l 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 

= T,a for -r'a <"' < -r'a s a s 

= 0 for -r,a < -r < I 

= T, fc,r I < "' < ;;' · 
•da 

= T,a for "''d <"'<"''a I Q I 

.. ' .a 

I = 0 for 't" ,a < ;; < ;;' · sa a· 

I 
I 

I 
l 
I 
L 

= T,d for •'a < .r <-r'd 
I a - I 

( 
I 
I 
, = 0 for "'sd < "' < I 
I ..,_ .... ,_:;_:....,.., " -
I~..._ __ ...,. ... ~- • I = T. for I < ;; < "'•a 

I 

! ! 

I 
J 

r 
I 
I 
} ,P,a < .Pit, ca > a >c, > b, ~ > a:> y' 
~ 
j tP > rPba, ca > a > b > c., oc > ~ · 

/ rpba < ,P < rpx, Cd >a:;> b > c,~>IX>y 
L 

l 
l 
I ,P > · ,Px, Cd > a > c, > b, {3 > IX > y' 
I 
}-- rp > .Px, Cd > a > b > c,, ~ > IX > i' 
I 
l rp > tPba, Cd > a > b > c~, IX < y 
I 
J 

1 ., 
I tPabs < .p < tPba, Cd > a>b > c,, IX>{3 

I }- rpabs < rp < rPba, l;d>a>b>c., {l>IX>i' 
I 

I rPab, < "' < if>x, Cd > a > b > c., IX<i' 
l 

J 

I 
I 

-i-
_ ~ if>,. < ,P < rpba, Cd > a > b>c,. IX<y. 
l 

l 

I 
I 
J 

.P > ,P,d, a > b > Cd 
j __ .P > rf 5d, _a > Cd > c, > b 

>-

-I 
I 

J 

t/J,a < rp < rPabso Cd>a>c,>b 

4'sd < .p· <·rp,a,-Cd >a>b>c, 
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I = 0 for T,d < T < I 
I 

~ 
I 
I 

I 
I 

I 
I 
I 
I 

~ 
I 
I 

I 
I 
1 
l 

I 
I 

I 
I 

I 
I 
1 
L 

= T, for I < T < T' , IIJ 

= T,a for -:' <T< T'd .aa ~ a 

= T, for <.sa < T < T;d 

= 0 for T,d < T < t,a l rp > rp,a, Cd > a>c, ':>b, :x.>fl 

T t: . , I rp,a<rp<rp"', Cd> __ a;>c,';>b,~~cc>y' 
= ,a lOt T,a < T < Tada I 

~ .P>.Pab., Cd>a>b>c., ct>~ 

= T, for -r;d., < T < T:d j .Pa~>,<.P<.P"'• Cd>a>b>c.,~>ct>'J' 
l tPabs<.P<.P"• Cd>a>b>c., cc<y 

=.,0 for<da <:: T <I 

=- T,a for T,a < T < T
1 

. •a 

~>.P"'' cd>a>c,>b, ~>cx>y; 

rp > "'"'' CJ>a>b>c,~ 13>cc>y 
rp>t/>"', cd>a>b>c., a:<y 

T, = (Tll - J2)112 

... (35) 

••. (36) 

.. (37) 
_ [ X,- {Y. - (a2 cos~ .p - b2)2 2,}112 

T,a - (a~ cost .p - b1)a 

+ 2 (a2 - b~)b~ T, T~ SiJ?2 .p cos2 .p 

Z, = (T, -2c~ sin: .p)z - 41z c~ (a'- c;) sin2 .P cos2 .p 

T, = a2 T 2 + JZ (c: - a 2 cos.1 rp) 

l 
·I 
I 
I 
I 
I 
I 
)-
1 
I 
I 

1: 
I 

J 
.. (38) 
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-.:,a = lfa [(/ a 2 
- c; )1 12 cos rf> + Cd sin cf>] 

[ ( c; - b
2 

) 112 J 
-:- •d• = (/~ - J)I/2 cos cf> +. a2- b2 sin</> 

ct.= )

1/2 
, ~ = (F _ J)llll, y = bfa (/2 _ J)IJ2 

•> % a-- c 
- l{a [ -a~2--b-2_' 

q ± = i -:- sin .J. ± (-:- 2 - -:-
2 

) 112 cos 4> 
J ~ ws 

q,a = i-:- sin <P - i (-:-~, -- T
2
.)

1
'

2 cos rf>. 

... (39) 

... (40) 

... (41) 

... (42) 

.. ~( 43) 

... (44) 

.. (45) 

... (46) 

... (47) 

... (48) 

... (49) 

... (50) 

...(51) 

The first term in the expression (33) is the equivoluminal motion behind the hemi
spherical wave front" at -r = 1 and the second is due to the equivoluminal motion 
behind the conical wave front at • = •,a· The third term in u,, represents the equi-
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voluminal motion due to the head wave fronts at -r = -r..a. The wave fronts -r = -r,d 

for</>> tPsd and -r = -r,a are shown iri Figs. 4(a-l). 

\ 9'>6a 

z 
FIGS. 4(a-l). Wave pattern for equivoluminal and head wave motion. 

4 (a) for a > cd, a > b > c., a Cs > b Cd. 

\ 

z 

\ 
\ 

4'sa 

'\ 
'\ 
<;~~sd 

...... ...... 

4 (b) for a > cd, a > b > c,, a c, < bed. 

X 

The equations -r = -r:a , -; = -r:d and -r = <da are shown in Fig. 4 by dashed 

curve which are similar to -r = -r~a appearing in the Uzd. These dashed curved surfaces 

are not considered as wave fronts because it can be shown that displacements and their 
derivatives are continuo~s across these surfaces. 
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z 

\ 
\ 

4»ba 

\ 

\ 
\ 4'sa 

4 (c) for a > cd > cs > b. 

z: 
4 (d) for cd > a > b > c., « > 13· 

5. WAVE FRONT EXPANSIONS 

The wave forms of the solution given in (31) and (33) are evaluted by approximate 
estimation of the integrals in the neighQourhood of the first arrival of the different 
waves. To facilitate this evaluation we put 

w = [A 2 + (B~ ~ A2
) sin2 a.J 112 

••• (52) 

in the jntegrals arising in u,d and u,. where A and B are respectively the lower and 
upper limits ofthe particular integral in question, and the range of integration with 
respect to a: is form 0 to n {2. 

Now for .the first integrai of (31), we put w = Td sin a: and hence for-.-+ 1 +. 
we find that for any value of a. 
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z 

\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

' \. 
\. 

\. 

\ 
<t'sd 

' \. 

4 (e) for ca > a> b ~ c,, ~ > « > y • 

z 
4 (f) for ca > a>b > c,, a:-< y. 

w - 0, q; - i sin cp, Cd COS rP 
P.1 Td cos a. ' 

md- cos cp, ms- (/2
- sin2 cp)112

, m0 - (/2
- 2sin2 cp), 

p;z- :d (c~ - a2 sin2 cp)112, for cp < cPda 

665 

X 

- --<1>x 

......... ',~ba 

1 
I 

I 
I 
I 

J 

••. (53) 
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\ 

z 

\ 

\ 
' 

4 (g) for cd > a > c, > b, " > ~. ac, < bed. 

z 

' ' 

4 (h) for cd > a> c, > b, ~ > "'[> y', ac, < bed. 

where N1 = (1 2 
- 2 sin2 rfo)2 + 4 sin2 ,P cos rfo (1 2

- sin2 cp) 1 '
2

• . .. (54) 

Substituting these appr:oximate values in the first integral of (31) one can find, for 
tp <: rpda 

••• (55) 

where 

Pabcd ~::os2 .p (/2 - 2sin2 ,P) 
f-'P 

.. (56) 
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X 

I \ 

\ \ 

·' I 
\ 'Pab~, 

\ 
I 

I \ 
\ 

I 'ct>sd 
\ 

I 
I 
\¢ba 

·z 

4 (i) for .Cd > a > c, > b, "' > (3, a c, > b Cd. 

z 

4 (j) for cd :> a > c. >" b, (3 > "' > y', ac; > bed. 

"Again in tne second integral of (3 I) we put w = Tda sin " and as T -4- 1 - for cp > rpda · 
we find that 

qda ~ i sin cp - i cos cp ~da sin c:t 

Tda sin :t sin </>. + cos <P 

(T!a sin2 c:t + 1 - T 2)
1i2 

Puting these values in th~ second integral of (31), we get 

.. (57). 
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z 
4 (k) for a ·< c,, ac, < bca. 

2 

4 (I) for a < c,, ac, > b cd . 

... ,2 
J R, [kza (i sin .p·- i cos .p Taa sin c.t, ~a a sin c.t) ~a , 
0 . 

Taa sin c.t sin r/> + cos <b J l d 
X ~ da COS a. U. 

(T;a sin2 a. + I - ~2)1/2 i . 
I • 

= J R. [kzd (i sin r/> 
ica 

i cos rf. Taa sin c.t, Taa sin c.t) p 
0 

X 

X 

... (58) 

(equation continued on p. 669) 
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Tda sin a sin ¢> + cos </> J T. 1 
lf~ da COS r:J. T a 

(T~a sin~ 'l. + I - -r 2
) 

.,.,2 
r [ icd + J R~ kzd (i sin ,P - i cos ,P Tda sin a:, Tda sin a:) p 

Tda sin ct sin tP + cos "'] T. · d 
X da COS a: rJ. 

where E is very small. 

(T 2 sin2 
0( +I --r2)112 

da 

669 

.. (59) 

Since the main contribution to the integral (58) as T -+ 1 arises from the first in
tegral of (59) as -r ...-..+ 1, so for the evaluation of (58) as -r -+ 1, we consider the approxi
mate value of the integral given by 

• 
J Re [ k:d (i sin cf> - i cos_ cf> Tda sin a:, Tda sin a) i;d 
0 

Tda sin a: sin 4> + cos ,J, J 
X -'----- Tda cos a d a 

(T;a sin 2 a + I - -r 2
) 

.•. (60) 

as -r-+ I. 

Since f is very small so a. is also small. So for the evaluation of the integral (60) as 
-r -+ 1 we also use the fact that 0( -+ 0, from wliich we get, 

... (61) 

Now substituting these approximate values in (60) and integrating we obtain the approxi-
mate value of the integral as · 

So for rp > r/>da 

c~ cos2 ¢> (F - 2 sin2 rp) 
-----------log l -r- I l when -r-+ I. 

P (a2 sin 2 <P - ~~ )1 1~ .N1 

[u,] -+ N;4 log f • - I I as -r -+ l 

... (62) 

... (63) 
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... (64} 

In order to obtain the value of u,a as -r -+.faa we put in the second integral 

of(31). 

When -r-+ -raa +, we find that 

where 

W-+0 

• Cd 
qaa-+ I

a 

dqaa{dt -+ iA' 

ca ( where A'=pa for a> ca, 

ma -+ !{a (a2 
-- c! )1 12 for a > ca, 

[2 
rna-+-:;

a· 

l 
I 
I 
I 
>-

1 
i 
I 
j 

where N2 = Ita' [ /4 (a2 
- 2c; )2 + 4 I c~ (a2 

- c; )11
2 J 

£112 -+ iKI/2 {-r _ -raa)l/2 

K -- 2a 

ca { (a2 - c! )112 sin rp-ca cos rf>} 
for a> ca. 

... (65} 

Using these approximate values in the second integral of (31) we find that for 

a> ca 

where 

/ 2 (a2 
- c~ } 1 ' 2 (ai.- 2c~) A' C1 i 2 

(2KA) 112 • N2 

... (66) 

... (67) 
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where C = Sa~ Cd "tda (a2 - C~ ) 112 sin rP COS cP 
•, 

"'~a ~ l{a [ Cd sin <P - (a 2 
- c~ )112 cos,P]. .. _(68) 

It may be noted that conical wave front r = •da does not arise for a < CJ. 

Next when</> < cp,a, for the evaluation of u,, as • - l, we put w = T, sin oc in 
the first integral of (33). When • ---+ I, we find that in the above integral 

w~o 

-S!._ l cos "' 
p r; coso: 

(q2 + w2
) ~ [2 sin2 

.; 

mil- (1- !2 sin2 ,P)1 12 

m.-? 1 cos .P 

m0 - [2 (cos2 r/> - sin2 rf>) 

£ 112 
- lfc. (c! - a2 sin2 ,P)l/2 for rp < r/>,a 

-? ifc, (a2 sin2 .P - c~) 1
'
2 for <P > r/>sa 

where Na = [I (cos2 .P - sin2 ,P)2 + 4 sin2 rp cos ¢ (l - f2 sin2 rf-)1/2}. 

Using these approximate values in the first integral of (33) one can find for ali 
values of a and b. 

[u.] - N: 2 for </> < <Ps" as "= -+ I 

where 

N,
2 

= _ 2Pabc. sin2 .p cos ,p (I - [2 sin2 ,p)tf2 

P. p ( c: - a'!- sin 2 .;, } 112• N3 

••. (71} 

-----
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For <P > cPfa, considering approximate evalution of last two integrals of (33) as 
-r -+ l it can be shown that for the case a > b > Cd 

and for the case Cd > a > b > c., 

liz -+ N~G log I T - I l for cPsll < rf> < cPsa as T -+ 

and also for the case Cs ;.. a > b, 

where 

liz -+ N: 6 log I -r - 1 I for cp > cf>sd as -r -+ I 

N' 
z5 

N' 
z3 

2Pabc.. sin2 
<P cos ,P (I - /2 sin2 ¢>) 1 ' 2 

8Pabc. 
rrp.P 

(a2 sin2 cf> - c; ) 1 '~. N3 

sin4 </> cos2 r/> k I f§jtfl $1¥1'( L '2...s;·,/y) - I) 

(a2 sin2 .J. -·c2 
) 112 N 'fl • .J 0 4 

... (72} 

... (73) 

... (74) 

... (75) 

... (76) 

... (77) 

... (78) 

N' 
• ? .L ., .J. (/"' • 0 .L t J'i ,. ( ., . ., -'-)2 sm- '~-' cos- 't' - sm- '~' -- L - cos- .P- sm- '~' · 
-----'--'-----"'--~-'-- ----'-... (79) 

z6 

. (c! ·- a2 sin2 4>)11!. N4 

... (80) 

.For the approximate evaluation of the dis~lacements at the wave fronts -r = -r,a 

and -r = "t sd we follow similar procedure as followed for the evaluation of Urd as 
-r ----? 'tda and we find that 

[ur] -r Nz; as T -+"~"sa for a > Cd I 
I 

[uz] .._ N, 6 as -o; ~ •,a for Cc! > a >\ C5 

[uz] -+ Nr3 (-r - "~"sd) 31 ~ as T ~ 'rsd for a > Cd 

where 

... (81) 

.. (82) 

... (83) 

... (S4) 
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"lk (2K, f2 A,)112 [Is (a2 - 2c; )4 - J6c! (c!- a2) (a·2 -·c:)]· 

.;.(86) ' _·.· . 

N ·. ~ __ 4PabA B2 B' · ·A' ( . 2 cosec {> )
1
l

2 
... , _ 

za - . sd ,d sd ,d 
'~~'I' a 2 - c2 

d 

4Pab A,'d (. 2 c
2

- osec ."' )
2 

Nn = A 5d B!d 
'II' flo 

A'= • 

cd- a-

p [1 (a 2 - C: )112 sin¢ - c,; cos .PJ 

B~ = ~ [!3 (a~- 2c; )2 + 4c~ f (a1-c~) (a2 
.;. c; )] 

a ~ . 

I 

... (88) ... 
- . ' 

... (89) 

... (90) 

.... (91). 

A,= ['t-,a a" b2 (-r,a- -r~) sin2 ~+ (a2
- b2

) a2 pos2 {> (-r,a + 't:.,)] 
... (92) 

1T [ 2 (F _ 1)112 ]1/Z 
Asd = 4 (!2 - 1)1'' sin</> -cos{> . 

... (93) 

B,d = (F - 2)- 1 . .. {94) 

B' 4 A (l'' 1)112 B2 
sd = sd - - Sd ... {26) 

A • __ S!_ ·(JZ _ 1)1t2 [(J2 _ J)l/2 .51·n ,J. _- cos.t)-1 
~ p • p p 

... (96) 
. - " ~- ~ :' 

In these expressions the notations [u~] stands for the change in u; .across a wa..ve · .. 
front and Nz1 etc. are wave front coefficients. 

It may also be noted that if we put a = b, in this proble-m, it reduces to the J>ro- . 
blem of uniformly expanding circular: ring· source and in that case out derived re8ults 
coincide with the results given in thepaper_of Gakenheimer5

• ~ 
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The problem of diffraction of normally incident anti plane shear wave by a crack of 
finite length situated at the interface of two bonded dissimilar elastic half spaces has 
been studied. The problem is reduced to the solution of a Wjener-Hopf problem. 
The expressions for the stress intensity factor and the crack opening displacement 
ha,·e been derived for the case of wave-lengths short compared to the length of the 
crack. The numerical results for two different pairs of samples have been presented 
graphically. 

1. INTRODUCTION 

i 

Scattering of elastic waves by a crack of finite length at the interface of two 
dissimilar elastic materials is important in view of its application in Geophysics and 
in Mechanical engineering problems. The extensive! use of composite materials in 
modern technology has created interest in the wave p~opagation problems in layered 
media with interfacial discontinuities. The diffractidn of Love waves by a crack of 
finite width at the interface of a layered half space Jas studied by Neerhoff5 . Kuo 6 

carried out numerical and analytical studies of transient response of an interfacial 
crack between two dissimilar orthotropic half spaces. Following the method of Mal 7 , 

Srivastava et al. 1 also considered the low frequency aspect of the interaction of an
tiplane shear waves by a Griffith crack at the interface of two bonded dissimilar elastic 
half space. 

But high frequency solution of the diffraction of elastic waves ·by a crack of 
finite size is interesting in view of the fact that transient solution close to the wave 
front can be represented by an integral of the high frequency component of the solu
tion. Green's function method together with a function~theoretic technique based 
upon an extended Wiener-Hopf argument has been developed by Keogh 3•

4 for solv
ing the problem of high frequency scattering.of elastic waves by a Griffith crack 
situated in an infinite homogeneous elastic medium. 



'1108 S. C. PAL AND M. L. GHOSH 

In the present paper, we have derived the high frequency solution of the diffrac
tion of SH-wave when it interacts with a Griffith crack located at the interface of 
two bonded dissimilar elastic half spaces. To solve the problem, following the method 
of Chang2

, the problem has been formulated as an extended Wiener-Hopf equation 
and the asymptotic solutions for high frequencies or for wavelengths short compared 
tb the length of the crack have been derived. Expressions for the dynamic stress in
tensity factor and the crack opening displacement have been obtained and the results 
have been illustrated graphically for two pairs of different types of material. 

2. FoRMULATION OF THE PROBLEM · 

Let (x, y, z) be a rectangular Cartesian coordinates. Let an open crack of finite 
length 21 be located at the interface of two bonded dissimilar elastic semi-infinite solids 
lying parallel to x-axis. The x-axis is taken along the interface, y-axis vertically 
ciP\Ypwards into the medium and z~axis is perpendicular to the plane of the paper. 
(p.I> p 1) and (p.2, p~ are coefficients of rigidity and density respectively of the upper 
ahd lower semi-infinite medium. The crack is subjected to a nbrmally incoming an
tiplane shear wave originating at y = - oo. 

We are interested in finding the high frequency solution df the diffraction pro
. blem i.e. the solution when the length of the crack is large cbmpared to the wave 

. . I 

length of the incident wave. 1 

Accordingly we shall have to solve the problem when the ~rack is subject to the 
following boundary conditions: 

a~~) (x, 0 +) a~lJ. (x, 0 -) = - Ps- P0 e-wr:· JxJ < l. 

a~~> (x, 0+) a§2J. (x, 0 -), JxJ > L 
lJ'I (X, 0+) = W1 (X, o-I), J.xj >/ 

where w is the circular frequency and Ps is the static pressure. 
Assume 

W1 (X, y, t) 

w2 (x, y, t) 

WI (x, y) e-iwt 

w1 (x, y) e-iwl 

where wl and w1 satisfy the following two wave equations 

'\l2Wl (X, y) + kl1wl (x, y) 0 

v2w2 (X, y) + k22Wz (X, y) 0 

with '\11= 
a2 a2 

ox2 + 
ay1 

... (1) 

... (2) 

... (3) 

... (4) 

... (5) 

... (6) 

... (7) 

The shear wave numbers k 1 and k2 are related to the two shear wave velocities. C 1 

and C2 of medium (1) and (2) respectively by 

... (8) 

... (9) 
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Without any loss of generality we assume that k2 > k 1• 

Let (I) ( ) a yz X, y, t 

(2) ( ) a yz X, y, t 

T~f (x, y) e-iwt 

Tw (X, y) e-iwt. 
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... (10) 

. .. (ll) 

In the boundary condition (I), P5 is the static pressure assumed to be sufficiently 
large so that crack faces do not come in contact during vibration. Since we are in
terested in the dynamic part of the stress distribution, so the boundary conditions 
(1), (2) and (3) may be wtitt~n as 

- P,, lxl < j 
lxl > L. 

and 

that is 

and 

7< 1> (x 0 +) yz , 

7(1> (x o+) 
YZ ' . 

7~~ (x, o-) 

7~~ (X, 0-), 

awl aw2 
11-1 -- = 11-2 -- = - PO, lxl < 1. y = 0 ay ay 

aw2 
1'2 ---ay-· ·I xi > t. Y = 0 

... (12) 

... (13) 

. .. (14) 

... (15) 

... (16) 

... (17) 

In order to obtain solutions of wave equations (6) and (7) we introduce Fourier 
transform defined by 

- 1 r . 
W (a, y) = fl1f J W(x, y) e'ax dx. 

-00 

Thus we obtain the transformed wave equations as 

d2WI 
- (a 2 

- k[) W1 = 0 
dy2 

dzw2 
- (a 2 

- k"f) W2 = 0. 
dy2 

The solutions of ( 19) and (20), bounded as y tends to infinity, are 

where 

'YI 

'Y2 

(a2 - kf) v, 

(a 2 
- kr> '1'. 

. .. (18) 

: .. (19) 

. .. (20) 

... (21) 

... (22) 

... (23)

...(24) 
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Introducing for a complex a 

and 

G_ (a) = 

00 

fu I rW (x, 0) eia(x-1) -dx 

l 
-L 

. r r~1 (x, 0) eia(x+/) dx 
ilij 

-00 

L 

= --1- [ r 0 > (x 0) eiax dx 
ili J .vz ' ' 

-t. 

the transformed stress at the interface y = O.can be written as 

iW (a, 0) = G+ (a) eial + G1 (a) + G_ (a) e-ial. 

Using the boundary condition (12) we note .that 

Further using the fact that 

i~£ (a,O) = -.LL(YIAI (a) 

we obtain from (28) 

... (25) 

... (26) 

... (27) 

. .• (28) 

... (29) 

... (30) 

- JLI'YIAI(a) = G+ (a) eial + G_ (a) e-iaf -. v:;. [eia/- e-iaf]· ... (31) 
· · · 211" /a . 

Since from (12) 'and ( 13) stress T.vz is continuous at all points of the interface so we 
obtain 

A2 (a) = -~ A 1 (a) 
• J-12 'Y2 

so (2 I) and (22) take the forms 

WI (a. y) = A 1 (a) e-•,Y, y ;:: 0 

JL2 'Y2 
L 

... (32) 

... (33) 

... (34) 

Now WI (a, o+) -Wz (a, o-) ili I [WI (x,o+)- w2 (X, 0-:)] eiax dx 

-l 

= B(a) (say) ... (35) 

which is the measure of the discontinuity of displacement ~long· tbe surface of the 
crack. From (35) we get 
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f.Lz'YzB (a) 
... ~ 

... (36) 
f.Ltii + f.Lz'Yz -~ 

Eliminating A 1 (a) from (31) and (36) we obtain an extenoed Wiener-Hop[ equa
tion, namely 

where 

G+ (a) eic.t + G_(a) e-iat + B(o:)K(o:) 

K(o:) 
f.Ltf.L2/'l'Y2 . 

f.LI'Y! + /-<2/'2 

0 0 .(37) 

. .. (38) 

... (39) 

In order to solve the Wiener-Hopf equation given by (37) we assume that the branch 
points o: = k 1 and k~ of K(o:) possess a small imaginary part ~uch that 

k 1 = k 1 + i k\ and k 2 = k 2 + i ki 

where k( and ki. ar€ infinitesimally small positive quantities which would ultimately 
be made to tend to zero. 

Now we write K(o:) = K+ (o:) K __ (o:) where K+ (o:) is analytic in the upper 
h&lf plane Im o: > - k-l. whereas K_ (o:) is analytic in the lower half plane given by 
Im o: < k-l.. Since T,-~ (x, 0) decreases exponentially !as x - ± co, G .. (o:) and 
G_ (o:) have the same common region of regularity-~:; K+(o:) an~ K_ (a). 

lms 

>-1 
======~~====~s=~=o==========~Res 

!.k. 
2 

·-II. 
1 

FIG. I. Path of integration in the .:omple:ot s-plane. 

Now (37) can easily. be expressed as two integral equations relating G + ( o:), 
G_(o:) and B(o:) as follows: 



1112 
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P0 [ I I ] 
fu ia · K+ (a) · - K + (0) 

G_ (s) + _r;;-
0

• ds 
e-2isl [ p, ] 

(s-a) K+ (s) v21r 1s 

= - B(a) K_ (a) e-ial + Po I f 
ili ia K+ (0) - 2-;ri. J 

c_ 

G_ (s) + _-_o- ds e-lis( [ p ] 

(s-a)K+ (s) . fuis 

G_ (a) Po e2isl 

+ + 
K_ (a) ili ia K_ (a) hi J (s - a) K_ (s) 

c_ 

[c+ (s)- -- ds Po l 
ili is 

.:.. B(a)" K+ 
. I l 1 

e2isl 

lG+ (a) e'0 
- -- (s) -

2-;ri (s-a) K_ (S·) 
c. 

Po 

v27tis 

... (40) 

] ds 

. .. (41) 

where c+ and c_ are the straight contours below the pole at s = 0 and situated 
,within the common regionof regularity of.G+ (s), G_(s), K+ (s) and f<_(s) as, 
.shown in Fig. l. 

In (40), the left-hand side is analytic in the upper half plane whereas the right
hand side is analytic in the lower-half plan·e and both of them are equal in the com
;mon region of analyticB/cy of these two functions. So by analytic continuation, both 
'sides of (40) are analytic in the whole of the s-plane. Now since 

as x- ± L 

so G ± (a ) a- v; as lal co 

and also K± (a) - av' as jaj co 

so it follows that 

- a -I as In: I 00. 

. I 
Therefore by Liouville's th.eor.em, both sides of (40) are equa\to zero. Equation (41) 
can be t~eated similarly. I,\ · 
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Therefore from (40) and (41) we obtain the system of integral· equations given by 

___ e_-2is_·
1
-- [o- (s). + _,:_0 • J ds = 0 

(s-a) K+ (s) . v21!" IS 
... (42) 

and 

... (43) 

Since r~l (x, 0) is an even function of x, so from (25) and (26) it can be shown that 
G+(-a) =G_ (a) and it has been·shown in the appendix that·K+ {-a):::::: iK. (a); 
Using these results and replacing a by -a anp s by-sin (42) it can easily be shown · 
that equation~ (42) and (43) are identical. So G+ (a) and G_ (a) are to be deter-
mined from any one of the integral equation (42) or (43). · 

3. HIGH FREQUENCY SoLUTION OF THE hnEGRAt EQUATION 

To solve the integral equation· (43) in the case iwhen normalized wave number 
k1 l > 1, the integration along the path C_ in ( 43~ is replaced ?Y the integration 

. round the circular contour C0 round the pole Cit s l 0 ~d by the integration along 
the contours Ck

1 
and Ck

2 
round the branch cuts through the branch points k1 and 

k2 of the function K~ (s) as shown in Fig. 2. · · · 

Ims 

' •'!, I o ... . ·: 

.. · 

.\. 

·: ·.... 
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Thus eqn. (43) takes tlre form 

Now 

[ G_ (a) + v!':/- J-2-rza 

Po K_ (a) 

fu ia K_ (0) 
I 

K_ (a) + --- exp (2is/) [ I P0 ] 
----- G+ (s) - _,...- . ds = 0. 
(s - a) K_ (s) v27f zs 

... (44) 

1 exp (2is/) [ Po J 
G+ (s) - -~~ 

15
• ds 

(s-a) K_ (s) VL.7f 

= 
I' I 

which can easily be evaluated when k, t ~ 1 and -is found to be equal to 

__ 1_ H.; exp· {2ik1 I) K+ (ki) eir/
4 

[ p J 
G+ (k1) - ili 0• • ••• (45) 

JL 1 k 1 I (k1 - a) 27f zk1 

Similarly for k 1 I ~ I 

~ exp (2isl) [ P0 J 
G+ (s)- ·'2"-zs· ds 

\ (s-a) K_ (s) VL.7f 

C.t2 

=· __ 1_ r;- . exp {2ik2 /) K + (k2) eir/
4 [a+ (k

2
) _ 

1-'2 '\} k;/ . . (k2- a) · - · 
P, . '] Vh o_ •••• (46) 
1r lk2 

Using ·the results (45) and (46) and also the relations G+ (-a) = G_(a) and 
K_ (a)= - iK+ {a), we obtain from (44) 

A (kd F~ (k1) euk,, A (k2 ) F+ (k2 ) euk,; 
F+ (-a) + + = C(a). 

p.1 (k1 - a) ..Jk11 JL2 (k2 - a) fk;/ ... (47) 

where 

F+ (~) = 1 [a 
K_ (-0 + 

Po J <~> - .fi.,- u; ... (48) 

A(~) 
[K+ (~)]2 eir/4 

= 2..ri 
... (49) 

and 

C(O 
·po 

= 
V2ir iK_ (0)~ 

... (50) 
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A (k2 ) e2iki 

21'2 k2 ..ff;J 

1115 

... (51) 

(kz) = - C(k;). 

... (52) 

... (53) 

... (54) 

where 

L (k~> k2 ) = [I + 
A (kd e2ik,t 

21'1 kl Yk;i 
A (k2) e2iki 

+ ------==-
21'2 k 2 ..ff;J 

A(kdA(k2) (k1 - k 2 ) 2 e2i(k,+k2>1]-I 
+ 2 -~ -~ • • •• (55) 

41'1 Jlz k 1 k 2 (k1 +kz) vlkt v/k2 

Now expanding L (k1, k2 ) and neglecting higher order terms o~ and~ and 
using (47) we get 

G_ (a) = - C(a) K_ (0) + C(a) K_ (a) 

+ K_ (a)A (kd e2ik,t · C(kd [t _ A (k{) eZik,t A{k2 ) k
1 

e2ikJ ] 

1'1 (k1 -a) Yk1/ 21'1 k1 Yk;J - 1'2 kz Vk;i (kl +k2) 

+ _K ___ (_a_)_A_(_k_2 )_e
2
_ik_11=·=C=--(k_z_) [I _ . A (kd kz e2ik,t A (k2 ) e2ik,f J 

1'2 (kz- a)Yf;f Ill k1 ..fk;i (kl +kz) - 21'2 k2 Vk;i 
... (56) 

Now replacing a by -a and using C(-a) =- C(a). We have 

G+ (a) = C(a) K_ (0)- C(a) K_ (-a). 

+ _K ___ (.:...-_a_)A_(_k::....d_e_
2
_ik--:,

1
==·=C,...(-'-k-=-t-'-) [I _ A (kd e2jk,t A (k2 ) k 1 euk,t ] 

i-Ll Ck1 + a) Yk;J · 21'1 k1 -fiZJ - 1'2 k2 Vk;J (kl +k2) 
I . 

+ _K ___ (_-_a_)A_(_k2_)_e_
2
_ik....,,t=·=C,...(_k-'"'2_> [I _ A (kt) ~2 e2ik,t _ A (k2 ) euk,t ]· 

1'2 (kz + a) Vk;i Ill k1 ..fkJ (kl +kz) 21'2 k2 Vk;i . 
... (57) 
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4. STRESS INTENSITY FACTOR AND CRACK OPENING'. DISPLACEMENT NEAR THE CRACK TIPS 

Now as a- oo 

K_ (-a) 

K_ (-a) 

a+ k 1 

K_ (-a) 

a+k2 

= - iK+ (a) = - i (a+kr) Yz j P.rP.2 :::: 
' P.t+P.'l, 

. -Yz~lP.2 = -Ia ---
. P.l + P.2 

- . _y,~lll-2 - -Ia · ---· 
P.t + P.2 

So as a - oo we get from (56) and (57) 

and 

G (a) 

where 

S= 

·Yz~IP.2 -Ia ---
P.t + P.2 

... (58) 

+- 1 + k 2 + 
1 ( A 2 

( k ) e
4
ik,l A 2 

( k ) e4ik,J ) 

2 p.f kr k1I · P.i ki k2I 

A ( kl) A ~k2) e2i!k, + k2)1] 
J.Lt ~ p.~ k2 Vktl.k2l 

X .J J.L1P.2 . 
P.t + P.2 

Now from eqn. (37) using (58) and also the fact that 

K(a) 

we get 

B(a) 

+a. P.JP.2 

P.! + P.2 
asa-+oo 

1e - e ---+ S [ · -ial ia/] P-1 + P.2 

a fu · . P.tP.2 

as a - + oo. 

i 
. .. (59) 

... (60) 

... (61) 

Taking inverse Fourier-Transform of (35) and using the results of Fresnel integrals viz. 

"' sin · 

~ cos<x+l)a ~7r' 
. da = . 
fu 2(x+ 1.) 

... (62) 

0 

We get the displacement jump across the surface of the crack as 
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AW = WI (x, 0+) .:_ W2 (X, 0 -) = 2SI (1 - i) j(L- X) 

for x- l.- 0 

AW = W 1 (x, 0+)- W2 (x, 0 -) 2S1 (1- i) j(x+/) 

for x- -I + 0 
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... (63) 

... (64) 

where S1 = (JLI + JLz) · S. . .. (65) 
JLIJL2 

Next inorder to find the value of rxy near about the crack tip we use (61) in (36) and 
(32) and to obtain 

AJ (a) = ie-iat- eiat ' U = 1,2) (-1Y+
1 

·S [ ] 
.JLp Va 

... (66) 

asa-oo 

and = e-ial - ieial ' u = 1 ,2) (-1Y+ 1 ·S [ · - ] 

JLP v-a ... (67) 

as a- - oo. 
Now a w,; (x, y) 

rra (x, y) = JL· j = 1,2 /- ' ay 

= JL a [ 1 r AJ· (a) exphiiYI-iax) da]. 
J ay ..fii J . .. (68) 

-OJ 

Substituting the values of AJ (a) as lal 
the crack tip as 

oo, we can write the stress near about 

rJL (x, y) 

OJ 

= -- -- ela(x+t)- iela(x- ll- ie-la(x+() S I e--<>IYI [ . . . 
lli Va . 

0 
OJ 

= 
S( 1 - i) 

lli 
r e--<>IYI [ J ¥a cos a (x+ L) - sin a (x+ L) 

0 
+ cos a (x - 1-) +sin a 

= S (I -i) [_I_ sin .!h._ rrz 2 
+ -cos-1 ¢1 ] 

Yr.. 2 

near about the crack tips, where 

[ ]

y, 

(x - L) 
2 + Y

2 
. , r/11 

. -1 IYI sm. --
rl 

(x-L)]da 

... (69) 

... (70) 

... (71) 
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Therefore at the interface (y = 0) we obtain 

s ( 1 - i) 
l. + 0 T'fL- VX-1 

as x- ... (72) 

and 
s ( 1 - i) 

- L- o. Jz.- v'-(x+ L) 
as x- . .. (73) 

Now the stress intensity factor is defined by 

K = j(1 - t) Sjfuk;". 
Po 

. .. (74) 

The absolute value of the· complex stress intensity factordefined by (74) has been 
plotted against k1 I in Fig. 3 for values of k 1 I > 1 for the following two sets of 
materials, given by 

First Set: Steel PI 

Aluminium P2 

Second Set: Wrought iron PI 

0 

' ' 

Copper P2 

\ ' 
---~-- ...... 

.... _, 

2. J 4 5 6 '1 

7.6 gm/cm 3 
1-'1 = 8.32 X 10 11 dyne/cm 2 

2.7 gm/cm3 
1-'2 = 2.63 X 10 11 dyne/cm 2 

7.8 gm/cm3 
1-'1 = 7.7 X 10 11 dyne/cm 2 

8.96 gm/cm 3 
1-'2 = 4.5 X 10 11 dyne/cm 2

• 

Aluminium & steel 
w rou~ht iron & copper 

8 S 10 11 12 IJ 14 IS 16 11 18 19 20 
k,l --+-

FIG. 3. Stress intensity factor K versus dimensionless frequency k 1 I. 

5. CRAcK OPENING DisPLACEMENT AT POINTS AwAY FROM THE CRACK TIPS 

Next in order to obtain the displacement jump for the large values of k 1 (l- x) 
and 1k 1 (/+x) we write G+ (a) and G_(a) from (57) and (56) respectively as 

a 
i 
' 

and: G_(a) = 
... (76) 

,. 
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p = Po 
fu. i 

Po 
Q= 

fu iK_(O) 

p 

K_(O) 
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... (77) 

... (78) 

and 
e2ik) · A (kn)km J 

- Vlk,; JLnkn (km+kn) , 

w,here m = 1 

and m = 2 

when 

when 

n = 2 

n = 1. 

Again using K_ (-a) = - iK + (a) we get from (37) 

B(a) = -
Qi eial 

+ 
iR (k1, k 2) eial 

+ 
iR (kl> kd eial 

aK_(a) (k1 +a) K_(a) '(k2+a) K_(a) 
! 
i 

Q e-ial R (kl, k2) e-ial R!(kl> kd e-ial 

a K +(a) (k1 - a) K+ (a) 
I 

(~2 - a) K+ (a) 

From (35) we get the displacement jump across the surface of the crack as 

-00 

... (79) 

... (80) 

... (81) 

Now substituting the expression of B(a) from (80) in (81) and approximately 
evaluating the integrals arising in (81) term by term for large values of k1 (1- x), 
k2 (I - x), k 1 (I + x) and k2 (I + x) and neglecting terms of order higher than 
(k1 I) -3!2 and (k2 /) -J/2 ,we obtain finally the crack opening displacement across the 
cracked-surface in the following form: 

llW = W1 (x, o+)....; W2 (x, o-) = 21r Qi K+ (0) (-
1

- + · 
1 

) 
JLI kl ' JL2 k2 

+ ..[2 Qe~iri4 [(. eiJc.,(l-x) ... + -·;=e=ik=,(=:=l+=x=)=) 

vkl (I- x) vkl (/+x) 

X R + I 11 + 2 .21 + 
( 

R R e2ik,t R R e2ikzl Rl (RII)2 e4ik,r 

I v2k1 1 v2k2 1 &1 1 v2kl 1 

+ ( eik2 u - x> + 
vk2 (/- x) 



1120 

where 

S. C. PAL AND M. L. GHOSH 

X (R2 + 
R2 R12 e2ikf 

+ 
R, Rn e2ikl 

+ 
R2 (R22)2 e4ikf 

Y2k2 I . Vik1 I Y2k2 I ..fik2 I 

+ 

+ 

R, = 

Ru = 

'2 

\t 
3 
v-> 

R, R1l Rn e4ik11 
+ 

R2 R2l Rn e2iCk1+kz) I 
Y2k1 I ..fik1 I Y2k1 I ..fik2 I 

R, Ru R12 e2iCk1+kz) I)] 
Y2k1 I Y2k2 I 

K+ (k1) 
R2 

K+ (k2) 

..fi 1-'1 k, ..fi 1-'2 k2 

D[K+ (k1)]
2 

R12 
D[K+ (k2)] 2 

1-'1 (k+ k,) 
= 

1-'2 (k2 +k2) 

-- ... Aluminium & Steel 

Wrought iron & copper 

--------- _______ ... 
\ 
\ --------

k 1 L= 20 -------------, \ 
' I 

\ 

' ., 

0.0 0.1 o.z 0.3 0.4 o.s· 0.6 0.7 o.a 0.9 1 

Xf L ---+-

FIG. 4. Normalized crack opening displacement versus normalized distance x/1 
from the centre of the crack. 

... (82) 

... ~ 

... (83) 
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D.K + (K1) K + (k2) 

J.Lr (kr +k2) 

eir/4 

D = (-1) --. 
& 

1121 

Expressions in (63) and (64) give the displace~ent jump nearabout the crack tips 
where as the displacement jump at points away from the crack tips are given by_ (82). 

From these two results we can obtain the crack opening displacement at any point 
of the crack surface - I < x < l,y = 0. 

Here also normalized crack opening displacement has been plotted against nor
malized distance x/L from the centre of the crack for two different sets of materials 
in Fig. 4. It is interesting to note that oscillatory nature of. the crack opening displace
ment increases with the increase of frequencies as· a result of the interference of waves 
inside the crack. Further we note that amplitude of the crack opening displacement 
decreases with the increase ·of frequency. 

lm z 

t-------+--0(-:---....:...-+--- "Re % 

• -k, 

fiG. 5. Complu z- pia.~. 

Im z 

k, k:2 c, 
( 

4 . . . ·----- -·-- - ------
~ 

------+----~---..:.__ __ . ....:'·'~ Re z 

F1G.6. PcJh of' mt-e~-ro.l-r"dY) 't"Oll"Yld 

~ b)'CLI'le.h po't-nts . 
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where 

R(a) = 

Put m 

Therefore 

K(a) 

where 

R(a) 

Now 

R + (a)R_(a) 

Therefore 

APPENDIX A 

J-1.2 (a2 - kT) v, 
-------'-- R (a) 

1 +m 
... (AI) 

log R+(a)+log R_(a)=log =log R(a) 

m (a2-: kf)·v' 
+ 

l+m (m+l) (a 2 -;k~)v' 
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log R+ (a) 

= 

log R (z) 
-=------ dz 

(Z- a) 

-ic+ (X) I 
log R (z) 
----dz 

(Z- a) 
-iC-CXl , 

~h.£r-e. t6. pa.th of h,R'f"Y"o..ho'() l\ .. is shcrW'Yl m 
Putting z = - z and using the fact that R(z) = R(-z), we get 

ic+oo ;. 

I 1 log R(z) 
log R+ (a) = - --. dz 

2-x-l (z+a) 
ic-oo 

I 1 log R(z) 
dz = ---

2-x-i (z+a) 
c. 
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where C1 is the contour round the branch points k 1 and k2 as shown in Fig. 6. 

So, 
. [ in (z2 - k2) y, J 

log --+ I ' 

log R+ (a) 
=_I_) m+I (m+I) (z

2
- ki)y, 

dz 
2-x-i (z+a) 

c. 

I kz log [I + 
i ( zz - kf) v, J 
m(k~- z 2) y, 

=hi) .(z+a) 
kl 

kz 
[ · i(z

2 
- k[) y, J log I - 2 2 y, 

1 m(kz - z ) 

2-x-i 
dz 

(z+a) 
kl 

[ (z
2

- e> y, J kz t -1 I 

1 
an m(k~- z2) y, 

= dz 
'X" (z+a). 

kl 

_ [ (z2 _ k2) v, J 

dzl l ,, tan 1 1 

= exp ~ 1 m(k~- z 2) '/z 

:. R+ (a) 
(z+a) 

kl 
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Similarly 

k ta -1 I 

[ 

[ 
(Z2 _ k2) v, ] ·] 

2 .n m(kz-zz)v. 

RAo:) = exp ~k ~~·--dz .. J (z- o:) 

Therefore from (AI) we can write 

and 

K_ (o:) 

v-;;.2 ( 0: + k 1) v, 

v(l + m) 
. [I · exp 1f 

Hence from (A2) and (A3) we get 

= iK_{o:) 

... (A2) 

(A4) 
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HIGH FREQUENCY SCATTERING OF PLANE 
HORIZONTAL SHEAR WAVES BY A GRIFFITH CRACK 
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Abstract-The problem of diffraction of horizontally polarized shear waves by a finite crack moving on 
a bimaterial interface is studied. In order to obtain a high frequency solution, the problem is formulated 
as an extended Wiener-Hopf problem. The expressions for the dynamic stress intensity factor at the crack 
tip and the crack opening displacement are derived for the case of wave lengths which'are short compared 
to the length of the crack. The dynamic stress intensity factor for high frequencies is illustrated graphically 
for two pairs of different types of material for different crack velocities and angles of incidence. 

I. INTRODUCTION. 

ScATTERfNG of elastic waves by a stationary or a moving crack of finite length at the interface of 
two dissimilar elastic materials is important in view of its application in fracture mechanics as well as 
in seismology. Recently. Takei eta!. [I] considered the problem of diffraction of transient horizontal 
shear waves by a finite crack lying on a bimaterial interface. The method of solution was extended 
by Ueda et a/. [2] to solve the problem of torsional impact response of a penny shaped interface 
crack. Srivastava eta/. [3] also considered the low frequency aspect of the interaction of an antiplane 
shear wave by a Griffith crack at the interface of two bonded dissimilar elastic half spaces. 

In the case of cracks of finite· size. travelling at a constant velocity, loads, for mathematical 
simplicity. are usually assumed to be independent of time. However, in practice, structures are often 
required to sustain oscillating loads where the dynamic disturbances propagate through the elastic 
medium in the form of stress waves. The problem of diffraction of a plane harmonic polarized shear 
wa~e by a half plane crack extended under anti plane strain was first studied by Jahanshahi [4]. Later 
Ch'en and Sih [5] considered the interaction of stress waves with a semi-infinite running crack under 
either the plane strain or the generalized plane stress condition. Sih and Loeber [6) and Chen and 
Sih [7] also considered the problem of scattering of plane harmonic waves by a running crack of 
finite length. In bpth the cases the problem was -reduced to a system of simultaneous Fredholm 
integral equations which were solved numerically. 

In the present paper, we have investigated the high frequ~ncy solution of the problem of 
diffraction of horizontallv polarized shear waves by a finite crack:moving on a bimaterial interface. 
The high frequency solution of the diffraction of elastic waves by: a crack of finite size is important 
in view of the fact that the transient solution close to the wave front can be represented by an integral 
of the high frequency component of the solution. In order to solve the problem, following the method 
of Chang[S], the problem has been formulated as an extended Wiener-Hopf equation and the 
asymptotic solutions for high frequencies or for wave lengths which are short compared to the length 
of the crack have been derived. Expressions for the dynamic stress intensity factor at the crack tip 
and the crack opening displacement have been derived. The dynamic stress intensity factor for high 
frequencies has been illustrated graphically for two pairs of different types of materials for different 
crack velocities and angles of incidence. 

2. FORMULATION OF THE PROBLEM AND ITS SOLUTION 

Let a plane crack of width 2L move at a constant velocity Vat the interface of two bonded 
dissimilar elastic semi-infinite media due to the incidence of the plane horizontal SH-wave 

W; =A exp[- {k 1 (X cos 81 + Y sin 81) + nT}] (I) 
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Incident SH- wave 

I I II & 
0 y y, 

Jl,(J, ~----Vt------
Running crack 

0 

V = Crock velocity 

Fig. l. Running interface crack. 

in the medium. The crack lies on the bimaterial interface along Y = 0 with respect to the fixed 
rectangular co-ordinate system (X, Y, Z) as shown in Fig. L 

We assume that the displacement and stress fields WJ, 'rzi (j = l, 2) are 

Wi = Wj(X, Y, T) 

oWJ(X, Y) 
't'yzj = J-lj ay ' 

(2) 

(3) 

in which subscripts j = I, 2 refer to the upper and lower half planes, respectively, T denotes time 
and J-li is the shear modulus of elasticity. The displacement Wi is go"!erned by the classical wave 
equation I 

a1w. o2W. 1 o1 W 
ax/+ ay/ = c2 oT2 ,u = 1' 2), 

J 

(4) 

where ci = (pi/Pi) 112 is the shear. wave velocity and pi is the density of the material. Without any 
loss of generality, we further assume that c1 > c2 • 

Due to the incident wave given by (1), reflected and transmitted waves in the absence of the 
crack may be written in the form 

W, = B exp[- i {k1 (X cos 91 - Y sin 91) + OT}] (5) 

and 

(6) 

where. 

(7) 

C _ 2k1 sin () 1 

- k 1 sin () 1 + mk2 sin ()2 A 
(8) 

m = p2 /p 1 and k 1 cos 01 = k1 cos 02 • (9) 

A, B, Care incident, reflected and transmitted wave amplitude, ki is the wave number, n = kici is 
the circular frequency and 81, 82 are the angles or'incidence and refraction, respectively. 

A set of moving co-ordinates (x, Yi• z, t) attached to the centre of the crack moving at a 
constant velocity Vis introduced in accordance with 

x =X- Vt, Yi = siY, z = Z, t = T, (10) 

where si= (l- MJ) 112 and Mi= Vfci is the Mach number. 
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In terms of the translating co-ordinates x, Yi• eq. (4) becomes 

a2Wj + a2Wj +-1-~ [2M-c_aWj- aWj] = o 
ax2 ayJ cJsJat .J J ax at . 

In the moving system (x, y, z, t) eqs (1), (5) and (6) take the form 

e-io>r W, 

A exp[ -i{k{x cos 81 +~:sin 81) + ror}J 

B ex{ -i{k{x cos 81 -~:sin 81) + ror}] 

C exp[ -t{k2(x cos 82 +~:sin 82 ) +rot} J 

where ro = na and IX= (1 + M.1 cos 81) = (1 + M2 cos 82). 
In view of eq. (12) we take the solution of (11) as 

Wj(x, y) e-imr = wj(x, yi)exp[i(MiA.ix -rot)]. 

Substitution of eq. (13) into eq. (11) yields the Helmholtz equation governing W/ 

o2wj o2wj 2 . 

-a 2 +-a· 2 +A.jwj=O U= 1,2), 
X yj 

where 

Applying Fourier transform, eq. (14) can be solvecl and the result is 

w1(x,y1) = ~~ J:oo B1 (~)exp[-i~x -(~ 2 -A.D 112y1 ]d~, y 1 >0 

From (13), (15) and (16) we obtain the displacement components due to scattered field as 

where 
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(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

A 1 (~) and A 2(0 are the unknown quantities to be determined from the following boundary 
conditions: 

(20) 

W1=W2, ixi>L, y=jO (21) 

awl awj aw, 1 
-+-+-=0, ixi<L, ly=O+. 
ay1 ayl ayl 

(22) 
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From the boundary condition (22) we obtain 

where 

awl .. -a-= A1 exp[ -rk1xcos B1], \xI< L, 
Y1 

i(A - B)k1 sin B1 
A1= . 

sl 

y =0, 

Using (17), the above equation can be written as 

-
2
1 

fCXl A1 (e)v1 exp[ -i~x] d~ = -A1 exp[ -ik1xcos B1], -'- L < x < L 
TC -CXl 

= P(x), x > L (say) 

= Q(x), x < -L (say). 

Therefore -

'(23) 

(24) 

A 
AI (Ovl = exp[i~L]G + (0 + exp[ -ieL]G- Ce)- i(e ~eo) [exp{i(e - eo)L}- exp{ -i(e - eo)L }], 

where 

G.f.(e) = LCXl P(x)exp[ie(x- L)] dx 

G_ CO= J_-~ Q(x)exp[ie(x + L)] dx 

~o = k1 cos el. 
From the boundary condition (20) we obtain 

where 

A
2
(0 = _ Mv1Ai(0' 

v2 

M = lllSl. 
Jl2S2 

Next using the boundary condition (21), we obtain 

A1 CO- A2(~) = t: (WI- W2)exp[iex1 dx 

= I :z. P 1 (x )exp[i~x] dx 

=NCO (say), i 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(3 I) 

which is. the measure of the discontinuity of displacement along the sutface of the crack. Now with 
the aid of (29) and (31), we find 

(32) 

Eliminating A1 CO from (25) and (32) we obtain an extended Wiener-Hopf equation, namely 

exp[i~L]G + (0 + exp[- ieL]G _ (0- N(OK(e) 

i(e ~eo) [exp{i(¢ - ¢0)L}- exp{- i(~ - ~0)L }], (33) 
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where 

(34) 

(35) 

In order to solve the Wiener-Hopf equation given by (33) we assume that .branch points 
~ =A.1(1-M1),A.2(1-M2), -).1(1 +M1)and -).2 (1 +M2)ofK(0possesssmallimaginaryparts, 
which would ultimately be made to tend to zero. 

Now we write K(~) = K+ (~)K_ (~), where K+ (0 is analytic in the upper-half plane 
Im ~ > Im[- A. 1 ( 1 + M 1 )], whereas K_ ( ~) is analytic in the lower-hair plane given by 
Im ~ < Im[).1 (1- M 1 )]. The ·expressions of K+ (0 and K_ (0 are derived in the Appendix. Since 
awtfay1 decreases exponentially as x-+ ±co, G + (0 and G _(~)have the same common region of 
regularity as K+ CO and K_ (~). 

Now eq. (33) can easily be. expressed as two integral equations involving G + (~), G _ (~) and 
N(O as follows: 

--- ----- +- . G (s)+ ds 
G +(e) AI e-i{oL [ 1 1 J I f e-2isL [ AI ei{oL J 
K+ (0 i(e -eo) K+ (0 K+ (~0 ) 2ni c+ (s - e)K+ (s) - i(s- eo) 

where c+ and c_ are the straight contours below the pole at~ =eo and situated within the common 
region of regularity of G + (0, G _ (0, K+ (~) and K_ (~) as shown in Fig. 2. 

The left hand side of (36) is analytic in the upper-half plane whereas the right hand side is 
analytic in the lower-half plane and both of them are equal in the common region of analyticity 
of these two functions. Therefore, by analytic continuation, both sides of (36) are analytic in the 
whole of the s-plane. Next; by Liouville's theorem, it can be shown that both sides of (36) are equal 
to zero. Thus we obtain 

Similarly, we also obtain 

(38) 

Ims 

c_ 

Res 

• • 
-.?.2C1+Mzl -;>.1(HM1l Ct 

Fig. 2. Path of integration in the complex s-plane. 



112 S. C. PAL and M. L. 9HOSH 

3. HIGH FREQUENCY SOLUTION OF THE INTEGRAL EQUATIONS 

In order to obtain G +(()and G _CO from the integral equations (37) and (38) in the case when 
the normalized wave number ). 1 ( 1 + M 1 )L ~ 1, the integration along the path c + in (37)is replaced 
by the integration along the loops L_;_

1 
and L~;.2 round the branch points - ).1 (! + M1) and 

-).2 (1 + M 2 ) of K+ (s), respectively. Also, ·the integration along the path c_ in (38) is replaced by 
the integration round the circular contour L 0 , round thepple s = ~0 and by the integrations along 
the loops L;.1 and L;.2 round the branch cuts through the branch points 21 (! - M 1) and 22 (1 - M2 ) 

of the function K_ (s) as shown in Fig. 3. 
Finally evaluating the integrals along the straight line paths round the branch points for large 

values of frequency, we obtain two equations given by 

y 2 aiez;;1<l±.lti>A"'[=ti./1±Mi)]F+[+i.i(l±M)]_
0 F±(c;;)+C±(c;)+j~l 2{J.i(1±MJ-(}(i.jL)if2 -, (39) 

(40) 

Now substituting ( =i. 1(1-M1) and ).2(1-M2 ) and~= -).1(1 +M1) and -).2 (1 +M2 ) in 
(39) a system of linear equations of F+[i.1(1-M1)], F+[i.2(I-M2 )], F_[-i. 1(1 +M1)] and 
F _ [- i.2 (1 + M 2)] are obtained. Now solving them and neglecting higher order terms of (}. 1 L )- 112 

and ().2L)- 112 we obtain, finally, after some algebraic manipulation: 

F± [± i.k(l + Md] = - C± [±i.k(! + Mk)] 

[ 1 
- ~ Oj ez;;·j<l+ Mk >LA+[+ i.i(! ± MJ]C + [+ i./1 ± Mi)] J . 

X L., , k = 1,2. (41) 
j= I 2().jL) 112{J./l ± M) + i.k(l + Md}C±[±i.k(l + Mk)] 

Now using (39) we obtain from (41) 

A eHoL A e+i~oLK (0 
G + (0 = ± / . ) + / . )K. (" ) 

- I c; - t;o I c; - t;o ± c;o 

± [akezil;<l±M<lLA+[+i.k(l ±Mk)]C,;:(=ti.k(l ±Mk)]K±(() 

+ k= I 2().kL)Ii2{i.k(l ± Md ± 0 

I-I } ±-J } ±-;. } . 
( 

2 0'· ez;;·j<J + MjlLA [+ i.(l -+ M)]C [+ ).(1 + M·)] )] 

X j=I2(A.jL) 112 {J.j(I +Mj)+i.k(l ±Mk)}C+[+i.k(l ±Md] 
(42) 

Ims 

Lll, ' : Lllz 

OLO I 
I 

~ 

C~ ~0 :A1(1-M1) l\z.(1-M2) 

-----------------------r--------------------~Ree 

Fig. 3. Path of integration L0 , L,1 , L;., and L_,1 , L_;,. 
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4. CRACK OPENING DISPLACEMENT AT POINTS AWAY FROM THE 
CRACK TIPS f 

' i 
· In o. rder to obtain the displacement jump for the large valu~· s of A:1 (L - x ), A.2 (L - x ), ..1. 1 (L + x) 
and ..1.2(L +x), we can write G+(O and G_(O from (42) as 

where 

P± _Q±K±(O -0 K±(e)R<~> 
G±(O=±e-eo+ e-eo. +k~l{).k(l±Mk)±e}' 

A, e+i~oL 

Q± = iK±Ceo) 

Now we obtain from (J3) 

.. Q ei~L R<'> ei~L · R<]> ei~L 

N(e)=- (e -e:)K_(c;) + {e +A.1cl ~M,)}K_(O + {e +J.2(l +M2)}K_(e) 

(43) 

(44) 

(45) 

(46) 

Q_ e-i~L R<:..> e-i~L 

+ (~ -eo)K+(e) {e -A.~(l-Ml)}K+(O 
R<:.> e-i~L 

{e - A.2(l - M2)}K+ (e)" (
47

) 

From (31) we obtain the .displacement jump across the surface of the crack as 

(48) 

Substituting the expression of N(e) from (47) in (48) and approximately evaluating the integrals -
arising in ( 48) term by term for large values of )., (L -X), }.2 (L -X), A., (L +X), and ;..2 (L +X), 
and neglecting terms of order higher than ( A. 1 L)- 3

'
2and ( A.2 L)- 3

'
2

, we finally obtain the crack opening 
displacement across the cracked surface at points away from the crack tips in the following form: 

where 

.1W = WI (x, 0+)- W2(x, 0-) = - iQ+ K+ ceo) ei~o(L-x) 

T - 2 O'keii.k(l+Mk)(L+xl[Q±K±[±A.k(l +Mk)] 

±- k~l {A.k(L + x)} 112 2'12[A.k(1 + Mk) +eo] 
_ ± O'jA+[+A.j(l ±M)]K±[±A.k(l +Mk)]( Q+e2il1(1±M1 JL 

j~ I 2(2A.jL) 112{Ak(l + Mk) + ).j(l ± Mj)} Pil ± M) ±eo} 

_I O',A± [±A.,(l + M,)]Q± e2•1l,<' + M,>+•,<' ±M1 )JL )] 

r= I 2(l,L) 112{l,(l + M,) + ).j(I ± Mj)}{l,(I + M,) +eo} 
0 

5. STRESS INTENSITY FACTOR AND CRACK OPENING DISPLACEMENT 
NEAR THE CRACK TIPS 

Now considering the behaviour of e atinfinity we obtain from (42) 

A e+i~oL 
G (")~ + 1 +S ;:-'12 as "-.co, 

± .. - i(e -eo) ±.. .. 

:EFM 45/1-H 

(49) 

(50) 

(51) 
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· where 

S - 1 [_A,e'~';~oL + 2 O'.t-emt(I±Mt)LA'f[::F).t(l ±Mt)]C'f[+A.k(l +Mt)] 

± - (1 + .M)112 + iK± (~0 ) - k~l 2(A.kL) 112 

'X 1-2: ' ± 1 1 ± 1 , . 
: ( 2 u.eu;.i(l'fMilLA [±) .. (l=FM)]C [+A.(l=F.M-)] )] 

. J~ I 2(A.JL) 112{).j(l + Mj) + A.k(l ± Mk)}C'f [ +A.k(l ± Mk)] . 
(52) 

Now, from eq. (33), using (51) and also the fact that 

~ 
K(O- ± 1 + M as ~- ± oo, (53) 

we obtain 

():)- 1 + M [ i~L -i~L 
N ., - ± ~(~) 112 S+ e + S_ e ] as~-± oo. (54) 

! 
Taking the inverse Fourier transform of (31) and using the result~ of Fresnel integrals, viz. 

sin 
joocos(x+L)ad =[ 7t ]''2 

Jo (a) 112 a 2(x + Lj ' 
(55) 

we obtain the displacement jump across the surface of the crack as 

[
2(x +£)]''2 

~W=W1 (x,O+)-W2 (x,O-)= -(l+M)(l+i)S_ 1t forx--L+O (56) 

[
2(£- x)]''2 

= - (1 + M)(l - i)S+ 7t for x -L - 0. (57) 

Expressions (56) and (57) give the displacement jump near to the crack tips, whereas the 
displacement jump away from the crack tips is given by (49). 

Next, in order to find the. value of 't'yz near to the crack tip we use (54) in (32) and (29) and 
obtain · 

(58) 

as ~--oo. (59) 

Now 

( .)= _oHij(x,y1)= . _oHij(x,y1)=J-l1s1!._[foo· A.(I=) -i{x~•jlYiidJ:J tyzx,y, ll, !l J-l,s, !l 2 !l ,., e ., . 
. uy uyf 1t uyf · ·-oo 

(60) 

Now substituting the values of A1(~) as I~ 1-oo in (60) and integrating, we obtain the stress near 
to the crack tip as 

(61) 

and 

(62) 
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where 

,/, . -I iyd 
'1'2=Sln -

r2 

(63) 

Therefore at the interface (y = 0) near to the right-hand crack vertex, we obtain 

.U1S1(1- i)S+ , 
'Y=~- {2n(x- L)}l/2 as x;L + 0. (64) 

Now the normalized dynamic stress intensity factor Kat the' crack tip x =Lis defined by -I [2nkl (x - L)jl/2'Y=I- I (1 - i)S+ (kjl/21 K- -s1 for x~L +0, (65) 
.U1Al A1 _ 

. Where A 1 is given by (24). 
The absolute values of the complex stress intensity factor defined by (65) have been plotted 

' against k1 L in Fig. 4 for values k1 L. > I for different values of the Mach number M 2 and the angle 
of incidence for the following sets of materials: 

first set: steel p1 = 7.6 gm/cm3
, !-l1 = 8.32 x 1011 dynefcm2 

aluminium P2 = 2.7 gmjcm3
, !-l2 = 2.63 x 1011 dynejcm2 

second set: wrought iron Pt = 7.8 gm/cm3
, !-l1 = 7.7 x 1011 dyne/cm2 

copper P2 = 8.96 gm{cm3
, /-l2 = 4.5 x 1011 dynefcm2

• 

As the Mach number M 2 ~o the stress intensity factor K tends to the value of the stress 
intensity factor corresponding to the stationary crack. The problem for 81 = n/2 and M 2 = 0.0 was 
solved earlier by Pal and Ghosh [9]. The graph of stress intensity factor vs k 1 L corresponding to 
B1 = n/2 and M 2 = 0.0 as given in Fig. 4a is found to coincide exactly with that given by Pal and 

'2·0--r----------------'----------., 

1·6 

:.::: 0·8 

o.4 Wrought Iron &. Copper 

Aluminium & Steel 

Mz=O·O 

Fig. 4(a) (caption overleaf) 

Mz=O·S 
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(b) 2·0 

1.6 

1-2 

t 
~ 0.6 

M2=o·5 

0-4 
Wrought Iron ~ Copper ---

Aluminium & Stoel 

o.o 

3 5 7 9 11 13 15 17 19 

k
1

L -
(c) 2:0 

1-6 

r·2 
::t:! 0·8 

0·4 Wrought I ron & Copper M2=0·S 

Aluminium & Steel 

o.o 
3 5 7 9 11 13 15 1'1 19 

k
1

L -----+-

(d) Z·O 

WroughT Iron & Coppor 

Aluminium & Steel 
1.6 

1·2 

t 
:;:: 0·8 

0·4 

3 5 7 9 11 13 15 17 19 

k,L ----+-

Fig. 4. Stress intensity factor Kversus dimensionless k1 L. (a) 01 = rc/2. (b) 01 = "rcf!- (c) 01 = rc/4. (d) 01 = rc/6. 
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Ghosh [9]. It is interesting to note that for both pairs of materials, as M2 increases, the peaks of 
the curves of stress intensity factors decrease in magnitude and occur at lower values of k

1 
L. 

Further, it may be noted that for any fixed value of M 2 the stress intensity factor decreases with 
the decrease in the value of the angle of incidence. 

1 

I 
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·APPENDIX 

(AI) 

where 

Now 

Taking logs on both sides 

log R(~) =log R+ (~)+log R_ (0 =--: --- d11,. I f logR(11) 

27tl n+ru II-' 

where the paths of integration cL and cu are as shown in Fig. AI. Therefore 

log R_ (0 =--: --- d11 
I f log.R(II) 

21tt '" 11 -' 

•& Re.l'l 
--------~~----------------~--~--------------r-------~ . 

-:A2(1+Mzl -J.1(1+M1J 

Fig. A I. Complex 11 -plane. 
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J..1(1-M 1l C1 )1 2 (1-Jz.l 

( 
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-:?..2 (1+M2J -:A1(HM1> 

Fig. A2. Path of integration round the branch points. 

or 

Putting '1 = -'1 

therefore 

and therefore 

Similarly 

(A2) 

and 

-[~ -J.,(l-M,)]'t2 {1 J"'''--"'l I -•(M[('I +J.,M,)>-J.j]'t2) J K_(<)- . ex - --tan , 2]' 12 d'l . 
(l+M) n 1 , 11 _.~~, 1 ('1-~) [J.i-('l+J.2M2) 

(A3) 

(Received 29 May 1992) 
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Ab~1nct-ln this paper, the problem of two-dimensional oscillations of four rigid strips, situated 
on a homogeneous isotropic semi-infinite elastic solid and forced by a specified normal component 
of the displacement has been considered. The mixed boundary value problem of determining the 
unknown stress distribution just below the strips and vertical displacement outside the strips has 
been converted to the determination of the solution of quadruple integral equations by the use of 
Fourier transform. 1\n iterative solution of these integral equations valid for low frequency has 
been found by the application of the finite Hilbert transform. Th•· normal stress just below the strips 
and the vertical displacement away from the strips have b<>en obtalf\\:d. Finally, graphs are presented 

.which illustrate the salient features of the displacement and stress intensity factors at the edges of 

the strips.E~~~~(b i99~ E~se~!e!~~ic~~e ~l~:--)1 

I. INTRODUCTION 

The problem of the effect of vibrating source in different forms on the surface of an clastic 
mediuin have aroused attention in view of their application in seismology and geophysics. 
Reissner (!937), artd later Millar and Pursey (1954), treated the case of a uniform vibrating 
pressure distribution applied to a circular region on the surface of an clastic half-space. 
Analytical treatment of the dynamical response of footings and solid-structure interaction 
arc usually available in the literature only for circular and elliptical footings, and infinite 
strip loadings. Such results are important in view of their application in the design of 
foundations for machinery and buildings, and also in the study of the vibration of dams 
and large structures subjected to earthquakes. The problem of circular punch has been 
solved analytically by.'\ wojubi and Grootenhuis (1965), Robertson (1966), Gladwell ( 1968) 
and others. Roy (198Ci) considered the dynamic response of an elliptical footing in fric-

1 tionh!ss contact with a homogeneous elastic half-sp;tc~.:. Karasudhi er a/. ( 1968) obtained a 

i 

·./ 

1 low frequency solutiOJI for the vertical, horizontal and rocking vibration cr ~lii inlinilc strip 
on a semi-infinite el<tstic medium. Wickham (I ~77) workl'd out iot '~.::tail tb.:: problem of" 
forced two-dimc:nsional o:-cillation of a rigid strip in smooth contact with a semi-infinite· 
clastic medium_. Recently, Manda! and Ghosh (I Y92) treated the problem of forced vertical 
vibration of two rigid strips on a semi-infi-nite clastic medium. · 

To improve the dynamic models of buildings and other!structures, it will be fruitful to 
have analytic results for foundations of a more complicateil nature. In what follows, the 

1 problem of vertical vibration of four rigid strips in smooqh contact with a semi-infinite 
clastic medium has been considered. The problem is also imp6rtant in view or its appl:cation 
in the study of th.: vibration of an clastic medium caused by running wheels on a railway 
track. The rcsu!L ,~ mixed boundary v~llue problem has been reducl~d to the solution of 

t :\uihor hJ whom corr~c;pondence ,hould be addressed. 

u.-.f 
i 

. I . ~ 
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quadruple integral eguations, which have further been reduced to the solution of int~.gral
differential equations. Finally, an iterative s6luti0n valid for low frequency has been 
obtained. ·· 

From the solution of the integral equations, the stress just below the strips and_also 
the vertiel:ll displac:crnent at points outside the strips on the free surface have been found. 
1l1c etfects of strc~s intensity factors at the edges of the strips and vertical displacement 
outside the strips have been shown by means of graphs. 

2. FORMULATION OF THE PROBLEM 

Consider the normal vibration of frequency w of four rigid strips having smooth 
\ contact with a semi-infinite homogeneous isotropic el<~stic solid occupying the half-space 
......______ __ ---::::_C9~X.:::._~_.__r_?_Q,-=.,_co -:::.~<co. It is assumed that the motion is forced by prescribed 

displacement distribution ~~··1)10rmai to. the four infinite strips located in the region 
d1 :::;:; IX]:::;:; d2, d3 :::;:; lXI:::;:; d, Y = 0, IZI <co, where vu is a constant. 
. Normalizing all the lengths with respect to d and putting X/d = x, Yfd = y, Z/d = z, 

d1/d = a, dJd = b, d3jd = c, one finds that the rigid strips are defined by a .:::;:; lxl .:::;:; b, 
c:::;:; lxl.:::;:; l,y = 0, lzl < o:::>(Ejg. 1). ' 

-------~~~the ti_me_ fact_?Ouppressed throughout the anal~sis, the displacement com-
ponents canoe wnttenas ' ·~ 

o<f! al{l 
u(x,y) = -

3 
- -~ ; 

x oy 

a¢ oi/J 
v(x,y) =-~-+-a ; 

oy x 
ll'(x,y)=O (I) 

where the displacement potentials c/!(x, y) and l{l(x, y) satisfy the Helmholtz equations 

(2) 

in which 

In terms of •> and 1{1 the stress components are 

0 
_, -c -b -a a b c , 

y 
Fig. I. Geometry of the problem. 
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r,., = 0. 

The boundary conditions are 

r .. ,.(x, 0) = 0, -.co < x < co 

. ·.· 
·,·-·--

.... -
. ' -~· . 

(3) 

(4) 

(5) 

(6) 

where I, = (0, a), 12 =(a, b), 13 = (b, c), /4 = (c, 1.), 15 = (1, co). The solution oft he Helmholtz 
equation (2) can be written as · 

where 

¢ = 21"' A(~) cos ~xe-ror d~ 

1/J = 21"' B(~) sin ~xc·-Y,r d~ 

I 

{(~
2 -m]) 112 , 1~1 ~ m1} .L 

. -i(m]-e)'fl, l~l~m1 

(7) 

Y1= , J[ 1,2 

and A(~) and B(~) are unknown functions to be determined f om the boundary conditions. 
By using the boundary condition (6), it can be shown that 

i -

Now the displacement component v and stress r,y become 

(&) 

From the boundary conditions (4) and (5) we get the following set of integral equations in 
P(~): . . 

(II) 

and 
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( 12) 

where 

1 
3. SOLUTION OF THE PROBLEM 

We consider the solution of the integral equations (11) and·(l2) in the form 

( 13) 

where f(r) and g(zr) are unknown functions to be determined. ! 

By the choice of P<e) given h\' eqn (13) the relation (12) is satisfied 1utomatically and 
eqn (II) becomes . · 

I -
I 

~---··-

using the rei a tion 

sin~xsin~t = rx f'.wvlo(~w)Jo(~v)dvdw 
~1 Jo Jo (xl-wl)lil(tl-vl)''l 

the above equation is converted t•' the form 

(15) 

where 

(16) 

By a simple contour integration technique used by Ghosh and Ghosh (1985), L 1(v, w) can . 
be written as 

'~. ·. 
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where 

and r0 is the root of the Rayleigh wave equation Qo('l) = 0. ft. r2 arc the roots of the 
equation 

Q0(11) denotes the derivative of Q0 (17) with respect to 11 and 

i,j = 0, I, 2 and i :P j. 
·.. ;;;: 
:,~ 

The corresponding expression for L 1 (v, w) for w < v follows from cqn (17) by interchanging 
wand !1. For a Poisson ratio q =~.the values of<, -r0, r 1 and r 2 arc given by 

2 2( I - q) 
2 

3 
2 

3 
2 

3 
t = (J-2q) = 3, to= (0.9194)2' t• = (2+2}3) and t2 =4· 

lienee, in this case r2 < r 1 < I < t < r0• 

By using the series expansions of J0 and H~1 l, and evaluating the integrals arising in 
cqn (17), we obtain, after some algepraie manipulation, 

. . 

w>v. 

w<v, '(18) 

wher-~-; = 0.5772157 ... is Et1lcr's constant, 

(19) 
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(21) . 

Next, differentiating both sides of relation (14) with respect to x, we obtain . . 

Following a similar procedure as for deriving eqn (15), we get 

(22) 

where 

(23) 

For small values of m 1 and m2 such that m1 = O(m2), one can use the contour integration 
technique mentioned above and obtain 

(24) 

. By a process similar to the one which led to eqn (18), eqn (24) can be written as 

(25) 

where Pis given by eqn (21). 
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Now examining rclation,s (15) and (18), we assume the expressions of the functions 
f(t 2

) and g(!l) as "" 

f(t 2
) = / 0 (!2

) +/1 (t
2 )m~ logm 1 +O(mD 

g(u2
) = g0 (u2)+g1 (u2)mf logni 1 +O(mD. (26) 

Putting the above expressions of f(t2
) and g(rr), and the value of L 2(v, w) gi~·en by eqn (25) 

· in eqn, (22) and equating t.he coefficienu. of like powers of m 1 we obtain 

(27). 

and 

{28) 

Following Srivastava and Lowengrub (1970), the solutions of the above integral equations 
(27) can be obtained as 

(29) 

and 

(30) 

where D1 and D2 arc constants \vhich can be calculated as-follows: 
'Vc substitute the value of L1(v: l,v) from cqn (18), as wc11 as the expansions of/(f) and 

g(!l) obtained from rqns (26), (29) and (30) up to O(nli Iogm1) in eqn (15). When the 
coefficients of like powers of m1 from both sides of the resillting equation are equated, after 
some algebraic manipulation we get the following · 

i 
D _ 7W0 (X2 -X1) • D _ ~~~ j (X, -XJ) 

. I- 4rl cx,x~-X2X3)' ~- 4r2 (l,x4-X2XJ) 
(31) 

where 

(32) 

(33) 
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(34) 

l I . 
(35) 

4. STRESS INTENSITY FACTORS AND DISPLACEMENT 

The normal stress -r11(x;y) on the plane y =·0 can be found from the relations (10), 
(13), (26}, (29) and (30) .as 

(36) 

Defining the stress intensity factors at the edges ol' the strip.s by the rclatioqs 

r,y(x, 0)~~; 
1tJl.Vo 

-r,;:(x, 0)~~ 
1tJIVo 

r11(x, o);x:::-c\; 
1tJWo 

-ryy(x, 0)~,. 
1tJl.Vo 

We get 
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(37) 

(38) 

(39) 

(40) 

The vertical displacement v(x,y) on the plane y = 0 can be obtained from eqns (9), (13), 
(26), (29) and (30) as • · 

xe/.,/3,/s (41) 

where 

5. NUMERICAL RESULTS AND DISCUSSION 

The stress intensity factors (SIF) Ken Kh, K, and K1 at the edges of the strips and 
vertical displacement !v(x, 0)/vol ncar the rigid strips have been plotted against dimensionless 
frequency m1 and distance x, respectively, for a Poisson solid{r2 = 3). . 

It is found that whatever the lengths of the strips are, SIFs at the four edges of the 
strips increase with an increase in the value of mj (0.1 ~ m1 ~ 0.6). 

From the graphs, it may be further noted that with a decrease in the length of the inner 
strip, which might be induced either by increasing "a" or by decreasing "b" the SIFs 
gradually increase (Figs 2-9). 

Also, a decrease in the value of the length of the outer strip, which might be induced 
by increasing the value of c, causes an incre.1se in the values of the SIFs (Figs IO-l3),.from 
which an interesting conclusion might be drawn: i.e. that the presence of the outer strip 
suppresses the SIFs at both the c9gcs of the inner strip and the presence of the inner strip 
suppresses the SIFs at both the edges of the outer strip. 

I 
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r 

a=O·l 

m,-... 
Fig.l. Stress intensity factor K. vs dimensionless frequency m1 forb= 0.6, c = 0.8 and for ;rl:.;rent 

values of a. 
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Fig. 3. Stress intensity factor ~ vs dimensionless frequency m1 for b = 0.6, c = 0.8 and for different 

values of a. 
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Fig. 4. Stress intensity factor K, vs dimensionless frequency m1 forb = 0.6, c = 0.8 and for different 
values of a. 
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Fig. 5. Stress intensity factor K1 vs dimensionleSs frequency m 1 forb = 0.6, c = 0.8 and for different 

values of a. 
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Fig. 6. Suess intensity factor K. vs dimensionless frequency m1 for a= 0.2, c = 0.8 and for different 

·, values of b. · 
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Fig. 7. Stress intensity factor K. vs dimensionless frequency m1 for a= 0.2, c = 0.8 and for different 
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Fig. 8. Stress intensity factor K, vsdimensionless frequency m1 for a~ 0.2, c = 0.8 and for different 
values of b. 
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fig. 9. Stress intensity factor K1 vs dimensionless frequency m1 for a= 0.2, c = 0.8 and for different 

values of b. 
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Fig. 10. St~ess intensity factor K. vs dimensionless frequency m1 for a "' 0.2, b = 0.4 and for different 

' · values of c. 
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Fig. II. Stress intensity factor~ VS dimensionless frequency m, for a = 0.2, b = 0.4 and rr different 
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Fig. 12. Stress intensity factor K, vs dimensionless frequency m1 for a = 0.2, b = 0.4 and for different 
values of c. 
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Fig. 13. Stress intensity factor K1 vs dimensionless frequeiicy m1 fo; a = 0.2, b = 0.4 and for dilferent 
values of c. 
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c = 0·8 

X.--+-

Fig. 14. Vertical displacement lv(x, 0)/Vol vs dimensionless distance x forb= 0.6, c = 0.8, a= 0.2, 
0.4 and for m1 = 0.1, 0.2, 0.3. 
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Fig. 15. Vertical displacement lv(x, O)/v01 vs dimensionless distance x for a = 0.2, c = 0.8, b = 0.4, 
0.6 and for m1 = 0.1, 0.2, 0.3. 
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Fig. 16. Vertical displacement lv(x,O)vol vs dimensionless distance x for a= 0.2, b = 0.4, c .. i>'.~. 
O.S and for m 1 = ·o.\, 0.2, 0.3. 
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The vertical displacement has been plotted for different strip lengths. It is t:9und from 
Figs 14-16 that with an increase in value oTstrip lengths, the displacement increases. 
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