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FORCED VERTICAL VIBRATION OF FOUR RIGID STRIPS
ON A SEMI-INFINITE ELASTIC SOLID

1. INTRODUCTION

The probiem of the effect of 'vibrating source in different
forms on the surface of an e1ast1§ medium have aroused attention 1nn*
view of»their application in seismology ‘and geophysics. Reissner
[1937], and 1ater Millar and Pursey [1954], treated the case of a
uniform vibratihg pressure distribution ~app1}ed to a circular’
region on the surface of an eIastic half-space. Analytical
treatment of the dynamical response of footings and so]id-structure
interaction are usuéi1y available 1in the 1literature only for
C1r¢u1ar and elliptical footings, and infinite strip loadings. Such
results are important 1n_view of their application in the aesign of
foundations for machinery and buildings, and é1so in the study of
the vibration of dams and targe structures subjected to
earthquakes. The prob1§m of circular punch - has been solved
analytically by Awojobi and Grootenhuis [1965], Robertson [1966],

Gladwell [1968] and others. Roy [1986] considered the dynamic
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response of an elliptical footing in frictionliess contact with a
homogeneous elastic half-space. Karasudhi, Keer and Lee [1968]
obtained a low frequenc} solution for the vertical, horizontal and
rocking vibration of an infinite strip on a semi-infinite elastic
medium. wickham_[1977] worked out 1n:deta11 the pfob1em of forced
two-dimensional oscillation of a rigid strip.in smooth contact with
a semi-infinite elastic medium. Recently, Mandal and Ghosh [1992]
treated the problem of forced vertica1 vibration of two rigid
strips on a semi-infinite elastic ﬁedium.

To 1improve the dynamic méde]s of buildings and other“\
structures, it will be fruitful to have anafytic results for
foundations of a more complicated nature. In what follows, the.
problem of vertical vibration of .four rigid strips 1in smooth
contact with a semi-infinite elastic medium has been considered.
The probliem is also important in view of 1its application 1in the
study of the vibration of aﬁ elastic - medium causéd by running
wheels on a railway track. The resuTtingA mixed boundary value
problem has been reduced to the so1ut€on of quadruple 1integral
equations; which have further been reduced to the solution of
integral~differential equations. Finally, an 1te?ative solution
valid for low frequency has been obtained.

From the sé1ut10n of the integral equations, the étress just

‘below the strips and also the vertical displacement at points
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outside the strips on the free surface have been found. The effects
of stress intensity factors at the edges of the strips and vertical

displacement outside the strips have been shown by means of graphs.

2. FORMULATIONIOF THE PROBLEM
Consider the normal vibration1of frequency @ of four rigid
strips having smooth contact with a semi-infinite homoéeneoug
isotropic elastic solid occupying the half-space =-w<iX<w, Y20,

-w<Z<w. It is assumed that the motion is forced by prescribed

. , , . -jwt , .
displacement distribution voe T normal to the four infinite

strips located in the region d_ = X}Edz, d35|X|5d, Y=0, |Z|<w, where

vO is a constant.

Normalizing all the lengths with respect to d and putting

d d
= a, 2:b, —E

d

Q.
—_

Y z, C;

ol
1]
x
al <
n
[eR N
i

“ |
Q

one finds that the rigid strips are defined by at|x|%b, ¢ Z2|x]|<1,
o, . . , -iwt

y=0, |2|<m (fig.1). With the time factor e suppressed

throughout the analysis, the displacement components can be written

as

e gV dd

dd b
u(x,y) = J% " W ;0 vix,y) = W + % ;o owix,y) 0 (1)
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Fig. 1. Geometry of the problem.
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where the displacement potentials #(x,y) and w(x,y) satisfy the

Helmholtz equations

82¢ 02¢ ,
;;E + 6y2 + m1¢ =0
0% ot |
;;E + 5;5 +my =0 _(?)
mzdz . o w2d2
in which my = > and | m, = '02
1 2
In terms of ¢ and ¥ the stressjcomponents are
[ % 0% \
Txy - l : axady ' éxz'_ 6y2 j
(2 9° | 3%y | |
T, f - u {[ m, + 2 ;;5 ]¢ -2 oy } ’. (3)
Ty 7 O
The boundary cénditjons are
vix,0) = v0 , X € 12 , I4 (4)
ryy(x,o) =0 , X &€ I'1 v Iy Ig (5)
Txy(x,O) =0 , -0 { X < w (6)
where I1 = (O,a),‘I2 = (a,s), 13 = (b,c), I4 = (c,1), 15 =-(1,m)u
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The solution of the Helmholtz eqdation (2) can be written as

o

-y
- - 1 -
¢ =2 [ A(E) cosix e d?
0
o . (7)
. LY
w =2 ['B(E‘f) sinfx e dz
5 .
where
2 1/2 "
R R [T
.= s Jjg=1,2
¢ . w2 2 .
J Sim? - g HEE m,

and A(¢) and B(f) are dnknown functions, to be determined from the

boundary conditibns.

By using the boundary condition (6) it can be shown that

B(Z) = 55— AlE) | (8)

Now the displacement component v and stress Tyy become

w L2 '
o ¥,y Y
vix,y) = 2 f [ ——3 © - e ] A(¢ )cosix di (9)
_ L2 ]
0 27 m2
0 — y 2.32,'/ " y
2_.2, 1 Sl T . c
T (X,y) = —zuf [(m2-2€ Je + __5_15_ e ]A(é)costx & (10)
yy . LR |

From the boundary conditions (4) and (5) we get the following set

of integral equations in P(¥):
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K e 1 i
4 = = , X = I 11
f EI IR P(¢)cosf x df = Yo I, I, (11)
o (2 -m, Sy
and
X
f P(f)cosix df = 0 , X £ I1 , 12 , 15 (12)
0
where
._'n n A .2
(25-m )" - 4%y v,
e L od
P(£) = —~ 2 CA(S).
(28° - m)

3. SOLUTION OF THE PROBLEM
We consider the solution of the integral equations (1t1) and

(12) in the form

b 1

P() = f tf(t7)cosft dt + [ ug(u®)cosfu du (13)

Fal

|

-]

a c
) 2 2 . ,

where f(t ) and g(u ) are unknown functions to be determined.

By the choice of P(¥) given by (13) the relation (12) 1is

satisfied automatically and the equation (11) becomes
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~
[ < [ g Ft df
J tf(t )dt g (2 2 )2 4,2 - cosi x cosft df +
a o ‘< My IRETS
1 w 2 X
2 “ M Yo
+ f ug(u )du f 5 5 2 2 cosfx cosfu df = — ,
[ - 4 F % 2
c o (& my) SESLS-
X € I2 » I, (14)
‘using the relation
C o v X t . o
sinfx sinft _wao(&w) JO({V) dvdw
2 =] ] 2 2.1/2 .2 2.1/2
¥ o o (x -w ) (t -v)

the above equation is converted to the form

b X

g; [t F(t2) dt 5T 1
a 0

"Y L1(v,w) dvdw

I =7

1/2

<

2

(xZ-w?) 2 (£2oE

Q

(t )

1 . X :
xu wv L1(v,w) dvdw

d 2 & o op
+ — du —
ax J ueuau o [f 2wy 72 (2 2172
c 00 -
\'% 0 .
=— , xe 1,1 (15)
2’ T4
2
where
o ) 2
M
L, (vow) = f I RN Jo W)y (Ev)dE (16)
o " T2 R L
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By a simple contour integration technique used by Ghosh and Ghosh

(1985), L1(v,w) can be written as

- 1(1—n2)1/2(2n2—T2)2 Hé1)(m1nw) Jo(minv)

L (vow) = —it® 2 2.4 4 2 2 2 di -
(gn=t7) + 167 (n —-1)(T-11)
T 2 1/2 1
1] (n -1)(’r =) / é )(m W) J (m1nv)
- 44T f ‘ dn +
2 2.4 . -
o (2n~-t7) + 167 (n -1)(T =7} )
2 1/2 (1)
(n =1) H (mnpw) J_(m nv)
2 [ 1 0" 1 ]
+ 7T ; WOV
Qo(n) : =T,
. 2 2 1 2.1 2 1
T (1-v7) /2, )(m nw)J (m,v)
z — 2 P f O 1 dn +
16(1—?2) J T2—T2
j=0 0 T
T, 2 2.1/2 (1),
2 ] (t°-1°) / Hé )(m1nw)do(m1ﬂV)
+ S‘ S. J dn] +
L J : 2 2
. n -T, 4
J=0 0
2 1/2 (1)
5 (n -1) / H(() (m1nw) Jo(m nv) =
. 1
+ TaT [ T A 4 W>v (17) .
Qy () =T
m C
2 1 2 2.2 2 2 1 2 2.1/2
where 17 = — = — , Q1) =(2n ~-7t7) = 4n (n -1) /2 (n -t) / and,
m1 02 0
7. is the root of the Rayleigh wave equation Qo(n) = 0. ‘ T1, 72

0

are the roots of the équation
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2 2, 2 1/2, 2 21/2
(2 -1 ) + 4 (1) (-7 ) =0

Qo(n) denotes the derivative of Qo(n) with respect to 7 and

p 2
(2Tf - T )
P, = J
J 2 2 ’
mas -1
.i
2 2
4Tj (t, - 1)
S, = J , 1,J = 0,1,2 and: i # J
J (2 - %)

The corresponding expression for L1(v,w) for w < v follows from

) ) . , 1
equation (17) by interchanging w and v. For a Poisson ratio ¢ = 7
the values of T, TO, 11, and TZ are given by
o 201-) 2 8 2 8 2 3
T = — = 3, TO = ———% T1 = ————— and 72 = ik
(1-2c) (0.9194) (2+27Y3)

Hence, in this case 72 < 71 <1 <1« fo

By using the series expansions of JO and Hé1) and eVa]uating

the integrals arising in equation (17), we obtain, after some.

algebraic manipulation,
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- - mw Ti. P
L1(v,w) = iTZ{!T + log — - —IM + N - —(w2+v2)mf1ogm1] + O(mf)
Lt 2 2 4
W > V.
m,v 7. P
1 2
= ETz[{;»’-*-bg M+ N - —(w2+v2)m21ogm ] + 0(m))
n 1 1 1
2 2 4
w < v. (18)
where » = 0.5772157... 1is Euler’s constant,
n
Mz - — ' (19)
2
4(1-7 ) ‘

2 ’ 2 2
T J‘(‘I—Tj) 1 «1(1—‘!"3,)
= —— . — + ——— ——————————s
N 4709 Z Pj tan

32(1-1t7) . T, ,
J=1 J J

‘o
- SO log { ) (20)
TO T
2 2
" 1 2 72 2
P = 5 [ Y P, (= -T7) + z S (= -717) ] (21)
} L J 2 J Jj 2
32(1-1t7) :
‘ j=0 j=0
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Next, differentiating both sides of the relation (14) with respect

to x, we obtain

b 0 _
2 £ym
J efehdt [ ——
a 0 % T

sinfx sinit df +

1 w

+ f ug(uz)du f RS
0 (2¢ ~-m,

(@

Following similar procedure as done for deriving equation (15), we

get
b
tF(£2) " ugu?y
—_ + —
X I 7% dt + X f > du
X -t X —~u
a c
b t
5 3 X WV L2(v,w) dvdw
= | t f(t7) dt =— E
I (v at I (x2-w2y 172 (22172
a 0 0 ‘ M
1 X u
5 3 1A% L2(v,w) dwdv
+ du —
Jruetwhau o [ f Py 172 (22172 T I I, (22)
c 00 M
o) 2y £2(m —m2)’ '
where L (v,w) = f & - L 2 J (Fw) J _(Ev)df
2+ ' .2 2.2 L2 0" o >V
0 (2% —mz), - 4 Yi¥s
(23)
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For small values of m1 and m2 such that m1=0(m2), one can use the

contour integration technique mentioned above and obtain

1 2.1/2, 2 2.2 2 (1
a (1-n") / (2n -1 ) Hé )(m1'r;w) Jolm, nv)
L (v,w) = 2im (1-1%) [ — n 2 — dn
2 1 o (2ﬂ‘—T2) + 167 (n2—1)(T -n)
a 2n* (%=1 202 ) Y2 0 (o) 0 (mov)
. 2 2 0 1 01 .
+ 4im (1) [ - z 2.4 4 2 2 2 i -
o (2n -t)" + 16n (p“-1)(T°-1")
2 2 .1/2 (1
2 2 n (n-1) / Hé )(m1nw) Jo(m1nv)
- 2ﬂ1m1(1-r ) [ = ] y WOV
QO(T)) 77:10
(24)

By a process similar to the one which 1led to equation (18),

equation (24) can be written as

4P 2 2 '
L(V,W) = = =2 (1-1°) m° Togm, + O(m°) (25)
c T i 1 1
where P is given by eguation (21).

Now examining the relation (15) and (18) we assume the expressions

of the functions f(tz) and g(uz) as

5 , .
f(t ) 1ogm1 + O(mf)

2 2 2
fo(t ) + f1(t ) m1

(26)
g(u?)

2 2 2 2
+ .
Qo(u ) 91(u ) m, 1ogm1 + O(m1)



. 2 '
Putting the above expressions of f(tz) and g(u ) and the value of
L2(v,w) given by (25) in equation (22) and equating the

coefficients of 1ike powers of m1 we obtain

' 2
° ur (£ ug, (u®)
f 2dt+ITdu=O, XEIZ,I4 (27)
X -t X -u
a C
b tf1(t2) ug1(u2)
and [ g dvr [ du s
x -t X —u
a C
b 1
4 1
= - = P(1—12){f tfo(tz)dt + ugo(uz) duJ, x €1, I,. (28)

a o4

Fo17owing Srivastava and Lowengrub (1970) the solutions of the

above integral equations (27) can be obtained as

2 1/2 2 .2 1/2

1-a c -t 1
e (za) () —
¢ -a 1-t J(tz_az)(bz_tz)
(222 V2
- D [ ] S, tel (29)
2 | 2,2 2

1 (1-t2) (c2-12)
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and

5 1—a2 \1/2 u-c” 31/2 1
g.(u”) = D [ J [ J - +

0 1 2 2 2

~co- -u“ - 2

¢ -a 1-u J(uz_a ) (u2-b2)
2 2 1/2
u —-a 3 ’ 1
‘D [ | L ue I (30)
2 [2-p2 J 4

{(W?=c?y(1-u?)

where D, and D2 are constants which can be calculated as foliows:
We substitute the value of L1(v,w) from (18) as well as the

expansions of f(tz) and g(uz) obtained from (26), (29) and (30)

upto O(mf 1ogm%) in the equatiqn (15). When tﬁe coefficients}-of

like powers of m1 from both sides of the resulting -equation are

equated “and we get after some algebraic manipulation, the
following
nvo (X2—X1) nvo (X1—X3)
D, = ; D, = (31)
U 4 (XX -XX) ‘ at? (X X ~X.X_)
; 174 7273 ) 174 7273
where
) ' 1-a2 1/2 m1 —_ <
X, = ¥ o+ —_ - — '
’ [ CER ] [{[ 3 log 5 JM + N}(J1+J3) +
c -a 2 -
1 2 2
+ — -
2MJ11og(b a ) + MJS] (32)

208



m,
[-‘v + 109— -3 ]M + N}(J —J ) - = MJ 1og(b -a ) + MJ (33)
1--a2 172 m
= f- [r:}fﬂ g—1 _ M + N}(J +J ) +
37 L 22 1{ © 5 2 J :
¢ I t0g(1=c%) + M| (34)
z v 09 © 71
. m : '
[;w + 109—; - -Q—JM + Nl(d —J ) + -2- MJ 'Iog(1 c ) - MJ (35)
b c —t2-1/2 tdt
SRR Gl
1 §-12 ' J 2 2., 2 .2
a (t -a )(b"-t")
b 2,2 1/2 tat
el (55) =
2 : 2 2 -
o b"-t l(1 _bz)(cz_tz)
_1 u2—02 1/2 udu
SR Gl
3 2
c fmu §(u2-a2) (12-b?)
! uz-a‘l2 1/2 udu
J4 ) f [ u —b2 ] 2 2 2
c J(u =c )(1 =u’)



! ulog (."uz-—b2 + Juz—a2 ) u2—62 -1/2
J. = f [ J du
5 2
c J(uz_az)(uz_bz)‘ 1 -u
1 ulog ( Juz—b2 + Juz—az ) u2—a% 1/2
J. = : ) du
= [ ==
c j(1 —uz)(uz—cz) u-b
b tlog ( 02-t2 + 11 —t2 ) 02—t2 /2
J =f [ ] dt
! 1 2 2. .2 2 .
a (t -a )(b -t")
b tlog ( \lcz—t2 + l1 —t2 ) - t2—a2 -1/2
Jo = [ J dt
8 J 2 .2
a 11 —62)(c2-12) b -t

4. STRESS INTENSITY FACTORS AND DISPLACEMENT
The normal stress Tyy(x,y) on the plane y=0 can be found - from

the relations (10), (13), (26), (29) and (30) as

LU X 1 -a [ J A

T (X,O) = [ D [ } -
Yy 1 2 2 2

J(xz—az)(bz—xz) ' !



(xz—az)

I 2 ,
- i =
0, - e —— ] + O( m Togm, ), x & I, .
J(1 -x“)(c"-x")
2 2
TLUX .1 -a Ve (x=c™)
= [Dil” J +

c —a ’

2 2 1/2

Defining the stress intensity factors at

the relations

i T (x,0)dx-a
K = Lt Yy K =
a — ! Tr 1) -
x—a+ | BV,
l T (x;O)foc i‘
K =ttt | X ‘ ; K, =

X—>C+ ! v ‘

We get

] Ya D, /v

] + O( m121ogm1 ), x eI

i(xz—az)(xz-bz)
(36)

4

the edges of the strips by

Tyy(x,O)Jb—x I

Lt l \ ’

x—b- | 7@ pvo' ,
T (x,0)41=x

Lt { Yy

X—>1- | mopv

(37)



| fb ) . D1, ’ —a2 _1/2 02—b2 _1/2 DZ (b2_a2) .I
K = |————— —_— - £
b { \% .2 [ .2 \% l
lz(bz_az) 0% c"-a 1 -b 0 J(1 b2y (c2-p%)” !
(38)
I Yc D, . 2-a2 -1/2
o | ==+ ()
' 2(1 _CE) 0 c -b ;
f 1 f (1 —02) D, -1 —a* e ’
K = { + D (40)
1 { l l1—b2‘] '2}-17‘

1201 =6 " {c=a?) (1 -b2)

The vertical displacement v(x,y) on the plane y=0 can be obtained

from equations (9), (13), (26), (29), and (30) as

In) . n 1
4t” . T - ( 1 -a“ . /2
v(x,0) = — f} + logm, - — |M + N D.{: (J,+J) +
N L 1 1\ 1 1 3
i . 2 . 2 cC —a
, 1/2
Y M ra I -a "]
+ - + = + + -
DUy Jz)} 2 {(Jg J11)[ 2 2 ] D, 0,040 J10)]
- c -a
x €1, I, I (41)
where
2 2 2 2 2
tloglt -x"] . c -t -1/
J = dt
o : |
1 -t



t1og’t2—x2‘ Lt -a
| |

a {01 -t2) (2%

1 2 2 , 1/2
ulogfu“-x"| u -c” .
= d
J11 f 2 2 2 2 [ 1 —u2 J )
c l(u -a ){(u -b")
1 [ 22 2 2 1/2
u]og,u =X - U -a .
J = [ J du
12 5 u2_b2

¢ du-c?)(1 -u?)

5. NUMERICAL éESULTS AND DISCUSSION
The stress intensity factors (SIF) Ka' Kb’ KC and K1 at the
edgés of the striés and vertical displacement {v(x,O)/vOf near
about the rigid strips have been plotted against dimensioniess

frequency m1 and distance x respectively for a Poisson solid

(12=3).

It is found that whatever the lengths of the strips are, SIFs

at the four edges of the strips increase with increase in the value

of m1( 0.1 = m1 = 0.6 ).

From the graphs, it may be noted further that with a decrease
in the length of the inner strip, which might be induced either by:
increasing ’a’ or by decreasing 'b’, the SIFs gradually dincrease

(fig.2 - fig.9).
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Also, a decrease in the vatue of lthe fength of the outer
strip, which might be induced by increasing the value of c, causes
an increase in.the values of the SIFs (fig.10 - fig.13), from which
an 1nteresﬁ1ng conclusion might be drawn: i.e, that the presence of
the outer strip suppresses the SIFs at both the edges of the inner
strfp and the preseﬁce of the inner strip suppresses the SIFs at

both the edges of the outer strip.

The vertical displacement has been plotted for different strip
lengths. It is found from fig.14 - fig.16 that with the increase in

the value of strip lengths, the displacement increases.
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Fig. 2. Stress intensity factor Ka versus dimensionliess

fregquency m, for b =

1 0.6, c = 0.8 and for

different values of a.
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Fig.

3. Stress intensity factor Kb versus dimensionless

0.8 and for

frequency m1 for b =. 0.6, ¢

different values of a.
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Fig. 4. Stress intensity factor KC versus dimensionless
frequency m, for b = 0.6, ¢ = 0.8 and for

different values of a. R
i
|
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Fig. 5. Stress intensity factor K1 versus dimensionless
frequency m1 for b = 0.6, ¢ = 0.8 and for

different values of a.
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Fig. 6. Stress intensity factor K&1 versus dimensionless
frequency m1 fora = 0.2, ¢ = 0.8 and for

different values of b.
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Fig. 7. Stress intensity factor Kb versus dimensionless
frequency m1 fora = 0.2, ¢ = 0.8 and for

different values of b.

220




25

[ a=0.2

Fig. 8. Stress intensity factor KC versus dimensionless

frequency m1 fora = 0.2, ¢ = 0.8 and for

different values of b.
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Fig. 9. Stress intensity factor K1 versus dimensionliess
freguency m1 for a = 0.2, ¢ = 0.8 and for

different values of b.
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Fig. 10. Stress intensity factor Ka versus dimensioniess

frequency m1 for a = 0.2, b = 0.4 and for

different values of C.
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Fig. 11, Stress intensity factor Kb versus dimensionless
frequency m1 fora = 0.2, b = 0.4 and for

different values of c.
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Fig. 12. Stress intensity factor KC versus dimensionijess
frequency m1 for a = 0.2, b = 0.4 and for

different values of c.
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Fig. 13. Stress intensity factor'K1 versus dimensionless
freguency m1 fora = 0.2, b = 0.4 -and for

different values of c.
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Fig.

14.

Vertical displacement | v(x,O)/v0 | versus

dimensionless distance x for b = 0.6, ¢ = 0.8,

a = 0.2, 0.4 and for m, = 0.1, 0.2, 0.3.
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Fig. 15. Vertical displacement | v(x,O)/vO | versus
dimensionless distance x for a = 0.2, ¢ = 0.8,

,b = 0.4, 0.6 and for m, = 0.1, 0.2, O.
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Fig. 16. Vertical displacement | v(x,O)/v0 { versus

dimensionless distance x for a=20.2, b=0.4,

¢ = 0.6, 0.8 and for m1 = 0.1, 0.2, 0.3.
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DIFFRACTION OF ELASTIC WAVES BY FOUR RIGID STRIPS
EMBEDDED IN AN INFINITE ORTHOTROPIC MEDIUM

1. INTRODUCTION

In recent years, the study of the problems involving cracks or
inciusions in composite and anisotropic materials has gained much
importance. The probiems of diffraction of elastic waves by Cracks.
or inclusions have aroused attention 1in the field of fracturé
mechanics 1in view of their application in Seismology and
Geophysics. Studies of a single Griffith crack as well as two
parallel and coplanar Griffith cracks have been made by Mal [1970],
Jain and Kanwal [1972] and Itou [1980]. The correspond{ng problems
of diffraction by a single and two parallel rigid strips have béen
solved by Wickham [1977], Jain and Kanwal [1972] and Mandal and
Ghosh [1992] respectively. In mostlof the cases the problems were
solved by the integral equation technique, but the solutions of
interesting problems involving the scattering of elastic waves by“
more than two coplanar Griffith cracks or strips are still Jlacking.
The problem involving single Griffith crack in orthotropic medium

was investigated by Kassir and Bandyopadhya [1983], Shindo et al

IN PRESS "JOURNAL OF ENGINEERING MATHEMATICS", 199G,
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[1986] and De and Patra [1990]. Shindo et al [1991] have
investigated the impact response of symmetric edge cracks 1in an
orthotropic strip. Mandaf and Ghosh [1994] considered ~ the problem’

of interaction of elastic waves with a periodic array of coplanar

-

!

Griffith cracks in an orthotropic elastic medium. The problem of
scattering of e1astic waves by a ‘circular crack in transversely
{sotropic medium was 1nvestﬁgated;by Kundu and Bostrom [1981].

In our case, we have Considefed the two-dimensional prob1ems
of diffraction of elastic waves by four coplanar parallel rigid‘
strips embedded in an infinite orthotropic medium. The five part
mixed boundary_va]Ue probiem was reduced to the solution of a set
of integral equations. Following the technique - developed by'
Srivastava and Lowengrub [1970], the integral equations were
solved. The normal stress under phe strips and displacement outside
the strips were derived in closed analytical form. To display the
influence of the material orthotropy numerical values of stress
intensity factors at the edges of the strips and vertical
displacement have been plotted against dimensionless freduency and
distance respectively for several orthotropic materials. This type
of problem is important in view of their application 1in detecting
the presence of inhomogeneities embedded in material structure and
in seismology while studing the scattering of e1asﬁic waves Dby

inhomogeneities 1ike rigid hard rocks inside the earth.
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2. FORMULATION OF THE PROBLEM
Consider the diffraction of nprma11y incident 1ongitudinal
wave by four coplanar and parallel rigid strips embedded in an
infinite orthotropic elastic medium and the strips occupy the
region d1S{x1|£ d,, dsif}x1 < d, x,=0, }x3 <w. Let E,, u,, and Ty
(i,j=1,2,3) denote the engineering e]astic constants of the

- material where the subscripts 1,2,3 correspond to the x X

17 X2 %3
directions which coincide with the axes of material -orthotropy.
Normalizing a1l lengths with respect to ’'d’ and putting x1/d=x,
x2/d=y, x3/d=z, d1/d=a, d2/d=b, d3/d=c, the rigid strips are
defined by as|x|<b, c£|x|1, y=0, |z|<x (Fig.1).

Let a time harmonic wave given by u1=0 and v1=v

= o =(1: ) 1/2 : -
where k L.d/cS ,022, c_S (p12/p) and vO is a constant, travelling

Oexp[ i(ky~-wt)]

in the direction of positive y-axis be 1incident normally on the

strips. The non-zero stress components Tyy and Txy are given by

T / u = c gﬁ + C QX
yy © 712 T 742 dx 22 dy
du av
z-xy / Hig = dy  8x (1)

where Cij (i,J = 1,2) are nondimensional parameters related to the

elastic constants by the relations
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Fig. 1. Geometry of the strips and incident field.



Ciq =By Sy, (V- vi, ES/E)

Cop T By /My, (1 -y, E)/E)) = c B /R, ("'j’)
=v, E_/ u (1 - vz E./JE,) = v = v

€12 T Yi2F2 1 Hyp 12 F2/517 T Pq2%2 T VYo%

The constants Ei and Pij satisfy the Maxwe11’é relation

i i g

The equations of motion for orthotropic material, interms of

N

displacements are

& u d u ' a v d d u
c + - + (1 + c,.) = = —
M dxz dy“ 12 Ox8y ci étz
(3)
. 62v 62v_ '62u d2 62v
c —_— + — + (1 + Cc, )y—m = — ——
22 2 . 2 12 2 2
ady ax dxdy Cq at

where u, v are the displacement components of the scattered field

(Fig.2).
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AY

Fig. 2. Displacement components of the scattered field.
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The boundary conditions are

(i) u(x,y,t) = 0, v(x,y,t) + vi(x,y,t) =0 across y=0 on
the surface of the strips.

(ii) u and v arercontinuous across y=0 for |x|< w.

(iid) Tyy Txy are continuous across y=0 outside the stripsf_

Further, the scattered Tield should satisfy the radiation condition

at infinity. Substituting u(x,y,t) = u(x,ylexp(-int) and v(x,y,t) =

vix,y)exp(-iwt) our problem reduces to the solution of the

equations
82u 32u Bzv dzwz
c,, — +——=+ (1 +c_.) + —— u=20
i1 2 2 12 ) 2
ox - dy ‘ Ixay o
and
Bzv Bzv -Bzu dzﬁz
Cop Tt Tt IS ——+ 5 v =0 (4)
dy ax Axdy g

Boundary conditions on u and v suggest that u and v are odd and
even functions of y respectively. Accordingly, equations (4) are to

be solved subject to the boundary conditions
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v(x.0) = = v, x £ I, ,1, (5)

Tyy(x,O) =0 , X & I1 , I3 , I5 (6)

ux,00 =0, x| < (7)
with I, = (0,a), I, = (a,b), I, él(b,c), I, = (c,1), Iy = (1,w).

Henceforth the time factor exp(;iwt) which is common to all
‘field variables would be omitted in the sequel.
The solutions of equations (4) are taken as

o

- 2 Fy A ! w w | Tavd 7 ’
u(x,y) = * — J [A1(Q)GXD(“f1lyf) + Az(a)exp(-}2|yl)] sinfx df, vy O
0 . :
(8)
w
- 2 T A (F " 3 3 7
vix,y) = - F A, 1(t,)exp(—;t1]y]) + azAz(g)exp(—;zlyl) cosf x df,
0
- (9)
where
o, £omk2ay? | a%w?
11 s’ , 2
o, = . 1= 1,2, kK- = (10)
1 (1 + c. )r s C2
12774 s
" . ‘ 2 2
and Ai(“) (i = 1,2) are the unknowns to be solved, y1 and ¥, are

the roots of the equation

4 2 fw 2 21 2 w2 2.,.2 2
v o o+ - : - . - =
C, o {(012+2012 c11c22)& +(1+022)k8}y +(c11c kS)(q ks) =0

(11)
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From the boundary condition (7) it is found that

Az(i) = - A1(<);

Therefore displacements u, v and stresses 7 v Txy finally can be

’

written as

w
ulx,y) = é J {exp(—?1iy|) - exp(—yzlyi)]A1(E)sinEx d, y>0 (12)
0
vix,y) = —f {u exp(-y |y[) - o exp(—y ]y])]A (¢ )cosé x df (13)
w

2 C22%% 1 -
Ty M= m [[C12§ T Jexp(_y1lyl) )
0

£
3

o v

\c12& ———:——f Jexp( ,zlyi)]A1(g)COSgX g, y»>0 (14)
ro
T, =2 I f(; a Jexp(-r |y|) -
Xy 12 1 L 1 1 1
0

-, t az)eXp(-leyl)]A1(f)sin5x dé (15)

Next putting

o . 2 -
A(L:) = A1(£:)

]

the boundary conditions (5) and (6) lead to the following integral
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equations in A(¥)

2 ) arf) cosix df = - T
f [ J A(£) cosix df = - 5 v, , xel,, I, (16)
a Y = oY
0 194 2" 2
and
(e
j A(¥) cosfx df = 0 , xe I , I,, I, (17)
0

3. SOLUTION OF THE PROBLEM

We consider the solution of the integral equations (16) and

-

(17) in the form
b 1 ,
= L2 o ' 2 o
AE) = [ tf(t%)costt dt + [ ug(u)cosfu du (18)
a c '

2 2 : , ,

where f(t ) and g(u ) are unknown functions to be determined.
By the choice of A(¥) given by (18) the relation (17) is

satisfied automatically and the equatfon (16) becomes

b o o - [a]
2 P 1 - B ; o
f tf(t")dt f [ J cosfx cosft dif +
a o ¥ T %
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7 1 2 A - . - ”
+ f ug(uz)du | l J cosf x cosfu df

I ’ (19)

Using the relation

. - X t Y v
sinfx sinft waO({w)JO(fv)dvdw

22 S Py 72 (1212,

1/2

it
c,
"t

the above equation 1is converted to the form

d o o X T vwL (v,w) dw dv
[ eF(ef)de o I J 1 +
‘_ at L2 2.4/2 2 2.1/2
dx (x“=w") (t7=v7)
a 0 o0
d 1 N x u vwL (v,w) dw dv
+ — f ug(uz)du T f L
du 2 2.1/2 2 2.1/2
dx (x"=w) (u™=v7)
c g O
= -2y xe I ,I ‘ (20)
-2 70 T 2’4
o0
o, - o
where L(v,w) = ] LI J (Fw) J_(Ev) df . (21)
1 y ) . ] 0 "y O 5] )
o ¥y T 8,

By a contour integration technique (Mandal and Ghosh [1994]) the

infinite integral in L1(v,w) can be converted to the following

finite integrals
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- 1/¥c 2 ==

! PR St (1)

L (vow) = =1 | ——————— JykgVIHy T(kw) dn -
v, r t )
0 1921 2
_f 2 ' ‘
1 c11n2-1+y2 (1) IR
- j ’ JO(_kS'r;v)H0 (ksnw) dnl{, wv (22)
Y e ~f2 =2 =2 B
4 e 4+ . ]

. ' . 1/2
where ?1 = [ % { R1 - (Rf - 4R2)1/2 } ]
| | N\ 41/2 |

- 1 2_ 1/2 ;
o = [ 2 { Ry + (Ry 432) } } :

- ’ 1/2
= _ 2 1/2
¥y o= { R1 + (R1 + 4R3 . } ] |

- . : - 1/2 ‘
¢ 2 i/2 :
= { R1 + (R1 + 4R3) } ] | ;

ro|—

=
]

V]
N —

2 2
= — + - 1<+ +
Ry =g {(°12 201 T Cppfp) M * U °22)}

22

C -
%y

Ry = ot (=D G- 0f ]
22 11
©19 2°( 2 1

R3 = T (1- 7 )[ 0 - P ] (23)
22 11

The corresponding expression of L1(v,w) for w<v follows from (22)

by interchanging w and v.
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(1)

Substituting the series expansion of JO() and HO () for

small ks, in (22) we find after some aligebraic manipulation

2, 2
2[ T (w+v) 2 2
L1(v,w) ”L{} 1og(ksw/2) 2 ]M N ., Rks1ogk8] O(ks)
y WOV
2 2
2[f i (w+v) ] 2
= = ¥+ - — T+ - +
ﬁ[l\; 1og(ksv/2) 2 ]M N ; Rks1ongJ O(ks)
, VOW (24)
where y = 0.57721587....... is Euler’s constant,
Ve - — 1 —
1/,cH c11ﬁ2-1-?1?2 01102—1+?2 |
M = I — — dn - f ’ dy (25)
BT < e g . . .z 2 ! 2 _! 2
0 vyt ry) 1Yc.. ¥ oL D)
11 2 1 2
¥ | i
1 - = 1 —
gl oy 1717 T 40 T, f
N = f ———————— Jdogn dn - f logrn dn '
v B . -1 = —f
0 “1‘2(}1 ’2) 1/f211 ¥, (¥, +y22)
(26)
1/7c ' - .2 2, ='2
/ 11 T} (C11ig -1-y 1;;.-2) " (0117'] —1+;|.-2 )
and R = | ——————— dy - | — dp
;"b" ?_ (“I’ + _l- ) — _n‘ 2 _i 2 _! 2
0 2 ! P v T
1 1 2 o 1/'VC11 ¥y (3 1 T, )
(27)

Now differentiating both sides of the relation (19) with respect to

X we obtain
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b I+Y

5 - o 1 - O 5

[ tr(t%)at | E[ ] sinfx cosft df +

a o ¥y T Y

1 : o .

) a, -«
+ f ug(u)du j E[ ]sinfx cosfu df = 0 , x = I.I,
e s -

o] 0 1° 1 2" 2

Following similar procedure as done for deriving eguation (20), we

obtain
b tr(t?) ug(u®)
xf 5 dt + X — 'du
(x"=-t7) (x“-u")
b 2 P X 'VWLZ(V’W) dw dv
~
= t f t d t = +
J i) t I 2 2.1/2 .2 2.1/2
a o o Xxwio (t-v)
1 X
5 3 va2(v,w) dw dv
+ du =
JugwHau = [ ] 2 2.1/2 , 2 2.1/2
c 0 o (X =-w ) (u™=v7)
= 0, xe 1,1, - (28)
where
[
" - 2 - 4} —- - =1 ‘
Lv,w) = [ |7 - 1 2 J (Ew) J_(Fv)dé (29)
2 W T P ,.l . JJ o~ Cgte VI
& S oy - ooy
0 1% 1 22
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g o= o 1z _ (30)
¥
N+ N,
NG = 1 f—( +2c, - )+ i( 2 +2c,.-c,.c )2 - 4c_,cC
1" | 71€1278%127%1%22 ©127°%127%11%z2 1122
2c » .
22
(31)
and
2 1 2 i 2 2 1
= - + - - + - - 4 .
Ne [ (Cy2*2C127C41%02) ~ 1(C45%2057C 1)) ©11%22 J
222

We use the contour integration technique mentioned eariier and get

from (29)
2 - 1/¥c 2 - —
ik ALTPE (e, 0 =17 i) (1)
Ly(v,w) = — ) e JolkavIHg "k nw) dip =
L0 TN T T2
1 32(611ﬁ2-1+?22) | (1) | 1
—[ J (kK nvIH' (K nw) dnl, wv (32)
b : N ' 0 S 0 [
1743 F (7. 2 9 |
"1 g )

By the process similar to the one which led to the equation (24),

(32) for small values of k8 can be written as

=R\

2 , 2
L2(v,w) = - P kS 1ogk8.f O(ks) (33)

-

R and R is given by (27).

O]

where P =
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Now, let us consider

£(t%)

fo(tz) + ki 10g(k_) f1(t2) + O(ki)

2 2 2 2 2
+ + 4
and glu) = gy (u ) + k_ 1og(ks) 91(u ) + O(k)) (34)
. . 2 2
Putting the above expressions of f(t ), g(u ) and the value of
L2(v,w) given by (33) in the equation (28) and equating the

coefficients of 1ike powers of kS we obtain,

b tfo(tz) 1 ugo(uz)
‘f‘(—xT;—é')dt + -r(_X—ZT?)du = 0, X & 12 ’ I4 (35)
a C
b tf1(t2) ! ug1(u2)
and f‘(xz——tE)dt + Jr (—-—2————2)du
a c X u
b 1
- _ 2P 2 2 S
= - = [ J e eTat + [ ug (uT)du ], x & Ty, I, (36)
a . c

Following Srivastava and Lowengrub [1970] the solutions of the

above integral equation (35j can be obtained as
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5 1 -a c -t 1
0 1 2 2
c-a 1 -t J(tz_az)(bz_tz)
£2.52 1/2 |
- D [ ] , x €1 (37)
2 2 .2 2
ot 101 -ty (c2t?)
, 4 —a2 1/2 u2—02 1/2 ’
and g.(u ) =D [ ] ( J +
0 1 2
¢ -a 1 -u jkuz_az)(uz_bz)
2 2 1/2
u -a ] 1 :
+ D [ ' , x &l (38)
2 2 .2} 4
e 101 =) (u?-c?)

where D, and 02 are constants which can be calculaed as follows.

We substitute the value of L1(v,w) from (24) as well as the
expansion of f(tz) and g(u2) obta{ned from (34), (37) and (38) wup
to O(kzlogké) in the equation (20). When the coefficients of 1like
powers of kS from both sides of the resulting equation are equated
we get after some manipulation, ﬁhe following results:

2 (X,=X) . , L2 (XmX)

L D = - v o (39)

. y
(X Xym%oXy) (X Xg=X, X y)
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wWhere

P 1/2{
=[5
172z |

. 1 2 2 ]
+ EMJ11og(b -a )+ MJ5 J

i ha

X_ = { [ ¥+ 1og(ks/2) -

1 ) 2
- EMJZH_)g(b

-2 1/2
1 -a
Ky = [ 2 2 ] [

> Cc -a

1
+_
2MJ3109(1

2

[ ¥ + log(k_/2) - =

- | i " ]
{ [ y+]og(ks/2)—5— JM + N }(J1+J3) +

(40)

]M + N }(JA—JZ) -

—a2) + MJ (41)

6

. ) _Ei _ -
{. [a|.+'|og(ks/2) 5 JM + N }(J1+J3) +

.
_c2)+ MJ J : (42)

]M + N }(J4_J2) +

1 2
+ gMJ,Tog(1 —cT) - MJg (43)
b 2 2 ,1/‘ tdt
=] { 2
1 -t -
a J(t2-a2) (b2-12)
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w

1/2

J

1/2

tdt

J1 -82) (212

udu

)

1/2
1/2
1/2

1/2

1/2

j(uz—az)(uz—bz)

udu

101 -u?)u?oe?)

2
ulog [«iuz—bz + u2—a“J
: d

J(u?-a?) (u2-p?)

du.

ulog [JTZ-—DZ + J_u?—_a2]

10t ~u?yu?-c?)

1:,”Iog[\ic2—t2 + 41 —t2J

dt

J(tziaz)(bz_tz)

——

t1og[ 02—t2 + 41 —t2

b
) gt

101 -t2)(c2-12)
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4. STRESS INTENSITY FACTORS AND DISPLACEMENT
The-norma1 stress ryy(x,y) on the p1éne y = 0 can be found

from the relations (14), (18), (34),(37) and (38) as

e (x0) = - HyoCooX { ; [ 1 -a ] [ c -X ] | )
yy U0 T ,, 1 Q.22 2
l(xz_ac)(bz_xz) c -a 1 -x
D2(x2—a2) . 5 .
- : L+ o(kZlogk ), x =1
; 5 =5 s s 2
401 =x")(c"~x")
.2 1/2 2 2
_ H12%20% {5 [ 1 -a J (x"=¢") .
1 2 2
2
*l(x _Cz)“ _xz) c -a j(xz_az)(xz_bz)
1/2
- X —a ‘ ) _
+ D2 Xz—bz ] } + O(ks1ogks) , X & I4 (44)

Defining the stress intensity factors at the edges of the strips by

the relations

| T y(><,o‘)~!m)

Y

U
012 '



we get

Tyy(x,O)J(b-x) ’

K, = Lt
b I
"ryy(x,O)JTQ?E) j
K = Lt i
© x—ct | v i C
’ ' 0712 i
Tyy(x,O)J(1—x)
K1 = Lt
Xx—r1- vo,u12 |
c,,Ya D, |
Ka = : l
| {2(6%-a%)!
c fE ] 1 -a2 11/2 02—b
22 [D [
—= Ul 2 B
Z(bz_az) c 'a 1 -b
2
i c Ve c —a2
22
K = D
c ) > 2 22
J2(1 -c )
2
c22 D1(1 -c )
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(45)

2 2
Dz(b -a’) 1!
J
{(1 -b%)(c2-b?)
(46)
(47)




‘The vertical displacement v(X,y) on the plane y

0

obtained from equations}(13), (18), (34), (37) and (38) as

where

v(x,0) =

10

11

i

[ ¥ + log(k ) - — ]M + N
S .
2
2 1/2
-1 -a .
ol 7
c-a
2 1/2
- 1. -a
D1l 2
N cf-a
X & I1 ,
2 2 172 2 2
c -t / tlog|t™=x"]
: )
1 -t 2 2
J(t2-a?) (b2-t?)
2 1/2 2
tT-a" | / tlog|t —le
2 .2
b -t 2 2 .2
" 4(1 -t )(c -t")
2 1/2 2.2
u-c” . ulog|u“~x"|
2
1 -u
{w?oa?) (u?b?)
2 2 1/2 2 2
u -a ] ulog|u”~x"|
u —b2 2

i(uz—cz)(1 ~-u
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)

dt

dt

du

du

S

can

J (4, +4)) + D,(J, = J)) } "

be



In order to obtain the solution of the problem corresponding to two
rigid strips taking b — ¢ we find from (37) and (38) that 1in this

particular case

2
Von '
D =0and D, = - )
2 {

4X

where

2 1/2 ' N
1 -a / . 1/2
X =2 ¥ + log(k_/2) - LA 109(1-62) M+ N
1 2 c —a2 a s " 2

It can easily be shown that in the 1sotrop1¢ case this result is

identical with result given by Jain and Kanwal [1972].
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5. NUMERICAL RESULTS AND DISCUSSION

The stress intensity factors (SIF) Ka’ Kb’ Kr and K1 given by

-

(45) - (48) at the edges of the strips and .vertical displacement

[v(x,O)/v0] near about the rigid strips have been plotted against

dimensionless frequency kS and distance x respective1y for three

different types of orthotropic materials whose engineering

constants have been Tisted in table 1}

TABLE ~ 1. ENGINEERING ELASTIC CONSTANTS

E1(Pa) E2(Pa) y12(Pa) Y2
Type I Modu1ité II Graphite-Epoxi Compésite
15.3}:‘10_9 ?58.0%109 5.52x169 0.033
Type II E~-Type Glass—Epoxi Composite
9.79><109 42.3x109 3.66><1O9 0.063
Type III Stainless Stee]—A]uﬁinium Composite
79.76x’10g -"85.91><1O9 30.02)(109 0.31

It is found that whatever the lengths of the strips are, SIFs at-

the four edges of the strips increase with increase in the value of
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kS (O.1£k850.6). From the gr;phs, it may be noted further that with
a deérease in the length of the inner strip, which might be induced
either by increasing ’'a’ or by decreasing ’'b’, the SIF Ka atA the
innermost edge gradually decreases, wheareas the SIFs at the other
edges show just the opposite behavior (Fig.3 - Fig.4).

Also, a decrease in the value of the 1length of the outer
strip, which might be induced by 1increasing the value of ’c¢’,
caQses an increase in the values of the SIFs (Fig.5) frém which an
interesting conclusion might be drawn : i.e., the presence of the
inner strip suppresses the SIFs at both edges of the outer strip
and the presence of the outer strip suppresses the SIFs at the
edges of’the inner strip. .

The SIF Ka has been plotted ( Fig. 6) for. different
orthotropic materials to show the effect of material orthotropy.
Similar effect are being seen.for other SIFs.

The vertical displacement has been piotted for aifferent strip

lengths. It is found from Fig.7 - Fig.9 that with the increase 1in

the value of strip length, the displacement increases.

For a fixed material the variation of displacement witHﬂ

frequency 1is found to be insignificant.
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SIF

Fig. 3. Stress intensity factors

vs. frequency kS

for

generalized plane stress.

( for material of type III ).
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Fig. 4. Stress intensity factors vs. frequency kS for

generalized plane stress.

( for material of type III ).
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Fig.

5.

Stress intensity factors vs. frequency
generalized plane stress.

( for material of type 1II ).
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0.25

0-20 -

0.05

Fig. 6.

(

Stress intensity factor Ka VS.

generalized plane stress.

Type I, -.-.-. Type II, -—-—-——-
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freguency kS for

Type III ).




O 0.2 0.4 0-6 0-8 1.0 1.2 - 1.4

Fig. 7. Vertical displacement [ v/v vs. distance x

o |

for generalized plane stress.

Type I, ~=-—- Type II ).
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ks= 0'1

Fig.

8. Vertical displacement l v/vO | vs. distance x

for generalized plane stress.

(

Type I, ~=—me Type II ).
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a=0.2
i b=0-4
ks=0-1
Cﬂ% 1 | | I 1 | L L | 1 ]
0 02 04 06 08 1.0 1.2

Fig. 9. Vertical displacement { v/vO [ vs. distance x

for generalized plane stress.

(

Type I, =—-—- Type II ).
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