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FORCED VERTICAL VIBRATION OF FOUR RIGID STRIPS 

ON A SEMI-INFINITE ~LASTIC SOLID 

1 . INTRODUCTION 

The problem of the effect of vibrating source in different 

forms on the surface of an elastiq medium have aroused attention in 

view of their application in seismology and geophysics. Reissner 

[1937], and later Millar and Pursey [1954], treated the case of a 

uniform vibrating pressure distribution applied to a circular· 

region on the surface of an elastic half-space. Analytical 

treatment of the dynamical response of footings and solid-structure 

interaction are usually available in the literature only for 

circular and elliptical footings, and infinite strip loadings. Such 

results are important in view of their application in the design of 

foundations for machinery and buildings, and also in the study of 

the vibration of dams and large structures subjected to 

earthquakes. The problem of circular punch has been solved 

analytically by Awojobi and Grootenhuis [1965], Robertson [1966], 

Gladwell [1968] and others. Roy [1986] considered the dynamic 
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response of an elliptical footing in frictionless contact with a 

homogeneous elastic half-space. Karasudhi, Keer and Lee [1968] 

obtained a low frequency solution for the vertical, horizontal and 

rocking vibration of an infinite strip on a semi-infinite elastic 

medium. Wickham [1977] worked out in detail the problem of forced 

two-dimensional oscillation of a rigid strip in smooth contact with 

a semi-infinite elastic medium. Recently, Mandal and Ghosh [1992] 

treated the problem of forced vertical vibration of two rigid 

strips on a semi-infinite elastic medium. 

To improve the dynamic models of buildings and other 

structures, it will be fruitful to have analytic results for 

foundations of a more complicated nature. In what follows, the 

problem of vertical vibration of four rigid strips in smooth 

contact with a semi-infinite elastic medium has been considered~ 

The problem is also important in view of its application in the 

study of the vibration of an elastic medium caused by running 

wheels on a railway track. The resulting mixed boundary value 

problem has been reduced to the solution of quadruple integral 

equations, which have further been reduced to· the solution of 

integral-differential equations. Finally, an iterative solution 

va 1 i d for 1 ow fre.quency has been obtai ned. 

From the solution of the integral equations, the stress just 

below the strips and also the vertical displacement at points 
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outside the strips on the free surface have been found. The effects 

of stress intensity factors at the edges of the strips and vertical 

displacement outside the strips have been shown by means of graphs. 

2. FORMULATION OF THE PROBLEM 

Consider the normal vibration· of frequency w of four rigid 

strips having smooth contact with a semi-infinite homogeneous 

isotropic elastic solid occupying the half-space -oo<X<oo, Y~O, 

-oo<Z<oo. It is assumed that the motion is forced by prescribed 

displacement distribution normal to the four infinite 

strips located in the region d 1 sJxJ~d 2 , d 3~JxJ~d. Y=O, JzJ<oo, where 

v
0 

is a constant. 

Normalizing all the lengths with respect to d and puiting 

X 
d 

= x, 
y 

d 
= y, 

z 
d = z, = a, = c, 

d 

one finds that the rigid strips are defined by ~JxJ~b, c ~)xJ~1, 

y=O, JzJ<oo (fig.1). With the time factor suppressed 

throughout the analysis, the displacement components can be written 

as 

u(x,y) = o¢ v(x,y) w(x,y) = o ( 1 ) 
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Fig. 1. Geometry of the problem. 
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where the displ~cement potentials ¢(x,y) and ~(x,y) satisfy the 

Helmholtz equations 

iJ2¢ a2¢ 
2, 

+ -- + m q..> 

ox 2 oy 2 1 

. 2 2 
·() lj.l () '1/) 

2 
+ -- + m .1.1., 

ax 2 (}y 2 2' 

in which 

2 2 
2 

i_\) d 

m1 . = 2 
c1 

= 

= 

0. 

0 

and 

2 2 
(•.) d 

In terms of ' and the stress .components ,, V.t are ..,.. 

T = ,u xy 

'T = - !1 yy 

T = 0 
. yz 

iJ2¢ 
f 2 
l axay 

{[ 2 m· + 
2 

The boundary conditions are 

v(x,O) = v
0 

T (x,O) = 0 
yy 

T (x,O) = 0 
xy 

a2¥' 
,., 

a~lp 1 
+ --·-

ax 2 ay2 J 

a2 a2 ljl 

} 2- ]¢ 2 -
ox2 oxoy 

X E I2 I I4 

-CO < X < (.U 

(2) 

( 3) 

(4) 

(5) 

(6) 

where r 1 = (O,a), r 2 = (a,b), r 3 = (b,c), r 4 = (c,1), r
5 

= (1,oc•)·. 
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The solution of the Helmholtz equation (2) can be written as 

where 

(.(1 

¢>=2JA(() 

0 

tO 

-~~- 1 y 
cos( x e d(-

-'v y 

f. ( .. .. & 2 .. 
V-' = 2 8 (~) sin:~x e d~ 

.! 

0 

{ 
('~ 2 m~)1/2 I r, I ( -

J ' 
"l·' = d j '( 2 ,_. 2" 1/2 j( I _, m. - ( ) 

J 

> } m. 
J j = 1 '2 

< m. 
"J 

( 7) 

and A(() and 8(() are unknown functions, to be determined from the· 

boundary conditions. 

By using the boundary condition (6) it can be shown that 

A(() 
2 + '!-" • 2 

Now the displacement component v and stress T yy 

(.l) 
, 

2:~ c. _ .. , ... _ .. , .... 
& ' 

become 

[ 2y 1y l v(x,y) = 2 I e - e AU: )cos( x d(" 
... 2 2 

T (x,y) 
yy 

0 
2( 

0 

- m2 .J 

(8) 

(9) 

( 1 0) 

From the boundary conditions (4) and (5) we get the following set 

of integral equations in P((): 
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and 

where 

P(( )cos(x d( = 
,_. 2 

4~ V 'V 
<, • 1' 2 

J P(()cos(x d( = 0 , 

0 

PU') = 
2 22 ~~-2 

( 2f -m ) - 4r v v ' 2 •, ' ,. 2 

2 

A c:: ) . 

X E I, 
c. 

3. SOLUTION OF THE PROBLEM 

( 11 ) 

( 1 2) 

We consider the solution of the integral equations (11) and 

(12) in the form 

b 

J ( 2) .. ,. 2 .. = tf t cos(t dt + I ug(u )cos(u du 
-,) 

a c 

. 2 2 
where f(t ) and g(u ) are unknown functions to be determined. 

( 1 3 ) 

By the choice of P(() given by (13) the relation (12) is 

satisfied automatically and the equation (11) becomes 
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b 00 2 .,,. m 
~ J 1 2 

Jr tf(t~)dt Jr ------------------" ~ 2 2 ( 2'
,_, '--m~) ,J • 4v '-.' -"v 

a 0 ·· 2 ', ~ 1' 2 

cos( t d(. + 

(.t\ 2 

I 2 I 
;v 1m2 

cos(x cos(u d'~-+ ug(u )du <, 
( ,_.2 2)2 u2 

2t -m - 4r r ·v 
c 0 , 2 , 1' 2 

X E I~ 
~ ' I4 

using the reiation 

-~: 2 
'·. 

X t 

=I S 
0 0 

wvJ 
0 

(( w) J 
0 

(( v) dvdw 

(x2~w2) 1/2 (t2-v2) 1/2 

the above equation is converted to the form 

d I dx 
a 

where 

b X t wv L (v,w) dvdw 
2 a I I 

1 
t f(t ) dt at + 

( 2 . 2) 1/2 (t2-v2)1/2 
0 0 

x -w 

• X U wv L
1

(v,w) dvdw 
d f u 

2 a . 
+ g(u )du auf I dx ( 2 2)1/2 ( 2 2)1/2 

0 0 
x -w u -v 

c 

= 

(.(1 

L
1

(v,w) 

2 
;v1m2 

= f -------------.. -2--- Jo((w)Jo((v)d( 
( 2 <-: 2 2) 2 .. c -m - 4r v v 0 ., 2 ·, • 1' 2 
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By a simple contour integration technique used by Ghosh and Ghosh 

(1985), L1(v,w) can be written as 

L
1

(v,w) 
,., 

. c. = -l'T 

. 2 
- 41T 

T 2 2 2 2 1/2. (1) 

J 
n <n ~1)(r -n ) . H0 (m1nw) J 0 (m 1nv) 

2 2 4 4 2 2 2 
dY) + 

. 2 + tilT 

. 2 
- l'f 

=----
2 

1 6 ( 1-T ) 

2 
+ \' ,... ) v. 

L J 
j=O 

. 2 
+ 'li l'T' 

m2 
where T = = 

0 
( 21) -T ) + 1 6't) (f) -1 )( T -·r) ) 

2 

[ 2 Pj I 
j=O 0 

J 
0 

2 1/2 (1) 
(1-n ) H0 Cm 1nw)J 0 Cm 1nv) 

2 2 
'(] -T j 

2 2 
{/ -T . 

J 

T 0 is the root of the Rayleigh wave equation Q
0

(n) = o. 

are the root~ of the equation 
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2 2 2 2 2 1/2 2 2 1/2 c 2r; --r ) + 4 n c n - 1 ) < n _, ) = o . 

Q0 (~) denotes the derivative of Q0 (~) with respect to n and 

P. = 
J 

s. = J 

2 2 
( 2T , - T ) 

J 
2 2 n (T , T , ) 

; J 1 

2 2 
1 ) 4T, (T . -

J J 
2 2 n (T . T . ) 

i J 1 

i 'j = 0' 1 '2 and· ; ;r! j . 

The corresponding expression for L
1

(v,w) for w < v follows from 

equation (17) by interchanging wand v. For a Poisson ratio a= 4' 

the values of ·r, 

2 
T = 

2 ( 1-0') 

= 3, 
( 1-2a) 

2 
ro = 

and r
2 

are given by 

3 
2 

3 

(0.9194) 2 ' 
T 1 = 

(2+2/3) 

Hence, in this case T
2 

< T
1 

< 

and 2 3 
T 2 = 4 

By using the series expansions of J
0 

and H~ 1 ) and evaluating 

the integrals arising in equation (17), we obtain, after some-

algebraic manipulation, 
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·rr; -. 
2 2 r .- m

1
w 

p 2 2 2 ] L (v,w) = -'T 1 rr + log -- -JM + N - -(w +v )m logm 
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2 2 [ [ 
m

1
v 1I i _ _. 

p 2 2 2 ] = rrr r + log --- ;-JM + N - ~(w +v )m1 logm1 
2 

w < 

where r = 0.5772157 .•. is Euler's constant, 

N 
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-rr 

IT 

2 
4 ( 1-T ) 
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~ -1 
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2 T J 32 ( 1-T ) 
j= 1 

T, 
J 

j(T
2
-1) n} + - p 0 log {~ 0 +J (T ~ -0 

ro 

2 ~ (T 
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J 
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J J 
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J 
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J 
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Next, differentiating both sides of the relation (14) with respect 

to x, we obtain 

sin( x sin~~ t d( + 

1 (.\'.) 2,_. 
"v 1m{ . 2) • 

+ J ug(u du J s i ni: x sin( u d(" = 0, 
( 2( 2-m2) 2 '~ 2 

0 4< r 1r 2 c 2 

Following similar procedure as done for deriving equation (15), we 

get 

where 

X f dt + X J 
a c 

b X 

a 0 0 

X U 

J 2 a J J + u g(u )du --au 
c 0 0 

(.(1 

L 2( v ' w ) = I [ r, -
0 

2 ug(u ) 

2 2 x -u 

t 

du 

( 2 2)1/2 ( 2 2)1/2 x -w u -v 
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J 0 ( r, w ) J 0 ( r, v ) d( 
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For small values of m
1 

and m
2 

such that m
1

=o(m
2

), one can use the 

contour integration technique mentioned above and obtain 

I 
0 

1( 2)1/2( 2 2)2 2 1-·n 2n -T n 
2 2 4 

( 2"(J -T ) 
4 

+ 16"() 

. 2 ( 2) + 41 m
1 

1-T 

T 4 2 2 2. 1/2 ( 1) 
2r1 ("fl -1 )(T -n) H

0 
(m

1
rJW) J

0
(m

1
nv) 

J - 2 2 4 4 2 2 2 
d"(J -

0 
.. ) ( )( ) t2n -T + 16"0 n -1 -r -n 

w>v 

(24) 

By a process similar to the one which led to equation (18), 

equation (24) can be written as 

L,(v,w) 
c:. 

4P 2 2 2 
=- rr (1-r ) m1 logm 1 + O(m 1) (25) 

where Pis given by equation (21). 

Now examining the relation (15) and (18) we assume the expressions 
' 2 2 of the functions f(t ) and g(u ) as 

(26) 
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Putting the above expressions of f(t
2

) and g(u
2

) and the value of 

L
2

(v,w) given by (25) in equation (22) and equating the 

coefficients of like powers of m
1 

we obtain 

ug ( u
2

) 

J
_o __ 

2 2 x -u 
du = o , X E I

2 
, I 

4 
(27) 

a 

and 

a 

= 

b 

~ P( 1-T 
2

) [I 
a 

c 

c 

2 
ug 

1 
( u ) 

du = 
2 2 x -u 

2 J 2 1 tf
0
(t )dt + ug

0
(u ) duj, 

c 

X E 

Following Srivastava and Lowengrub (1970) the solutions of the 

above integral equations (27) can be obt~ined as 

- 0 
2 J 

1/2 
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and 

1-a 2 1/2 2 2 1/2 1 

r 
.... 

( 
u -c .... 2 j go(u ) = 01 J + 2 2 2 .... c -a 1-u j 2 2 2 2 (u -a )(u -b ) 

2 2 1/2 

( 
u -a 

"'' + D 
u2-b2 J ' 

U E ·I (30) 2 j 2 . 2 2 
4 

(u -c )(1-u ) 

where o
1 

and o
2 

are constants which can be calculated as follows: 

We substitute the value of L
1

(v,w) from (18) as well as the 

expansions of f(t
2

) and g(u
2

) obtained from (26), (29) and (30) 

2 . 
upto O(m

1 
logm

1
) in the equation (15). When the coefficients of 

like powers of m from both sides of the resulting €quation are 
1 . 

equated 

following 

where 

and we get after some algebraic manipulation, the 

nv
0 
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2
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1
) 
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4-r ( X 
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X 

4
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X 
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3
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1 
X 

4
- X 

2 
X 

3 
) 

1 2 2 ) + 2MJ
1 

log(b -a ) + MJ
5 
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f ( m1 rr: il } 1 2 2 x
2 

= v + log- - -1M + N (J -J ) - - MJ
2

log(b -a ) + MJ t L' 2 2 J 4 2 2 6 

x4 = 

2 
1-a 

x3 = r 2 2 J-­
l c -a 

,- - m1 
J f-·· + log-
l --· 2 

b 

J1 = f ( 
a 

b 

a 

c 

c 

1/2 

[{[r+logm~- ;i)M + +J1+J3) + 

rr i) Nl(J -J ) 
1 2 

- M + + - MJ 1 og ( 1-c ) - MJ 
2 I 4 2 2 4 8 

./ 

c2-t2- 1/2 
tdt 

1-t2 J J (t2-a2)(b2-t2) 

tdt 
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ulog ( j u2 -b2 + j u2-a2 ) 
2 2 1/2 

( 
u -c _ 

J5 = J 
1 -u 2 J du 

~ 2 2. 2 2 c ( u -a )( u -b ) 

1 
ulog ( j u2-b2 Ju2-a2 ) 

2 2 1/2 
+ 

( u 2-:2 J J6 = s du 

J 2 2 2 u -
c ( 1 -u ) ( u -c ) 

b 

a 

b 

dt. 

a J 2 2 2 . ( 1 -t )( c -t ) 

4. STRESS INTENSITY FACTORS AND DISPLACEMENT 

The normal stress T (x,y) on the plane y=O can be found from­
YY 

the relations (10), (13), (26), (29) and (30) as 

rr,ux 
-r (x,O) = ------­

YY 
~ 2 2 2 2 ( x -a )( b -x ) 
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= 
rr,ux 

2 2 
(x -a ) 

2 2 1/2 x -a 

+o(-] ] 
2 '- 2 b2 X -

2 2 
(x -c ) 

+ 
~ 2 2 2 2 · (X -a )(X -b ) 

2 
+ 0( m

1 
1 ogm

1 
) , (36) 

Defining the stress inte~sity factors at the edges of the strips by 

the relations 

K = Lt a 

K = c 

We get 

x-ta+ 

Lt 
x-tc+ 

K = a 

T ( x 0 )~ x-a yy ' 

rr uv 
' 0 

T ( x ,0 )~ x-c yy 

n uv ' 0 

Kb = Lt 
X-tb-

K1 = Lt 
X-t1-
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Kb = 
fb 

~2(b 2-a2 ) 

K 
c 

2 1/2 
{ D1, 

1 -a _ 

2 2 J vo l c -a 

2 2 1/2 2 2 

[ c ~:2 ) D ( b -a ) · I 
2 

2 2 2 }I -

v 0 j ( 1 -b ){ C -b ) I 

(38) 

(39) 

2 1/2 __ 1 -a -

2 + l ~2 J 
-b ) 

·-. I 
D2 }, I (40) 

The vertical displacement v(x,y) on the plane y=O can be obtained 

from equations (9), (13), (26), (29), and (30) as 

v(x,o) = 

2 
4-r 

+ 

2 1/2 

+ D2(J4-J2)} + ~ {(J9+J11)[ :2~:2) 0 1 + D2(J12-J10)}] 

(41) 

where 
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b 2 2 2 2 1/2 
tloglt -x l t -a I I ( J J10 = I b2-t2 

dt 
~ 2 2 2 a ( 1 -t ) ( c -t ) 

2 2 2 2 1/2 
ulogju -x I 

( 
u -c 

) J 11 = J du 
2 

~ 2 2 2 2 -u 
c (u -a )(u -b ) 

2 2 2 2 1/2 
uloglu -x I 

[ 
u -a 

) J 
I I 

J12 = du. 
u2-b2 ~ 2 2 2 c ( u -c )( 1 -u ) 

5. NUMERICAL RESULTS AND DISCUSSION 

The stress intensity factors (SIF) K , Kb, K and K1 at the · a c 

edges of the strips and vertical displacement lv(x,O)/v0 1 near 

about the rigid strips have been plotted against dimensionless 

frequency m
1 

and distance x respectively for a Poisson solid 

2 
(T =3). 

It is found that whatever the lengths of the strips are, SIFs 

at the four edges of the strips increase with increase in the value 

From the graphs, it may be noted further that with a decrease 

in the length of the inner strip, which might be induced either by 

increasing 'a' or by decreasing 'b', the SIFs gradually increase 

(fig.2- fig.9). 
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Also, a decrease in the value of the length of the outer 

strip, which might be induced by increasing the value of c, causes 

an increase in the values of the SIFs (fig.10- fig.13), from which 

an interesting conclusion might be drawn: i.e, that the presence of 

the outer strip suppresses the SIFs at both the edges of the inner 

strip and the presence of the inner strip suppresses the SIFs at 

both the edges of the outer strip. 

The vertical displacement has been plotted for different strip 

lengths. It is found from fig.14- fig.16 that with the increase in 

the value of strip lengths, the displacement increases. 
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Fig. 2. Stress intensity factor K versus dimensionless 
a 

frequency m
1 

for b = 0. 6 J c = 0.8 and for 

different values of a. 
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Fig. 3. Stress intensity factor Kb versus dimensionless 

frequency m1 forb =· 0.6, c = 0.8 and for 

different values of a . 
.I 

216 

0•6 

I 



h, 

··---

1• 6 
b = 0.6 

c:::: o.a 

1"4 

t 
0 1·2 
~ 

1 

0·1 0·2 0·4 0·5 0·6 

Fig. 4. Stress intensity factor K versus dimensionless 
c 

frequency m
1 

for b 0.6, c = 0.8 and for 

different values of a. 
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Fig. 5. Stress intensity factor K
1 

versus dimensionless 

frequency m
1 

for b = 0.6, c = 0.8 and for 

different values of a. 
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Fig. 6. Stress intensity factor K versus dimensionless 
a 

frequency m
1 

for a = 0. 2, c = 0.8 and for 

different values of b. 
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Fig. 7. Stress intensity fact~r Kb versu~ 

frequency m
1 

for a = 0.2, c = 

different values of b. 
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Fig. 8. Stress intensity factor K versus dimensionless 
c 

frequency m1 for a = _0.2, c = 0.8 and for 

different values of b. 
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Fig. 9. Stress intensity factor K
1 

versus dimensionless 

frequency m
1 

for a = 0.2, c = 0.8 and for 

different values of b. 
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Fig. 10. Stress intensity factor K versus dimensionless 
a 

frequency m
1 

for a = 0.2, b = 0.4 and for 

different values of c. 
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Fig. 11. Stress intensity factor Kb versus dimensionless 

frequency m
1 

for a = 0. 2' b = 0.4 and for 

different values of c. 
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Fig. 12. Stress intensity factor K versus dimensionless 
G 

frequency m
1 

for a = 0. 2' b ::: 0.4 and for 

different values. of c. 
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versus 

dimensionless distance x for b = 0.6, c = 0.8, 
I 

a = 0.2, 0.4 and for m1 = 0.1, 0.2, 0.3. 
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DIFFRACTION OF ELASTIC WAVES BY FOUR RIGID STRIPS 

EMBEDDED IN AN INFINITE ORTHOTROPIC MEDIUM 

1. INTRODUCTION 

In recent years, the study of the problems involving cracks or 

inclusions in composite and anisotropic materials has gained much 

importance. The problems of diffraction of elastic waves by cracks 

or inclusions have aroused attention in the field of fracture 

mechanics in view of their application in Seismology and 

Geophysics."studies of a single Griffith crack as well as two 

parallel and coplanar Griffith cracks have been made by Mal [1970], 

Jain and Kanwal [1972] and Itou [1980]. The corresponding problems 

of diffraction by a single and two parallel rigid strips have been 

solved by Wickham [1977], Jain and Kanwal [1972] and Mandal and 

Ghosh [1992] respectively. In most of the cases the problems were 

solved by the integral equation technique, but the solutions of 

interesting problems involving the scattering of elastic waves by, 

more than two coplanar Griffith cracks or strips are still lacking. 

The problem involving single Griffith crack in orthotropic medium 

was investigated by Kassir and Bandyopadhya [1983], Shindo et al 

IN PRESS "JOURNAL OF ENGINEERING MATHEMATICS", :1996. 
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[1986] and De and Patra [1990]. Shindo et al [1991] have 

investigated the impact response of symmetric edge cracks in an 

orthotropic strip. Mandal and Ghosh [1994] considered the problem 

of interaction of elastic waves with a periodic array of coplanar 

Griffith cracks in an orthotropic elastic medium. The problem of 

scattering of elastic waves by a 'circular crack in transversely 

isotropic medium was investigated.by Kundu and Bostrom [1991]. 

In our case, we have considered the two-dimensional problems 

of diffraction of elastic waves by four coplanar parallel rigid' 

strips embedded in an infinite orthotropic medium. The five part 

mixed boundary value problem was reduced to the solution of a set 

of integral equations. Following the technique· developed by 

Srivastava and Lowengrub [1970], the integral equations were 

solved. The normal stress under the strips and displacement outside 

the strips were derived in closed an~lytical form. To display the 

influence of the material orthotropy numerical values of stress 

intensity factors at the edges of the strips and vertical 

displacement have been plotted against dimensionless frequency and 

distance respectively for several orthotropic materials. This type 

of problem is important in view of their application in detecting 

the presence of inhomogeneities embedded in material structure and 

in seismology while studing the scattering of elastic waves by 

inhomogeneities like rigid hard rocks inside the earth. 
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2. FORMULATION OF THE PROBLEM 

Consider the diffraction of normally incident longitudinal 

wave by four coplanar and parallel rigid strips embedded in an 

infinite orthotropic elastic. medium and the strips occupy the 

and 

(i,j=1,2,3) denote the engineering elastic const~nts of the 

material where the ~ubscripts 1 ,2,3 correspond to the x
1

, x
2

, x
3 

directions which coincide with the axes of material orthotropy. 

Normalizing all lengths with respect to 'd' and putting x
1
1d=x, 

d,..,ld=b, 
'"" 

the rigid strips are 

defined by a~lx!~b, c~!x!~1, y=O, !zl<oo (Fig.1). 

Let a time harmonic wave given by ui=O and v
1

=v
0

exp[ i~ky-~t)] 

h k dl ~ ( I )112 . were =tv cs ,c22 , cs= 1-1 12 p and v
0 

1s a constant, travelling 

in the direction of positive y-axis be incident normally on the 

strips. The non-zero stress components T and T are given by 
YY xy 

au iJv 
c12 ox + c22 {}y 

av au 
Txy I ,u12:: +­

{}y ax 
( 1 ) 

where c .. (i,j = 1 ,2) are nondimensional parameters related to the 
1J 

elastic constants by the relations 
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Fig. 1. Geometry of the strips and incident field. 
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(2) 

The constants Ei and vij satisfy the Maxwell's relation 

;:: v .. I E. 
Jl J 

The equations of motion for orthotropic material, interms of 

displacements are 

a2
u a2

u a2
v d2 a2 u 

c 11 + -- + ( 1 + c12)-- = 2 2 2 . 2 ax ay axoy c at 
s ( 3) 

a2v a2
v a2u d2 a2v 

c22 + -- + ( 1 + c12.)-- = ay 2 ax 2 2 
at 

2 axay c 
s 

where u, v are the displacement components of the scattered field, 

(Fig.2). 

234 



y 

u~ Lu 
X 

-1 -c -b -a 0 a b c 1 

UL __ r 
u u 

Fig. 2. Displacement components of the scattered field . 
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The boundary conditions are 

(i) u(x,y,t) = 0, v(x,y,t) + v.(x,y,t) = o 
1 

the surface of the strips. 

across y=O on 

(ii) u and v are continuous across y=O for jxj< w. 

(iii)~ T are continuous across y=O outside the strips. 
, YY ' xy 

Further, the scattered field should satisfy the radiation condition 

at infinity. Substituting u(x,y,t) = u(x,y)exp(-iwt) and v(x,y,t) = 

v(x,y)exp(-iwt) our problem reduces to the solution of the 

equations 

i/u a2u a2
v d2 2 w 

c 11 + -- + ( 1 + c )-- + -- u = 0 
ax 

2 c1y 
2 12 c1xc1y 2 

c s 

and 

i)2 a2
v a2 2 2 

I V . u d 6.) 

c22 + -- + ( 1 + c )-- +- v = 0 ( 4) 
;Jy 2 ax 2 12 a a 2 

. X y c s 

Boundary conditions on u and v suggest that u and v are odd and 

even functions of y respectively. Accordingly, equations (4) are to 

be solved subject to the boundary conditions 
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v(x.O) = - vo ' X E I. ,I4 2 
(5) 

T (x,O) = 0 X E !1 ' I3 ' I5 yy 
(6) 

u(x,O) = 0 lxl < c.o ( 7 ) 

with r
1 

= (O,a), r 2 = (a,b), r 3 = (b,c), .r 4 = (c,1), r 5 = (1,oo). 

Henceforth the time factor exp(-iwt) which is common to a11 

'field variables would be omitted in the sequel. 

The solutions of equations (4) are taken as 

Ll) 

u(x,y) + 2 

I [A 1 (( ) exp ( -y 1 I y I ) A 2 ( ( ) ex P ( -r 21 Y I ) J sin( x d·;; >o = + 
IT '· ' y< 

0 (8) 

L'O 

v(x,y) = ~I ([a1A1 (( )exp(-y 11 yj) + a2A2(()exp(-y2Jyj )] cosf, x d~-' 
'. 

where 

C:l, = 
1 

0 

.. 2 2 2 
c 'f -k -·v. 11 , s d i 

i = 1 '2 

2 2 

k2 
d (.'.) 

= s 2 c 
s 

and A.(f) (i = 1,2) are the unknowns to be solved, v
2 

1 • • 1 

the roots of the equation 

(9) 

( 1 0) 

and 
2 

·v 
i 2 are 

c22r4 +{<c72+2c12-c11c22)(2 +(1+c22lk:!}r2 +(c11(2-k!)((2-k!l = o 

( 11) 
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From the boundary condition (7) it i~ found that 

Therefore displacements u, v and stresses T T finally can be yy' xy 

written as 

(.1) 

u(x,y) =~I [exp(-r
1
1Yil- exp(-r

2
1y!J]A

1
(0sin(x d(, y>O (12) 

0 

tl) 

v ( x, Y) = ~I f [.:x 
1 
ex p ( -r-

1 
I y I ) - <-il 

2 
exp ( -y 

2
1 y I ) ] A 

1 
( ( ) cos;: x d(. ( 1 3) 

0 

00 

T yy IJ.i 1 2 = ~ J [ ( c 1 2( 
0 

Cu 

T XY /,U 12 = ~ I r Cr 1 + 0[1 ) exp ( -r 1 i y I ) 
II. L 

0 

Next putting 

a v - a v 

A(() = 1 J 1 . 2' , 
------A (/) 1 .. 

y>O ( 14) 

(15) 

the boundary conditions (5) and (6) lead to the following integral 
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equations in A(() 

tl) 

Cl.1 

J ( 
01 1{"1 0 

and 

- Ol,.., 
t:.. 

J A ( (." ) 
..... 

d;~ COS( X 

- {II .... 
-·2'' 2 

J A(() cos(x d( = 0 , 

0 

= 
IT 

2 vo ' X E I2 ' I4 

3. SOLUTION OF THE PROBLEM 

( 1 6) 

( 1 7) 

We consider the solution of the integral equations (16) and 

(17) in the form 

b 

A(() = J t((t
2

)cos(t dt +.J ug(u
2

)cos(u du ( 18) 

a c 

2 2 
where f(t ) and g(u ) are unknown functions to be determined. 

By the choice of A(() given bY (18) the relation (17) is 

satisfied automatically and the equation (16) becomes 

b 00 
C.\ - C.\ 2 r tf(t2 )dt J ( 1 

J cos(x cos(t dt~ + 
..J 

(.)( {' - i.)! r 
a 0 1 1 2 2 
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1 ((! 

[,, :1 - (.~ 

J f 2 J 2 
cos(x cos~: u d~· + ug(u )du 

0\ "{' 
c 0 1" 1 2 2 

= 

Using the relation 

sin::=x sin(t 
X t 

wvJ ·crw)J (fv)dvdw 
0 ' 0 ' =I J 

0 0 

the above equation is converted to the form 

where 

d b · x t · · vwL (v,w) dw dv 

J 
... 2 8JJ 1 

d X '"' t f ( t ) d t (ft -( X_2 ___ W_2_)_1 -:-/ 2-:---(-t-::-2-_-V 2-::-)-1-:--:/ 2 

a 0 o 

d 

+-J 
dx 

c 

= 

1 

L1 (v,w) 

2 ug(u )du 

00 

a 
au 

(a :1 I = 
0 1' 1 

X 

r 
.J 

0 

u vwL
1

(v,w) dw dv 

J 
( 2 2)1/2 ( 2 2)1/2 x -w u -v 

0 

- cx
2 

J Jo((w) Jo ((v) d(. 
- 0\ 'V 

2' 2 

( 1 9 ) 

+ 

(20) 

( 21) 

By a contour integration technique (Mandal and Ghosh [1994]) the 

infinite integral in L
1

(v,w) can be converted to the following 

finite integrals 
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,.. 1;-IC 2 
I 1 1 C ·r·, -1-··r.·· "r.r 

( 1 ) 

l! 
11'' ;1;2 

dn L1(v,w) = ·- i J 0 ( k5
r,v )H0 ( k

5
:nw) 

y1y2(y1+ r2) 

: 

2 -'2 .., 

s c11n -1+y 2 
J

0
(k r,v)H~ 1 )(k r,w) dr1 w>v (22) J 

-' 2 -' 2 -' 2 
·s s 

1;-1"C
11 t2 <r1 +r2) 

_J 

where r = [ ~ { R1 - (R2 - 4R )1/2 } ] 1/2 
1 1 2 

'V = [ ~ { R1 + (R2 4R )1/2 } ] 1/2 
• 2 1 2 

,.'"_. = [ i { -R1 + (R2 + 4R )1/2 } r2 ' 1 1 3 . 

[ i { 2 4R )1/2 } ] 1/2 ··v = R1 + ( R 1 + • 2 3 

R1 {<c~2 2 + ( 1 + c22>} = + 2c - c c ) n 
c22 12 12 22 

c 11 
2 ( 1 1)2 ) R2 = (1- n ) --

c22 c 11 

c 
2 '( 2 

c: 1 ) 
1 1 

(23) R3 = (1- ·ry ) r, -
c22 

The corresponding expression of L
1

(v,w) for w<v follows from (22) 

by interchanging w and v. 
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Substituting the series expansion and 

small k , in (22) we find after some algebraic manipulation 
s 

2 2 (w +v ) 
L

1 
(v,w) = ~r(•·+log(k w/2) - rriJM + N - Rk 2logk ] + O(k2 ) 

rrL' s 2 
4 

s s s 

2 2 
(w +v ) 

, w>v 

for 

2[f rriJ · = - i···+ 1 og ( k v /2) - - M + N -
rr l• s 2 

2 1 2 
Rk 1 ogk J + 0( k ) s s s 

4 

where ·v 
' = 0.5772157 ....... 

1/fC 11 2 - -
c11.,-, -1-···· ·j.• 

' 1' 2 
M = J 

r1r2(r1+ 't ) 
0 2 

1/fC 11 2 - -
c 111) -:- 1-y1y2 

N I = - - -
0 ;~·l· 2 <r 1 + /,...) 

.:. 

1/ft 11 

and R = I 
0 

is .. 

dr1 

logr1 

, v>w (24) 

Euler's constant, 

2 -' 2 
c11"0 -1 +;v 

J 2 
dr1 

1/"1(;"11 
-' 2 -' 2 -' 2 
v (v +v· ) • 2 • 1 • 2 

(25) 

2 _, 2 
c 11 rl -1 +;v 

dr1 I 2 
':"'" 

11rc11 
_i 2 -' 2 -' 2 
r 2 (y 1 +;v 2 ) 

(26) 

I 
-· 2 -· 2 -· 2 
Y 2 <r 1 +y 2 ) 

(21) 

Now differentiating both sides of the relation (19) with respect to 

x we obtain 
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b 00 

<( 
C\ 1 - C.\2 

J 
? 

J J tf(t~)dt sin( x cos:: t d;,· + L, 

t)( ...... - (.1( ...... 

a 0 - 1l 2. 2 

1 (0 

- ( "'1 
- (.~2 

f 
2 f J sin( x cos;: u d( + ug(u )du ( 

(:_./. ... - - 0( .•.. 

c 0 - 11 1 21 2 

= 0 , X E !
2

, I 
4 

Following similar procedure as done for deriving equation (20), we 

obtain 

= 

1 2 ug(u ) 
X f du 

J 2 '? 
(x -u~) 

c 

b X t 
. vwL

2 
( v, w) dw dv 

,. 2 ;} 
J tf(t )dt at J f 
a 0 0 

X u 

+ 
(x2-w2) 1/2 (t2-v2) 1/2 

vwL
2

(v,w) dw dv 
2 ;} 

+ J ug(u )du au f J 
( 2 2)1/2 ( 2 2)1/2 x -w u -v 

c 0 0 

= 0 I X E I2,I4 

where 

CD 
r ~: 2 r 01.1 - ,~i! 

.... , 
L

2
(v,w) r l'~ 

-·2 
JJJo(<~w) J (:'>v)df = ,J 0 ' ' 

8 . nt v - (~ 'I' 
0 - 1' 1 -·2' 2 
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c 11 + N1N2 
8 = (30) 

N1 + N2 

1 
N2 r 2 · ~ 2 2 ]. = l-(c12+2c12-c11c22) + 4c11c22 1 

2c22 
(c12+2c12-c11c22) -

( 31 ) 

and 

1 

- j(c~2+2c12-c11c22) 2 N2 = [-(c~2+2 c12-c11c22) - 4c11c22 ] . 2 
2c22 

We use the contour integration technique mentioned earlier and get 

from (29) 

r 
1;v'C"

11 

f 
L 0 

w>v (32) 

By the process similar to the one which led to the equation (24), 

(32) for small values of. k can be written as 
~ 

where P ---1 R d .. () 
9 

an R 1s g1ven by 27 . 
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Now, let us consider 

and (34) 

Putting the above expressions of f(t 2 ), 
2 g(u ) and the value of 

L
2

(v,w) given by (33) in the equation (28) and equating the 

coefficients of like powers of k we obtain, 
s 

and 
b tf (t2 ) 

I 21 2 dt + 
(x - t ) 

a 

1 2 ug ( u ) 

J 20 2 du = 
(x - u ) 

c 

1 2 ug 
1 

( u ) 
r 2 .., du 

.J t:.. 
(x - u ) 

c 

b 1 

0 ' X E I
2 

, I
4 

(35) 

=-
2;~ [I tf0 (t

2
)dt +I ug0 (u

2
)du], x e r 2 , r 4 (36) 

a c 

Following Srivastava and Lowengrub [1970] the solutions of the 

above integral equation (35) can be obtained as 

245 



and 

2 1/2 
-a 

01 (-2-2 J 
c -a 

2 1/2 
-a 

= 0 1 ( -2-2 J 
c -a 

2 2 

( 

u -a 

2 b2 u -

1/2 

J 

2 2 1/2 

( 

u -c 

1 -u 2 J 

X E I 
2 

~ 2 2. 2 2 (u -a )(u -b ) 

X E I 
4 

(37) 

+ 

(38) 

where o
1 

and 0~ are constants which ·can be calculaed as follows. 

We substitute the value of L
1

(v,w) from (24) as well as the 

expansion of f(t 2
) and g(u 2 ) obtained from (34), (37) and (38) up 

2 
in to O(k logk ) 

s s 

powers of k from 
s 

we get after some 

the equation ( 20 ) .. When the coefficients 

both sides of 

manipulation, 

the· resulting equation 

the following results: 

n2 (X3 -x-1) 
0 2 = - vo 4 ----­

(X2X3-X1X4) 
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Where 

r .-a 2 J 1 I 2l'lr {. 
x1 = ( -2--2 

c -a 

X 
3 = 

x4 = 

1 2 2 l 
: + 2M J 1 1 o g ( b -a ) + M J 5 J . 

2 1/2 

r { r 
1 -a 

J ( IT i J Y+log(k /2)-- M + N 
2 2 . s 2 ... c -a 

L 

1 
1 2 

J 
+ 2MJ

3
1og(1 -c )+ MJ 

7 

( --
IT i J 

., 
t l y· + 1 og ( k /2) - - M + N J(J -J ) + s 2 4 2 

a 

1/2 
tdt 

J 2 2 2 2 ( t -a )( b -t ) 
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(40) 

( 41 ) 

}<J +J ) + 1 3 

(42) 

(43) 



b 2 2 1/2 
tdt t -a 

J2 = s r b2-t2 J ... J ( 1 -t2)(c2-t2) a 

2 2 1/2 
udu 

f ( 
u 

~:2 ) J.._ = ., 
~ 2 2 2 2 

c ( u -a )( u -b ) 

2 2 1/2 
udu 

( 
u -a 

J J4 = J 
u2-b2 j ( 1 

2 2 2 
c -u )(u -c ) 

2 2 1/2 (~ 2 2 ~2] 
I ( 

u 

~:2 ) ulog u -b + . u -a 

J5 = du 

J 2 2 2 2 c ( u -a )( u -b ) 

2 2 1/2 
ulog8u

2
-b

2 
+ Ju

2
-a

2
) u -a 

J6 = J [ u2-b2 J du. 

J 2 2 2 c ( l -u )( u -c ) 

b c2-t2 1/2 
t 1 og (j c 2

-t
2 ~2"' 

J7 = I ( J 
+ J 

dt 
1 -t

2 j 2: 2 2 2 
a .(t-a)(b-t) 

tlog(Jc
2
-t

2 b t2-a2 -. 1/2 I 21 

J8 = I ( b2-t2 J 
+ .., 1 -t J 

dt 

J 2 2 2 a ( 1 -t )( c -t ) 
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4. STRESS INTENSITY FACTORS AND DISPLACEMENT 

The normal stress r (x,y) on the plane y = o can be found 
yy 

from the relations (14), (18), (34),(37) and (38) as 

T (x,O) = yy 
~ 2 2 2 2 ( x -a )( b -x ) 

J
l + O(k

2
logk ) 

s s 
i 2 2 2 

--1 ( 1 -x ) ( c -x ) 

~ 2 2 2 ( x -c )( 1 -x ) 

1/2 

) } + 
2 

O(k logk ) , . s s 

2 2 
( c -x

2 
1 -x 

1/2 

) 

, 2 
(x ... -c ) 

~ 2 2 2 2 (X -a )(X -b ) 

+ 

(44) 

Defining the stress intensity factors at the edges of the strips by 

the relations 

K = Lt a 
X--7a+ 

1 r (x,O)~(x~a) 1 

yy 
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we get 

Kb = Lt 
X---tb-

K = Lt c 
X-7C+ 

K
1 

= Lt 
x~1-

T (x,O)~ (b-x) 
yy 

T (x,O)~ (x-c) 
yy 

T (x,0)~(1-x) 
yy 

K = a 

c2;ra o1 I 
.I 2 2 I 

' --! 2 ( b -a ) I 

K = c 
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(45) 

0 (b
2-a2

) ·.I 
--,..2 ____ J 
j(1 -b

2
)(c

2
-b

2
) 

(46) 

(47) 

(48) 



The vertical di.splacement v(x,y) on the plane y = 0 can be 

obtained from equations (13), (18), (34), (37) and (38) as 

v(x,O) 

where 

J10 = 

J 11 = 

J12 = 

+ 1 og ( k ) 
s 

ni ) _·}, - M + N ><-

2 

2 1/2 

x { D 1 [ ~ 2 ~: 2 ) ( J 1 + J 2) + D 2 ( J 4 - J 2) } + 

} ] ' 

(49) 

b 2 2 1/2 2 2 
c -t tloglt -x I 

I ( -1 --t2 J dt 

a ~ 2 2 2 2 ( t -a )( b -t ) 

b t2-a2 1/2 2 2 

I ( 
) tlog It -x I 

dt 
b2-t2 1 2 2 2 

a 'ij ( 1 -t ) ( c -t ) 

2 2 1/2 2 . 2 

f ( 
u -c - ulogju -x I 
'1 -u

2 J du 

J 2 2 2 2 c ( u -a )( u -b ) 

2 2 1/2 2 2 

I ( 
u -a 

) 
ulogju -x I 

du 
u2-b2 ~ 2 2 2 c ( u -c )( 1 -u ) 
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In order to obtain the solution of the problem corresponding to two 

rigid strips taking b ~ c we find from (37) and (38) that in this 

particular case 

2 1/2 
-a 

D 1 ( --=-2 --=-2 ) 
c -a 

1/2 

J 

1 

2 2 ' 
b - t 

a ·<:: t < ·1. 

It can further be shown that x
1 

= x
3 

so that 

where 

2 1/2 

x1 = ~ [ -
2 
-a

2 
) · [ { r + 

c -a 

2 1/2} 
+ 1 og ( 1-a ) . M + 

It can easily be shown that in the isotropic case this result is 

identical with result given by Jain and Kanwal [1972]. 
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5. NUMERICAL RESULTS AND DISCUSSION 

The stress intensity factors (SIF) Ka, Kb, Kc and K1 given by 

(45) - (48) at the edges of the strips and vertical displacement 

jv(x,O)/v
0

j near about the rigid strips have been plotted against 

dimensionless frequency k and distance x respectively for three 
s 

different types of orthotropic materia 1 s whose 

constants have been listed in table 1. 

Type I 

Type II 

Type III 

TABLE- 1. ENGINEERING ELASTIC CONSTANTS 

Modulite II Graphite-Epoxi Composite 

9 
15.3>::10 

9 
1·58. 0~< 1 0 

E-Type Glass-Epoxi Composite 

9 
9.79x10 

9 
42.3x10 

·g 
5.52x10 

9 
3.66x10 

Stainless Steel-Aluminium Composite : 

9 
79.76x10 

. 9 
. 85.91x10 

9 
30.02x10 

engineering 

0.033 

0.063 

0. 31 

It is found that whatever the lengths of the strips are, SIFs at· 

the four edges of the strips increase with increase in the value of 
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k (0.1~k S0.6). From the graphs, it may be noted further that with 
s s 

a decrease in the length of the inner strip, which might be induced 

either by increasing 'a' or by decreasing 'b', the SIF K at the 
a 

innermost edge gradually decreases, wheareas the SIFs at the other 

edges show just the opposite behavior (Fig.3- Fig.4). 

Also, a decrease in the value of the length of the outer 

strip, which might be induced by increasing the value of 'c', 

causes an increase in the values of the SIFs (Fig.5) from which an 

interesting conclusion might be drawn : i.e., the presence of the 

inner strip suppresses the SIFs at both edges of the outer strip 

and the presence of the outer strip suppresses the SIFs at the 

edges of the inner strip. 

The SIF K has been plotted ( Fig. 6) for 
a 

different 

orthotropic materials to show the effect of material orthotropy. 

Similar effect are being seen for other SIFs. 

The vertical displacement ha~ been plotted for different strip 

lengths. It is found from Fig.7- Fig.9 that with the increase in 

the value of strip length, the displacement increases. 

For a fixed material the variation of displacement with· 

frequency is found to be insignificant. 
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Fig. 3. Stress intensity factors vs. frequency 

generalized plane stress. 

( for material of type III ). 
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Fig. 6. Stress intensity factor K vs. frequency k for 
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Fig. 7. Vertical displacement I v/v
0 vs. distance . x 

for generalized plane stress. 
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Fig. 8. Vertical displacement / v/v
0 vs. distance x 

for generalized plane stress. 

( Type I, -----Type II ) . 
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Fig. 9. Vertical displacement I v/v
0 vs. distance x 

for generalized plane stress. 

( Type I, -----Type II ). 
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