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CRACK PROBLEMS IN ELASTODYNAMICS 
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horizontal shear waves by an 

interface crack. 

High frequency scattering of plane 

horiiontal shear waves by a Griffith 

crack propagating along the 

bimaterial interface. 
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HIGH FREQUENCY SCATTERING OF ANTIPLANE 

SHEAR WAVES BY AN INTERFACE CRACK 

1. INTRODUCTION. 

Scattering of elastic waves by a crack of finite length at the 

interface of two dissimilar elastic materials is important in view 

of its application in Geophysics and in Mechanical engineering 

problems. The extensive use of composite materials in modern 

technology has created interest in t~e wave propagation problems in 

layered media with interfacial discontinuities. The diffraction of 

Love waves by a crack of finite wi~th at the interface of a layered 

half space was studied by Neerhoff [1979]. Kuo [1984] carried out 

numerical and analytical studies of transient response of an 

interfacial crack between two dissimilar orthotropic half spaces. 

Following the method of Mal [1970], Srivastava et al. [1980] also 

considered the low frequency aspect of the interaction of antiplane 

shear waves by a Griffith crack at the interface of two bonded 

dissimilar elastic half space. 
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But high frequency solution of the diffraction of elastic 

waves by a crack of finite size is interesting in view of the fact 

that transient solution close to the wave front can be represented 

by an integral of high frequency component of the solution. Green's 

function method together with a function-theoretic technique based 

upon an extended Wiener-Hopf argument has been developed by Keogh 

[1985 a], [1985 b] for solving the problem of high frequency 

scattering of elastic waves by a Griffith crack situated in an 

infinite homogeneous elastic medium. 

In the present paper, we have derived the high· frequency 

solution of the diffraction of SH-wave when it interacts with a 

Griffith crack located at the interface of two bonded dissimilar 

elastic half spaces. To solve the problem, following the method of 

Chang [1971], the problem has been formulated as an extended 

Wiener-Hopf equation and the asymptotic solutions for high 

frequencies or for wavelengths short compared to the length of the 

crack have been derived. Expressions for the dynamic stress 

intensity factor and the crack opening displacement have beeri 

obtained and the results have been illustrated graphically for two 

pairs of different types of material. 

132 



2. FORMULATION OF THE PROBLEM 

Let (x,y,z) be a rectangular partesian coordinates. Let an 

open crack of finite length 2L be.located at the interface of two 

bonded dissimilar elastic semi-infi~ite solids lying parallel to 

x-axis. The x-axis is taken along the interface, y-axis vertically 

upwards into the medium and z-axis is perpendicular to the plane of 

the paper. (~ ,p ) and (~ ,p ) are coefficients of rigidity and 
1 1 2 2 

density respectively of the upper and lower semi-infinite medium. 

The crack is subjected to a normally incoming anti plane shear 

wave originating at y = -oo. 

We are interested in finding the high frequency solution of 

the diffraction problem i.e. the solution when the length of the 

crack is large compared to the wave length of the incident wave. 

Accordingly we shall have to solve the problem when the crack 

is subject to the following boundary conditions: 

<f) 
a (x,O+) 

vz 

( 2) = a (X, 0-) = 
Y!Z 

( 1) 
a ( x, 0+) = 

Y!Z 

W (X, 0+) = 
1 

Cl) 
0 (X, 0-), 

yz 

W (X, 0-), 
2 

-P 
s 

-P e 
0 

-i.Wt 

I X I > L 

I X I > L 

I X I < L ( 1 ) 

( 2 ) 

( 3) 

where w is the circular frequency and P is the static pressure. 
s 
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Assume 

w (x,y,t) 
1 . 

= W (x,y) 
1 

w (x,y,t) = W (x,y) 
2 2 

-i..l~.)t 
e 

where W and W satisfy the following two wave equations 
1 z 

2 
1(x,y) 

2 
(x,y) v w + k w = 0 

1 1 

v2 w 2(x,y) 
:! 

2(x,y) + k w = 0 2 

fl .2: 
i:J 

·> 
with ,.....,.:. 

+ v = --
ox 2 oy 2 

(4) 

(5) 

(6) 

( 7 ) 

The shear wave number k and k are related to the two shear wave 
1 2 

velocities c and C of medium (1) and (2) respectively by 
1 z 

(8) k = I.JJ/C 
2 2 

Without any loss of generality we assume that k >k: 
2 1 

( 1) (1) -i.wt 
Let a (x,y,t) = ·r (x,y) e 

yz yz 

( 2> {2) -i.Wt 
a (x,y,t) = T (x,y) e 

yz yz 

(9) 

( 1 0) 

( 1 1 ) 

In the boundary condition (1), P is the stati6 pessure assumed to 
s 

be sufficiently large so that crack faces do not come in contact 

during vibration. Since we are interested in the dynamic part of 

the stress distribution, so the boundary conditions (f), (2) and 
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(3) may be written as 

and 

that is 

and 

111 
. T .. (X I 0+) 

yz 

(1) 

T (X I 0+) 
yz 

W (X, 0+) 
:1 

aw 
:1. 

u = 
' :1. 

oy 

aw 
1 

u = ' 1 
iJy 

w (X I 0+) = 
1 

{ 2! 
= T ·(x,O-) = -P 

yz o' I X I < L 

{2} 

= T (X, 0-), 
yz ·I xj > L 

= w (X I 0-)' I xl > L 
2 

aw 
2 I X I <L I u = - p y = 

'2 
i)y 

o' 

aw 
2 I X I >L I 0 u y = '2 

Jy 

w (X' 0-) I I X I >L 
2 I I 

(12) 

( 13) 

( 14) 

0 ( 1 5 ) 

(16) 

(.17) 

In order to obtain solutions of wave equations (6) and (7) we 

introduce Fourier transform defined by 

00 

W((.'<,y) = f ic~x 
W(x 1 y) e dx 

-((I 

Thus we obtain the transformed wave equations as 

2 2 
(<:.'4 -k )W = 0 

1 1 
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? ? 

(c./"-k ... )W = 0 
2 2 

(20) 

The-solutions of (19) and (20), bounded as y tends to infinity, are 

·W (cx,y) ( Cll) 

-y1y 
> ( 21 ) = A e y 0 

1 1 

'V y 
w (t.'X,y) A (cd 

' 2 < (22) = e y 0 
2 . ., 

£. 

1/2 1/2 
2 2 

(23) (012-k2) (24) where .-~ ... = (ot -k ) 'II' = 
' 1 1 '2 2 

Introducing for a complex a 

G (a) = 
+ I <1> · ei.a cx-L> dx 

·r (x,O) 
yz 

(25) 

L 

-L 

G ((.'\) f 
( 1) i.Cl. <X+Ll 

= 'f (X ,.0) e dx (26) 
~ 2n 

yz 
-((1 

and 

L 

G (ot) I 
{ 1} . i.C.~X 

(27) = T (x,O) e dx 
:l 

~ 2'TT 
yz 

-L 

the transformed stress at the interface y = 0 can be written as 

( 1) 
T (a,O) = G (ot) 

yz + 

i.CI.L - i.CI.L 
e + G (ot) + G (ot) e 

1 
(28) 
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Using the boundary condition (12) we note that 

G (C() = 
1 

p 
0 

Further using the fact that 

[ e i.otL - e-i.Oll.. ] 

(f) 

T (ot,O) = - u y A (ex) 
yz ' 1 1 1 

we obtain from (28) 

-,uyA(a.) 
1 :1 1 

p 
__ o __ [ei.otL _ e-i.otL] 

~ 2·TI iot 

Since from ( 1 2 ) and ('13) stress ·T" is continuous at all ' yz 

the interface, so we obtain 

A ( c~) 
,u 1r 1 

A ( c.x .) • = ---
2 1 

u v 
' 2 1 2 

So ( 21 ) and (22) take the forms 

-·v Y 
W (c4.,y) A (c.~) 

' 1 .... = e y =- 0 
1 1 

!-l1Y1 r Y 
W (c:o~.,y) A (01) 

2 
= e y s 0 

2 1 
U ·v 
' 2 1 2 

137 

(29) 

(30) 

(31) 

points of 

(32) 
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L 

r r 1 i.ax 
Now· w (ot,O+) - w ((.1, 0-) = I W (X, 0+) - W (X, 0-) I e dx 

:1 2 [21! 
J l :1 2 J 

-L 

= B(ct), (say) (35) 

wich is the measure of the discontinuity of displacement along the 

surface of the crack. From (35). we get 

A (<-'X) = 
1 

Eliminating A (C<) 
:l. 

,u r s(a) 
2 2 

U'V +U'V 
':1'1 '2'2 

from ( 31 ) 

Wiener-Hopf equation, namely 

and (36) we obtain 

G (01) 
T 

iotL 
e + G (01) 

-i.OIL 
e + B(a)K(cx) = 

p 
0 [ e i.OIL _ e -i_otL] 

ia 

where 

K(c11.) = 

R(a) = 

L.! u ..•.. •\.' 
':~.'2 1 :1(2 

= 
(

' 2 k 2)1/2 
,u ,Ll <-"'! -

:1 2 . :1 

( J-l +J-1 ) 
:1 2 

( 
2 2):1/2 ( 2 k 2):1/2 

J-1 Ol -k + J-l Ol -
1. 1 2 2 

R (ot) 

(36) 

an extended 

(37) 

(38) 

(39) 

In order to solve the Wiener-Hopf equation given by (37) we assume 

that the branch points ex = k and k of K(c.x) possess a small 
1 2 
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imaginary part such that 

k = k + ik and k ::: k + ik 
~ 1 1 2 2 2 

where k and k are infinitesimally small positive quantities 
1 2 

which would ultimately be made to tend to zero. 

Now we write K(a) = K (c.x)K (a) where K (c.x) is analytic in the 
T - + 

upper half plane Im a >-k whereas K (a) is analytic in the lower 
' 2 

half plane given by Im a < k . 
2 

Since T (x,O) 
Y'Z 

decreases 

exponent i a 11 y as x_, ±co, G (a) and G (a) have the same common 
+ 

region of regularity asK (01) and K (01). 
+ -

Now (37) can easily be expressed as two integral equations 

relating G (a), G (a) and B(a) as follows: 
T -

G (c.() p 

[ 
1 

] 
.,. 0 

+ 
K ( Ol) ~ 2rr ia K ( Ol) K ( 0 ) .,. + -t 

-2 i. SL 
e 

[ 
p 

] + I G ( s) 0 
+ ds 

2'11 i ( s-c.~) K ( s) ~ 2'11 is c + 
+ 

-i.OIL 
p 

- B(ot) K (a) 
0 

= e + 
~ 2TT ia K ( 0) 

T 

-2 isL 
e 

[ 
p 

] f G (s) 
0 

+ ds (40) 
2-rr i (s-a)K (s) ~ 2rr 1S c T 
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and 

G (c'X) p 
0 

+ 
K ( 01) ~ 2n i 01 K ( 01 ) 

+ I 
2n i 

2i. SL 
e p 

[G+ ( s ) -
0 

. ] ds 
( s-01) K ( s) ~ 2n 1 s c 

Zi. SL 
p e 

-B(ot)K (c1) 
i.L"XL 0 

( 41 ) = e --- [ G+ ( s) I ] ds 
+ ,f2n is 2n i 

c+ 
(s-01). K ( s) . 

where C and C are the straight contours below the pole at s = 0 
+ 

and situated within the common region of regularity of G ( s), 
+ 

G ( s), K ( s), and K (s) as shown in Fig. 1 • 
+ 

In ( 40), the left-hand side is analytic in the upper half 

plane whereas the right-hand side is analytic in the lower-half 

plane and both of them are equal in the common region of 

analyticity of these two functions. So by analytic continuation, · 

both sides of (40) are analytic in the whole of the s-plane. Now 

since 

T ,.. (X 
yz 

so7 

and also 

K. (c~) "' 
t-

-1/2 
+ L) 

-1/2 
(~ 

1/2 
c.~ 

so it follows that 

as x~ + L 
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lms 

S:::so 
J<, 

--------~--e-------------a-·t-:..---
~-----··-·-··--·---4---------J ...... 

• •-k. C-t-
-k 1 2 

Fig. 1. Path of integration in the complex s-plane. 
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K (a) + 

-1 
c~. as I ex I ~ co. 

Therefore by Liouville's theorem, both sides of (40) are equal to 

zero. Equation (41) can be treated ~imilarly~ 

Therefore from (40) and (41) we obtain the system of integral 

equations given by 

and 

[ G"'(<.:'l!) -

1 

+-I 

K (D!) 
;-

-2i. SL 
e 

+ 

p 
0 

+ 
K ( 0) 

;-

p 

[ G _ ( s) + --
0

- ] ds = 0 
2rr i 

c+ 
( s -c~ ) K ( s ) ~ 2rr i s 

+ 

[ G (d) 

1 

+-I 
21I i c 

+ 
K (c~) 

2i.SL 
e 

[ G+ (s) 
(s-a) K ( s) 

p 

--
0
--] ds = 0 

~ 2rr is 

(42) 

(43) 

( 1> . 
Since r (x,O) is an even function of x, so from (25) and (26) it 

yz 

can be shown that G ( -c.'l.) = G ( c.x) and it has been shown in the 
+ 

Appendix that K (-a) = iK (a). Using these results and replacing a 
+ 

by -a and s by -s in (42) it can easily be shown that equations 

(42) and (43) are identical. So G (ct) and G (ot) are to be .,. 

determined from any one of the integral equation (42) or (43). 
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3. HIGH FREQUENCY SOLUTION OF THE INTEGRAL EQUATION 

To solve the integral equation (43) in the case when 

normalized wave number k L >::> 1, the integration along the path C 
1 

in (43) is replaced by the integra~ion round the circular contour 

c round the pole at s = 0 and by the integration along the 
0 

contours c and c round the branch 
k k 

1 2 

points k and k of the function K (s) as 

Now 

1 2 -
Thus equation (43) takes the form 

K ((..'<t) 

+ --- I 
2rr i 

C +C 
k k 

1 z 

2isL 
e 

I 
(s-a )K ( s) 

1 

= 
IJ 
' 1 

I 
C. 

v. 
1 

P K (ct) 
0 

~ 2n i c~ K ( 0 ) 

2isL 
e 

+ 

( s-a ) K ( s ) [ 
G ( s) -

+ 

9 2i SL K ( S) 
+ 

Z Z 1/Z 
(s-ot) ( s - k ) 

1 

.cuts through the 

shown in Fig. 2. 

p 

0 ] --- ds = 0 
~ 2rr is 

p 

--
0
-] ds 

~ 2-rr is 

branch 

(44) 

which can easily be evaluated when k L >>1 and 1s found to be equal 
1 

to 
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Ims 

' kz 

-------------t---------~~-------------c-

F10. 2. l'ath of integration C0• Ck , Ck . 
I 2 
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1~ 
2i k L 

K (k ) 
irv"4 

e 1 e 
-t- :i 

-=- ~ ~ (k -!.)!) 
' 1 1 1 

Similarly for k L » 1 
1 

2i SL p e 
0 [ ] f G ( s) -

-t- ~ 2n c ( s-<-'<) K ( s) is 
k 

2 

=--1 r;; 
u · k L 
' 2 2 

e 
2i k L 

2 K ( k ) 
-t- 2 

( k -Ol ) 
2 

irv4 
e 

[ G ( k ) -
-t- :1 

ds 

[ G (k ) -
-t- 2 

Using the results (45) and (46) and also 

p 
0 

~ 2n 

the 

G (-a) = G (a) and K (-a)= -iK (ot), we obtain from (44) 
-t- -t- · 

A(k )F (k )e2ik1L 

] ( 45) . 
ik 

:1 

(46) 

relations 

:1 -t- :1 
F ( -C1t) + -------- = C(ct). (47) + ---------

+ 
,u ( k -r.:x ) .JkL 

:1 :1 . :1 
u (k -a)~ 

. '2 2 o\j 
1
\ L 

where 

F U') = -t- , 

p 

[ G (t) -
0 

] 

K ( -( ) + . ~ 2tr i ( 
(48) 

[K (t)]
2 irr/ 4 

e 
A((:) 

-t- ' 

= (49) 

2fii 

and 

p 

C(() = 0 
(50) 

.f2rl iK ( 0 )( 
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Substituting <."\l = 

the equations 

- k 
1 

A(k )e2ik1 L 

and a = -k 
2 

in· ( 4 7), we obtain respectively 

21) : {kL ] 
F ( k ) + 

+ 1 
= - C(k ) (51) 

1 

:1 :1 :1 
u ( k +k ) 1 k L 
' 2 1 2 "i 2 

and 

F ( k ) + .[1 + 
+ 1 

A(k )e2lk2L 
2 

] F ( k ) - -c < k
2 

) 

2,U k ~ k L + 
2 

2 2 2 

Now solving (51) and (52) we get 

and 

where 

F ( k ) = 
+ 1 

C( k ) 
1 

F ( k ) 
+ 2 

= C( k ) 
2 

2ik L 

l
'" A(k) (k -k )e. 2 

2 1 2 

2u k ( k +k )~ k L 
' 2 2 1 2 2 

2ik L 

[ 

A(k ) (k -k )e 1 
1 2 1 

2,u k ( k +k )~ k L 
1 1 1 2 1 

A(k ) 
2ik L 

e :1 

- 1 ] U(k ,k) 
. 1 2 

U(k ,k) 
1 2 

2i k L 
e 2 

U(k , k ) 
1 

1 + ------
A(k ) 

2 
+ ------ + 

:1 2 
2,u k ~ 

1 1 :1 
2,u k ~ 

2 2 2 
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Now expanding U(k ,k) 
• ? 

and neglecting higher order terms of 
.... ... 

(k L)- 1
/

2 and (k L)-
1

/
2 and using (47) we get 

1 2 

G (a) = - C(a) K (0) + C(Ol) K (a) + 

2jJ k ~ k L 
1 1 1 

A(k )k e 2 ik2L 
2 1 ] --+ 

u k 'kL ( k +k ) 
' 2 2"'' t\2 L 1 2 

,u ( k -ex)~ k L 
:1. :1. 1 

2ik L 
K (cx)A(k )e 1 .C(k) 

1 1 

+ ---------------------

L1 ( k -(..'i )·~ 
' 2 2 2 

A(k )e2ik2L 

2u 

2 

k .fk:L ] 
' 2 2 2 

2i k L K (u)A(k )e 2 .C(k ) 
- 2 2 

+ -----------------------
J-1 k ~ (k +k ) 

1 1 1 :1 2 

(56). 

Now replacing a by -a and using C(-a) =- C(a). We have 

G (a ) = c (a ) K ( o ) - c (a ) K ( -a) + 
+ 

,u ( k +ex )..[kl 
:1. 1 :1. 

A(k )k e 2 ik2L 

u : ~ (k +k )]+ 
' 2 2 2 1 2 

.C(k ) 
1 

+ ------------------------

2i k L 
K ( -ot ) A ( k ) e 1 

:1. 

2i k L 
K _ ( -ot) A ( k

2 
) e 2 • C ( k

2 
) [ 

+ 1-
Ll ( k +a) 'kL 
• 2 2 .., "'2 '- ,Ll k ..['kL ( k +k ) 

1 :1 :1 :1 2 

A(k )e2ik2L 

2!J 

2 

k .fk:L ] . 
2 2 2 

(57). 
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4. STRESS INTENSITY FACTOR AND CRACK OPENING DISPLACEMENT 

NEAR THE CRACK TIPS 

Now as L"X ~ co 

K ( -c~) = iK (01) = 
+ 

K ( -ot) 

---~-

a + k 
1 

K ( -c.t) 

l/2 [ · ~ l ,U 2] 

1

/Z 
; (Ot+k ) . ~ 

. -:1/2 
1 (.~ 

1 
U +11 
' 1 r-2 

-1-·'2 
--- ~ -ic~ · [ ~::· ]1/Z 

C.Hk 
2 ~ 1 ' 2 

So as a~ co we get from (56) and (57) 

and 

where 

p 

G (<-"l) ~ 
-1/2 0 s Ot + 

+ 

G (01) 
-1/2 

~ - iS Cl[ 

p 
0 
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s = 

+ 

p 
0 

A(k ) e 
1 

2 i k L 
1 

+ 
A(k ) e 

2 

2 i k L 
2 

[iiT K (0) ,u k ~ 
:1 1 1 

II k ~ ,- 2 2 1 1\2 L. 

A(k 
1 

) 

}.11 k 

4 i k L 4 i k L 

A
2

(k ) e 
1 

1 

L 
+ 

A
2 

( k· ) e 
2 

-...,---2 __ ) + 

u
2 

k
2 

k L 
' 2 2 2 

2i(k +k )L 
1/2 

A(k ) 
:1 . .2 . 

] 
e r Ll u 

) 2 ' :1 ' 2 

L J.1 + u k ~ k L k L u 
1 ' 2 2 1 2 1 ' 2 

+ 

Now from equation (37) using (58) and also the fact that 

we get 

K(o!) ~ ± ex 

B(c.:x) = + s [ 
ot..[Oi 

U +11 
• :1 ,-2 

. - ic~L 
le 

as a ~ + oo 

i C.\L 
- e 

u +u 

] 

' 1 ' 2 

u u 
' :1' 2 

as 01 ~ ± co 

(59) 

(60) 

( 61) 

Taking inverse Fourier-Transform of (35) and using the results of 

Fresnel integral~ viz. 

I 
0 

sin 
(x+L)a 

cos dOl = ( 
..fOi 

n .J 1/2 

2(x+L) 
(62) 
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We get the displacement jump across the surface of the crack as 

AW = W (X, 0+) - W (X 0-) = 2S(1-i) ~ (L-X) for x ~ L-0 (63) 
:1. 2 ' 1 

and 

AW = W (X, 0+) W (X, 0-) = 2S(1-i) .Jcx+L) for X -t -L+O (64) 
:1. 2 1 

where s 
(pi +J-12) 

s = (65) 
1 

,u. 
1 /-l2 

Next in order to find the value of T near about the crack tip we 
xy 

use (61) in (36) and (32) and to obtain 

(-1 )j+:l. s 
[ - ic~L iaL ]· A.(L"X) = ie - e 

J 01~ ,u. 
,! 

and 

(-1 ).j+1 s 
[ -:-iaL icxL ] ' A.(OI) ie = e 

J ,u 0(~-01 
.) 

Now 

T (x,y) = ,U. 
yz J 

= ,Lt. 
J 

aw. c x, y) 
.I 

{Jy 

a 1 

C2n iJy 

-

j=1 '2 

(.() 

I A.(ot) exp 
J 

-((1 
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= 1 '2) as a -t 00 (66) 

= 1 '2) as 01 -t -oo (67) 
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Substituting the values of A.(<.-x) as !c{l ~ co, we can write the. 
J 

stress near about the crack tip as 

((1 e -ot! Y I s 
[ e ic:~ ( X+L) . ic.~(x-L) 

·r ( x y) = I - 19 -yz , 
f2IT fa 

0 

. -iQ(X+L) -ia(~-L)] 
- 1e + e da 

S(1-i) 
00 e-a/y/ 

= I 
~ 211 .[a: 

0 

1 

[F ( 1- i ) sin = s 
2 

near about the crack tips, where 

[ 

2 2 ] 
1
/Z 

r = ( x-L) + y 
1 

[ COSC{( X+l) - sina(x+L) + 

+ COSLi! (X- l) + s i not ( x- L) J d01 

' ' '" rTo ...... 
'2 

+ cos :1 ] 
2 rr: 

' :1 

' -1 
9-1; = s1n 

1 

' -1 
,A = s1n 
'+'2 

r 
1 

r 
2 

150 

(69) 

(70) 

( 7_1 ) 

,, 
I 

'i 
i 



Therefore at the interface ( y = 0 ) we obtain 

S( 1-i) 
T --t as x --t L+O yz 

~ ( x- L) 

and 

8(1-i) 

T --7 as x _,. -L-0 
yz 

~-(x+L) 

Now the stress intensity factor is defined by 

K = 
p 

(I 

(72) 

(73) 

(74) 

The absolute value of the complex stress intensity factor 

defined by (74) has been plotted against k L in Fig.3 for values of 
1 

k L > 1 for the following two sets of materials, given by 
1 

First Set: 

Steel 7.6 gm/cm 
3 11 2 

p = u = 8.32 ){ 10 dyne/em 
:1. ' :1 

Aluminium 2.7 gm/cm 
3 

10
11 2 

p:l. = Ll = 2.63 .X dyne/em 
'2 

Second Set: 

Wrought iron 7.8 gm/cm 
3 

7.7 10
11 

dyne/em 
2 p = u = X. 

:1. ' :1 

Copper gm/cm 
3 

10
11 2 

p2 = 8.96 u = 4.5 X dyne/em . 
' 2 
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FIG. 3. Stress intensity factor K versus dimensionless frequency k1 I. 

152 



5. CRACK OPENING DISPLACEMENT AT POINTS AWAY FROM THE CRACK TIPS · 

Next in order to obtain the displacement jump for the large 

values of k (L-x) and k (L+x) we write G (01.) and G (01) from (57) 
1 :1 + 

and (56) respectively as 

p QK (-a) R(k ,k ) K (-a) 

G (!-'I) 
+ 

and 

G (<..-x) 

where 

= 
ex 

p 

= -- + 

p = 

Q = 

(.'( 

p 
0 

.f2n i 

p 
0 

- 1 2 -+ 
01. k +Ol 

1 

QK (a) R(k ,k ) K - :l 2 
+ 

a k -Ol 
1 

p 

= 
~ 2n i K ( o) K ( 0) 

and 

2i k L 2ik L 
QA(k ) e 

m Ill 
A(k 

[1 
e 

R(k 'k ) 
Ill 

= m n 
,u k m m 2,umkm m m m m 

where m = when n = 2 

and m = 2 when n = 1. 
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(a) -

) 
m 

R(k ,k ) K (-a) 
2 1 -+ (75) 

k +01 
2 

R(k ' k ) K (a) 
2 :l -+ (76) 

k -Ol 
2 

(77) 

(78) 

2ik L 
r, 

A(k )k e 

J n m 
(79) 

m 1-l k ( k +k 
n n n m n 



Again using K (-a) = -iK (a) we get from ( 37) 

B(a) = 
Q

. iaL 
1e 

ot K (01) 

- ic';L 
Q e 

a K ccn 
1' 

+ 

iaL iR(k ,k ) e 
1 2 

+ + 
( k +a ) K ( 01 ) 

:1 

R( k , k ) 
- iL"'{L 

e 
1 2 

( k -01) K (a) 
1 + 

iR(k ,k ) 
2 1 

iaL 
e 

(k +Ot) K (Ot) 
2 

R(k ,k ) 
- it~L 

e 
2 1 

Ck -en K (a) 
2 1' 

(80) 

From (35) we get the displacement jump across the surface of the 

crack as 

00 

f -iax 
B ( <.'!. ) e da . ( 81 ) 

-oo 

Now substituting the expression of B(a) from (80) .in (81) and 

approximately evaluating the integrals arising in (81) term by term 

for large values of k (L-x), k (L-x), k (L+x) and k (L+x) and 
. 1 2 1 2 

neglecting terms of order higher than 

obtain finally the crack opening 

cracked-surface in the following form: 

154 

( k L) -3 ..... 2 and 
1 

displacement 

( k L) -3/2' 
2 

across 

we 

the 



+ 

A.W = w1. c x, o+) - w
2 
c x, o-) = 2rr Qi K ( o) 

T 

ik (L-X) ik (L+x) 

-iiT/4 
+ f2 Q e 

R R 
:1 :11 

+ 

[(;k,:L-x) 

2ik L 
1. 

.e R 
2 

+ X {R, 
~ 2k L 

1 

l. 

+ 
e 
-)x 
~k (L+x) 

1 

2i k L 4 i k L 
2 

R ( R )2 1 
R e e 

2:1 :1 1.1 
+ 

~ 2k L 
2 

~ 2k L ~ 2k L . 1 1 

+ 

4 i k L 2i(k +k )L 2i(k +k )L 

+ 

2 
R R R e 

2 22 21 

~ 2k L ~ 2k L 
2: 2 

ik (L-X) 
2 

e 

+ (~k (L-x) 
2 

R R 
2 22 

X R + 

R 

+ 
R R e 

:1 :12 2:1 

~ 2k L ~ 2k L 
:1 2 

ik (L+X) 
2 

e 
+ ----- J X 

~k (L+x) 
2 

2 i k L 
2 

:1 2 

2 i k L 
1 

e R R e 
:1 :12 

+ { 2 
~ 2k L ~ 2k L 

2 :1 

4 i k L 2 i ( k +k )L 
1 1 2 

R R R e R R R e 
1. :1:1 :12 2 2:1 :12 

+ 
~ 2k L ~ 2k L 

1 1. 
~ 2k L ~ 2k L 

1. 2 
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. :1 2 

} R R R e 
2 2:1 :1:1 

+ + 

~ 2k L ~ 2k L 
:1 2 

4 i k L 
2 2 

R2(R22) e 
+ + 

~ 2k L ~ 2k L 
2 2 

2 i ( k +k )L 
1 2 

} ] R R R e 
:1 12 22 

+ 

~ 2k L ~ 2k L 
1 2 

(82) 



where 

K (k ) K ( k ) 
+ 1 + 2 

R = R = 
1 .[2 ,Li k 

2 [2 u k 
:1. 1 ' 2 2 

D [K (k )]
2 

D [K (k )]
2 

+ 1 -t 2 
R = R = 

11 22 
(k +k ) u (k +k ) f-1.2 ' :1. :1. 1 . 2 2 

D K (k ) K (k ) D K (k ) K (k ) 
-t 1 -t 2 

R = 
21 

-t 1 T 2 

,U ( k +k ) 
1 1 2 

Expressions in (63) 

near about the crack tips 

away from the crack tips 

D = (-1) 

iiT/4 e . 

R = 
12 

and (64) give the 

u ( k +k ) 
' 2 1 2 

displacement 

where as the displacement jump at 

are given by (82). 

(83) 

jump 

points 

From these two results we can obtain the crack opening 

displacement at any point of the crack surface -L < x < L, y = 0. 

Here also normalized crack opening displacement has been 

plotted against normalized distance x/L from the centre of the 

crack for two different sets of materials in Fig. 4. It is 

interesting to note that oscillatory nature of the crack opening 

displacement increases with the increase of frequencies as a result 

of the interference of waves inside the crack. Further we note that 

amplitude of the crack opening displacement decreases with the 

increase of frequency~ 
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FlU. 4. Normalized crack opening displacement versus normalized distance x/1 
from the centre of the crack. 
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where 

put 

Ther~efore 

where 

Now 

Therefore 

K(cx) = 

R(a) = 

m = 
u. 
'2 

u 
• I ! 

K(o.) = 

R(cx) = 

,App~ndix 

( 2 -k2 )1./2 u u ex 
' :1' 2 1 

R(c~) 

( 
2 2):1./2 ( 2 2):1./2 u a -k +u a -k 

' :l ":l ' 2 2 

2 2 :1/2 
u ( (\ - k ) 
I 2 :!. 

1 + m 

2 2 1/2 
( 1 +m) ( C'{ - k ) 

2 

( 2 k2 ) 1/2 ( - 2 k2 ) 1/2 a - +m 01. -
1 2 

as jal ~ w 

( 2 2)1/Z ]-1 
___ ot_· ---~_: 1 __ _ 

2 2 :1/2 
( m+ 1 ) ( ot - k ) 

2 

1 og R (a) + 1 og R (a) = 
'1-

= Log [ ___:__ + 
1+m 

___ <_(x....:..2 ___ k_:_)_1_/_z_ Jl -·1 

2 2 1./2 
( m+ 1 ) ( a - k ) 

2 
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Therefore 

log R(z) 
-i C+LLI 

log R(z) 
log R ( (1[) = r dz = r dz J I 

+ ..J 

271 i c ( z-ot) 2n i 
- i c-'XI 

( z-.::.~) 
L 

whet-e the path of integration C is shown in Fig. 5. 
L 

Putting z = -z and using the fact that R(z) = R(-z), we get 

i c+o:,~ 
log R(z) 

log R ( 01) = I dz 
-t 

2n i ( z+c~) 
ic-oo 

log R(z) 

= f dz 
2'fT i c (z+ot) 

1 

where C is the contour round the branch points k and k as shown 
1 1 2 

in Fig. 6 . 

So, 

( 2 2) 1/2 

[ 
m z -k 

] 1 
log + 

2 2 1/2 
m+1 (m+1 )( z -k ) 

log R (ex) I 2 
= dz 

-t 
2n i 

c 
( z + (~ ) 

1 

[ 1. 

i(zz-kz)i/2 

] log 1 

k + 
2 m( kz -zz //2 

I 
2 . 

dz = --
2n i 

k 
( z + 01 ) 

1 
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Fig. 5. Complex z-plane. 
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-. ~ . 

' Re z 

Fig. 6. Path of integration round the branch points. 
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[ 1 

i(zz-kz )1/2 

] 1 

k 
log 

( 2 2)1/2 
1 2 m k -z 

I 
2 

dz 
2n:i ( z + 0! ) 

k 
1 

-1[ cl-k2 )1/2 

] 1 
tan 

k m(k2-l )1/2 2 

I 
2 

dz = 
·rr (z + (.~ ) I L 

k 
1 

( 2 2)1/2 
-1 r z -k 1 .. 

tan l ... 

J u 
k" ( Z 2)1/Z 

dz ] 

z m k -z 
R (ex) I 2 

Therefore = exp 
T 

k 
(z + 01 ) 

1 

Si mi.l arl y 

-1[ (zz-kz )1/2 

] 1 

eXp [ ~ 
k 

tan 
m( kz -zz) 1/2 

dz ] 

2 

R (<-"X) I·. 2 
= 

k 
( z - 01 ) 

"1 

Therefore from (A1) we can write 
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. -1 r 
(zz-kz )1/2 , 

tan l 1 

j w2 1/2 u k m(kz_ 2 z )1/2 

dz ] 

( ot+k ) · 2 
:1 r 2 

(A2) K (cot) = exp J -1" 

~ ( 1 +m) 
k 

(z + 01. ) 

1 

and 

K (01) 
w (01.-k //

2 
[ 1 k2 

2 :1 I = exp -
~(1+m) rr k 

(A3) 

1 

Hence from (A2) and (A3) we get 

-1[ (zz-kz )1/Z 

] tan 
. 1 

W i(OI-k )i/Z k ., ., ~ ;z 

u 2 m( k .. -z .. )""' 

dz J K (-ex) 
2 1 r 2 

= exp J -1" 

~ ( 1 +m) 
k 

(z - 01. ) 

1 

= i K (a) 

i.e. K ( -c.>~. ) = i K ( et ) 
T 

(A4) 

---x---
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HIGH FREQUENCY SCATTERING OF PLANE HORIZONTAL SHEAR WAVES BY 

A GRIFFITH CRACK PROPAGATING ALONG THE BIMATERIAL INTERFACE 

1. INTRODUCTION 

Scattering of elastic waves by a stationary or a moving crack 

of finite length at the interface of two dissimilar elastic 

materials is important in view of its applica,tion in fracture' 

mechanics as well as in seismology. Recently, Takei, Shindo and 

Atsumi [1982] considered the problem of diffraction of transient 

horizontal shear waves by a finite crack lying on a bimaterial 

interface. The method of solution was extended by Ueda, Shindo 

and Atsumi [1983] to solve the problem of torsional impact response 

of a penny shaped interface crack. Srivastava et al [1980] also 

considered the 1 ow frequency aspect of the . interaction of an 

antiplane shear wave by a Griffith crack at the interface of two 

bonded dissimilar elastic half spaces. 

In the case of cracks of finite size, travelling at a 

constant velocity, loads, for mathematical simplicity, are usually 

assumed to be independent of time. However, in practice, structures 

PUBLISHED IN "ENGINEERING FRACTURE MECHANICS" V45, N01, PP107-118, 1999. 
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are often required to sustain oscillating loads where the dynamic 

disturbances propagate through the elastic medium in the form of 

stress waves. The problem of diffraction of plane harmonic 

polarized shear wave by a half plane crack extended under antiplane 

strain was first studied by Jahanshahi [1967]. Later Chen and Sih 

[1973] considered the interaction of stress waves with a 

semi-infinite running crack under either the plane strain or the 

generalized plane stress condition. Sih and Loeber [1970] and Chen 

and Sih [1975] also considered the problem of scattering of plane 

harmonic waves by a running crack of finite length. In both the 

cases the problem was reduced to a system of simultaneous Fredholm 

integral equations which wer.e solved numerically. 

In the present paper, we have investigated the high 

frequency solution of the problem of diffraction of horizontally 

polarized shear waves by a finite crack moving on a bimaterial 

interface. The high frequency solution of the diffraction of 

elastic waves by a crack of finite size is important in view of the 

fact that transient solution close to the wave front can be 

represented by an integral of the high frequency component of the 

solution. In order to solve the problem, following the method of 

Chang [1971], the problem has been formulated as an extended 

Wiener-Hopf . equation and the asymptotic solutions for high 

frequencies or for wave lengths which are short compared to the 

164 



length of the crack have been derived. Expressions for the dynamic 

stress intensity factor at the crack tip and the crack opening 

displacement have been derived. The dynamic stress intensity factor 

for high frequencies has been illustrated graphi~ally for two pairs 
. . 

of different types of materials for different crack velocities and 

angles of incidence. 

2. FORMULATION OF THE PROBLEM AND ITS SOLUTION 

Let a plane crack of width 2L move at a constant velocity V at 

the interface of two bonded dissimilar elastic semi-infinite media 

due to the incidence of the plane horizontal SH-wave 

W =A exp[-{k (X cose + Y sine) + OT}] 
i. . 1 1 1 

(1) 

in the medium. The crack lies on the bimaterial interface along Y=O 

with respect to the fixed rectangular co-ordinate system (X,Y,Z} as 

shown in Fig.1. 

We assume that the displacement and stress fields W., T 
J YZ . 

( j = 1 , 2) are 

W. = W.(X,Y,T) 

T 

J J 

YZ. 
J 

= J,-l. 
.J 

aw. ex, v) 
J 

{Jy 

.) 

( 2) 

(3) 

in which subscripts j=1 ,2 refer to the upper and lower half planes, 
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Fig. I. Running interface crack. 
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respectively, T denotes time and ~. is shear modulus of elasticity. 
. J 

The displacement W. is governed by the classical wave equation 
J 

2 
;J W. r/w. ilw. 

J + J 
= 

J (j=1 ,2) (4) -- -- --
;Jy2 2 2 2 ar ax c 

J 

where c.=(.u./p.)
1 

..... 
2 

is shear wave velocity and P. is the density of 
J J J .I 

the material. Without any loss of 'generality, we further assume 

that c > c . 
1 2 

Due to the incident wave given by (1), reflected ano 

transmitted waves in the absence of the crack may be written in the 

form 

w = 8 exp [- i { k (X cose - Y sine ) + (2T } ] 
1"' 1 :1 :1 

( 5) 

and 

w = c exp [-i{k (X cose * Y sine)+ OT }], (6) 
·r 2 2 2 

where 
k sine - mk sine 

:l 1 2 2 
8 = A· (7) 

k sine + mk sine 
1 1 2 2 

2k sine 
1 1 c = A (8) 

k sine + mk sine 
:1 :1. 2 2 

m = u /u . • 2 • :i. 
and k cose = k case 

:i. :i. 2 2 
(9) 

A,B,C are incident, reflected and transmitted wave amplitude, k. is 
.] 

the wave number, 0 = k.c. is the circular frequency and e 
J J 1 

the angles of incidence and refraction, respectively. 
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A set of moving co-ordinates (x,y.,z,t) attached to the 
J 

centre of the crack moving at a constant velocity V is introduced 

in accordance with 

where 

X = X - Vt, 

. 2 1/Z 
s. = (1-M. ) 

J J 

Y. = s.Y, z = z, t = T ( 1 0 ) 
J J 

and M. = V/c. is the Mach number. 
J . J 

In terms of the translating co-ordinates X, Y., 
.I 

equation ( 4) 

becomes 

tl W. i1
2

W. a 
[. 

·aw. aw. 
] J ) J J 

0 ( 11 ) + + 2M.c.- - -- = 
iJx 

2 
ily. 

2 2 2 at J J iix at c. s. 
J J J 

In the moving system (x,y,z,t) equations (1),(5) and ( 6 ) take the 

form 

y 

1 r 

A exp[-i{k (x 
1 

+ wt}] W. cose + -sine ) 
l 1 1 s 1 

1 

-;,_,_It 
w B exp[-i{k (x 

y1 
+ wt}] e = case -sine ) ( 1 2 ) 

1' 1 1 s 1 

J l 
1 

J C exp [- i { k ( x 
y2 

+ wt}] WT case + -sine ) 
2 2 s 2 

2 

where w = Ocx and ex = ( 1+M case ) = ( 1+M cose ) . 
1 1 2 2 

In view of the equation (12) we take the solution of (11) as 

-iL!.lt 
W.(x,y.)e = w.(x,y.) exp[i(M.:A...x- i~.:lt)]. 

.1 J J J J J 
( 1 3 ) 

Substitution of equation (13) into equation (11) yields the 
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Helmholtz equation governing w 

where 

2 
Jx 

;j2 
W. 

1 . 2 
+--+.i,.w=O, 

2 .i 
iJy. 

k (X 
J 

2 
S. 

1 

(j = 1,2) ( 14) 

Applying Fourier transform, equation (14) can be solved and the 

result is 

00 

w (x,y ) 
1 I c~ ) [ . . . c~ 2 A. 2 ) :1/2 J ·~ = 8 < exp -1 ~ x- r - y dt , 

1 1 2IT 1 , . 1 1 , 
y >O (15) 

1 

-co 

00 

w (x,y ) 
1 I c·) [ .,. c·2 . 2 ):1/2 J ·~ = 8

2 
( exp -1( x+ ( -i-.

2 
y 

2 
d( , 

2 2 2IT 

-(0 

From (13),(15) and (16) w~ obtain the displacement components due 

to scattered field as 

00 

1 I w = 
1 2IT 

-co 

and 
(iJ 

:1 I w = 2 2IT 

-co 

where 

A (t ) exp [- i ;.; X .:.... V y ] di'" 
1 ' , 1 1 , ' 

A ( ( ) exp [- i r X + V y ] dl , 
2 ' 2 2 .... 

' 2]1/2 
A.. ' 

J 
j= 1 '2 

169 

y >O 
1 

y <O, 
2 

.::.. 

( 1 7 ) 

( 18) 

( 1 9) . 



A (() and A (( ) are the unknown quantities to be determined from 
1 2 . 

the following boundary conditions: 

aw aw 
:1 2 

for a 11 y=O u s = u s ' x, ' 1 1 
i) 

' 2 2 
iJ y1 y2 

w w I I 
y=O = i Xi >L' 

:1 :2 

aw aw. aw 
1 L r· 

+ -- + -- = 0, lxj<L, y=O+ 
i) y1 i) y1 i)y 

1 

From the boundary condition (22) we obtain 

where 

iJW 
1 

A = 
1 

= A exp [- i k x cose ] , 1 1 1 

i (A-B)k s·ine 
1 1 

s 
1 

j xj <L, y=O, 

Using (17), the above equation can be written as 

l"O 

:1 

I 2"IT 
A (( )v exp[-itx]dt = - A exp[-ik x cose], 

:1 :1 , • 1 :1 :1 

-((! 

= P(x), x>L (say) 

= Q(x)' x<-L (say) 

Therefore, 

A (( )v = exp[i("L] G+(() + exp[-i(L] G (() 
1 :1 

(20) 

( 21 ) 

(22) 

(23) 

(24) 

-L<x<L 

A 

--
1
- [ exp{i((-(u. )L} - exp{-i((-("

0
)L} ] , (25) . ( ,... ,.. ) 

1 r -r . 'o 
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where 

From the 

where 

O'J 

G (1) + ., = I P(x) exp[i((x-L)]dx 

L 

-L 

G (() = I Q(x) exp[i( (x+L)]dx 

-(.(! 

:-;: = k cose '··o :1 

boundary 

A (() = 2 . 

u s 
' 1 1 

M = 
u s 
' 2 2 

:1 

condition (20) 

M v A (() 
:1 :1 . 

l.-' 
2 

we obtain 

Next using the. boundary condition (21), we obtain 

I 
-(X) 

L 

= I 
-L 

= N(() 

(W -W ) exp[i(x]dx 
:1 2 

P (x) exp[ii~x]dx 
:1 

(say), 

(26) 

(27) 

( 28') 

(29) 

(30) 

( 31 ) 

which is the measure of the discontinuity of displacement along the 

surface of the crack. Now with the aid of (29) and (31), we find 

1 71 



A ''t) = \ ., 
·1 

~J N(t=) 
2 ' 

(32) 
1.> +Ml-' 

2 :1 

Eliminating A (() from (25) and (32) we obtain an extended 
:! .•. 

Wiener-Hopf equation, namely 

where 

exp[ i(L ]G U') + exp[-i(L ]G (() - N(( )K(() 
.,. ' 

= A
1 

[ exp{i ((-(. )L} - exp{-i (~-(- 0 )L} ] , 
. ( .... .•. ) 0 . 
1 t -r . 'o 

K ( (" ) = 

R(() = 

v v 
1 2 

v +M 11 .... 
2: 1 

( 1 +M )v 
2 

li +M 1.) 
2 . 1 

v 
1 

R (( ) = 
1+M 

(33) 

(34) 

(35) 

In order to solve the Wiener-Hopf equation given by (33) we 

assume that branch points /-, ( 1-M ) , " -f., ( 1 +M ) 
2 2 :1 1 

and 

-f.. ( 1 +M ) of K (( ) possess sma 11 imaginary parts, which wou 1 d 
2 2 

ultimately be made to tend to zero. 

Now we write K(() = K (( )K ((), where K (() is analytic in the 
.,. - -t-

upper-half plane Im (>Im [-A. (1+M )], whereas K (()is analytic in 
1 :1 -

the lower-half plane given by Im (<Im [A. (1-M)]. The expressions 
1 :1 • ow 

of K (() and K (() are derived in the Appendix. Since 
1 

decreases .,. -
{Jy 

1 

exponentially as x ~±o), G (() and G (() 
-t- - . 

have the same common 

region of regularity as K U) and K ((). -t- • 

Now equation (33) can easily be expressed as two integral 
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equations involving G ((), G (()and N((·) as follows: 

G U' ) 
-t 

K (t) 
"!- ' 

1 
+ --

2rr i 

"!-

I 
c 

+ 

- -2ni I 
c 

K cr ) 
-t ·o 

-2isL 
e 

( s-t ) K ( s) 
"!-

.[ G (s) + 

-i( L 
A e ·o 

-2isL 
e 

:1. 

( s-() K ( s) 
+ 

[ G (s) + 

if L 
A e 'o 

1 

i ( s-t ) 
Ll 

if L 
A1 e 'o J 

ds, 
i( s-( ) 

0 

where c and c are the straight contours below the pole at 
"!-

(36) 

and situated within the common region of regularity of G-r((), 

G_ ((), K+(() and K_ ((') as shown in Fig.2. 

The left hand side of (36) is analytic in the upper-half plane 

whereas the right hand side is analytic in the lower-half plane and 

both of them are equal in common region of analyticity of these two 

functions. Therefore, by analytic continuation, both sides of (36) 

are analytic in the whole of the s-plane. Next, by· Liouville's 

theorem, it can be shown that both sides of (36) are equal to zero. 

Thus we obtain 
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Fig. 2. Path of integration in the complex .\·-plane. 
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K (() 
+ 

similarly, 

1 

K (( ) 

- ;r L 
A e 'o 

- ;r L 
A e 'o 

i 

[ 
i ] G (t)- ----+ • + 

HZ -r ) ' ( 1 -1 ) K ( ,,; ) 
. "'o 1 ' ., . ~ .. u + u 

2isL A 
;z: L 

I 
e 

[ G_ ( s) 
e ··o 

:1 
+ -- + 

2n i ( s-( ) K (s) i ( s-~~ ) 
. T 0 c 

+ 

we also obtain 

A 
i( L 

[ G_ U: ) 
e ·o 

] :1 
+ + 

i(( -( ) 
' (I 

2isL -i( 
1 

I 
e 

[ G+ ( s) 
A e 'o 

i 
+ -- -

2rr i ( s-( ) K (s) . ( ... ) 1 s-( - (J 

c 

+ 

J ds = 0 

L 

] ds = 0 

3. HIGH FREQUENCY SOLUTION OF THE INTEGRAL EQUATIONS 

(37) 

(38) 

In order to obtain G+(() and G_(() from the integral equations 

(37) and (38) in case when the normalized wave number 

A ( 1 +M ) L » 1 I the integration along the path c in (37) is replaced 
:1 :1 + 

by the integration along the loops L_.\ and L_.\ round the branch 
:1 2 

points :...._\ ( 1 +M ) and -t... (1+M ) of K ( s), respectively. Also, 
i 1 2 2 T• 

integration along the path c in (38) is replaced by 

integration round the circular coritour L , round the pole 
0 

S -~1 --'u 

the 

the 

and 

by the integrations along the loops LA and LA round the branch 
:1 2 
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cuts through the branch points 

function K (s) as shown in Fig. 3. 

:;.~ ( 1-M ) 
1 1 

and J.~ (1-M ) 
2 2 

of the 

Finally evaluating the integrals along the straight line paths 

round the branch points for large values of frequency, we obtain 

two equations given by 

= 0, (39) 

where a =1 and o =M, and 
1 2 

+ ir L 
A e 'o 

+i( L 
A e ·o 

1 ] 

i ({ -( ) . ·o 

C, U') = 
-r 

1 
(40) 

i (f -~'' ) K, (t ) , .... 0 2: , 0 

Now substituting ( = A (1-M ) and /-. (1-M ) and ( = -A ( 1 +M ) and 
1 1 2 2 1 1 

-A (1+M) in (39) a system of lfnear equations of F [ A (1-M) ], 
2 2 T 1 1 

F [ f.~ ( 1-M ) ] , F [ -J., ( 1 +M ) ] and F [ -/-, ( 1 +M ) ] are obtai ned. Now 
T 2 2 -1 1 -2 2 

solving them and neglecting higher order terms of (A. L) -1/Z 
1 

(A. L)-
1

/
2 

we obtain, finally, after some algebraic manipulation: 
2 
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F+[±\ (1+Mk)] =- C+[±\._ (1+M. )] ::< 
- k .· - k: k: 

2 
2 if.. . ( 1 +M. ) L 

ere 1 ¥: r >< 1-E 
L 

j ' 

( .. )1./2{ 

A- [ +!· .. . ( 1 ±M . ) ] c_ [+A. . ( 1 ±M . ) ] l 
1- J J + J J 

' k= 1 '2 ( 41 ) 
\.(1±M.)+\. (1+M. )}C.._[±\. (I+M. )] J j=1 2 A L 

J J J J.: J.: .!. J.: k 

Now using (39) we get from (41) 

G (f) + ., 

+ 

= + 

+if L 
A e ·o 

1 -
1-

i(f-( )K (f ) 
' ·o. ± ·o 

. ' ( +M ) L .. 

+ 

2 1 A L [ -· ( + ) ] [ -· ( + ) ] 
')" k + k k . + k . k 
2 [ a e k k A_ +A 1-M c_ +A 1_M 

..... . 1/2 . .· .. 
k=1 2(AkL) { Ak(1±Mk)±(} 

2i~- (1+M )L +. - )] [+. (- )] 
2 er . e j j A+ [_A . ( 1 + M . C + _,\ . 1 + M . )l 

·('""') - J J - J J .X 1-,L . 
j=1 2U .. L)u

2
{ \ .. (1+M.)+\. (1±M. )}C-[+1 .. (1±M. )]Jj 

J J J k k + k k 

>< 

(42) 

4. CRACK OPENING DISPLACEMENT AT POINTS AWAY FROM THE CRACK TIPS 

In order to obtain the displacement jump for the large values 

of A (L-x), A (L-x), A (L+x) and A (L+x), we can write G (() and 
:1 2 :1 2 + . 

G <<:) from (42) as 

Q±K± U:) K (':: ) 
( k ) 

P. 2 R± 
G. (f) + 

:t - E 
± ~-

(43) = + + 1- ., 

(" -( f -( k=1 { A. ( 1±M )±(} . ·o ~ , 0 ].; k ' 
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where 

'".\ ( + ) _ 21.··-. 1-M. LA [-·. ( 1+M )] [-·;.. ( + )] t.r e .k: ~:: _ +l·._ _ c_ +,... 1-M. 
k + k k + k J.: = 

(
·. ) :1/:2 

2 l'-. L 
k 

2 r:.r . e 2 i ;-.. _ j ( 1 :;:: M j ) L . A+ [±A. . ( 1 + M . ) ] C + [±A. . ( 1 :;: M . ) ] 

X [ 1- _E J - J J - J J ) 

J=1 2(A..L)
1

/
2

{ A..(1+M.)+Ak(1±Mk)} C-[+Ak(1±M. )] 
J J J . + k . 

Now we obtain from (33) 

+ 

if L Q e , 
+ 

(r -f ) K cr:) 
~ ., 0 - ..., 

-it L Q e . 

(( -(. ) K (() 
u + 

R
<1> i(L e . 
+ 

+ ----------------
{(+/-.. (1+M )}K (() 

1 1 -

<1> -if"L 
R e · · 

{(-\. (1-M )}K (() 
:1 :1 + 

+ ---------------
{(+/-.. (1+M )}K (() 

2 2 -

<2> -ifL 
R e · 

{ ( -:', ( 1-M ) } K U: ) 
, 2 2 + 

(44) 

(45) 

(46) 

+ 

(47) 

From (31) we obtain the displacement jump across the surface of the 

crack as 

Wi. (x,O+) - W
2

(x,O-) = (48) 
2n 

-I)J 
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substituting the expression of N(() from (47) in (48) and 

approximately evaluating the integrals arising in (48) term by term 

. for large values of X (L-x), X (L-x), 
1 2 

neglecting terms of order higher than 

J. .. (L+x), 
1 

( ' ) -3/2 
A L 

1 

and ')., ( L +x) , 
2 

and (J., L)-312
, 

2 

and 

we 

finally obtain the crack opening displacement across the cracked 

surface at points away from the crack tips in the following form: 

where 

IJ.W = 

= 

W (X, 0+ ) - W (X , 0- ) 
1 2 

:~~ 

1 

[ 
{((,+A. M )

2
-A

2 

u :1 :1 :1 

-irr/4 
e 

·rT .. 1/2 [ T - T 
+ 

M 
+ 

} 
L/2 {('"' •. )2 .. 2 ( +A M -.A. 

·o 2 2 2 

] '· 

. iJ.,, (1=i=M )(L+x) [ 
2 a. e y; k 
E ~<: . 

{ . ( - ) } :1/2 k=1 A L+X 
k 

2
1 

/ 
2 

[ A ( 1 + M. Ht ] 
k k . 0 

] -:1/2 
} 

(49) 

2 ~ A-[+A..(1±M. )] K+[±A.k(1=i=M )] 
I:J + J J -. k 

( Q 
2iA..(1±M.)L I +e J J 

j = 1 2 ( 2 \ L ) 
1 

/
2 

{ ;.._. ( 1 + M ) +A .. ( 1 ± M . ) } 
j k k J J L 

{ A •. ( 1 ±M. )±(. } 
J J u 

. A [ · ·· ( 1 - M ) ] Q 2 i [ A ( 1 + M ) +I-, . ( 1 ± M . ) ] L ] ] u . :!:A + e r· r· J 1 E __ ~ __ ! ____ ~ _____ ~ _____ ± _________________ · _____ ~____ . 

2(/.. L) 1
/

2
{ / .. (1+M )+/. .. (1±M.)}{ /,_ (1+M )+f} 

r· 1' r· J J r· 1·· ' 0 

2 

(50) 
1'·=:1 
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5. STRESS INTENSITY FACTOR AND CRACK OPENING DISPLACEMENT 

NEAR THE CRACK TIPS 

Now considering the behaviour of ~ at infinity we obtain from 

(42) 

where 

i (( -~ ) , I) 

1 

( 1 +M) 1/2 

.. -1/2 
+ s 't +· 

:ti( L A e ·o 
:1 

i K+ (( ) - ·o 

as (----. oo, 

+ 

2 a e 2 i~k( 1 ±Mk)L A-[+k (1~M )] C_(:tk (1±M )] 
k + k k + k' k 

+ E-------------------------------------------2< \ L)i/'2 
. "k k =1 

X [1-. r 
J =:1 

X: 

]) . 
Now, ~rom equation (33), using (51).and also the fact that 

K(() ____. + as (~ ±w, 
1+M 

we obtain 

1+M 

[ i( L -i( L 

J NU~') = s e + s e as (-) ±oo. 
+f ("'' ):1./2 

i-

-, c, 

1 81 

(51) 

(52) 

(53) 

(54) 



Taking inverse Fourier transform of (31) and using the results 

of Fresnel integrals, viz. 

Ll) 
sin 

J 
(x+L)a 

[ n r·. cos 
d<..ll. (55) = 

(0!):1/2 2(x+L) 

0 

we obtain the displacement jump across the surface of the crack as 

~W = w (x,O+) - w (x,o-) 
1 2 

( 1 +M ) ( 1 + i ) S [ 2 (x+L) r2 for x____,. -L+O = - n (56) 

= - ( 1 +M ) ( 1 - i ) S [ 2(L-x) r2 for X----+ L-0. 
+ rr 

(57) 

Expressions (56) and (57) give the displacement jump near to 

the crack tips, whereas the displacement jump away from the crack 

tips is given by (49). 

Next, in order to find the value ofT near to the crack tip yz 

we use (54) in (32) and (29) and obtain 

A. (() = 
J 

A. (() = 
J 

i + 1 
(-1)' 0. 

-----=-) [ 

'•"('-·):1./2 ( ( 

. ( ) i + 1 1 -1 ., 0. 

---.:.....! [ 
·>: ( .,, )i/2 
~ -,, 

itL 
S e · 

T 

j=1, 2 

-ir L ] Se ·· , j=1,2 
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aw. c x, y. ) 

{Jy 

Now T (X,y.) = U. 
yz .J , .J 

j ) 

,u.S. i) 

= J J 

2rr a Y . 
[I 

.) 
-(.(.l 

= U.S . . .) .) 

A. (() 
J 

aw. c x, y. ) 
.) j 

{Jy 
.! 

-i;~x-v!Y-1 d':: J e J J ~. • ( 60'") 

Now substituting the values of A.U!.) as I< I ~ Cl) in (60) and 
J 

integrating, we obtain the stress near tp the crack tip as 

where { ( /' 2} 1/2 r :: x-L +y , 
:1 :1 

2 2 1/2 
r = {(x+L) +y'} , 
2 :1 

d {(x-L)2+/}1/2 = :1 2 , 

2 2 :1/"2 
d = { ( x+L) +y } , 

2 2 

.. -1 
If' = s1n 

:1. 

-1 
¥' = sin 

2 

¢' sin 
-:1 

= 1 

-:1 
.j, =sin 
' :2. 
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I Y 1 I 
r 

:1 

IY:ll 
r 

l 

I Y21 

d 
1 

I I 
I y I 

I 2 i 

d 
2 

(63) 



Therefore at the interface (y=O) near to the right-hand crack 

vertex, we obtain 

T ---t -
yz 

tJS(1-i)S 
1 :1. i" 

1/2 
{ 2?7 ( x-L)} 

as x--t L+o.· (64) 

Now the normalized dynamic stress intensity factor K at the crack 

tip x = L is defined by 

1 [ 2rrk
1 

(x-L)] 

u A 
' :1 '1 

1/2 
T yz 

where A is given by (24). 
1 

= s 
1 

(1-i)S (k )
1

/
2 

+ 1 

A 
1 

for X---tL+O, (65) 

The absolute values of the complex stress intensity factor 

defined by (65) has been plotted against k L in Fig.4 for values 
1 

k L>1 for different values of the Mach number M and the angle, of 
1 z 

incidence for the following sets of materials: 

first set: 

Steel gm/cm 
3 11 2 

p= 7.6 ' J-l = 8.32 X 10 dyne/em 
:1 :1 

Aluminium 3 11 2 
p = 2.7 gm/cm ., J-l = 2.63 X 10 dyne/em 

2 2 

second set: 

Wrought iron gm/cm 
3' 11 2 

p= 7.8 
' 1-1 = 7.7 X 10 dyne/em 

:1 1 

Copper gm/cm 3 11 2 
p2= 8.96 ' u = 4.5 X 10 dyne/em 

'2 
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As the Mach number M ~a the stress intensity factor K tends to 
2 

the value of the stress intensity factor corresponding to the 

stationary.crack. The problem fore= rr/2 and M =0.~ was 
:1 2 

solved 

earlier by Pal and Ghosh [1990]. The graph of stress intensity 

factor vs K
1

L corresponding to e
1
=rr/2 and M

2
=o.o as given in Fig.4a 

is found to coincide exactly with that given by Pal and Ghosh 

[1990]. It is interesting to note that for both pairs of materials, 

as M2 increases, the· peaks of the curves of stress intensity 

factors decrease in magnitude and occur at lower values of K
1

L. 

Further, it may be noted that for any fixed value of- M
2 

the s:tress 

intensity factor decreases with the decrease in the value of the 

angle of incidence. 
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Fig.4(a). Stress intensity factor K versus dimensionless 
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1.6 
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o.4 
Wrought Iron ll Coppor --.. 

Aluminium & Stool 

Fig.4(b). Stress intensity factor K versus dimensionless 



(c) ~·o.,.----------------------.. 

1·6 

~ o.a 

0·4 Wrought Iron & Copper 

Aluminium & Steel 
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Ma= O·O 
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Fig.4(c). Stress intensity factor K versus dimensionless 
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~ 0·8 

0·4 
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Fig.4(d). Stress intensity factor K versus dimensionless 

k
1

L for 8 1 = n/6. 
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where 

and 

Now 

APPENDIX 

K(() = 
{(

... )2 .z. }1/2 t +A M -A 
. 1 1 1 

R(() 
1+M 

u s 
0 :1 :1 

M = 
u s 
0 2 2 

( ){(
,_. .. )2. 2}1/2 1 +M (+A M -i\ 

I 2 2 2 
R(<) = ----------------------------------- ~ 1 

M{((+A. M )2-A.2}1/2+{((+A. M )2-A.2}1/2 
1 1 1 ' 2 2 2 

as I< I --+OO 

1 

R+(()R_(() = ---------------------------
{(

u·. )2 .. 2}1/2 M ~+A M -A 
:1 :1 :1 

+ -----------------------
( ){(

u • )2. 2}1/2 1 +M ;: +A M -i,_ 
' 2 2 2 

1+M 

Taking log on both sides 

log R(C) = 1 og R (() + 1 og R (~~) = 
-r 

2'1! i 
f 

C -t-C 
L U 

log R ("r;) 

n-<" 

where the paths of integration c and c are shown in Fig.A1. 
L U 

Therefore 
1 log R(n) 

=-I---
2n i 

c 
L 
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1 log R (YJ) 
log R (() = -- J dn - 2rr i r,-( c 

u 

-ic+w log R C"rl ) 
or log R c"= > = I dt] -t- ~. 

2'11 i ry-{ 
-i C-(.(1 

. 

Putting n = -n 

ic-w log R(-{1) 

log R u= > = I df} T . 
2'11 i !)+( 

ic+w 

i c-eo log R {'t;) 

log R (( ) = J dr,, -
2n i 

ic+oo n-( 

therefore 

ti 

1 og R ( ( ) = 
. 2 2 1/2 

M{ ('r,+A M ) -A } 
1 1 1 

2'1Ti 
] dn 

:1 -- + 
{( 

. )2 .2}1/2 1+M (1+M) n+A M -A 
2 2 2 

where c is 
1 

the contour round the branch points A. (1-M ) 
1 1 

A (1-M ) as shown in Fig. A2. 
2 2 

Therefore 
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log R (() = 

\.. {1-.M ) 

1 
2 2 . 2 . 2 1/2 

i M { ("(]+A M ) -,\ } 

= f [ 

- 1 
logl-·- + 

1 +M ( 1 +M) { 

:1 :1 :1 J 
. 2 ( ·. 2 1/2 
,\ - '(!+A M ) } ' 

:2 ' 2 :2 
2"FI i c n-:~ ) 

_i..._ \1-M> 
1 1 

A (1-M } 
2 2 

1 
= J 

c n-( ) 
A (1-M 

1 :1 

and therefore 

r- 1 
R _ cz= ) = exp l.~ 

Similarly 

[ ~ R (t) = exp 
+ ' 

1! 

\.(1-M j 

2 2 

J 
\. (1-M 

1 1 

/.. <1+M 
2 2 

J 
' A < 1-t-M 

:1 1 

i 

) 

.- 1 

logl­
"'1 +M 

. 2 . 2 1/2 
i M { ("(J+A M ) -i·, } J ] 1 1 1 

2 2 1/2 
( 1 +M) { \ - ( n+!.... M ) } 

2 ' 2 2 

-:1 
tan 

{( 
. .2. 2}1/2 

[ 

M '(J+i.... M ) -i.... J 
:1 1 1 

. 2 2 1/2 d'(,l' 
{ A - (yt+A. M ) } 

2 2 2 

d'(J 

-:1 
tan 

. 2 . 2 :i./2 
.M [ ('(J+A M ) -i.... ] J J l :i. :i. 1 
-c-;;._-2 ___ (_n_+_;\_M_)_2_J_:i._/_2 dn . 

2 ' 2 2 

[ ("n-1.... M 
)2 ., 2 1/2 

c -A ] 

J dn ] . 
-:1 1 1 1 

tan 
. 2 ( ' 0 2 ]1/2 <n+(' ) [ A - t]-A M ) 

2 2 2 

Therefore from (A1) we can write 
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r t +/.. ( 1 +M ) 11/2 
K (() 

' 1 1 

= I I 
I -t 

L ( 1 +M) J 

.\. l1-tM > 
2 2 

x exp I 
-:J. 

---tan 

Cn+() 
.\ t 1 +-M > 

:1. :1 

and 

K u:) r ::-t.. (1-M ) 11/2 
1 1 

=1--jl 
L ( 1 +M) 

'}, t1-M > 
2 2 

x exp [ 2 
rr 

I 
-:1. 

---tan 

co-r ) 
A (1-M ) 

:1. 1 

X 

[ ( 
.· 2 . 2 ] 1/2 

M n-.A. M ) -A 

(
- , 1 1 1 l df/ l ( A2 ) 

. 2 . 2 ] 1/2. J . J 
[ A - (n-A. M ) 

2 I 2 2 

1/2 
[(

. )2.2 t-1 ·o +,1-, M -A. 

l
r 1 1 1 

[ 
. 2 ( \ . 2 
i\ - r1+1\. M ) 

] 

J df/ ] . (A3) 
]1/2 

2 2 2 
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'A,(1-Ml ) . 'A2(1-Mz) 

Cu • • 

·& R e.~ 

• • CL ·> 

- 7.2(1+Mz) - .A1 (1+M1) 

Fig. A1. Complex n-plane. 

Im ~ 

]..1(1-M1) c1 J.z_(t-Mz) 
(..-- ____ ) -- .. -

< 

• • 
- 1.zO+MzJ - i\,(HM, > 

Fig. A2. Path of integration round the branch points. 
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