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HIGH FREQUENCY SCATTERING OF ANTIPLANE
SHEAR WAVES BY AN INTERFACE CRACK

1. INTRODUCTION.

Scattering of elastic waves by a crack of finite length at the
interface of two dissimilar elastic materials is important in view
of its application in Geophys&cs and in Mechanical engineering
problems. The extensive use of composite materia]s in modern
technology has created interest in tﬁe wave propagation problems 1in
layered media with interfacial discontinuities. The diffraction of
Love waves by a crack o; finite wiﬁth at the interface of a layered
half space waé studied by Neerhoff.[1979]. Kuo [1984] carried out
numerical and analytical studies' of transient response of an
interfacial crack between two dissimilar orthotropic ha]f spaces!
Following the method of Mal [1970], Srivastava et al. [1980] also
considered the 1$w frequency aspect‘of the interaction of antiplane

shear waves by a Griffith crack at the 1interface of two bonded

dissimilar elastic half space.
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But high frequency solution of the diffraction of elastic
waves by a crack of finite size is interesting in view of the fact
that transient solution close to the wave front cén be represented
by an integral of high frequency component of the solution. Green’s
function method together with a function-theoretic technique based
uﬁon an extended Wiener—-Hopf argument has been developed by Keogh
[1985 a], [1985 b] for solving the problem of' high frequency
scattering of elastic waves by a Griffith crack situated 1in an

infinite homogeneous elastic medium.

In the»present paper, we have derived the high- freduency
solution of the diffraction of SH-wave when it interacts with a
Griffith crack 1océted at the interface of two bonded dissimilar
elastic half spaces. To solve the problem, following the method of
Chang [1971], thé problem has 'beeﬁ formulated as an extended
Wiener—-Hopf equation and the gsymptotic solutions for high
frequencies or for wavelengths short compared to the 1ength of the
crack have been derived. Expreésions for the dynamic stress
intensity factor and the crack opening displacement héve beeH 
obtaihed and the results have been illustrated graphically for two

pairs of different types of material.
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2. FORMULATION OF THE PROBLEM

Let (x,y,z) be a rectangular Cartesian coordinates. Let an
open crack of finite length 2L be located at the interface of two
~ bonded dissimi1ar e]astic-semi—inffhite solids 1ying paraliel to
x-axis. The x-axis is taken along fhe interface, y—axis verticai]y'
upwards into the mediuh and z-axis is perpendicular to the plane of
the paper. (yi,pi) and (uz,pz) are coefficients of rigidity and.
density respective]y of the upper and Tower semi—infinite medium.
The crack is subjected té a noFma11y incoming antiplane shear
wave originating at y = -w. “

We are interested in finding the high frequency solution of
the diffraction problem i.e. the solution when the 1length of the
crack is large compared to the wave length of the incident wave.

Accordingly we shall have to sqive the problem when the c¢rack

is subject to the following boundary conditions:

a(“(x,0+) = a(m(x,o—) = -P —P,eﬂwt, [x[ <L (1)
. vz -4 : S [
0 _ .
a‘l(x,o+) = alm(x,o-), ]xl > L (2)
vz vz
w (x,04) = w (x,0-), - [x| >t (3)

where w is the circular freguency and PS is the static pressure.
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Assume

W (K, y,t) = W (X,y) et (4)

it (5)

wz(x,y,t) wz(x,y) e

where w1 and w2 satisfy the following two wave equations‘

2 2
VWIx,y) + KW (x,y) =0 (6)
1 11
TW (X,y) + KW (x,y) = 0 (7)
2 X,y 2o XyY) =
.2 .z
. i o
with v = +
oz oz
gx gy

The shear wave number k1 and ko are related to the two shear wave
velocities C1 and Cé of medium (1) and (2) respectively by

k = w/C (8) K = w/C (9)

1 1 : 2 2
Without any loss of generality we assume that k2>k1;

(1) Lt

Let o (X,y,t) (10)
vz

(1) -
T (x,y) e
vz -

LWL

(2) (2} -1
T (x,y) e
vz

e (x,y,t) (11)
Yz

In the boundary condition (1), PS is the static¢ pessure assumed to
be sufficiently large so that crack faces do not come 1in contact
during vibration. Since we are interested in the dynamic part of

the stress distribution, so the boundary conditions (1), (2) and
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(3) may be written as

P x04) = T P (x,0-) = P, [x] <L (12)
vz vz s
R E B (2)
T . (X,04) =7 (x,0-), x| > L - (13)
and
W (x,0+) = W (x,0-), '- x| > L (14)
that is
v oM _ ,
“ =, — = - P, |xj<L, y =0 ~(15)
ay dy '
W M,
M =u, — , [x[>L, y=o0 (16)
dy dy
and wi(x,0+) = wz(x,o—), }x{)L ' | (17)

In order to obtain solutions of wave equations (6) and (7) we
introduce Fourier transform defined by

: 0

-— 1 ) :

Wey) = — [ wix,y) '™ ax (18)
&= |

=

Thus we obtain . the transformed wave equations as

d W 2 2.~
— - (2~k)W =0 . (19)
2 1 -
dy
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dz w'? 2 9 -
—_— - ((_\f—k ")w =0 (20)
2 2 2 :
dy : :

The solutions of (19) and (20), bounded as y tends to infinity, are

- -y
: 1
vwl(a,y) = A_l(«;g) e , Yy=0 (21)
P, ;!’2)/
Wz(d,y) = A () e , Y=0 (22)
., 5 1/2 2 1/2
z
where v, = (o —k:t ) (23) .“‘2 = (« ‘kz ) (24)
Introducing for a complex
’ 0
(1) 1O (X-Ls
6 (a) = — I T (x,0) e dx (25)
JZH L
7 TR
G (a) = J' 'Tm(x,‘O) eLa (Xﬂ"-dx (26)
= o vz - .
¢
and
1 Lo
e .
G () = — [ 1%(x,0) &7 dx (27)
i 41_2_1'[ Yz .
-1 ’

the transformed stress at the interface y = 0 can be written as

. (1)

r(a,0) = G, (a) et 4 G (o) + G (a) o oL

(28)
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Using the boundary condition (12) we note that

, b | |
Gi(a) L [ eLaL - e—u.\u; ] (29)
J2n ia

Further using the fact that

1, _
T (a,0) = uiyiAi(a) _ (30)

we obtain from (28)

| | - | P | | |
- Hy Ala) = G+(Cv()e‘-0‘lL + G_(a)e-nom o [eLOlL _ e—LOlL] (31)

Jon ia

Since from (12) and (13) stress T . is continuous at all points of

VI

the interface, so we obtain

Hy '
Az(a) = - Ai(a). (32)

So (21) and (22) take the forms

— vy .
1 - . .
wi(a,y) = Ai(d) e , y = 0 (33)
- Ly ¥y
1 2 .

Wa,y) ==~ ==a(e”, yso (34)

u ¥ L

T2t 2
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Now W (&,04) = W (&,0-) =
1 2

wich is the measure of the

1 r 1

wax

— [ P wi(x,0+) - w(x,0-) | e dk
{7 _i [ : J
B(a), (say) (35)

discontinuity of displacement along the

surface of the crack. From (35) we get
MZYZB(a)
Ai(d) = (36)
Uy + uy
1t 4 2’ 2

Eliminating Ai(a) from (31) and (36) we obtain an extended

Wiener-Hopf equation, namely

. . P . )
G+(01) ew{L + G_(a) e_wu" + B(o)K(a) = o [e"ou" - e_LqL:, (37)
' ' {2r in
where
‘ #1“2T1?2 yipz(éz_kiz)l/z '
K(at) = = R{x) (38)
By, Y (4, )
. 2 2 1-2
(y1+u2) (o —k2 )
R(x) = . (39)
(az—k 2)1/2 . u (az—k 2)1/2
‘u;l 1 ] 2 2

In order to solve the Wiener-Hopf equation given by (37) we assume

possess a small

that the branch points a = k1 and k2 of K(a)
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imaginary part such that

¢

where k1 and k2 are 1infinitesimally small positive quantities
which would ultimately be made to tend to zero.

Now we write K(a) = K+ a)K_(a) where K*(u) is analytic 1in the

’

upper half plane Im & >-k_ whereas K_(a) is analytic in the Tlower

half plane given by Im «a < Kk_. Since Tv"(x,o) decreases
exponentially as x— Zfw, G*(a) and G_(d) have the same common
region of regularity as K+(a) and'K_(a).

- Now (37) can easily be expressed as two integral equations

relating G+(a), G_(a)_and B(at) as follows:

G+(c1) P, : 1 1.
sl
K, (@) {on da K (@) K (0)
-21 8L
1 e : P
e e . T
2 c (s—a)K+(s) {2r s
+
P
OlL (8]

= - B(a) K (&) o -
: d2n ia K, (0)

-218L
1 e PO
- - f - [ G (s) + —— ] ds (40)
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and

& (&) P : estL po
- N O - f [G+(s),- ——————]ds
K (a) {2n ia K (o) 271 o (s-0) K_(s)

21 SL )

LOIL e Po

L

= -B(a)K (&) & - — f _—_ [G (s) - ——————]ds (41)
+ . + .
21 c (s-a) K (s)- {21 is
+ bl N
where C+ and C are the straight contours below the pole at s = o

and situated within the common reéion of regularity of G+(s),

G (s), K+(s), and K (s) as shown 1n.Fig. 1.

In (40), the left-hand side is analytic 1in the upper ha]fa

plane whereas the right-hand side is analytic 1in the 1lower-haif

plane and both of them are equal in the common region of

analyticity of these two functions. So by analytic continuation,

both sides of (40)‘are analytic in the whole of the s-plane. Now

since
ryz ~(x ¥ L)_i/Z as x— 1 L
Aso,
Gi(a) ~ g 2 : as ,u,——> w
and also
K, () ~ aifz .as |a|— w

i

so it follows that
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Fig. 1. Path of integration in the compiex s-plane.
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+(a)
X -1
~ @ as {a[——+ ©.

Ki(ﬁ)

G

Therefore by Liouville’s theorem, both sides of (40) are equal to

zero. Equation (41) can be treated similarly’

Therefore from (40) and (41) we obtain the system of integral

equations giVen by

P, 1 ) P,
[G (ad) - ' ] + — +
+ .
JZH ic K+(a) J2n e K+(O)
1 e-ZLSL po
o—_ - [ G (8) + — ] ds = 0 (42)
C2mi (s-a) K (s) 27 is :
C +
-+
and
PO 1
[ G_(d) + ] +
o JZN i K_(a)
| eZLSL Po
- — [G+(s)————]ds=0 (43)
J2n is

2ri c (s-2) K_(s)

. 1, , y
Since T;R(X,O) is an even function of x, so from (25) and (26)
can be shownh that G+(-m) = G_(a) and it has been shown in

Appendix that K+(—a)v_

by —a¢ and s by -s 1in (42) it can easily be shown that equations

(42) and (43) are 1identical. So G+(a) and G_(a) are :to be

determined from any one of the integral equation (42) or (43).
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3. HIGH FREQUENCY SOLUTION OF THE INTEGRAL EQUATION

To solve the integral equation (43) 1in the case when

normalized wave number kiL %» 1, the integration along the path C_

in (43) is replaced by the integration round the circular contour

C0 round the pole at s =
contours Ck and Ck round the branch .cuts through the branch
1 2 '

points k.1 and k2 of the function K_(s) as shown in Fig. 2.

Thus equation (43) takes the form

P P K_(eﬁ)
[G_mn_u_]_ o _
{zn da {21 ia K_(0)
K_(et) o 218t P
+ f —_— [G+(s) - ] ds = 0 (44)
2 Cp +Cp (s—a)K_(s) IEE is
1z
Now
o 21isL o
[G (s) - —> ] ds
c (s-o)K_(s) J2n is
k

1 e21SL K+(s) ' P0
- f 2 2z 1,2 [ G (s) =~ —— ] ds
Iz, (s=x) (s -ki) 20 is

1 C,
it
1

which can easily be evaluated when le >>1 and is found to be equal

to
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1 ﬁ e 21K1L K+ (kl ) e'lﬂ'z’4 : PU
- — [G+(k1)-—-] (45) -
u k L (k =-a) {2n ik
1 1 1 : 1
Similarly for kiL >>1
o 21sL P
: o
f [ G+(s) - — ] ds
Ck (s—t) K_(s) JZH is
2 E
1 - e 21k2L K+(k2) e1n/4 Po }
- - [ G (k) - ——-] (46) .
M, ok L ( k,-a ) den ik, ,

Using the results (45) and (46) and also the relations

G+(—a) = G_(a) and K_(—a): -1K+(q), we obtain from (44)

AR (kP gk R (K )ef Tt :
F+(—C’4) + + - = C(a). (47)

yi(ki—m)‘JkiL _uz(kz-ﬂ)JKZL

. where .
1 P
F(E)=—— [G+(£‘f) - ] (48)
K_(=£) {en it
[k (£)1% &
A(EF) = (49)
) 2ﬁ .
and
P()
C(¥) = ' (50)
{on iK_(0)¢
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Substituting o = - k1 and o = —k2 in (47), we obtain respectively

the equations

ACk ye2TKL Ak )F (k )e2 K™
1 2 + 2
[ b T ] F k) = - C(k) (51)
2,uik1 kiL uz(k1+k2)J kzL
and
A(ki)e21k1L A(k2)921k2L
F+(k1) + [1 + ]F+(k2)'= —C(kz)
U (k +k )4 k. L 2u k { K. L
11 2 1 2 2
(52).
Now solving (51) and (52) we get
- ACK) (ki—kz)ez..”(zl”
F+(k1) = C(ki) -1 ] U(ki,kz) (53)
2y2k2(k1+k2)4 kzL
and
| Alk,) (kz—ki)ezmiL ‘
F (k) = C(k)) [ - 1 ] Uk, k) (54)
2u k (k +k )| k L
where
[ A(kl) e21k1L ACK ) e21k2L
U(kj_’kz) = '- 1 + + - +
2y1k14k1L ZyZKZszL n

A(k )A(K )(K -k )2921(k1+k2)L -1
1 2 1 2

+ . (55)
4y1y2k1k2(k1+k2) JLk1 4,|Lk2
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Now expanding U(kd,kq) and neglecting higher order terms of

(kiL)_i/2 and (kzL)-M2 and using (47) we get
G (a) = - C(a) K_(O) + C(a) K (a) +
. . L
K (a)A(k Ye2 K2 otk ) Ak el TRt Ak Yk o2 %,
. 1 1 [1_ A _ 2" 1 ] N
'u:l.(k;l—a)l k1L 2“1k1| k:lL 'uzkzlkzL (k,1+kz)
. 2k, L | : 21k L 2ik_s
\ K_(r_x)A(kz)e .:: .C(kz) [1_ A(ki)kze 1 i A(kz)e z ]
,uz(kz—t.‘ﬂ.)a] kzL ,Llikiq! kiL (k1+k2) 2,uzk2<| kzL
(56)
Now replacing a by -a and using C(-a) = - C(a). We have
G+(a) = C(a) K_(O) - C(a)K_(—a) +
K (~o0A(k e K™ ek ) Ak Je2 KM Ak )k &2 KR
. T 1 [1_ ) _ "2 0 ]+
pi(k1+a)Jk1L 2u1k14k1L pzszkzL (k1+k2)
K (—e)ACk el ek ) Alk Yk el Kt Ak )e2 TRzt
. " 2 2 [1_ 1’72 _ 2 ]
pok AKL (k +k) 2wk fKCT

yz(k2+m)JkZL

(57)
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4. STRESS INTENSITY FACTOR AND CRACK OPENING DISPLACEMENT

NEAR THE CRACK TIPS

Now as a8 —

1,2 12
) 12 HH, 1/2 HH,
K (=a) = - iK (&a) = = 1(a+kl) . ~ - i
- + o
u o+ +
[ “2 “1 Mz
1.2
K (~a
-( ) , —i/2 “1“2
X - 1d .
o+ K +
1 Hy uz
1/2
K (~a) Hou
- . L =172 1"z
— X —ia
a+k +1
2 “1 "2

So as & — w we get from (56) and (57)

and
172 PU .
G (a) 8 - iSa " - —— | (58)
Jzrn '
where
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21(k‘fk2);‘

_ 1/2
Ak Ak ) et T T
. fL____J (59)
, r——————— + :
“1 k1 #2 k2 kiL kzL Mi #2
Now from equation (37) using (58) and also the fact that
_ “1P2 _
K(aa) = * o as a4 — T w (60)
+
“1 uz
we get
* 8 —-iaL jen ] Ha
B(o) = [ o ] as d — t w (61)
ol o “ou
1" 2

Taking inverse Fourier-Transform of (35) and using the results of

Fresnel 1integrals viz.

o .
sin

COS(x+L)G. n 1,2
J I dot = [ 2(x+L) J (62)

148




We get the displacement jump across the surface of the crack as

AW = wi(x,0+) - wz(x,o—) = 281(1—1) J(L—x)
and
AW = w1(x,0+) - W;(x,o—) = 281(1—1) J(x+L)
(.ul + )
where S'1 =1 2 S
y1 “2

Next in order to find the value of Txy near

use (61) in (36) and (32) and to obtain

,j%i - ’
(=1 S -iaL iaL
A ) = [ et L g ] (i =
! HLoooqa
and
(_1)J+1 5 —ioL 0L
A(O() = [e' - e ]1 (\j =
! H, od-a :
Now
éwi(x,y)
.Tyz(x’y) = u, - , J=1,2
ay
a i ® :
= u‘—— [ —_ f A (a) exp {— v.
dy Jzn ! )

-
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for x — L-0 (63)

for x — ~L+0 (64)
(65)

about the crack tip we

1,2) as a4 — ® (66)

1,2) as &« — -0 (67)

ly| - 1ax} det ] (68)



Substituting the values of A‘,(a) as |e4| — ®, wWe can write the,

stress near about the crack tip as

n

s © e—a|y|
) ia(x+L) . _ia(x-L)
ro (%) = [ — e - e ;
yz {on F
LR 0 “n
~fa(x+ —ia(x- :
o~ Tax+L) ‘e jo(x L)] o
s(i-1) @ e alvl |
= —_— —_— [ cosa(x+L) - sina(x+L) +
J en Ja
+ cosa(x-L) + sinot(x—L)]»dr.x
1 & 1 &
. . 2 1
=8 (1-1) [———s1n—+—-—cos—] : (69).
{r 2 r, 2 |

>
F s

near about the crack tips, where

\ , 142 - . [y
ro= [ (x-L) + vy ] , qﬂ?i = sin = — - (70)
r .
1
2 2 172 . -1 Iy,
r‘2 = [ (x+L) + ¥y ] , ¢72 = sin  —— : (71)
r .

150



Therefore at the interface ( 'y = 0 ) we obtain

5(1-1) )
T , as x — L+0 (72)
4 {x=0)
~and
S(1-1)
T,, ™ ——— as x — -L-0 (73)
Y 4-(x+L)
Now the stress intensity factor is defined by
[(1-1) stml
K = (74)
b .

¢

The absolute value of the complex stress intensity factor

defined by (74) has been plotted against kaL in Fig.3 for values of

ka > 1 for the following two sets of materials, given by

First Set:
3 14 2
Steel poE 7.6 gm/cm HO= 8.32 x 100 dyne/cm
. '3 11 2
Aluminium g, = 2.7 gm/cm H, = 2.63 = 10 dyne/cm
Second Seﬁ:
X 3 11 2
Wrought iron pi = 7.8 gm/cm p1 = 7.7 » 10 dyne/cm
E] 11 2
Copper e, = 8.96 gm/cm b, = 4.5 x 10 dyne/cm .
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' —— - Aluminium & Steel
-—- - Wrought iron & copper

FiG. 3. Stress intensity factor K versus dimensionless frequency k; /.
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5. CRACK OPENING DISPLACEMENT AT POINTS AWAY FROM THE CRACK TIPS -
Next in order to obtain the disb1acement jump for the 1large
values of ki(L—x) and ki(L+x) we write G+(a) and Gh(m) from (57)

and (56) respectively as

P GK_(-a)  R(k_,k ) K_(-a) R(k_,k ) K_(-a)

G () = — - + + (75)
+
o A K +a K +a
1 2
and
_ P QK_(a) R(ki’kz) K_(a) R(kz’k1) K;(a)
G_(Ci) = - — + + + (76)
Qo o k -a K —-a
1 2
P
[4)
where P = (77)
{on i » -
P P *
Q = . = (78)
{2n ik (0) K (0) |
and
2ik L 21kmL ' 21er
QA(k ) e " e Ak ) e T Ak )k
R(km,kn) = [1 - - -] (79)
'urn kTﬂ Lkm ' Lkm 2'um km Lkl'v ‘uh kﬂ ( km+kﬁ ) ‘

1}
N

where m 1 when n

and 2 when n=1t.

3
"
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‘Again using K (&) = —1K+(a) we get from (37)

@ie'™ iR(k k) e'°" iR(k k) e
B(a) = - + + -
a K (a) (k1+a) K (a) (k2+a) K (&)
~ 0L — 1oL - 0L
Qe R(ki,kq) e R(kz’ki) e
- - - - (80)
o K (&) (k -a) K (&) (k_-at) K (@), '
+ 1 + z + :

From (35) we get the displacement jump across the surface of the

crack as
1 0

wi(x,0+) - wz(x,o—) = — f B(a) e_1CXX dot. (81)

JZH

-
Now substituting the expressioﬁAof B(zx) from (80) .in (81) and
approximately evaluating the 1ntegra18 arising in (81) term by term
for large values of ki(L—x), kz(L—x), ki(L+x) and kz(L+x) and
) . . -3-2 -3/2
neglecting terms of order higher than (kiL) and (k_L) , Wwe

obtain finally the crack opening displacement across the

cracked-surface in the following form:
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AW = 'wi(x,0+) - Wz(x,O—) = 2 Qi K+(O) [

155

1k1(L—X) 1k1(L+x)
-1 4 e e
+72 Qe l + } X
Jki(L—x) Jki(L+X)
2ik L 2ik L 41k L
1 2 2 1
R R .e R R e R (R ) e
1 11 2 21 1 11
X R_ + + + +
' {2k L {2k T {2k T {2k L
sik L 2i(k +k )L 2i(k +k_)n
R2R22R2~1e + R1R~12R21e + R2R21 141
42k2L 42k2L JZkiL 42k2L J2k1L JZKZL
1k2(L—x) 1k2(L+X)
e e
+ [ + ] )('
sz(L—x) JkZ(L+x) '
zik L zik L 41K L
2 1 2
RR e RR e R(R ) e
22 1 12 22
X R2 + + + +
{2k L JZkiL JzkzL JékzL
4ikiL zi(k +k_ )L 21(k1+k2)L
RR R e RR R e e
1 44 12 + 2 241 12 . + 1 12 22
42k1L 42k1L 42k1L 42k2L 42k1L 42k2L

(82)



. K+(k1) I K+(k2)
1 = T2 T =
J—z'u;lki : E‘uzkz
2 2
D [K (k )] D (K (k )]
+1 + 2
R = a Rzz -
11
“, (k1+k1) H, (k2+k2)
DK (k) K (k) D K (k) K (k)
R _ + 1 + 2 . R _ + 1 + 2
= L, = .
# wo(k 4k ) t u(k +k)
1 1z 2 1z
ins4
e

D = (-1) ' . ' (83)

{a2n

Expressions 1in (63)‘ and (64) give the disp]acement jump
nearabout the crack tips where as the displacement jump at points
away from the c?apk tips are given by (82).

From tﬁése two results we can obtain the crack opeﬁing
disptacement at any poiht of the crack surface ~-L < x <L, y =20.

Here also normalized crack opening displacement has been
plotted against normalized distance x/L from the centre of the
crack for.two different sets of materials 1in Fig. 4. It 1é
intéresting to note that oscillatory nature of the crack opening
displacement increaseé with the increase of frequencies as a result
of the interference of waves inside the crack. Further we note that

amplitude of the crack opening displacement decreases with the

increase of frequency.
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where

put

Therefore

where

Now

Therefore

Appendix

2 2,172
oopu (a8 ~k)
172

K{at) = R{x)
+
(p, +o)
zZ 2. 1/2
(y1+y2)(d -kz)
R(a) = 2 2. 1.2 oz 2 1,2
S (e -k ) ’ +u (o -k )
1 1 2 2
.
T2
m= —
u
u.(az_kf)ifz
K(a) = — - R() (A1)
1 + m
2 2. 1/2
(1+m) (& —kz)
R(a) = . — 1 as |ai — w
2 2,172 2 2.1-2 ,
(o -k ) +m{ -K ) -
1 2
m (dz_kz)i/z -1
R () R_(a) = + —
; 1+m (m+1) (x —kz)

log R+(a) + log R (o) =

2 2 1.2 -9
m (a -kl) “ 1

= Log + s 2 1.2
14+m (m+1) (a _kz) o

= log R(a)
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Therefore

-1 C+m

1 log R(z) 1 log R(Zz)
log R (&) = f dz = — f —_— dz
+ , ) , J i
2n1 c (z-a) 2n i — e (z—w)

L

where the path of integration CL is shown in Fig. 5.

Putting z = -z and us{ng the fact that R(z) = R(-z), we get
ic+
1 16+ log R(z)
log R (&) = = — f —_— dz
+ .

2 . (z+a)
ic-w

1 log R(z)
= - — —_— dz
2T o+
i c (z+ol)

where C1 is the contour round the branch points k1 and k2 as

in Fig. 6.
So,
m (Zz_k:)1/2
log [ * 2 2 .1/2 ]
1 m+1 . (m+1)(z —kz)
log R+(a) = — f dz
2ni c oz @)
1
| ERICE R
log [ 1 + ]
-k
1 2 _ m(t<2—22)1,/2
= — f dz -
211 K : ( 2z +a )
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Fig.

Im z

—o - Re 2z

Fig. 5. Complex z—piane.

6.

Path of integration round the branch points.
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- i f dz
211 K (z +a)
1
(Zz_kz)x/z
-1
K tan [ 2 2.1-2 ]
1 2 m(kz—z )
= - f dz
n K (z + &)
1
2 2 .1/2
1r (Z —k'}.) 1
k'’ tan [ 2 2 1/2 J
1 2 m(kz—z )’
Therefore R+(a) = exp | — f - dz
o8 K (z + a )
1
(zz_kz)1/2
1 1
K Itan [ 2 2 1/2 ]
1 -3 m(kz—z )
Similarily R_(a) = exp - f . dz
n K (z - o)

Therefore from (A1) we can write

161



. _1r (Z —kl) |
172 Kk tan l 2 2,172 J
@2 (ark )7 1 T2 m(k -z")"
K, () = exp | = | dz (A2)
§ (1+m) o (z + a )
1
and
2 2. 1/%
g @R
172 K tan [ | 2 2.1/2 ]
i (a-k ) 1 2 m(kz—z") ’
K (a) = exp - f dz (A3)
{(1+m) LI (z - a)
1
Hence from (A2) and (A3) we get
1 (Zz_ki)1/z
' k tan [ .'-.v 2 472 ]
ﬂzi(a—ki)”” 1 2 m(k, -z )"’
K+(—C\l) = exp — Jf‘ dz
J (1+m) - n K (z - « )
= 1'K_(c'.)
i.e. Kf(—a) = ‘iK_(a) (A4)
———x——_
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HIGH FREQUENCY SCATTERING OF PLANE HORIZONTAL SHEAR WAVESVBY
A GRIFFITH CRACK PROPAGATING ALONG THE BIMATERIAL INTERFACE

1. INTRODUCTION
Scattering of elastic waves by a stationary or a moving crack

of finite 1length at the interface of two dissimilar elastic

materials is important in view of its application 1in fracture

mechanics as well as in seismo1ogy.“ Recently, Takei, Shindo and
Atsumi [1982] considered the problem of d%ffraction of transient
horizontal shear waves by a finite crack lying :on a bimaterial
interface. The method of solution was extended by Ueda,. Shindo
and Atsumi [1983] to solve the problem of torsional impact response
of a penny shaped interface crack. Srivastava et al ([1980] also

considered the low frequency aspect of the . interaction of an

antiplane shear wave by a Griffith crack at the interface of two

bonded dissimilar elastic half spaces.
In the case of cracks of finite size, travelling at a
constant velocity, loads, for mathematical simplicity, are usually

assumed to be independent of time. However, in practice, structures

PUBLISHELD IN "ENGINEERING FRACTURE MECHANICS" V45, NOi, PP107-118, 1993,
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are often required to sustain oscillating loads where the dynamic

disturbances propagate through the elastic medium in the form of

stress waves. The probiem of d{ffraction of plane harmonic
polarized shear wave by a half p1ane crack extended under aniip1ane
strain was first studied by Jahanshahi [1967]. Later Chen and Sih
[1973] considered ‘the interaction of stress waves with a
semi-infinite running crack under éither the plane strain or the
generalized plane stress condition. Sih and Loeber [1970] and Chen '
and Sih [1975] also considered the problem of scattering of plane
harmonic waves by a running crack_of fihite length. In both the
cases the problem was reduced to a system of simuitaneous Fredhq]m'
integral equations which were solved numerically.

In the present paper, we have investigated the high
frequency solution of the problem of diffraction of horizontaily
polarized shear waves by a finite crack moving on a b%mater1a1
interface. The high frequency soiution of the diffraction of
eléstic waves by a crack of finite size is important in view of the
fact that transjent solution close to the‘ wave front can be
represented by an integral of the hfgh frequency component of the-
solution. In order to solve the problem, following the method of
Chang [1971], the problem has been formulated as an extended
Wiener-Hopf equation and the asymptotic solutions for high

frequencies or for wave lengths which are short compared to the
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length of the crack have been derived. Expressions for the dynamic
stress intensity factor at the crack tip and the crack opening
displacement have been derived. The dynamic stress intensity factor
for high frequencies has been 111gstrated graphically for two pairs

of different types of materia]s~fdr different crack velocities and

angles of incidence.

2. FORMULATION OF THE PRbBLEM AND ITS SOLUTION
Let a plane crack of width 2L move at a constant velocity V at
the interface of two bonded dissimilar elastic semi-infinite media
due to the incidence of the plane horizontal SH-wave
w,L = A exp[—{ki(x cosEu+ Y sineu) + QT}] (1)
in the medium. The crack lies on the bimaterial interface along Y=0
with respect to the fixed rectangular co-ordinate system (X,Y,Z) as

shown in Fig.1.

We assume that the displacement and stress Tields W, Tyz
) .
J

(j=1,2) are

awi(X,Y)
T =, (3)
Y& sy

in which subscripts j=1,2 refer to the upper and lower half planes,
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Inciden! SH- wave

) X DUy
Running craok

0 X w2~ =
® G
Mol J—V = Crack velocity

Fig. 1. Running interface crack.
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respectively, T denotes time and #i is shear modulus of elasticity.

The displacement wiis governed by the classical wave eguation

azwi oW 1 azwj |
— + - = — (3=1,2) (4)
ax* > ¢ ? oa1? |

]

72, . : : .
where c;zuﬂ/pjf' is shear wave velocity and pi is the density of

the material. Without any loss of "generality, we further assume

that ¢ > c .
1 2

Due to the incident wave given by (1), reflected and

transmitted waves in the absence of the crack may be written in the

form
W = B exp [-1{k1(x cos® - Y Sinél) + QT }]1 (5)
I . ) E
and
W, = C exp [—1{k2(x cosd, + Y sinez) + 07 }1, (6)
where
kisin‘a1 - mk251n62
B = A (T
kK sing + mk sine&
1 1 2 2
2k131n91
c = A (8)
kK sin@ + mk sine
1 1 2 2
mo= o /i and kcos® = k cos& (9)

A,B,C are incident, reflected and transmitted wave amplitude, k is
; ]

the wave number, {1 = kfa is the circular frequency and & , eA are
b 1 ‘

the angles of incidence and refraction, respectively.
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A set of moving co-ordinates (x,y;,z,t) attached to the
J

centre of the crack moving at a constant velocity V is introduced

in accordance with

X = X = Vt, y =sY, z = Z, t =T (10)

.2 172
where s = (1—Mj)1 and Mj= V/cj is the Mach number.
i .

In terms of the translating co-ordinates X,y , equation (4)
. i 4

becomes
W c'-‘izwi T W, IW,
ZJ + St [ oMe— - 2 ] =0 (11)
ax dy c. s, @t P ax dt

In the moving system (x,y,z,t) equations (1),(5) and (6) take the
form
. - y1 -
{ W f A exp[—i{k1(x cose + g:sinei) + wt}]
-iwt Y4
e wr = B exp[—i{ki(x cose1 - g:sinei) + wt}] , (12)
Y,
| We o | ¢ exp[—i{kz(x cosé, + g;sineé) + wt}] ]

where w = (o and o = (1+NLcose;) = (1+Mzcosez).

In view of the equation (12) we take the solution of (11) as
-dwt

wi(x,yj)e = wj(x,yj) exp[i(Mﬁjx - wt)]. (13)

Substitution of equation (13) into equation (11) yields the
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Helmholtz equation governing W,
d

dw a4 wi 5
2‘+ =+ AW =0, (3 = 1,2) (14)
5% Byi b
K .c
where A= L
i 2
S

Applying Fourier transform, equation (14) can be solved and the

result is

m
1 " iru_ g2 o 2172 .
wi(x,yi) T f 81(c, Jexp[-1&x (t:_, 7\1 ) yildt,, y, >0 (15)
—IJJ
m
1 . \e 2 . 2 172 -
= — ¢ -1 + =/ [
wz(x,yz) py= j Bz(c)eXD[ 1E x+ (& fz) yzldc, y,<0 (16)
bth o]

From (13),(15) and (16) we obtain the displacement components Adue_

to scattered field as

o
1 - N "
Wi = E J\ Ai(t_‘ )exp[ 1¢ X ?.-’1)’1](1.,, y1>0 (17)
-0
and
w
W, = ¢ J A (L)expl-ilx + v,y,1d¢, y,<0, (18)
—~u
where

AT j=1,2 . (19

169



Ai(f) and Aé(f) are the unknhown quantities to be determined

the following boundary conditions:

aw1 8w2 ,
us — =us — , for all x, y=0 (20)
1 1 & 2 a
Y, Yo
W =W ix|>L, y=0 (21)
1 2
oW oW, W
1 L ¥ i :
+ + = 0, {x|<L, y=0+ (22)
dyl 6y1 dyl
From the boundary condition (22) we obtain
Bw1 .
—_ = Aiexp[—ikix cosei], |x|<L, y=0, (23)
dy
1
i(A-B)k sin®
1 1
where A_l = (24)
s
1
Using (17), the above equation can be written as
24
- £ Yy —ifx1df = - - - -
e f Ai(g)uiexp[ iEx]dé = Aiexp[ 1k1x COSHl], L<x<L
-
= P(x), X>L (say)
= Q(x), x<~L (say)
Therefore,
Ai(éf)v.JL = exp[ifL] G+(E) + exp[-i€L] G (£) -
A1 _
- —_— [exp{i(ff—if'o)L} - exp{~1({-¢ )L} ] (25)
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where
41}

G+(E) = J P(x) expl[if (x-L)]dx (26)
L
fL
G (£) = J Q(x) expl[if (x+L)1ldx (27)
-0 | |
g o=k cose . ‘ (28)
o 1 1

From the boundary condition (20) we obtain

M A (F)
1 1

A9(5) = - —_— (29)
2 )
z
Lo :
11 '
where M = . . (30)
' i s
2z

Next using the,boundéry condition (21), we obtain

T
AE) = AE) = J (W -W_) expfifX]dx

—0

L

j Pi(x) explif x]dx
-L

= N(if): (say), . (31)
which is the measure of the discontinuity of displacement along the

surface of the crack. Now with the aid of (29) and (31), we find
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v N(E)
= (32)

v +Ms
2 i

Eliminating Ai(fg from (25) and (32) we obtain an extended

Wiener-Hopf equation, namely

expl L ]G (£) + exp[-ifL ]G (£) - N(£)K(Z)

A
= — [exp{i(if-i’fo)L} - exp{-i({-{ L} ] - (33)
1(3;—:;0) :
vy, v, ,
where K(Z) = = R() ; (34)
' v oM v 14+M '
z 1
(1+M)v
R(¥) = (35)
vo+M o
2. 1

In order to solve the Wiener-Hopf equation given by (33) we

assume that branch points E=AI(1JM1), A2(1—M2)," —11(1+M1) and

wouid

-12(1+M2) of K(¥) possess small 1imaginary parts, which
ultimately be made to tend to zero.

Now we write K(¥) = K+(E)K_(E), where K+(E) is analytic in the

‘ upper-half plane Im #5>Im [-K1(1+M1)], whereas K ({) is analytic in

the lower-half plane given by Im #<Im { Ki(rdﬁ)]. Theawexpressions

of K+(E) and K_(E) are derived in the Appendix. Since - decreases

ay
ER

exponentially as x —twx, G+(E) and G_(E) have the same common
region of regularity as K+(f) and K (§).

Now equation (33) can easily be expressed as two integral
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equations involving G+(E), G () and N(&) as follows:

G (F) A e ot
+ 1

_ [ ]
K (&) 1E=§) S K (&) K ()

8]
> e—21sL . A e1':._0L
1 ’ 1
+ 'é—n—_lT J- —_— [G_(S) + — ]ds
(s=Z)K (s) - i(s-¢ )
+ 0
c .
+
~iFL Aie—wuL
= N(E)K_ (¥)e "7 + -
: i(E-¢ YK (§)
(4]
1 o2isL A1e1ioL
- — aJ S — [ G (8) + — ]ds, (36)
o2 (s—E)K+(s) 1(5—80)

C

where c, and ¢ are the straight contours below the pole at &=
and situated within the common region of regularity of G*(f),
G (£), K+(E) and K_(f) as shown in Fig.2.

The left hand side of (36) is analytic in the upper—ha]f.p1ane
whereas the right hand side is analytic in the lower-half plane and
both of them are equal in common region of analyticity of these two
functions. Therefore, by analytic continuation, both sides of (36)
are analytic in the whole of the s-plane. Next, 5y " Liouville’s
theorem, it can be shown that both s{des of (36) are equal to zero.

Thus we obtain
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Re s
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oy
+

Fig. 2. Path of intcgration in the complex .s'-blunc.
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A e O A e 4]
- i 1
[G+(f ) - ] + . +
K _(£) i(E-5,) TE-E K ()
] e21sL Aie1{0L
+ — j S— [G_(s) R —— ]ds =0 (37)
21 i (s=#)K (s) " i(s-£ )
+ Q
C
g
similarly, we also obtain
1 AiewoL
[G ) + __] .
K_(£) 1(:-4‘0)
; ez1sL Aie—1qoL
+—_ J _— [G+(s) - —_— ]ds =0 (38)
2n (s-£)K_(s) i(s={ )

[&]
C

3. HIGH FREQUENCY SOLUTION OF THE INTEGRAL EQUATIONS
In order to obtain G+(E) and G_(f) from the integral equations
(37) and (38) in case when the normalized wave number
k1(1+M1)L>>1, the integration along the path c, in (37) is replaced

by thelintegration along the loops L_ and L—k

1 2

X round the branch

points ;h1(1+M1) and —A2(1+M2) of K+(s), respectively. Also, the
integration along the path c in (38) 1is replaced by the
integration round the circular contour LO, round the pole széfU and

by the integrations along the loops Lk and LK round the branch
T 2
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cuts through the branch points h1(1—M1) and K2(1—M2) of the

function K_(s) as shown in Fig. 3.

Finally evaluating the integrals along the straight 1ine paths
round the branch points for large values of frequency, we obtain

two equations given by

21k (1XM )
.e ] ]

2 g A;[Ih.(1iM.)] F;[ih,(1iM_)]
Fy (£)+C, (€)+L — =0, (39)
* * , . . - . 12 :
i=1 2{ A.l,(1IMJ, )-£1} (A.l_L)
where o =1 and OéﬁM, and
1 A1é+1coL _
Fi(ﬁ ) = - [Gi(f ) + — ]
Ki(c) 1(g—c0)
jo /4 2
ALE) = 73 [Ki(f)]
7
Ale+1coL
C . (¥) = (40)
- i(E-E YK (&)
o’ F o
Now substituting ¢ = K1(1—M1) and l2(1—M2) and ¢ = —K1(1+M1) and

-hz(1+M2) in (39) a system of 1{near equations of F+[ h1(1—M1) 1,

F+[ k2(1—M2)], F_[—A1(1+M1)] and F_[—A2(1+M2)] are obtained. Now

solving them and neglecting higher order terms of (RiLyﬁfz and

. 12 , . . . ,
(mzL) we obtain, finally, after some algebraic manipulation:
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Fi[ilk(1$Mk)] = - ci[iik(1;Mk)] -

21 ML W 150 (13M )] C[Fh . (1M )]
+ ] J al J J -!

- , k=1,2 (41)
L =0 200 020 & (12M)#a, (1M ) }C, [2A, (17M )]
] 1 1 k K X K k

Now using (39) we get from (41)

Fi8 L Fi¢€ L »
Ae o Ae "o K+(§)
1 - 1 s
G+(L’;) = + +
({-¢,) 1= K (E))

21k, (1EM )L — + — + .
2 oke k k A¢[+Ak(1‘Mk)] C;[+uk(1_Mk)] Ki(g)
* Z 1/2 ": ®
. . + 5
2(/kL) { Ak(1_Mk) £}

2iA  (1FM )L
ze e ] j
® {1-2 !

Ai_[_/j(1+Mj)] Ci'[ &j(1+Mj)] .1-‘
=4 2(AjL)*”2{ Aj(1¥Mj)+kk(1iMk)}C;[¥lk(1iMk)]JJ

(42)

4, CRACK OPENING DISPLACEMENT AT POINTS AWAY FROM THE CRACK TIPS
In order to obtain the displacement jump for the large values
of Ki(L—x), KZ(L—x),'Ki(L+x) and KZ(L+x), we can write G+(E) and

G ({) from (42) as

) « (ks
_ Py QiKi(q) 2 Ki(g) Ry
G, (£) = % + + X y (43)
- g =& &-F c= 7 t ty
A S k=1 { /\]’:(1 Mk) &}
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where

Aie+1qoL
P, = — (44)
- i
Ale+1{0L P.f
Q, = = - (45)
K (E ) K@)
v 2 ‘i'}‘"i.- ( 1iMi- L g} + FA +
o e F - Ai{'“k(1‘Mk)] CI[+“k(1“Mk)]
+ - . 1.2 *
2(-'ka)
o 2iA  (1¥M )L L - . -
2 e i ] A+[IA(1+M)] C+[if‘\.(1+M)] :
x [1—2 ! — =S ’ - ] (46)
- . .\ - + + I +
j=1 2(AjL) { Aj(1+Mj)'kk(1 Mk)} C+[+Ak(1 Mk)]
Now we obtain from (33)
Q emL W‘)ewL . wz>ewL
- + + ‘ .ot
N(E) = - + -~ + ‘ +
E-¥ E £+ + é £+ +
(E=E I (E) {E (MOIK (€) (A, (144 ) }K_(©)
Q_e—ifL Ri1>e—1fg R:Z)e—ifL
+ - - .. (47)

(E-E DK (€)  {E-A (1=M)IK_(€)  {E-h, (1-M,)}K_(§)

From (31) we obtain the displacement jump across the surface of the.

crack as

w
1 . s 4r
ey =X "
wi(x,o+) - wz(x,o—) = — J N(&)e d ¢ (48)

-0
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Substituting the expression of N() from (47) 1in (48) and
approximately evaluating the integrals arising in (48) term by term
. for large values of Ai(L-x), hz(L—x), hi(L+x), and kz(L+x), and
neglecting terms of order higher than (.?x_lL)_?’/2 and (kzL)—S/z,

finally obtain the crack opening displacement across the cracked

surface at points away from the crack tips in the following form:

AW = wl(x,o+) - wz(x,O—)'
= - ek ¢ e et
+ + 0
1 M
i [ 2 .2 1-2 * 2 .2 1,2 ] -
= - 5 1 - . 3 1/
{(50+AiM1) A } 7 {(QO+A2M2) A~
-im/4
e 1 / _ ,
-— —.'-JT [ T+ - T_ ] 13 (49)
where
' A + + ) =
2 a}e1 k(1+Mk)(L+x) Q+K+[ihk(1+Mk)]
Ti = ¥ - = -

. . - 1.2 / . - —
k=1 { A (L+x)}1 21 2[ A (1FM )FE ]
k ] k k o

- R C29h (1EM )L
i %f_j A$[+“j(1—Mj)J Ki[ihk(1+Mk)] { Q;e j j

A . 12 - . . "
izt 2(2 AjL) { Ak(1+Mk)+Aj(1iMj)} | { Aj(1iMj?i<0}

N _ i[ A ¥ +h b
o A,[Ihr(1+MP)] Q, e21[ P(1+Mr) j(1 MJ)]L

r T

(50)

[ gl AR

I

120 L)Y E0A (1TM )4 (1EM )L A (1FM ) )
i P P j i ¥ ¥ o
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5. STRESS INTENSITY FACTOR AND CRACK OPENING DISPLACEMENT
NEAR THE CRACK TIPS

‘Now considering the behaviour of ¥ at infinity we obtain from

(42)
A1e+1<uL -1,2
G (§) % ————— + 5.¢ - as {— w, (51)
gL )
1 A1e+1<oL
where §, = ——— e *
(1+M)* 72 K, (F )
+t o
Co2dx (1EM )L - -
. E,Uke I k A$[+Ak(1_Mk)] CI[+Ak(1_Mk)] |
X
- L ' } 1.2
k=1 2( -"."'-]-L)
2‘}5. ;M — Ty —
2 e PUMOIL A 5 (17M)7 ¢, [%h (17M,)]
« |1- ¢ — X j ) z J J (52)
g . 5 - ) + e +
i=1 2( AjL) { \j(1+Mj)fAk(1 Mk)}C+[+Ak(1 Mk)]
Now, from equation (33), using (51)-and also the fact that
¢
K(§) — + — as f— *w, (53)
1+M
we obtain
1+M if L
N(&) = [ sett +g5e 6 ] as {— *w (54)
e e 172 + -
TE(E)
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Taking 1nverse Fourier transform of (31) and using the results

of Fresnel integrals, viz.

o .
sin

cos (x+L)o ‘ . 1/2 _
o =

O

we obtain the displacement jump across the surface of the crack as

AW = W (x,04) - W (x,0-)
1 2
- ais2
< +
= = (1+M)(1+1)S_ ELE—El for x— -L+0 (56)
L 4
- 12
= = (1+M)(1—1')S+ Ei%—il' for X L-0. (67)
L .

Expressions (56) and (57) give the displacement jump near to

the crack tips, whereas the displacement jump away from the crack

tips is given by (49).

. hear to the crack tip

Next, in order to find the value of Ty
IS

we use (54) in (32) and (29) and obtain

j=1,2 as f—w (58)

A(EF)
’ F(F)

]+ 1

-1)° & - ‘o
( ) ) 15 L -1¢ L
1.2

}

1

+

. i+1

=1 7, ifL ~if L

A)(k.) ——“——‘1—2- [ Se - - S_e ‘ ], j=1,2 as {——w (59)
E(-£)7
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M (v ) aw (x,y.)

Now T (X,y.) = 4 ———— = s
Yz B 8] ay B ay'
[R4]
“is; 9 | ~1€ x=v | -
= 4 — [ [ acey Xyl g ] (609
2n  dy . -, !
)]
T —w
Now substituting the values of Aﬁﬁ) as || — « in (60) and
integrating, we obtain the stress near to the crack tip as
H s cos(w;/Z) sin(w2/2)
T T e e—— -9 —_—_—— +1
yz(x,yi) T [(1 1)8+ 3 (1+1)S_ o2 ] (61)
(21) NS r
1 2
and
B, S, r Cos(ii/Z) ' cos(d /2)
T _(x,y ) = - —— {{1-1)8 + (1+1)8§ ——— |, (62)
2 1.2 12 - 12
Yz (2n) | gt d ]
1 2
v, |
where ro= {(x—L)2+yf}hﬂ’ VE = sin L
r
1
ly, i
ro= (xR v = sint =2 (63)
2 1 2
-
2
: v, |
2 , s -
d = {(x-L) +y2}1/2, ¢ = sin ' ——
1 2 1
d
1
!y !
2 z 12 . A
d, = (L) )%, ¢ = sin T 2
2 2 2. q
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Therefore at the interface (y=0) near to the right-hand c¢rack

vertex, we obtain

_Liisi(1—1')8+
T — - — as x— L+0. (64)
ye { on(x-L)}"

Now the normalized dynamic stress intensity factor K at the crack

tip x = L 1is defined by

L 2k (x-1)1""% = , (1-i)s_(k )7L
K = ’ 4 = s for x—sL+0, (65)
|

1
u A : A |
1 1 1

where A_1 is given by (24).

The absolute values of the complex stress intensity factor
defined by (65) has‘been plotted against k1L in fig.4 for values
kiL>1 for different values of the Mach number M2 andﬂthe ang]g of

incidence for the following sets of materiails:

first set:
3 11 2
Steel pu='7.6 gm/cm , H = 8.32 x 10 dyne/cm
- 3 11 z
Aluminium p2= 2.7 gm/cm -, u2= 2.63 x 10 dyne/cm

second set:
. 3 11 2
Wrought iron p= 7.8 gm/cm , H = 7.7 x 10" dyne/cm

3 11 2z
Copper . PE 8.96 gm/cmo, b= 4.5 = 10 dyne/cm
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As the Mach number Mz-—+0 the‘stress intensity factor K tends to
the value of the stress intensity factor corresponding to the
stationary crack. The problem for ei: n/2 and M2=0{O was solved
earlier by Pal and Ghosh [1990]. The gfaph' of stress 1ntensiﬁy
factor vs K1L corresponding to e1=n/2 and M2=O.O as given in Fig.4a
is found to coincidelexact1y wfth +that given by Pal and Ghosh
[1990].AIt is interesting to note that for both pairs of materials,
as M2 increases, the peaks of the curves of stres; intensity
factors decrease 1in magnitude gnd occur at lower values of K1L.
Further, it may be noted that for any fixed value of~M2 the stréss

intensity factor decreases with the decrease in the value of the

anglie of 1incidence.
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0.4-] Wrought Iron & Gopper
1 Aluminium & Steel ————
O e et S M S Rt BN A S S Sam S S S e
1 3 5 7 9 n 13 15 1k 19
kL —
Fig.4(a). Stress intensity factor K versus dimensionless
k1L for 91 =n/2.
(b) 20

Wrought fron & Copper

Aluminium & Steel

Fig.4(b). Stress intensity factor K versus

k1L for &8 =

1 n/3.
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Wrought Iron & Copper Mp=05
1 Aluminium & Steel ~  ~-----
Ovo ) T T T T T T  — — T T - T
! 3 5 U 9 n 13 .15 " 19

Fig.4(c). Stress intensity factor K versus dimensionless

k1L for 81 = n/4.

@ 2o —
: Wrough! 1ron & Copper

Aluminium & Steel ————

hL —_—

Fig.4(d). Stress intensity factor K versus dimensionless

k1L for 61 = n/6.
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APPENDIX

[En M EE e
K(E) = R(&)
1+4+M
Los
11
where M =
L s
2 2
.. 2 .2 1/2
(M) {(E+A M) =~}
and R(E) = 2 ; ;,2 - 2 . 2.1/2 !
e 7 /7 e +. 3
M{(q+A1M1) Ai} +{ (¢ AZMZ) Az}
as [£] —w
1
)4 —
Now R+(E)R-(“) - 1 ML(E A M )2_}2}1/2
N STy 4
o 2 .2.,1,2
1+M (1+M){(4+A2M2) Az}
Taking l1og on both sides
1 log R(7})
log R() = 1og R (!) + Tog R(§) = — [ ————dn
: 2y n=E
[ I &)
L u

where the paths of integration cL and cU are shown in Fig.Afl.

1 1og R(%)

Therefore log R+(E) = f dn
21 n-&
c
L
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1 1og R(7)

Tog R_(§) = dr
eni |, 0
(& -
83
. 1 TicHw Tog R(#n)
or Tog R+(f) = — f —— dn
2m -ic—w e
Putting n = Fn
i %7 yog R(-%)
. log R+(€) = — — dp
2y N+
i c4tn
1 1ot log R(7%)
Tog R (§) = — | dr
21 i -4
therefore
1 1 1
log R (§) = — f 109[ ]dn
- - . 2 2.1-2
i (p~-&) 1 M{(n+A M ) =1}
< + 1 1 1
1

: . 2 2. 41/2
1+ + T+ ~7
Mo (M) {(n AZMZ) Az}

where c1 is the contour round the branch points R1(1—M1) and

. K2(1—M2)jas shown in Fig. AZ2.

Therefore
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A otd4-M 3
y ‘ . 2 .2 1/2
1 S . IM{C+A, M) A ) |
— [ J-
’ - 2 . 2 172
o (n-£) 14+M (1+M) { Az—(n+A2M2) }
A 1M )
N .
) z .2 1/2
) , : T4+ -
[ 1 iM{(+A M ) -4 .
- log - 2z 2.1/2 1
MAM O (M) A= (M)}
2 2 2
h2(1—M2> : 2 .2 .1/2
] | 1 . M{(W+A1M1) _Ai}
= — tan - P 2. 1,2 ik
n (n-¢) U A, =Gnen M)}
A (1-M
1 1

and therefore

Az(i—M P -
2 . . i,z
r 1 ' 1 M [(ﬂ+h M) -A ]
-1 11 1
R () = exp l - f tan [ ]dn ].
T (n=-8) { ﬁz—(ﬁ+l M )2 ]1/2
- i 2 g2 _
A (l—M ) .
1 1
Similariy
A (1+M ,
) ) 1.2
1 1 LML MR ] ‘L
R (§) = exp — j tan dn {.
: i (n+E) ' [ a2-(p-r M )% 1*7?
I s . 2 ! 2 2
A (1+M )
1

Therefore from (A1) we can write
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[ E+r (1+M ) 102

K (&) = | }

[ (1+M)
"\zl“Mz) 2 .2 _1/2
1 1 .M [(n=A M ) =A" 1]
, [ r tan L. Yan | (a2)
}.expl J B T 2 ) 2 1/2J _,
i (n+) CAa-G-A M) 1 .
.»'x.it;t-r-Mi)

ang
"L—a (1—M1) .'1/2
K () = | ' X
L (1+m) J
A (1""M ) 2 2 1’2
1 1 M [(n+n M ) =25 177
X exp [— J. tan r i . ]dn ] (A3)
_ L .2 2 1,2
T (n=8) [ Az—(n+K2M2) ]
A (1-M ) '
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lmT[
A

A=) Ap(-My)

¢4 '.& ReTl

= A,(1+M;) =2, (1+My)

Fig. Al. Complex np-plane.

20-M) C, A (-Mp)
(._ _____ — e ————_—-

. o
“AglHMp) =R (M)

Fig. A2. Path of integration round the branch points.
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