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SPECTRAL REPRESENTATION OF A CERTAIN CLASS OF SELF-ADJOINT
DIFFERENTIAL OPERATORS AND ITS APPLICATION TO AXISYMMETRIC
BOUNDARY VALUE PROBLEMS IN ELASTODYNAMICS

1. INTRODUCTION

In this work an ijnategral representatfon of the Dirac delta
function required for solving the axisymmetric boundary value
problem has been-derived first. This representation is particularly
suitable for problems whére mixed boundary fconditions are
encountered. Following Friedmann [1966], by contour 1ntégration of
a suitable Green’s function, integral representation of &(R - Ro)
(R,Rg > 1) has been derived. This representatibn has been used to
solve a particular type of axisymmetric problem in elastodynamics.

The problem treated is that of a semi-infinite elastic body
containing a c¢ircular cylindrical cavity, whose axis is
perpendicular to the plane surface. The semi-infinite medium is
subjected to an axisymmetric concentric torque applied dynamically
as a step function in time at the piane surface.

At first Lamb [1904] investigated the classical ﬁorma] loading

problem of an elastic half-space. Similar type of problem was

PUBLISHED IN "JOURNAL OF TECHNICAL PHYSICS" V20, 1, PPO7-115, 1985,

46



investigated by Eason [1964], Mitra [1964], Chakraborty and De
[1971] and many others. They are all point source problems 1in a:

homogeneous semi-infinite medium.
The propagatioq of elastic waves, due to applied boundary

tractions, in semi-infinite media containing internal boundaries

has as yet not been studied to any Targe extent.

An'ear11er and comp#éhensive survey of the field is given by
Scott and Mikiowitz [1964]. Recently this type of work has been
done by Johnson and Parnes [1977].

We have §o1ved the problem of the SH-type of elastic wave
propagation in the semj—inf1n1£e 'medium due to 4a ring source
producing SH-waves in the presence of a circular cylindrical cavity
(case 1). The prqb1em of SH-wave propagation 1in the presence of
rigid circular cylindrical inclusion in the semi-infinite medium

due to the ring source has also been treated in the case 2.
2. INTEGRAL REPRESENTATION OF A DIRAC DELTA FUNCTION

Cons‘ider the operator L with A as a complex parameter, where

_d d . 1
L=E[r-—-]+)\_r—F (1)
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whose domain, D, i1s the set of_a]] twice-differentiable functions

u(r), a < r < «w such that
(i) r—-u-==~0 at r = a > 0
(1) the behaviour of u as r — « is that of an outgoing wave.

The solutions of LG1 = 0 which satisfy (i) are

G = A [J [v‘u}v [ﬂ.a] -y [‘fi\r]J [v’);a]], a<r<r_, (2)
1 i 1 2 i 2 (8]

and Yh are .the Bessel

Where A1 is an arbitrary constant and %

functions of the first and second kind, respectively.

Again the function G2 which will satisfy LG2 = 0 and the
condition (ii) can be written as
(1 .
G, = AH [Vhr) (acr<r<w), (3)

3

where A2 is an arbitrary constant and H‘D is the Hankel function
n
of the first kind of order n.

From Egqs. (2) and (3) the Green’s function G satisfying the
equation LG = - &(r - ru) and the conditions (i) and (ii) mentioned

above is given by (e.f. Friedmann [1966])
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G(r, r. (h) =

| HH(“('ﬁ.r‘) ' "'
s i T () 4 0 89 i) -
2H, ( Vra) :

nHii) (¥ar) A
- Ji(fhro)YZ(fka] - Yiffhro)Jz(fka) H(r—ro),

(1)
2H, _[ﬁ.a)
0 < argh < 2m . (4)
Now consider
b alr,r a)rdh | (5)
271 gttt ’

where the contour of integration in the ~-plane 1is shown in Fig. 1.
Since G has a branch point at A = 0, we introduce a branch cut in
the comp]ek.h—p1ane along the positive real axis and theﬁ take the
contour as a large circle of ra&ius R:, having the centre at A~ = 0,
not crossing the branch cut. In perms of Hankel functions Eq. (4)

can be written as

T T (1 H;Z)(“/)\a) (1) (2 .
a7 | (_ﬁ'ro)Hi (Vrr) 0. - " (‘/}\.ro)Hi (Yrr) H(ro-r) *
H, (Vra )
n L i g H;2)l:fha) W g (2 |
+mln O JH T () ————— - H T (Par)H T (P Y [H(r-r ).
: H, (vra )

(6)
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Fis. 1. Circular contour of integration ABA’ in the A-plane.
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. . - (1) (23
fzi, the asymptotic behaviour of H (z) and H (z) are

For large |

(Lebedev [1965])

(1) ~ 2 (. nm o
H, (2) nz _eXD[ ‘[Z =1 J]’

(7)

Thus, for large values of {hl, from the relations (7) we obtain

2?2
= s

1y o NENTTI M, (ha) 2 [~ 1
HY (e YUY (e )= - exp|1¥R(r + r,- 2a) + in|,
1 O i ™ (8]

K (ha ) nlrr,

W\ iz N 2 - .
HY (Yhr JH™ (YfAr ] ~ ———— exp [ IR e o J],
* ( ”) * ( ) nJI??; ( °

(8)
(1) » Fx - (2) 5 h ~ 2 . - -
H (v&r JH (fhr ) — =  exp ivA (r - r J )
1 : 1 (8] - (8]
'n-]}\.r‘rg
If we put » = 'K, then the circle 1in the A-plane becomes a

semi-circular arc ¢ of radius R1 in the upper half of the k-plane

(shown in Fig.2.) Consequentiy, for large values of R'1 the integral
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Fig. 2. DED'- the semi-circular path of integration ¢

in the K-plane.

52



(5) can be written as

{5 J[eetik(r,- D= r) + exptintrer tror) ok -

2n )
[ 6]

C

1 [r .
- — _ ' + - dk
o I Ir exp{ik(r + r - 2a)}
c :

1 !r K
= - o= F; f exp(1k,r—ruj)dk +
- -R
1

R .
1
1 r . _ _
* 5 ic [ exp {ik(r + r -z2a)}dk

1

A - sinRi(r-ro) : e sinRi(r + r0—2a) -
= - — |— + J—— . (9)
e Jr r

o r-r ' o “r+r -2a
O . O

= J

-

our object is to show that the 1integral (5) represents —é(r-rﬂ)
when R;—+m. To justify the statement, consider a testing function
@¢(r), in D which 1is continuous, has a continuous derivative of
order two and vanishes outside a finite 1nterva1.5 Then, from the

relations (5) and (9)

53



o

. : 1 [ L« )
Tim f ¢(r)2ﬂ1 } G(r,rU,A)rdndr
R —w A
1
f w0 — sinR (r - r )dr
= - 1im = j b(r) I__ .
n p .
| o (r - ro)

1 <

o

: - sian(r + rO -~ 2a)dr
+ i — P —_—
lim f H(r) lro

(r + r -2a)
(]

[}

where we have used the result of Dirﬁch]et integral and

Riemann-Lebesgue Lemma (Whittaker and Watson [1963]).

Therefore
A 1 ) . ”
1im — % G(r,r ;2)rdh = = &(r -~ r ).
21 s e
R1—+m

To obtain. an alternative integral representation, which will
be useful for our subsequent app]iéation in physical problems, we
consider the contour I' (Fig.3) consisting of the real axis from k =
e to k = R1’ where 0 < p <.R1; a semi-circle C.of radius R1 above
the real axis; the real axis again from - R_1 to -~ ¢; and finally a
semi-circle y of radius g above the real axis Qith the centre at
the origin. We take 2 small and R1 iarge.

The integrand 2G(r,r0,k2) kr has no singularity 1inside the

contour I , and so the value of the integratl.



ImK

Re K

Fig. 3. FDED'F'F- thr path of integration I' 1in the

K-plane.
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1 - L2 -
: J‘u(r,ro,ka y2krdk = 0,

2T
I
R
1
. 1 . 2 1 - L2
i.e. Tl f G(r,ro,k J2krdk = - Tl jﬁu(r,ro,u J2urdu +
c ) o
g
1 2Lz
+ — | a(r,r_;e" 2rudu -
T J‘u(r 5’ U )2rudu
'{_'_.'
1 2 28 2 26
- = G e o =
o I u(r,ro,p e )2roe d (10)
0

The behaviour of Yn(z) for small values of iél is described by the

formula (Lebedev [1965])

2" (n)
Y (z) ~ -
N

n
nz

and Jn(z) is bounded for small values of ‘z‘ when n is a positive

integer. Using these results we conclude

2 21e

| Glr,r se'e e |

is bounded for small values of g&. Henhce

T
. 1 2 29, zi9 2
T1im p f G(r,ro,p e Je prde = 0.

b Xa)
F 8]
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Letting o — 0 and R1 — ® in (10), we get

- _ . 1 2
&(r rU) = 1im T f G(f,ro,k Y2krdk
R —w
4 C
)

1 2 . 2 2im
= 5 f [ G(r,r k") - a(r,r ;ke™") ]Zkrdk. (11)

J (kr )+1iY (kr ) J (kr )=-1iY (kr )
n[ 1 0 1 o 1 o 1 o ] .

Jz(ka)+iY2(ka) Jz(ka) - 1Y2(ka)

x [u (kr)Y_(ka)-Y (kr)J (ka)] H(r -r) -

M A

J (kr)+iY (kr)  J (kr)-1Y (kr)
[ 1 1 1 1 ] y

Jz(ka)+1Y2(ka) Jz(ka)—in(ka)

« [ Ji(kr}’)Yz(ka)-Yi(kro)Jz(ka)]}4(r - r,)

i [ v, (kr)Y, (ka)=Y (kr)J (ka)][ J, (kr )Y, (ka)-Y (kr )J_ (ka)]
= 11

o2 (ka)+y

NN

(ka)

Substituting this expression in Eq. (11), we get

o
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&(r- r ) =
%)

Mo, (ke )Y, (ka)=Y (ke )d (k)] [V (kr)Y, (ka)=Y (kr)J (ka)]

=J > > - rkdk
Jo(ka) + Y (ka)
2 2

O

(12)

Substituting r/a = R, ru/a = R0 and ka = ¥, Eg.(12) can be written
as

&(R-R ) =
(4]

w & (v ) - , W T v ) —- (% Vv
[, GRY, ()-Y (¥R I, )] [V GRIY, (r)=Y (¥RIJ, ()]

Ry dy

i
e

2 2,
Jz(}') + Yz(}')

[0

(13)

Since &(R —RO) is symmetric with rgspect to R and RU, then, on the
righﬁ-hand side of Eq. (13), R and R0 can be interchanged. So we
write
é(R—RU) =
N r[dl(yRo)Yz(r)—Yi(yRO)JZ(r)J[J1<yR)Y2(r)—vi(ijJz(y)]

=R, [ . - dy .
- L)+ Y ()

(14)
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3. FORMULATION AND GENERAL SOLUTION ( CASE - 1 )
Case 1. We shall now use the integral representation 6f the delta
function given by Eg. (13) to derive the time dependent response of
an isotropic linearly elastic ha1f—space'conta1n1ng a cylindrical
cavity of radius a due to a ring source. The axis of the cylider
considered as the z-axis, which 118 perpendicular to the plane
surface, is directed downwards (Fig.4). A torque is applied on the
free surface of the half-space over the rim of a concentric circle
of radius r = r0 ( r0> a ) for t 2 0. fherefore on the cavity

surface r = a

6 - Yg -
T . = u[ _— - = J =0 (15)

‘and on the plane surface z = 0

du
(="
- =y —

= &(r -r, JH(t) ( adree, r >a ), (16)
gz

where ¢ is Lame’s constant, ¢ is the Dirac delta function and H is
the unit step function.

Now the only non-zero equation of motion is

o2 ] 22 42
du._ 1t du, d u, u, 1§ u,

=Y 2 9 9 =

. T * z Tz z ' (7
or r or gz r i3 gt
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Fig. 4. Geometry of the probiem.
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where {3 = J t/g is the shear wave velocity.

Changing the independent variables (r,z,t) to the

no-dimensional variables (R,Z,T) defined by

-~ r
- z 3 0
R = r , 2 = = , T = it , R = el . (18)
a a a - [4] a
the above equation reduces to
2 42 “2
d u. 1 du, g u. u. J u._
=y & © ) &
z o — 7 z - =z ° 2 (19)
IR R @R az R or
and boundary conditions become
oo au, ; u,
=] =) .
.I-!'.‘;_J = - —_— ——-] = O on R = 1 (20)
) a - 4R R
and
o du. 1
T, =——=—5&(R - R JH(t) on Z =0, (21)
(25 - (5]
a gz a .

Now, taking the Laplace transform with respect to
"nondimensional time (r) and assuming the Homogeneous initial

conditions

Eg. (19) takes the form
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G ——9+ °_ = . s2 u. (22)

o
where u. = f u_~eS ar . (23)
& @

0
Take solution of Eq. (22) in the form

L¥

u (R,Z,8) = | [Ai('*"'”i(""'R“Bi“")Yi(i"R)

| E— |

]

where y is real, J1 and Y1 are Bessel functions of the first and

second kind respectively.
Using the boundary condition (20), we obtain
J G

B(y) = - A() z ) (25)
! Y (#)

Substituting the value of 510’) in Ea. (24), we have

oo T
l52+'1-'2 -
! “dv, (26)

U (R, Z,8) = jA<;s--)[Jiu-ﬂwz(;v-)—ch;-fwi(}-:R)]e -

0o

whére A(y) = . | (27)

Therefore the transformed stress component reduces to
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[6.0]

~ 'L.! q - - 7
t == [AG) 74 C (¥R) o a4y, (28)
& L 2
[4])
where Cz(yR) = Jz(y) ri(rR) - Yz(y) Ji(yR). (29)

Now, using the representation (29), Eq. (14) becomes

£ ¢]
yCZ(rR) Cz(yRo)

S(R-R ) = R j . . dy . (30)
J_(y) + Y ()
[8] 2 2

Using Egs. (21), (28) and (30), the value of A(y).is'obtained as

R ycz(yRD) .
A(p) = — . (31)

z 2 172 z Z
ps (84 )T (U () + Y ()

~

Therefore u, becomes

R " C (*R) C (#R ) [ 2 2 -
2O (e -
- f z 2z 12:2 2 — 2 eV TS de’"- (32)
pus  (p4sT)TTT U r) + Yo (1))
O 2 2

On the plane boundary Z = 0

[0 4] _ . .
ey < [T 50
R - 2 2. 1/2

— 2 dr. (33)
us (y +s ) {Jz(y) + Yz(y)}

Now, introducing the change of the variable ¥ = sf into the above

expression (33), we obtain
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o

~ R {C_(s{R) C_(s{R_)
2z 2 ¢ o
U, (R,0,8) = - = [ —————— — dt . (34)
uo (L +1) {J_(si) + Y _(si)}
4] 2 2
Next, using
Y (sfR) + H 2 (sR)
o n h
J (s{R) = - (35)
] .
and
H;“(ssz) - H;‘z}(s{R)
Yn(st'R) = , (35" )
21
we obtain
C (stR) =.J (sf)Y (slR) - Y (sf)J (sfR)
2 2 1 2 1
! (13 (25 N (2> (1)
= p— [ H (stR) H (s{) - H (st{R) H (SE)] (36)
) 1 2 i 2 »
21 . :
and
- 1 - (2 - (2 . (1 - .
C (siR ) = —[H‘ "(sfR ) H P (s - P (slR ) MUY (st )]. (36" )
2 (s , 1 O 2 i [8) 2
21
Also
z . . 2, . (1 (2
X + P C = 2 I24 E N 4
JZ(SQ) Yz(sg) H2 (s) H2 (st ). (36" ")
Therefore, Eq.(34) becomes
~ RL’) N 2:
U,(R,0,8) = = — [ ——— F(R,R_,s() o[ , (37)

4
H o j(ij2+1)
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where

F(R,Ro,si.,) Fi(R’Ro’SL‘) + FZ(R,RO,SA)

Fi(RO,R,sg) + FZ(RO,R.SQ)

F(R_,R,si) (38)
¥]

and

1y, ..
{2 (1) (2 ' H2 (L) -
H; '(sfl'.‘?‘){Hl (sta) - HZ(sla) - } ,  (38")

H; (st) -

Fl(ﬂ,x‘%’,s&‘,’ )

3\
7

12 -
o [ W) - (2> - (1) . HZ (SQ) ' ’
Fz(a,;?,sz;) H, (s{f3){H, (sf{a) - H (sf[ot) ———— . (38"")

(o W)

H e
2 (s )

Using the asymptotic values of the Hankel functions for a Targe

argument, it can be shown that

(39)

[ F (R,R ,si) 2 -isf (R_~R) -isl (R+R_-2)
| 0 l- (4] 4} -]
: ————————Le + e J
-2 .
J(é.j +1) nsi JRR_
) (4]

N ¢ Fi(R,RG,st':) A
as js{, — m , showing that vanishes over a large

J('z':""m

circular arc in the forth - quadrant of the complex ({-plane for

R <R.
o]
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Also

{ F_(R,R_,sl) 2 isl (R -R) isl (R+R ~2)
bt —_ — [ e + e ] (39’ )
-2 .
l(é; +1) sl jRR_
|8}
[ F,(R,R ,sl)
showing that vanishes over a large c¢ircular arc 1in

lac2en)

the first quadrant of the complex {-plane for R<Rg. Therefore, for

R >R,
[R
{ F_(R ,R,st ) ‘ { F (R_,R,s{)
2 18] 1 18 )
and

l?en) - Lt

vanish over large circular arcs in the first and fourth quadrants,

respectively, of the complex {-plane.

Denoting the responses for field points inside (R < Ro) and
outside (R » Ro) the source by the subscripts I and O respective1y,
we have fTor points inside the source (R < Ro)

o P

. UBI(R,O’S) = - —J‘ - [ FZ(R’RO,SE) + F1(R1R0!Si: )]d(: (40)

o {@ie1)

and for points outside the source (R » Ru)

~ [s] ; - ' P o F

uéo(RvosS) - - - _—[FZ(RU,R,SQ) + F:I.(RL'J’R’SL' )]d'!-,- (40 )
-2

O (L +1)
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In order to evaluate

£
R, (.
- — [ ——— F(R,R ,sl) di, (41)
2 &)
4u

~

which is the first part of uQI(R,O,s) we note first that the

integrand has branch points at ¢ =>i i and aiso has a branch point

at the origin of coordinates due to the presence of Hankel

functions in the integrand. The integrand has also poles which

v, .. .
correspond to the zeros of H; (s{ ). From Eg. (32) we note that in

~

order that u (R,Z,s) may be fipite for large positive values of Z,

(fz+1)1/2 should have a positive real part on the path of

integration. Accordingly, we draw cuts parallel to the real axis

from +i to ~w+3j and from -i to @i to satisfy our requirement. A

cut along the negative real axis from the origin is also drawn to

make Hankel functions single valued

R £
- —= ———— F.(R,R_,s{)
2 3]
4y 2

€ +1)
is now integrated along the quadrant of a large circle lying in the

first quadrant of the complex {-plane as shown in Fig. b5a. Since

poles of the integrand are out side the path of integration,  the

integral (41) becomes
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Fig.

x

5.

bl

Branch point
Branch cut
Poles

Integration paths in the complex £ -plane.
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Using the relations

e

H1 (iv)

1

i)
1

w bty Ja -

+ f ———— F,(R,R ,isv)dv ] . (42)

FQ(R,RQ,isv)dv +

© .
v

1 1J(v2-1)

2
- - K (v)s
1
14

2 A
~ Ki(v) + ZiIi(v),

" (43)
" 21
H, (iv) = — KZ(V),
'H
2 21
HZA(1v) = - 212(v) - — KZ(V),
T
wé‘have
41 . Iz(sv)-
F (R,R ,isv) = = — K (svR ) {I (svyR) + K (svR) ——————}. (44)
2 0 1 [s) 1 1
11 : Kz(sv)

Therfore, the expression (42) becomes

LT 2
' 0 4(1 -v )

(8]
-—
S P

( I (sv)
K (sz_)1 I (svR) + K (sVvR) I }dv.
1 U\. 1 1 .

- Iz(sv)
K (sz_){ I (svR) + K (svR) ———— }dv ~
1 o] 1 1

Kz(sv)-

Kz(sv)
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The second part of u&I(R,O,s) is equal to

R m ;
- 2 [ ——— F(R,R sl )l (46)
1 g .
au ¥
o

{%en)

we draw cuts from +i to «+i and from -1 to —w-j as shown 1in Fig.

(5b). A cut from the origin along the negative real axis 1is also
drawn to make Hankei functions single valued.

Taking a quadrant of a large circular contour in the fourth
quadrant (Fig. (5b)) and noting that the poles of Fi(R,Ra,SZ) lie
outside the contour, the integral (46) takes the form

R0 ! \%
;; [ f ——————;-F1\R,RO,—1sv)dv -
' O j(1 -v )
m
. v i
- f-——-—— F (R,R ,-isv)dv J (47)
1 0

1 1'J(v2—1) ’
| |

Using the relations

N

HY(-iv) = — K (v) - 211 (v), |
1 1 1 i
T !

|

(2) 2 | ' !
H1 (=iv) = - ; i«i(V), . ‘s
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21
L)

HZ (-1iv) = - ZIZ(V) + ;— Kz(v),
\ 21
H;Z'(—iv) = - — K, (V) (48)
F14

the expression {(47) becomes

iRO Y ( IZ(SV) ~
j Kl(szU)ﬁ Ii(sz) + K1(SVR) Jdv. -
. | = :
po J(v2—1) Kz(sv)
R “ Vv Iz(sv)
8}
- j Ki(szo) { 11($VR) + Ki(sz) —_— }dv. (49)
LT ) I(V2“1) . Kz(sv)-
Adding the relations (45) and (49), we obtain
. 2R, oy
U, (R,0,8) = - | — K (VR ) x
H J(v2—1)
X {Ii(sz)+K1(sz)—————— dv (50)
' Kz(sv)-

Similarly, it can be shown that

~ ERU v
Uyo(Ri0,8) = - | ———= K (sVR) x

. Iz(sv)
X { I (svR ) + K (svVR ) ——— }dv. (50" )
1 o 1 0
Kz(sv)
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Laplace inversion of the relations (50) is now taken to obtain

the displacement of points inside the source. Therefore

o0

1 ZRO - v ~ .
Uy (R,0,7) = = — — [ e ®ds [ ——— E(sv)av, (51)
21 un Br . i(v2—1)
where
~ : IZ(SV)-
E(sv) = K (svR ) {I (svR) + K (svR)— }. (52)
1 (8] L 1 1

Introducing the

of integration

UEI(R’O'T)

where

K (sv)
2 .

change of variable p.= sv, and changing the order

2R 1 1 -
= - o f dv [—' f e(T/V)D E_(p) ap :}
wmo l(v2—1) | 211 ar
2R oy
= - f E(t/v) dv, . (53)
oo

1 J(v2—15

1

E(r/v) = £ { E(p) }.

~

We note that E(p) possesses no poles and is analytic for p >

0. It has a branch point at the origin and therefore a cut is drawn

from the origin

along the negative real axis of the complex p-plane

~

in order to make E(p) single valued.

Drawing a large semi-circular contour to the right of the



Bromwich path AB in the complex p-plane, we conclude that E(7/v) =

0 if the integral

over the semi-circular arc BC'A (Fig. 6).

Now
1 . (T/Vip
= - E d
E(p) = | E(Pe p
BC' A
1 M . (TI/V)p
= - : dp -
271 J K1(DR0)11(DR)8 P
" BC'A
I (p)
1 2 (T~ Vi
- = f K (pR_)K (pR) e P dp. (54)
2T 1 g 1 K (p)
BC' A 2
Since
1 2 ]
— - R -R1] p
TV \Y ¢
"V K (PR IT (PR) " —— e @
ZpJRRn
and
I (p) 1 [ .- (R+R -2;]p
QT/WDKi(pRO)Ii(pR) Z ~ e 7 © as |p| — @

K, (P) 2p{RR,

then the first integral on the right hand side of Eg.(54) vanishes
for 0 < t/v < (RU— R), whereas the second integral vanishes for

0 <1/v < (R + R0 - 2).
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Fig. 6. Laplace inversion contour.



Therefore

" 0, for 0 < 7/v ¢ (R~ R),
g
E(T/v) = { e’ (t/v), for (R, - R) < 1/v ¢ (R + R -2), (55)
L EE(T/V), - for (R + R0 -2) < T/V.
where
e'(z/v) = £ [ K.(pR ) I_(pR) 1,
1 8] 1
(56)
R a1 Iz(p)
E (t/v) = & [ KI(DRU) Il(DR) + Kl(DRU) Kl(DR) Kz(p) ]

For value of T/v lying in the range (Rﬂ— R) < v/v < (R + Ra -2)

1

5} A (T 2V
E(t/v) = E(r/v) = — [ K (PR ) I (pR) & " dp.  (57)
271 .
Er
Therefore, putting r/v = (RO—R+y),‘where y >0
o . 1 ‘ pRO -pPR vp
E (RO—R+¥) = ;;: J'[ Ki(pRo) e ][,Ii(pR) e ] e’ " dp.

Br
From the Laplace inversion table Erdelyi [1954], we find that

- ‘ PR, = H(y) (y+R )
£ K, (PR = VTR
. R {y(y+2R }7

and
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T o ] ~ [H(y) - H(y-2R)1 (R-y)
27 1 1 (pR) e P =
[ ]

nR {y(2r - y)}*7?

So by the convolution theorem

[H(n)-H(n-2R)] H{y-1n)(R-11)(y-1+R )

D - r (8] "

E (RO—R+y) = ] - — dr;.  (58)
7RR [n(ZR—w)(y-n)(y-n+2R0)]

For 7/v lying in the range (R -R) < 7/v < (R+R -2), /v must be
less than (R+R0), i.e. y < 2R.
Therefore we can write

. ’ (R=1) (y=1+R) |
E (R ~Rty) = j _ — di.
TRR [w(zR—n)(y—w)(y-n+2R0)J :

So
E(T/v) = E-(1/v) =

T /u -0 D%
- o A% %

o (R=-1n)(T/v+R-71) dn :
= o (59
:HRRU[Q(ZR—n)(T/v—RU+R—W)(T/V+R0+R-n)]

for (Ro—R) < (1/v) < (R+Ru—2)'

For values of 7/v satisfying the condition 7/v > R+Ro_2’
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E(t/v) = E(T/v) =

i

I (p)
= — . . 2 (T-VIP
= - f[Kl(DRO) Ii(DR) + Ki(DRO) K1(DR) W] a dp. (50).
By

This 1integral 1is equal to the ' integral along the large

semi~circular arc on the left side of the Bromwich path AB plus the

integral on the two sides of the -branch cut (Fig.6). Since the

integral on the large semi-circular arc vanishes, then Eq. (60)

becomes

o
1

E(T/v) = — [ —f E(neuz)é*T/Wndn +
2ni

0w

.\ f E(ne—uz)eﬂranndn]_ (61)

Using the reltations

and
+in Fiwn

Kp(ﬂe ) = e Ku(n) T in Iy(n),

we obtain (for t/v > R+R0—2)
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L6

E(r/v) = E(t/v) = - |

_ ~{TsVIN
UZ(R,U) UZ(RO,n) e

2 2 2
KZ(W) + 0 I (n)

[\

where Uz(x,n) = Kz(n) Ii(x,n) + Iz(n) Ki(x,ﬁ)-

Substituting these values of E(r/v) in Eg. (53), we obtain

uQI(R,O,T) =
T

ZRO f N ry r r+r -Za] a 1 o
= -2 lH[t -] - H{t - 1 E”(1/v) dv +

Mt s rj 1 v -1

T .
_R - R+R -2 .
r+r0—2a‘ Ro R )] o 4] 1 R
+ H{t - 'f E (t/v)dv + f E (T/v)dv} ,
2 T v -1 1 vZ-1 o

(63)

where the values of ED(T/V) and ER(T/V) are given in Egs. (59) and

(62), respectively.

Similarly, taking the inverse Laplace transform of Eq. (40’'),

the displacement UQO(R,O,T) on the free surface outside the ring

source can be derived and it is found that
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T
R-B
- e}
2R [ - r—ru- . r+ru—2a. 1 D
= - == JHlt - - Hit - J f F (t/v) dv +
U l i3 i3 . Vi
T T
. R-R R+R -2
_ r+r0—2a Qa 1 D 4] 1 R :
+ Hjt - ] f F (t/v)dv + f F (t/v)dvyl|,
i3 2 2
T v -1 1 v =1
R+R -2
Q
(63")

where F (r/v) = Ex(t/v), and

T/V—m_go> (Ro—n)(T/V+R0—n)dn

FD(T/V) = 12
nRRO[n(ZRO—n)(T/v—R+RO—n)(T/V+R+R0—n)]

(64)

First, the‘integra1s of Eq. (63) are the displacements due to a
direct wave from the ring source before the arrival §f the waves
reflected from the wall of the cy1{ndrica1 cavity. The 1last two
“integrals together give the displacement after the arrival of the

reflected wave.
In order to obtain the response in the vicinity of the SH-wave
front, we consider the displacement profile immediately behind the

direct outgoing SH-wave. Accordingly, we shall have to study the
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first integral of Eg. (63’ ) because it gives the response of the
direct SH-wave before the arrival of the reflected wave front.
Let R = R + T and R = R - =R where R and R denote
s 0 s s 3! s s
points at and immediately behind the SH-wave front, respectively,
£ is a small positive quantity.

Then

= ' (65)

and

1+ —] = a(). (say) (65 )

s
I
0
-3

Substituting these values in the first integral of Eq. (63"), we

obtain
ueo(R ,0,7) = 0,
and
or  T) 1
-— 0 D -
u, (R ,0,7T) = - — { F (R ,R ,T/Vv) } dv.
20 s | &)
[T 1 {(v=1)% Jv+1
Therefore, we can write
) 2R_ atz)
Uyo(Rg +0,7) = = — . | V(v)dy, (66) .
uom v-1 ~

where V(v) is analytic portion of the integrand. For small value of
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s expanding V(v) by the Taylor’s series about the point v = 1 and

integrating term by term, we obtain

4R R

ueo(R; , 0,7T) ~ - — V(1) [ L ] Pl (say), (67)
un T

where A is a constant.

It therefore follows .that the displacement component s
continuous i.e. there is no jump in displacement across the direct
SH-wave front.

Next, in order to consider the behaviour of response Jjust
under the ring source, it should be remembered that the integral
representations of transformed displacements given by Egs. (50)

were derived from Egs. (40) assuming tha£ R #~ Rg. For R = RU the
integrals along large guarter c¢ircles 1in the firsﬁ and fourth
guadrants should be reexamined; In  this case it 1is found that
though the contributions from the integrals along large circular
arcs in the first and fourth qgadrants are not separately zero, but
the combined sum of the 1ntegfa1s along the targe arcs in the first
and fourth.quadrants of the €—p1éne ( Fig. 5a and 5b ) vanishes. So
the transformed displacements for R = Ru are also given by Egs.
(50). Making R — Rui, it can easily be shown by help of Egs. (50)

that the displacement has no jump discontinuity across the ring

source.
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Therefore, in order to derive the nature of the displacement
as R — Rg, any one of the relations (63) may be studied. Consider,
for example, the displacement at field points outside the source
given by (63" ). As R — RD, the upper 1imit of integration T/(R—Ro)
—.m,

Further, as

"

v — — w,
R-R
0
1 1
—_ - . (68)
Vi1 v
and
b 1
Fr(t/v) — — (68" )
2R
o
Thus, from Eq. (63')
2R o1 1
1im wu__(R,0,T) = - — f "= ——— dv + (69)
&0
R—R U n v 2R
Q N 0

+ a finite quantity, where N is large.

The integral is found to contribute a logarithmic singularity

to the displacement just on the ring source.
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4. FORMULATION AND GENERAL SOLUTION ( CASE - 2 )
Case. 2. 1In this case the probliem considered is the same- in all
respects with theAfirst, except that tﬁe cavity of the'radius a has
been replaced by a rigid cy11ndrica1 ‘inclusion of the same radius.
The cylindrical inclusion being in welded contact with the elastic
half-space, there is no relative displacement at the interface. 1In

this case, the condition on the cylindrical boundary is u.,=0 on r =

a. In order to solve this prob1em,.we take the solution 1in this
form:

~

u, (R.Z,8) =
w |
l 2 prd
= [ [ AW, GR) +B ()Y (R ] e S g, (10

O

~

where ue(R,Z,s) is the Laplace transform of ue(R,Z,t) with respect

to t. Now, using the boundary condition

we have

J (r)

(71)

BG) = - AG)

Y (r)
1

~

so u_ becomes
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u (R,Z,s8) =

X
2 pA
J'v +s Z
’ d

= [ A, GRY () - 9 GV R)]e v,  (72)
s/
1 AZ (;V)
where A(y) =
Y )

Therefore, the transformed stress component on the free

surface Z = 0 is

@
~ ) ‘u
T - _ _ FA | . '1-'2 2 y y
Le_Z(R,O,S) = J A () jl +s b-.l('R) d'v' (73)
a .
a
where
C (¥R) = J (yRY)Y (¥) - J (¥)Y (yR), (74)
1 1 1 1%
~ 1 |
. (R,0,s) should be equal to — &(R - R ). 1In this case, the
&z . as o

required integral representation of the delta function can be
obtained from the following expansion formula given by Titchmarsh

[196217:
0

f(r) = |

(4]

(L, CrY, (Ca) - 0 (Ca)Y, ()]

> p di X
J (fa) + Y ({a)
1 1

o

x JEFE) [V, @Oy, Ta) = 0, (Ta)y, ()] df, (75)

a
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where f(r) is a suitably restricted arbitrary function.

Putting f(r) = é(r—rg),

f(f) = &F-r ), where .r > a > 0,
4] |4
we get
&(r-r ) =
« 00 Er)Y (Ca)-Jd (fa)y (Erm]lJd Er )Y (fa)-Jd (fa)Yy ({r )]
1 1 i 1 1 0o 1 1 1 0
:r‘.f - " 2 di .
© JS(Fa) + Y (fa)
(] 1 1
(76)
r ro
Now putting, — = R, — = RO, fa =%, we have
a a
S(R-R ) =
0
o

yoLd GRIY ()= Y, PRITLY, (PRY (#)=d (#)Y (#R )]

2, 2.
Ji(?) + Yi(;)

so by the relation (74)

© c, (¥R) C_(yR.)
5(R-R_) = R, f 2' > dy . (77)
J (F) + Y (¥)
(8] 1 ‘ 1

This result can also be obtained by the following technique already

deve1oped in Section-2 of this paper.
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Now, we find the value of Al(r) as

1 RO :‘V C;l (;‘VRO) 1
CA(p) = — (78)
US 2 JZ(V)+Y2(”)
- 3 +s 1 k) 1 g
Therefore u. becomes
o
~ R, ¥ C,(yR) C (¥R))
u,(R,0,8) = — [ dr . (79)
s z 2 2 -
: o 1y +s { J (¥) + Y (¥)}
1 1
Carrying on a similar procedure as followed to obtain the

displacement in the case

ueI(R,O,T) =

1, we find that in this case

X
‘ RO—R
ZRO_’ ro—r r+r0—2a 1 o :
= — H(t - ] - H[t - ——————e] f E (t/v) dv +
, L L ;)
L f? f> 1 vi-1
T T
. R -R R+R -z -
_ r+ro—2a\ o 1 b O 1 R , [
+ H{t - j | E (t/v)dv + f Ei(T/v)va
3 L T v2—1 1 v2—1
R+R -2
Ll
(80)

and
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T
‘ R—Rn
2R I"[ . r=r - . r+r0—2a\] T L
= — H!t - j - Htt - J f F (t/v)dv +
urt HL 3 i3 j 2
1 v -1
T T
. r+r0-2a‘( R_Ru 1 5 R_R0+z 1 N ]
+ H[t - Ii [ F (t/v)dv + f F (t/v)dvyi,
L J J 1 j
i3 L 2 2
T v -1 v -1
R+R -2
(&)
(81)
D
where ED(T/V) and F (7/v) are respectively given by Eq. (59) and
(64) and
. . w U, (Rym) U_(R_,7) RARK
E (t/v) = F (t/v) = ~ dn (82)
1 1 2 2.2
0 K (n) +a I (n)
1 1
where
= (83)

UGLn) = K () I (xn) - 1 () K (xn).
1 1 1 1 1
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WAVES IN A SEMI-INFINITE ELASTIC MEDIUM DUE TO AN
EXPANDING ELLIPTIC RING SOURCE ON THE FREE SURFACE

1. INTRODUCTION
Since Lamb’s original study of the elasitc wave produced by a
time-dependent point force acting normally to the surface of an

elastic half-space, many authors have elaborated on his work.

Aggarwal and Abolw [1967] discussed the exact solution of a class
of half-space pulse propagation problems  generated by impulsive
sources. Gakenheimer and Miklowitz [1969] used a modification of .
Cagniard’s method [1962] to discuss the disturbance created by a
moving point load. In case of finite sources, tHe most widely
discussed model is that of a circular ring or disc 1load. Mitra
[1964], Tuphoime [1970] and Roy [1875] have studied the various
aspects of the same problem. Elastic waves due to uniformly
expanding disc or ring ioads on the  free surface of a semi-infinite
medium have been studied extensive1y by Gakenheimer' [19711. The
axisymmetric problem of the detefmination of the displacement due
to a stress discontinuity over a‘ uniformly expandihg circular
region at a Certain‘depth below tHe free surface has been studied

by Ghosh [1971].

PUBLISHED IN "INDIAN J. PURE APPL. MATH.", Vi8(7), PPG48-G74, 1987.
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However exact evaluation of the displacement field for finite
source other than the circular model does not seem ﬁo have been
attempted much 1in the 1literature. Burridge and Willis [1969]
obtained a solution for radiation from a growing elliptical crack
in an anisotropic medium. The problem of an elliptical shear crack
growing in prestreséed medium has been solved by Richards [1973] by
the Cagniard-de Hoop Method. Roy [1581] also attempted the same
technique to siove the probiem of elastic wave propagation due to
prescribed normal stress over an elliptic area on the free surface
of an elastic half-space.

In our probliem, we have _considered the propagation of
elastic waves due to an expanding elliptical ring 1load over thé
free surface 6f a semi-infinite medium. The expression for
displacement at points on the free surface has been derived in
integral form by the application of Cagniard-de Hoop technique for
different values of tHe rate of increase of the major and minor
axes of the elliptic ring source. The displacement jumps across the

different wave fronts have also been derived.

2. FORMULATION OF THE PROBLEM AND ITS SOLUTION
Let an elliptic ring load P acting normal to the surface of an

elastic half-space emanating from the origin of co-ordinates expand
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in such a way that the rates of increase of the major and minof
axes of the ellipse are a and b respectively, a and b being
constants. Major and minor axes of the ellipse are taken to
coincide with the x and y-axes of co-ordinates where as i—axis is

taken vertically downwards into the medium (Fig. 1.). Thus we have

on z =0
(- 2 -2 2 -2 1,2
P é[t - (x a +y b ) J
T = - ' (1)
zz oz -2 2 -2 1/2
(x a +yb )

4
13
~3
1l
(=]

where P is constant and ¢ is the Dirac delta function.

The displacement field inside the elastic medium (z 2 0) is

given interms of potentials ¢ and ¥ as

_—}
u =Vd+¥ =2V x (ey)
where
2
2 1 4@ ¢ . T g w
Vo= o — V= — — (2)
. dt cJdt
d k=

ex, e , € are unit vectors along co-ordinate axes and cd and c
v z ] .

are the p- and s-wave velocities of the medium.
In order to obtain solutions of wave equations (2), we

introduce Laplace transform with respect to t and denote it by bar

and also introduce bilateral Fourier transform with respect to x
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Fig.

1.

Geometry of the problem.
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and y to supress the time parameter t and the x, y space

co-ordinates. Taking Laplace transform with respect to t(-) and

also bilateral Fourier transform with respect to x and y (&), ‘the
transformed boundary conditions are
= Pab s X
Tzv = - 2.2 2 2 2 4.2 Twz = Tvz =0 (3)
- (a8 + by +s8 )7 C :
Then satisfying the transformed boundary conditions (3) and

performing the inverse Fourier transform, the Laplace transformed

displacement field can be written as

Ui(x,y,zfs) = Ujd(x,y,Z.s) + Uig(x,y,z,s) (4)

for j = x,y,z

where

Uj(., (x,y,2z,8) =
—11

T ow
: 1 2 Irz u " " F .;;' " ) _Z-. + 4 '.': +. - -'-v’ .-
/ ] J J o (l-, ,f),S)exp[ >o{Z 1(L:X ”y)]d;"d” (5)
1 1
-0 -w .
for \’.\{1 = d,s
and
F 4 7 = - ,f"‘ £ - o b
walloT08) w6, Fotismn,s) = 21 [ @,
Fyd(i: yi1,8) = — 'l??i.,UG, Fys({ ,71,8) = 2in (’-:ié:gG’
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Now the

£

where

. o N L2 2. .
F_,(&,m,8) = {1 G, - F__({,n,8) = - 2(§ +n ) { G,
zd d4'0 Is d
Pab :
.2 - 2
G = : s T =0 -4l L (& +n)
2 2 1.-2 d’' s
(s + r ). T 0
Fos af 4, (6)
L2 2 24,2 L2 2 2 4s2
£, = (+n +k ) = (&4n+k )
d d s
2 P z s S
{ = + 2((7 + v ), k. = K = —
“o ke X 1) d c, ’ 5 c,

De-Hoop transformation,

s/cj(q cCos € - w sin @), N = s/cd(q sin © + w cos &) (7)

1
& = tan y/Xx,

1

is applied into (5). The Laplace transformed displacement field f
1

|

|

i

(5) can be written as )
|

W W Sz
T R = 4 { _ - _ 1
%a (R,Z,s) 1/2nu f f ﬂa (g,w,s)expl S/Cd(maL igR} 1] 5 dgdw
' - - 1 Cd

where

(8)

i Pab (g cos © -~ w s1in e)mU

F\,d(q,w,S) = - T , ,
' S.s/cd(E1 + 0) " T.N j




21 Pab (q cos @ - w sin e)mdmB

F . (a,W,s) T
= S'S/Cd(E1+ 0) " T.N

i Pab (g sin @ + w cos e)"B

2z

F (Q1W!S) = -
d : 17
Y s.s/cd(E1+ 0) .N.

21 Pab (g sin & + w cos 2) m m_

H

Fvs(q,w,S) T
: s.s/cA(E1+ 0) " " .N.

Pab m
F (g,w,s) = 40
zd W - 1/2 !
s.s/c (E + 0) .N.
d 1
2 z.
» 2 Pab (g + wl)md
F_{g,w,s) = - , )
= s.s/c (E +0)1"2 N
. 4 (€, .N.
2 2 1/2 2 2 2. 1/2
m = (g +w + 1) , m = (q +w + 1) 7,
d s
2 2 2 2 2 2
m =1+ 2(qg+ w ), N = q)— M%qu + W ),
aL b2
, 2 2 2 . 2
E1 = (1t +agb + wF), D = — cos & + — sin &,
4 4
2 2
a 2z b 2 2 2 2
F = — sin & + — Cos &, O = - 2gw sin2 cos2(a - b )/cd ,
4 Ca
1 = Cd/Cs , and R2 = xz + yz. (9)

94



For mathematical simplicity we confine our attention to the
derivation of the displacement field at any point on tﬁe xz-plane.
Obviously the displacement at'any point on any plane through the
z-axis can then easily be visualized. Accordingly 1in order to
obtain the displacement at any point on the xz-plane, we put ¢ = 0

in (8) which then takes the form

s
w - Ea(Q,z—iqx)
- Pab . a
lﬁg (x,z,8) = Zritc f f Re[ Kﬂg(q,w) e ]dq dw
I S d B B 1
- -0
(10)
where
1'qm0 ZiqumH
K‘_,ﬂ(q’w) - - 4,2 ? K_M(Q,W) = 1 /: —’
el EL. L.N - E-L.I— N
. '|me . Ziwmim
K (q,wW) = - —— K (q,w) = ———’ (11)
47 172 ! : s
¥ Y Y Y
2 )
m.m 2m (g + w )
. d o d
KglawW) = ——, K (QaW) = = ——— )
E°.N o E".N
and

E = (¢ - + azq2 + bzwz)/cz.
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3. DILATATIONAL CONTRIBUTION
From (10) G;d is converted to the Laplace transform of a known
function by mapping (mdz—iqx)/cd into t through a contour
integration in a complex q—p]ahe.

The singularities of the integrand of ij are branch points at

i L, 2 4,2 s ., 2 2 .1/2
q = SJ = f i(w+ 1) , g=5 =% d(w+ 1) ,
I k=]
2 2 2 1,2
N (wb +c.)
g=58 ==Ii , (12)
C
a

. and the poles at (12)

_eE L s 7 2 12
a=35 =z i(w + e ) B

o

The poles at g = S correspond to the zeros of the Rayleigh

B i+

function N, where yﬁ = Cd/CR and c# is the Rayleigh surface '~ wave
speed. The contours 6f 1ntegrat16n in the g-plane are shown in Fig}
2(a,b,c) which also show the positions of singularities 1ying in
the upper half of the g-plane.

Since the positions of the sﬁﬁgu1arities and the transformed
contour of -integration depend on different values of a and b, three

different cases arise for the evaluation of u i
z
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(a) Case a > b > Cd

The g-plane for a > b > Cd is shown in Fig. 2(a). The

+ [}
contour q = q; in the g-plane, is found by solving

(13)

= (mZ - igx)/c
t (d q )/d
for g, where t is real , we get
* iTsin ¢ +(72 Z f/zco ’ (14)
= = 7 g T - #
q a, 1Tsin ¢ vd s g
for T » T , where
wd
2 1/2
T o o={w + 1) , 1 =ct/p (15)
wd d

and (p,¢) are the polar coordinates in the xz-plane as shown 1in
Fig.1. Equations (14) define one branch of a hyperbola with vertex

/2 . o L .
! X/, which 1is parametrically described by

at q = 1'('wz + 1)
the dimensipn1ess time parameter T as T varies from Tud towards
infinity.

As shown 1in Fig. 2(a), the contour of integration has two

possibie configurations in the q—p1ane, depending upon £ and w.

For the case(1) given by:

Case(1) : ¢ < and 0 ¢ w ¢ w
ala
or

@ < ¢ < ¢ha and wda CW <o (16)

de

97



fw ”
S¢f Ss"
St Sc*
Sd.' : ’ _S_d:/

a{cg {Cqfor O(WWgq Cg<a(cy for 0KW{Wda

or a{Cg for Wgg{W{Wda

© | ®

Fig. 2.
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(a)

Cagniard paths of integration in the g-plane.



- : R N , : !
where @, = sin C./a, 2 = sin b/a
da d ba

and 4
- .2 2 2, 172
I ud - a sin @ } .
= ' 17
wlz , (17)
L

dda . 2 2
a sin £ - b |

4 .
the vertex of the path g = q; does not 1ie on the branch cuts and

: +
hence the path of integration contour is simply g = q; and is
denoted by I. But for the case (2) given by

Case (2): ¢Ha < g < ¢ba and 0 < w < W
or ¢ > ¢Ld and 0 < w < w (18)

+
the vertex of the path g =,q; Ties on the branch cut between the

branch points q = Sr and q = s . Hence the integration contour s

d
, + . .
given by g = qd for T > Tvd which 1s denoted by 1II, plus
, . L, 2 2 152

g=4g, = irsind ~ i(t - T )1 cosd {(19)

da . wd

T T * T
for T da < T < Tod where

1 2, 2 2 2 2 12 2 2 2,472

: = — - + - : + + @l .
T e 3 [{w (a b )+(a Cd) } cosg¢ (wb Cd) sin ;}

(20)

Transferring the ‘path of integration from the real g-axis to

the Cagniard's path we obtain
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—_ 2 Pab l- r J~ + dq" -l -5t
u (g,¢,s) = J Re[ k (q,,Ww) — e dt dw +
zd uc, l.o t zd " 4 dt |
v d
wda twd dq
\ , ; ) da -st
+ H(g - ¢IH(g - cl’dﬂ)f f Re[kﬁi(qd,1 s W) ]e dtdw +
dt
ot
wda
[ 2] t‘“-i
o wd aq
, n '_'1'_'1 -t
+ - o
H(g iba)J J' Re[ kzd(qda VW) Yy ]e dtdw (21)
o twr:lcx

. where tud = (p/cd)Tudzand twda = (p/cd)twda' The first term of (21)

+
is the contribution from q; and the second and third terms are the

contributions from qd
(s

Now interchanging the order of integration 1in (21) and

inverting the Laplace transform, we find that

T

r 3
d +
2 Pab : + da,
uzd(p,¢,1) = m.ry H(Tt - 1) f Re[ kzd(qd,w) —_ ]dw +
) . dt 4

+ H(p - ¢, IH(@ = #IH(T - T IH(T, - T) x

Td“
) dqda
K.f Re[l;d(%m w) ]dw +
) ' dt
A
da
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where

101

+ H(¢ - ¢ JH(T - T, ) *
ba da
T,
%3 dq
) da
= f Re[kwﬁqw-w) ]dw
- ’ dt
(8]
da
T T< 1
A, 0 for aa $TS
da Td for 1471« Tda 1
o 0 for T, <t< 1 l
Ada = a2 J
T. for r>1
d
2 1.2
= (r -1
Td ( )
2 2 2 172
X - {y -(acosd - Db )Z } 1-2
d d : d
Tda [ 2 2 2.2 ]
(a cos & - b )
o 2 , 2, 2 2 2
X =7 + -
xd g bsin @ (a b }Tdcos ¢
02 4 4 2 2.2 2 4
/ = - 1 ] + - = 3 +
\d rd b sin ¢ (a b ) TdCOQ @
2 2. 2 . 2 2,
+ 2(a - b )b'FdT: sin ¢ cos ¢
2 2, .2 2, 2 2 . 2, 2
= - - oD i - - s
Z, = Ld e, sin ) tha C, ) sin¢ cos ¢
T = ag-r2 + (C2 azcosz‘)
d "~ d ' *

(22)

(23)
(24)

(25)



0 2 2 2, i
T,Fat - (C;1 - a cos ¢) (26)

1 2 2 1.2 , . 1 .
: - = - )+ 74l
Tie = 3 [ (a c,) cos¢ + C_ sin b J, (27)
’ Cz - bZ ]1.—"2
T = ' (28)

da

1
[ —

!
a2 sin2¢ —b2 ]

The first term in u"d is due to the dilatational motion behind
hemispherical wave front at T = 1 and the second and third terms

are due to the dilatational motion behind the conical wave front at

1}

T=T for ¢ > ¢h . These wave fronts are shown in Fig. 3(a), T
d (3

14

T shown in Fig 3(a) by a dashed curve, 1is not a wave front

4

da

because it is not‘ a characteristic surface for governing wave
equation for the dilatational motion. Similar non characteristic
surfaces were found by Gakenheimer and Miklowitz t196§] for a point
load travelling on an elastic half-space and also by Aggarwal and
Ablow [1967] for the motion of an acoustic half-space due to an
expanding surface load. They prerd explicitly that their solution
was analytic over the surfaces. The éame thing can be proved in our

case also.
(b) Case a > cd > b

In this case, the path of dntegration with respect to q

transforms to the simple path given by contour I (Fig.2(a)) for all
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T=Tda
T \
\
Zz
J@)fora>b> ey Jb)fora>cy>b

3(c) for @« < ¢y

Fig. 3. Wave patten for dilatational motion.
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w when ¢ <¢ba and also for O<w<wdcL when ¢ba<¢ <¢da’ whereas the

path of integration with respect to q transform to the contour 1II

(Fig.2(a)) for wd <W < w when ¢ba<¢<¢dd and also for all w when

o,

¢ > ¢Ha' The remaining details of 1inverting CLd for a > Cd> b are

exactly the same as for a > b> Cd’ and one can easily find that

T
c .

_ 2 Pab
T nuc

u (0,,7)

dt

..d ) dqj
H(T ~ 1) IRe[ kK (q.,w) ]dw +
4 zd " d
¢

+ H(d - @ JH(T - 7_) x
da da

T
dad

x‘jRe[kzd(qda W) da]de (29)
dt

o
A
da

T . : . , ,
where Ada is given by (23). The wave geometry associated with this

expression is showh 1in Fig.3(b).

104



(c) Case a <« c,

For this case the path of integration with respect to g

transform to the simple path given by contour I [Figs. 2(b),2(c)]

for all w when ¢<d& and also for 0<w <w. when & >% , whereas the
ba da b

path of integration with respect to q transforms to the contour 1II

[Fig.2 (a)] for wad<w<m when ¢>¢ba. Note that 1in this case the

angle ¢Ha does not arise. Now proceding as the case a>b>c':l for

inverting U;d we get

T

d dq
2 Pab . + d
R/ B = : - —_— +
u (e,@,7) e, H(T l)f Re[ K (aW) " ]dw
o

T
An
dq ]
- rh T ~ Tf
+H(E - g JH(T - T ) fRe[ k_(a, W) — deJ. (30)
T

The wave geometry associated with this expression is shown 1in
Fig.3(c). As expected physically, contribution due to the conical
wave front does not exist for this case.

sSummary
Combining (22), .(29) and (30) one finds +that u can be

written as one expression for all value of a and b.



Uzd(f;j)c‘i’)'r) :.

where

da

s et e

e

-

MHC |
a4

T
d

2_pab Hit - 1)f Re{

4]

-+

[ o o Nuid - & OHC
+ l H(t - Ida)H(w - ¢da){H(b - Cd) +

. 3 , . x
f H(a_cd)H(Cd—b)j + H(r —‘da)H(* - *ba)

+ dqﬂ
k . (Q, W) -—] dw +
zd T d
dt

x Hlc, - b)H(d, - i) +1H(cd— a)}] "

T .
da

% f .Re{ kzd(qda,w)

A
da

= 0 for v <7 <
dat

T for 1 <r<r’
d d (s}

T for T >T
da qd

0 for T, <<l
(==}

T for 1 <T
d

T Ffor T > T
d da

dqd_

i ]dw

dt

__-—__._.,r..,._.._—l

.

g L —
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(31)

) Y Ceh
for ¢da<¢<;ba, arb>c,

for ¢ > ¢ ,a> b >C,
X '!'ba) 4 d

for & > & , a> c. >
' ﬁha d b

for ¢ < ¢ < > >
° ¢ba i (¢da’a Cd b

for ¢ > ¢ba,a<cd.

(32)



4. EQUIVOLUMINAL CONTRIBUTIONS

Inversion of G;c is complicated than the inversion of u"d
because of the appearence of head waves (Von-Schmidt waves)

otherwise it is same as u .+ Here the integration contour has more
Za

configurations 1in the g-plane though the singularities are the

* *

same. Here the hyperbola q = q arises in a similar way to g = Qs

S

but its vertex can lie on the branch cut between the branch points
+ + + + '
at g = Sd and g = SS and at q = Sc and g = SS as well as between Qq
=g and q = S:, depending on the values of w, &, a and b. In this
- ;
case, the straight line contour 1lying along the imaginary g-axis is

denoted by g which 1is similar to qd appearing in the
sa =a

dilatational contributions. Now omiting details of dinverting u ,

”o
=3

one can easily find

T
+

=1 dq
u (p,b,T) = 2280 [H(T - 1) [ Re ['k,. (q ,w) — ]dw +
-0

4= 13 ¥ Y oSN =) v
tod o dat

+ [H(r =T JH(& - ¢_){H(b = c) + H(c - b)H(a ~ c)} +

* H(T - T’ JH($ - ¢ba) {H(Cs - b)H(¢sa— @) x

=

H(a_—cs) + H(CS— a)}l] x
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Sd
dg
sd
= Re[ k_(a_ W) ]dw +
A
=1}

‘T - T JH{(T' - TI)H(¢ - & ) =
+ H( sd)H( ad JH(C ‘sd)

T
=4 dq_a] 1
,\JF Re[k (g ,w) —!dw (33)
zs Sd J
dt ]
Aﬂd

for 0 fp<w, 0= ¢ < n/2,

0 £ 1 <x, 0£ a <x and 0 = b. <w, a>b

where

0 for T < T <1
d

3

,a>c _,a>b>c_,ac >bc
v d =) = d

{ ¢ < <4 _,a>c_,arb>c ,ac <bc,
=d d = = d

T for 1<t < 1! & &b P ,c.rarbdc
S sq L ad abs d )

b e >by>
+}ba ? ¢sd a Cd ’ acs ? bcd

0 fort < T <1 [
Sd

T for t > 1
3

¢ <g <¢ ,a>c >C >b
sd ad d 8
1

0 for t < T T
sS4 |

(1]
[vD

=T TFforT  <T <71
sd ad sd

—
~
*
v

@ ,a>b>c_ , ac >bc
sd d ] d

|

h >d ‘
¢ ,gd,a> Cd> cg)b

T for Tt > T’
S sd

0 for T < T LT 1
89, sd !

T T<T’ >q >
7 . for sd< Toa } ¢ /cpgd,a/bmd,acg(bcd

=
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———

=T for v/  <tT <T' J
=} sd sa
r ¢% <p <¢ ,a>c_>c_>b
=J forT > 7T ' o =2 ¢ =
sa g g c._ra>c >
1 ¢'ba ? \;abs’ d = b
g { hleh
l— ’cba K ‘abs’a<cs
= T for ' «<r<t’ . ]
E sda |
ST for ©' . <r<F ' ¢‘Pr<w<w a’cd>a>°n>b
¢ sda sd }' .. = =
I @rf  ,a<c
b abs =
=T, for T)T;d j (34)
=0 for T <r <] 1 By ,c.>arc db,uarf
=15 ) Sd. d S
= T for 1<t <7’ l & fM<m ,C >a>c >b,f3>ary’
S sda I{ S d

¥
# & >¢,_,cparbre o
i = :

=T  for ' <11’ ba
ad sda sd 1
h o <p<kd ,c >a>bic IO
= T for T)T’d [ l;Zb':L T T Td = of !
= s

0 for t <1<t .
SC sdd

—_—

&> ,c >a>c >b,3>ady’
¥ d 2

=T  Ffor T  <1<T’

hy > c o>
ad sda ad ¢ cbx’cd arb> s’ﬁ ary

———

—

d>d ;c rarbdrc ,aly
= T for > T’ od Fo%a Ca g’

= 0 for v <r<l 4
= d <l ,c dadbdc ,afd
T £ 1¢r < Taba 7 Tba’ d CR
= or T!
sdda . N ; o -
e <¢<¢ba,cd>a>b>cg,ﬁ>u>y

———_

abs
=T  for ¢ <r<T’
sd sda sd 1 . L
’ @ . <P ,c ra>bdc o<y
i . .2 abg woood =
=T for 7@ <(1<L7T
=} ad Sd.

= 0 for t < Tt
(=1} . Sda

=T for 7" <t<T’

od s da nd ¢ <¢<¢ 27y >a>b>c , QLY .

e 3

= T for 7' <141’
s ad ad
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ad

———— e

In

0 for T

<1<
d <

T for 1<r<t!
3 sd

0 for T <7T<1
ad

T For 1<Tt<LT
=l

T for 1T’ <TKLT
Sd

sSd

’

T for 7'  X<T
=] -8

det

sSd

0 for T <KT (T
ad.

T for f

sS4

3

0 for T' . «T
gdd

T «T
a

<

/
sda

A
"
| I

sd

{
sda

R |

1

.

T for 1<t <1’
s =)
0 for T <TLT ]
=Tu} [=1=} i
T for T <1<T' L
24 ad S i
l
T rotlo<T<r’ '
s fo =1 sd ]

7 >
cp>qi’gCi ,a>b c,

D>¢ _,a>c_>c Ob
d S

sd

¢sd<¢<¢abs,cd>a>cs>b
<< ,C >a>b>c

¢sd" ¢sa}cd b s

0 <epleh {c
1bsd 10<'at~s’a s

& . <@<¢ ,c.r>a>c >b
abs S d 5}

¢ >¢ _,a< G
abs - S

@ >¢Qa,cd>a>cs>b,a>ﬁ
r (gl c . >a>c >b,i>u>
¢S ¢ qﬁxv d a 5 b,f ¥
A c >aybyc ,a>f3
*>'abs’ d b g !t

¢ @< ,c radbdc ,fHrady
abs ¥ d s

¢ _ <g<g ,c >adbdc ,aqy
X d =]

abs
¢>¢Y,Cd>a>cs>b,ﬂ>d>y'

“@>¢ ,c Yarbyc Lrady
X d S

¢>¢x,9d>a>b>cs;a<y

¢ <@<¢  ,c >arbdc
Sd abs o )
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and also where

T o= (17 - 1)7 | (36)
2 2, 2.2 1.2 1-2
X - {y -(acosg¢ -b ) Z} -
Tsa = [ 2 2 2 2 ] (37)
(a cos ¢ - b )
y 2 . 2, 2 2 2,
X = T(b sing + (a - b ) T cos ¢
=} =] S
y? 4, 2 2.2 2z 1
Y = T: b4s1n ¢ + (a - b7 COS4¢ +
=] S
2 2,2 y L 2 2,
+ 2(a - b )b?‘TU sin ¢ cos ¢
s S
2z L, 2,6 .2 2 2 2 2 , Z, . 2,
Z = (t -z2cs8ing) -4 1 c(a-c)sin ¢cos ¢
2 2 2, 2 2 2,
T _=at + 1(c_ - acos¢)
o 2 2 2, 2 2 2,
T =at- 1(c. - acosg¢) (38)
( 2 1/2 -
T = : - h + -
Ty [1(1 Tsd)cosec¢ 1} 1] (39)
2 2 172 ( ..
T = 1/a[1(a - 5" cosg + . sin ¢] (40)
sa . s d
2 172 , . .
Ty = [(1 - 1) cos ¢ + sin & ] (41)



1%(b* - &) quez |
T’ =l- 2 . 32 ] (42)
sS4 v :
L b - asin %
2 1.2 ,
o= (17 = 1) secy (43)
2 z
2 iz - G, b L 15F
T =l-(1 - 1) cos¢v+[———— J sin ¢ ] (44)
sda L 2 2
a - b
é = sin  c/a, ¢ = sin® ¢ /c -;2» = sin 'b/a (45)
=T s T Tad s’ Td’ Tha
2 2 s
-1 € ~ P ] ‘ :
abs - o0 2 2 2 2 2 (48)
1 (a - b )+c, -a /
2 2.1/2 2 2 1/2 2 1/2 2 2 172
@) e, b )T (17 -1 (ema ) Y] :
sin pa— . 5 > (47)
1'(a - b)+c. - a
2
- C,o-a iz . oz
*a =~ b
b 2 (172 1 2 2 42
po= o= (1 -1 - = - :
. a ( ) p (C,j b)) -, (48)
c a’ - & 12
s .2 172 3 z. 17
SRR E KL
a - b '
T , . 2 2 172 .
g = 17T sing t (t -1 ) cosg (49)
= ws



_ (wz + 132 (50_')

~

C ., 2 2 1/2
g = it sing - (7T - 1) cosg (51)
Sd wve

The first term in the expression (33) 1is the eqguivoluminal
motion behind the hemispherical wave front at T = 1 and the second

is due to the equivoluminal motion behind the conical wave front at

=19

T =T . The third term 1in u. represents the equivoluminal motion

due to the head wave fronts at 7 = T,q © 1he wave fronts 7 = 7_.

for ¢ >g P and T = T are shown in Figs. 4(a-1).
S5d o4

The equations T =1’ , T = 7' and T = T are shown 1in
Sd ad ada

Fig. 4 by dashed curves which are similar tot = T appearing 1in

da

the u_ . These dashed curved surfaces are not considered as wave
Za : .

fronts because it can be shownh that displacements and their

derivatives are continuous across these surfaces.

5. WAVE FRONT EXPANSI.ONS |
The wave forms of the so]ufion given 1in (31) and (33) afe
evaluted by approximate estimation of the integrais 1in the
neighbourhood of the first arrival of the different waves. To

facilitate this evaluation we put

2 2 2. .2 _1/2
w=1[A + (B - A)sin a] (52)
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in the 1integrals arising 1in uzd and uZS Qhere A and B are
respectively the lower and upper 1limits of the particu]ar integral
in question, and the range of integration with respect to @« is from
0 to n/2.

Now for the first integral of (31), we put w = Td sin « and

hence for T — 1 +, we find that for any valiue of a,

dg C ,
. . o % d cos ¢
W — O, qd — 1 81n C,D, —_— e} —_— m,
) 4
dt £y
, ' 2. . 2, 1,2 2 2,
m. — cos¢, m — (17 - sing) , m — (17 - 2sin @),
; .
1-2 1 2 2 , 2,172 ;
E — — (c. - asing) , for & < & (53)
c, A da
i z .z, z.1/2
— (asing - cj) , for & > ¢j_,

d

12
)

2 . 2, .2 2, .2 .2,
where N_1 = (1 - 2 sing) + 4 sing cos #(1 - sing (54)

Substituting these approximate values in the first integral of

(31) one can find, for & < ¢J
da

.[uvl — N71 as T — 1 + (65)

where

'Pabcd coszqiz(1Z - 281n2¢)
N = . (56)
2 2 , 2,.1r2
[¥s; (c:1 - a sin &) .N

1



Again in the second integral of (31) we put w'=Tdas1'nc1 and as T—1-

for ¢>¢da we find that

— i sing - i cosg Tda sin «

qda
dq ic T. sin @ sing + cosg
da R da .
- - . — : (57)
' o 2 ., 2 2 1-2
dat (TJ sih o + 1 ~ 71T )
da

Puting these values in the second integral of (31), we get

sz : ,
: ic
f Rel k (i sing - i cos¢ T. sina, T sin a) — x
zd da da
o o
Tdasin o sing + cos ¢ )
*® : ] T. cosa da (58)
2 , 2 2 42 da
(T sina + 1 -71")
da :
1= .
. ic
= Jf' Re[ k (1 sing =1 cos ¢ T sina, T, sina) — x
’ ' e
[a}
Tdasin o sing + cosg
x ] T cosa da +
2 , 2 2 1,2 da
(T. sin. a4 + 1 - 1)
da
T2
ic
+ isin ¢ - icosg in o ina) — =
f Re[kzdhsm : icosu quL sin a, Tda sina) ®
- o
=
Tdasin o singd + cosg¢
® T ] Tda cosa da (59)

z 2
(T sina+ 1 -7 )
da

where € is very small.
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Since the main contribution to the integral (58) as 1™ — f

arises from the first integral of (59) as T — 1, so for the

evaluation of (58) as T — 1, we consider the approximate value " of

the integral given by

e \
ic,

f Re [ kzdu sing - i cos ¢ T, Sina, T, o sin o) r X
o

Tdd sin & sing + cosg

= - : ] T. coso du (60)
2 , 2 2. 1.2 dat
(Tdd sina + 1 - 17 )

as T — 1.

Since € is very small so « 1s.a1so small. So for the evaluation of.

the integral (60) as T — 1 we also use the fact that a —0, from

which we get,

DL 2 . 2,14r2
wW— 0, g — 1sing, m — cos¢g, m —(1 - sing) -,
da_ d s
2 "y
m, (17" - 2 sin"¢), . (61).
1/2 1/2

. 2 |, 2, 2 \ .
N— N, E — 1/cd(a sing - c, ) for ¢ > ¢:da.

Now substituting these approximate values in (60) and 1integrating

we obtain the approximate value of the integral as



2 2,,.2 .2,
c, cos H(1 - 2sin @)

- log{t - 1] whenT — 1. (62)
':(azs'inzr': - Cz)i'.-;z N
e o | N,
So for ¢ » %,
da
[un] — N"4 109{ T - 1 as T — 1 (63)

where

2, . .
, 2Pabcd cos <p(12 - 2 s1nz¢)

N = - . ' (64)
-2, 2 2 1/2
aue (a sin @ —ch) .N

1

In order to obtain the value of u"d as 1T — Tda we put

w2 A2 + (T2 A2 )sfnzj
= - o,
da da da .

in the second integral of (31).

When T — T +, we find that

da
w — 0
. C
q 1 d
. 3 —
da a

2 2
C, @ " C 412
‘where Al = _— for a > ¢,
£a 2 d
1 -7
da
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mi-—->’1/a(a2 - cf)i/2 for a > c (65)

1 2 : 1
m — = (a - c:)u2 , — ~ (a =~ 2c¢ ),
N a
N — N
2
: 4f{_ 4, 2 2.2 2 2 2. 1/2 z2 2.1/2
where N = 1/a [1 (a - 2¢) + 41c. (a - ¢c.) (a~c ) ]
2 a d d s
E1/2 - 1'K1'/2('r . )1./2
: da
where
2 2 2. 1/2
cos ala - ¢ ) .
2a d
K = = 3 VD ' for a > Cd'
d ((a -ca) " sing - cdcos¢]

Using these approximate values jn the second integral of (31)

we Tind that for a > Cd

—_ T T +
[uE] N24 as — da (66)
where
Jpa 12(a2 _ CZ)1/2(82 _ ch)Afci/z
Nv4 = 3 1.2 - (67)
- 7uc, a (2KA) N2 '
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2 2 2.1s2 ,
where c 8acrT, (a-c.) sing cosg
d da d :

>
fl

2 2 2 2 2} 2.2 ., 2, o .
- S @T T + 7T + a T T, -~ 7T
a (a-b)co ¢ dd( da da) b'sin ¢ da( da da.)

-
H

. 2 2.1s2
[ cdsmcp - (a -cd) cosd:.] (68)

o

da

It may be noted that conical wave front 7 = Tda does not arise

for a « c,
L&

Next when ¢ < ¢!sa , Tor the evaluation of u_ as T —1, we put

W = quina in the first integral of (33). When T — 1, we find that

in the above 1integral

+ , ,
g — il sing
=4

dq+ c:d 1 cosd
_2 5, s |
dt g T cosco

=]

2 2 2, 2,
(g+w ) — - 1 s1n2q:r

' 2, 2, 4
m, — (1-1"sin c/f»)l ?

m— 1 cosg



. 2 2 . 2,
m, = 1 (cos ¢ - sin ¢)

172 1 2 2 2,172
—_— — - <
E S (ci a sin ¢) for ¢ ¢;ﬂ

=]

1 2, 2, 2.1/2 , ,
— = (asing - cg) for ¢ > ¢

=]

N — 13N :
g9
where N = [ 1(cos’d - sin‘g)’ + 4sin’e cosd(1 - 1°sin’g)? ]

Using these approximate values in the first integral of (33)

one can find for all values of a and b,

[QZ] — sz for ¢ <« ¢Sd as:T — 1 (70)

where

, 2 . .2, 2,472
2pabc_ sin ¢ cos¢ (1-1 sin ¢)
N _ = - - (71)
z2 2 2 ., 2, 1,2
[1re) (c_-a sin ¢) N :

3

For ¢ > ¢sa , considering approximate evaluation of Tlast two

integrals of (33) as T— 1 it cah be shown that for the case

a > b >c
d

4

u — N _ log|t - 1| for ¢sa g o< ¢9d as T — 1 (72)

z ZzZ2

’

u — N__ Tog|t - 1| for ¢ > ¢ed as T — 1 (73)

zZ

120



and for the case cd >»a>b>c ,

4

u — N dog|t - 1| for ¢ <@ < ¢ as T — 1 (74)
z ZG ad s

u — N__ TogjT - 1| for ¢ > ¢ as T — 1 (75)

and also for the case ¢ > a > b ,

’

u — N loglt - 1| for¢ > ¢ as 7T — 1 (76)
o LX) sd
where
. 2 , 2, 2,.4/2
, 2pabc9 sin ¢ cos¢(1-1 sin ¢)
st = 2 2 2 12 (77)
- THpE (a sing - c ) N
B 3
. 4 2, .2 .2
, 8pabc_ sin ¢ cos ¢ (1 sin¢ - 1) -
N = - (78)
z3 2 ., 2 2 1/2
nue (a sing =-c ) N
Y 4
-y 2 ., 2 1/2 2 . 2., 2
; 2pabcd sin ¢ cos ¢ (1 sin ¢ - 1) (cos ¢ - sin @)
N = - (79)
zZ6 2 2 , 2 1/2
e (C, - a sin ¢) N4

N4 = [12(cosz¢ - sinqu)4 + 1631n4¢ cosz¢(1zsin2¢ - 1)] (80)

For the approximate evaluation of the displacements at the

wave fronts T = Tsa and T = T g Ve follow similar procedure as
S
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followed for the evaluation of u_ asT — Tdd and we find that

d
[u]l] — N as T —= T for a > ¢ (81)
z z5 . sd d
[ul] = N ast —>7 forc >a>>c (82)
z Z0 sd d -]

3.2 ’
[(u] — Nzg(r - Tsd) as T — rsd for a > cd (83)

- 4
[uZ] — Nz?(T ng) as T — 7_, for a < c (84)

where

 4Pbc. A [(a’-c)p 1'7%
d 2 d =
- _ (85)
2 . 1.2 d
mua (2K B A )

z5

3 2 ! 2 2 2
16Pa2bc (c —az) A [(a -c )D ]1/
d d s , s s
N = 2 1,2 G, 2 2.4 4, 2 2 (86)
Tu(2K 1 A ) [1 (a -2c ) = 16¢c . (c . -a )(a -c )]
3 a s d d &

4Pab . , 2 cosecd 41/2
Nza = - Asd Bsd Bsd Asd [ 2 z :i (87)
U : a - c.
d
4Pab . 2 cosecy q1-2
Nz? = Asd Bsd Asd [ 2 2 ] (88)
T - c. - a
d
- 2 1.2
. 1cd (a - C,)
A = - (89)

o

z 2 1,2 . .
g [ 1(a -c) sing - c_ cosy ]
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; . 2 2 12 '
D = 8alcr sing cos? (a - ¢ ) (90)
=) d sa 3
L 2 2 2 { 2z 2 2 2. 17*
B = — [ 19(a2 - 2c ) + 4c, {(a -c,)(a -c_)} ] (91)
) 4 s d d s
a
2, 2 2.2 2, o
A = [T azbz(T - 70 )sing + (a-b )acos g(T + T _)] (92)
3 sd . sS4 sd =13 Sd
n 2(12-1)*"% 1/2
Ag = 37 [ 2 1.2 ] (93)
B (1°=1)"" "sing - cos¢
B = (1%-2)7" | | (94)
sd .
! 2 1/2 2
= - 95
BSd 4 A (1 1) B, (95)
! Cd 2 1,2 2 42 -
A = — (1-1) [ (17-1)" " sing - cos¢»] (96)
ad e

In these expressions the notations [uﬁ] stands for the change
in u_ across a wave front and Nz1 etc. are wave front coefficients.

It may also be noted that if welput a=>b in this'problem, it
reduces to the problem of uniformly expanding circular ring source

and in that case our derived results coincide with the results

given in the paper of Gakenheimer [1971].
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4(b) fora> cy, a>>b> ¢y, ac, < beyg. '

Fig. 4. Wave pattern for equivoluminal and head wave motion.
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A

4(d) forcg>a>b> ¢, a>p.

Fig. 4. Wave pattern for equivoluminal and head wave motion.
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Yz

Yz

4 {f) forca > a>b >epu <y,

Fig. 4. wave pattern for equivoluminal and head wave motion.
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2z

2
4t)forcg>a>cy>b,p >a>y, acs < beg.

Fig. 4. Wave pattern for equivoluminal and head wave motion.
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\ ' )
\Pba ‘ ”

) Yz

4@ forcg>a>c,>b a>8 ace> beg

-}
%oe) %sd \

\Z‘

4(j) foreca>a>ce>b, B>a> ¥, aét > beg.

Fig. 4. Wave pattern for equivoluminal and head wave motion.
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Fig.

z

4 (1) for a < cs, ace > bey.

Wave pattern for equivoluminal ang head wave motion
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