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SPECTRAL REPRESENTATION OF A CERTAIN CLASS OF SELF-ADJOINT 

DIFFERENTIAL OPERATORS AND ITS APPLICATION TO AXISYMMETRIC 

BOUNDARY VALUE PROBLEMS IN ELASTODYNAMICS 

1. INTRODUCTION 

In this work an inategral representation of the Dirac delta 

function required for solving the axisymmetric boundary value 

problem has been derived first. This representation is particularly 

suitable for problems where mixed boundary conditions are 

encountered. Following Friedmann [1966], by contour integration of 

a suitable Green's function, integral representation of 6(R - R ) 
0 

(R,R > 1) has been derived. This representation has been used to 
0 

solve a particular type of axisymmetric problem in elastodynamics. 

The problem treated is that of a semi-infinite elastic body 

containing a circular cylindrical cavity, whose axis is 

perpendicular to the plane surface. The semi-infinite medium is 

subjected to an axisymmetric concentric torque applied dynamically 

as a step function in time at the plane surface. 

At first Lamb [1904] investigated the classical normal loading 

problem of an elastic half-space. Similar type of problem was 
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investigated by Eason [1964], Mitra [1964], Chakraborty and De 

[1971] and many others. They are all point source problems in a~ 

homogeneous semi-infinite medium. 

The propagation of elastic waves, due to applied boundary 

tractions, in semi-infinite media containing internal boundaries 

has as yet n6t been studied to any large extent. 

An earlier and comprehensive survey of the field is given by 

Scott and Miklowitz [1964]. Recenuly this type of work has been 

done by Johnson arid Parnes [1977]. 

We have solved the problem of· the SH-type of elastic wave 

propagation in the semi-infinite medium due to a ring source 

producing SH-waves in the presenqe of a circular cylindrical cavity 

(case 1). The problem of SH-wave propagation in the presence of 

rigid circular cylindrical incluiion in the semi-infinite medium 

due to the ring source has also been treated in the case 2. 

2. INTEGRAL REPRESENTATION OF A DIRAC DELTA FUNCTION 

Consider the operator L with ~ as a complex parameter, where 

L - ~r ( r ~r J + A.r r 
(1) 
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whose domain, D, is the set of all twice-differentiable functions 

u(r), a< r < oo such that 

( i ) 
du 

r dr - u = 0 at r = a > o 

(ii) the behaviour of u as r ~ oo is that of an outgoing wave. 

The solutions of LG = 0 which satisfy (i) are 
1 

a<r<r , 
f) 

Where A is an arbitrary constant and J and Y are the 
1 n n 

functions of the first and second kind, respectively. 

( 2 ) 

Bessel 

Again the function G which will 
2 

satisfy LG 
z = o and the 

condition (ii) can be written as 

( a< r < r < oo ), 
f) 

H
( 1) 

where A is an arbitrary constant and is 
Z n 

the Hankel 

of the first kind of order n. 

(3) 

function 

From Eqs. (2) and (3) the Green's function G satisfying the 

equation LG =- o(r- r ) and the conditions (i) and (ii) mentioned 
0 

above is given by (e.f. Friedmann [1966]) 
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G(r,r ;/c) = 
0 

rrH<
1

> ( -IAr )[ · 
= _, 1 

.. 
0 

J (fi-. r) y (f.;.._ a) - Y (-IJ.. r) J (fi-. a) 
\11 ( " ) 1 2 1 2 2H 7Aa . 
2 . 

( 

2H fAa ( 1) ( ) 

2 . 

Now consider 

G ( r, r ; i\) rdi\, 
0 

o < argi\ < 2n • 

., 

J
H(r -r) 

" 0 

(4) 

( 5 ) 

where the contour of integration in the i\-p1ane is shown in Fig. 1. 

Since G has a branch point at A = 0, we introduce a branch cut in 

the comp 1 ex \.-p 1 ane a 1 ong the positive rea 1 axis and the·n take the 

contour as a large circie of radi.us R
2

, having the centre at:;.._= 0, 
1 

not crossing the branch cut. In terms of Hankel functions Eq. (4) 

can be written as 

IT [ < 1> ( ) ( 1i ( ) + -
4

. H_ ff..r_ H fi· .. r 
1 1 · U· 1 · 

H~ 2 
> (fAa) 

H< u (fAa ) 
2 . . 

( 2) . . 
H (-{J·,a) 

2 " 

+ 

( 6) 
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F1u. l. Circular contour of integration AJJA' in the A-plane. 
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For 1 arge J z I , the asymptotic behaviour of Hl~•i> ( z) 

(Lebedev [1965]) 

H< 11 ( z) 
n 

H < .2i ( z) 
n 

nn 
2 

nn 
2 

·~ )] . 

( 7 ) 

. Thus, for large values of jl,j, from the relations (7) we obtain 

( .., \ 

H'""' (1~\a ) 
H <:iJ (·-{,-.... r J. H di (-{,\ r J. -

2
----

:1 0 :1 \, { :1 } -" ) 
H ( rA.a 2 . 

H w ('f,\ r . ). H ( Z> ('fA. r . ) . 
. :1 u 1 

{ 1} . . ( ..,, . . 
H (i:t.... r J H ""' (-!A. r J 

:1 :1 0 

? 

2 

rr~/"rr 
0 

2 

2 
if;\ (r - r 

0 

( 8) 

are 

If we put /-... = · k ... , then the c i rc 1 e in the /·,-p 1 ane becomes a 

semi-circular arc C of radius R in the upper half of the k-plane 
:1 

(shown in Fig.2.) Consequently, for large values of R the integral 
1 

51 



lm I< 

E 

Fig. 2. OED'- the semi-circular path of integration c 

in the K-plane. 
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(5) can be written as 

·-
1 Jr J[exp{ik(r- r)}H(r...: r) + exp{ik(r-r )}H(r-r )J.,dk-

2rr r o o o o 
0 

c 

lr 
2rr S ~-r 

0 
c 

R 
1 

exp{ik(r + r - 2a)}dk 
0 

& = I exp(ikl r-r
0

J )dk + 
2"/T 

0 
-R 

1 

R 

~ 
1 

+ I exp {ik(r + r -2a) }dk 2•rT 0 " 0 
-R 

:1 

~ 
s i nR ( r-r ) 

~ j ~ 
sinR ( r + r -2a) 

1 0 :1 0 = + 
rr 

-2a 0 r - r 0 r + r 
0 0 

Our object is to show that the integral (5) represents 

( 9 ) 

-6 ( r-r ) 
0 

when R -ten. To justify the statement, consider a testing function 
:1 

¢(r), in D which is continuous, has a continuous derivative of 

order two and vanishes outside a finite interval ... Then, from the 

relati9ns (5) and (9) 
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1 im 

co 

J r.j;( r )-1-. 
2·rr 1 

1 G(r,r ;~)rd~dr J 0 
R --7(1) a 

:1 

(() 

[f 1 i m 1 J ¢•(r) = n 
R --700 0 

:1 a 

sinR (r 
1 

r )dr -
0 

+ 
(r - r ) 

0 

co 

.!_ J d>(r) Jr sinR (r + r - 2a)dr 
+ 1 im 

R --700 
:1 

=- r.h(r ) 
r (J ' 

n · r 
0 

a 

1 0 

(r + r -2a) 
0 

where we have used the result of Dirichlet integral 

Riemann-Lebesgue Lemma (Whittaker and Watson [1963]). 

Therefore 

1 i m 
R -t((! 

1 

G ( r , r _ ) .. ) r d~·-
. u 

=-o(r-r). 
0 

and 

To obtain. an alternative integral representation, which will 

be useful for our subsequent application in physical problems, we 

consider the contour r (Fig.3) consisting of the real axis from k = 

p to k = R , where 0 < p < R ; a semi-circle c of radius R above 
1 1 1 

th~ real axis; the real axis again from- R to-p; and finally a 
:1 

semi-circler of radius p above the real axis with the centre at 

the origin. We take p small and R large. 
1 

2 
The integrand 2G(r,r ,k ) kr has no singularity inside the 

0 

contour r , and so the value of the integral. 
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E 

Fig. 3. FDED'F'F- thr path of integration r in the 

K-plane. 
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2n i 

i.e. 2n:i 

I G(r,r ;k
2

)2krdk = 0, 
0 . 

r 

R 
1 

I . z 
G(r,r

0
;!<. )2krdk = JG(r,r

0
;u

2
)2urdu + 2ni 

c 

R 
1 

p 

f 2"1Ti. 2 
+ G(r,r ;e u )2rudu-

2ti i ,_ 0 

n 

J z zi.e. 2 zi.e 
- -- G ( r , r ; p e ) 2 rp e de . 

2·n: 0 

0 

( 1 0) 

The behaviour of Y (z) for small values of 1~1 is described by the 
li 

formula (Lebedev [1965]) 

y ( z) ~ 
n n 

"ITZ 

and J (z) is bounded for small values of izl when n is a positive 
li 

integer. Using these results we conclude 

z zi.e 
G( r, r ;p e )p 

0 

is bounded for small values of p. Hence 

rr 

1 im 
z zi.e zi.e z 

-n: J G ( r, r 
0

; p e ) e p rde = 0. 
p~o 

0 
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Letting p ~ 

o(r -r 
0 

From Eq. ( 4) 

2. 
G(r,r ;k) 

0 

) 

0 and R ~ oo in 
1 

r = - 1 i m 
2n i .J 

R --Hu 
1 c 

m 

( 10), we get 

z 
G(r,r ;k )2krdk 

0 

2·.~i I [ z z zi.n 
= G(r,r ;k) - G(r,r ;k e ) 

0 0 

0 

2 2i..n 
G(r r -k e ) = 

' 0' 

J (kr )+iY (kr ) 

] 2krdk. 

71[ 1 0 1 0 =-2--
J2(ka)+iY2(ka) 

[ 

J (kr)+iY (kr) 
'IT 1 1 

2 
J (ka)+iY (ka) 

2 2 

J (kr)-iY (l<.r) 
1 1 ] --x 

J (ka)-iY (ka) 
2 2 

X r J (kr )Y (ka)-Y (kr )J (ka)]HCr- r ) 
'-1 0 2 1 0 2 0 

( 1 1 ) 

[ J
1 

(kr)Y
2 

(ka)-Y
1 

(kr)J
2 

(ka)] [ J
1 

(kr
0 

)Y
2 

(ka)-Y
1 

(kr
0 

)J
2 

(ka)] 

= irr 
2 2 

J (ka)+Y (ka) 
2 2 

Substituting this expression in Eq. (11), we get 
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(5 ( r- r ) = 
u 

t\ 

Substituting r/a = R, r /a= R and ka = y, Eq.(12) can be 

as 

o(R-R ) = 
u 

0 0 

00 f J ('1-· R ) Y ('"•·· ) - Y (v R ) J ( --v ) ] [J ( '~-' R ) Y (-v ) - Y ( v R ) J ( v ) ] 
L.t'o 2' t'o 2' t' 2' t' 2' 

= f 
0 

2 2 
J (-•·) + Y (v) 

2 I 2 ' 

( 12) 

written 

Rydy 

(13) 

Since 6(R -R.) is symmetric with respect to R and R , then, on the 
u 0 

right ~and side of Eq. (13), Rand R can be interchanged. So we 
0 

write 

o(R-R ) = 
0 

co r(J (:rR )Y (r-)-Y (rR )J (y)l (J (yR)Y (f·)-Y (yR)J (y)] 
-- R f t o 2 t o 2 "' t 2 t 2 dy. 

0 2 2 
J (v) + Y (y) 

0 2 • 2 

( 14) 

58 



3. FORMULATION AND GENERAL SOLUTION ( CASE - 1 ) 

Case 1. We shall now use the integral representation of the delta 

function given by Eq. (13) to derive the time dependent response of 

an isotropic linearly elastic half-space containing a cylindrical 

cavity of radius a due to a ring source. The axis of the cylider 

considered as the z-axis, which is perpendicular to the plane 

surface, is directed downwards (·Fig.4). A torque is applied on the 

free surface of the half-space over the rim of a concentric circle 

of radius r = r 
0 

r > a ) for t > 0. Therefore on the cavity 
0 

surface r = a 

,u ( 

au_ u_ 
e e 

T = -- -
rG or r 

) = 0 

·and on the plane surface z = 0 

T ez = .u 
au_ 

B 

i)z 

= o(r -r )H(t) 
0 

( a<r<(o, r >a ) , 
0 

( 1 5) 

( 1 6) 

where~ is Lame's constant, o is the Dirac delta function and H is 

the unit step function. 

Now· the only non-zero equation of motion is 

:l a 02 .2 a u_ u_ UG u_ ij u 
e 8 B G 

( 1 7) +- + = 
or 

2 
or oz 2 2 ~.2 at 2 

r r 11 ,. 
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Fig. 4. Geometry of the problem. 
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where r = ~ ~/p is the shear wave velocity. 

Changing the independent variables (r,z,t) to the 

no-dimensional variables (R,Z,r) defined by 

r 

R = 0 
( 1 8 ) 

a o a 

the above equation reduces to 

;l au_ r/ .2 u_ u_ u_ iJ u_ 
8. 8 (:1 8 8 

+ + = 
JR 

2 
JR az 2 R2 J-r 

2 
R 

( 1 9) 

and boundary conditions become 

,u .... au u 

) I e e 
T = = 0 on R = 

r·9 aR a .... R 
(20) 

and 

,u au 
8 

r = = o:S(R - R )H(t) on z = o. ( 21 ) 
~z 

;Jz 
I) 

a a 

Now, taking the Laplace transform with respect to 

nondimensional time (r) and assuming the homogeneous initial 

conditions 

u
8 

( R, z, o) = 
au_(R,Z,O) 

8 

dt 

Eq. (19) takes the form 

= 0 at t = 0 
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. 2 a .-.2 .... 
iJ u_ ue a u_ u-

e e tl 2 
+ + = s ue 2 

JR az 2 2 
JR R R 

(I) 

... -sT 
where u_ = J u_e dT . 

e 8 

I) 

Take solution of Eq. (22) in the form 

u_{R,Z,s) 
8 

co 

= jr lr A (r)J (rR)+B (y)Y (yR) l 
i 1 1 1 J 

0 

(22) 

(23) 

d····· 
! I (24) 

where r is real, J andY are Bessel functions of the first and 
i 1 

second kind respectively. 

Using the boundary condition (20), we obtain 

B (··v) 
. ' 1 

=-A(-v) 
1 ' 

J (y) 
2 

Substituting the value of 8 (y) in Eq. (24), we have 
i 

00 ~----

] 

I 2 2 

I [ -~ S +·V u_ (R,Z,s) = A(-Y) J (vR)Y (v)-J (v)Y (<··R) e · ' 
8 • 1 1 2' 2' 1' 

0 

where A(y) = 
A ('v) 

:1 ' 

'( (v) 
2 ' 

Therefore the transformed stress component reduces to 
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,u 

= 
a 

where C (vR) 
2 ' 

r 2 2 :i./2 
,_ A(y·) (y+s) 

0 

C ('•·'R) 
2 J 

r-:;--2 
e -~;·· .. - +s 

Now, using the representation (29), Eq. (14) becomes 

00 
vC (-vR) C (yR ) 

o(R-R ) I 
' 2 ,, 2 0 

dr. = R 
0 0 2 2 

J ( y) + Y ('v) 
0 2 2 ' 

z dy, (28) 

(29) 

(30) 

Using Eq$. (21), (28) and (30), the value of A(y) is obtained as 

R 
A(t) = 

Therefore u becomes e 

Cl) 
R vC (vR) C (vR ) 

u. (R,Z,s) = tl . 

~ J ______ ~ __ 2 __ ' _____ 2 __ ~ __ o ____ __ 
2 2 1/2 2 2 

,us (-1·· +s) {J (y) + Y (v)} 
0 J 2 2 J 

On the plane boundary Z = 0 

u. (R,O,s) = 
tl 

((J 
R vC ('vR) C (rR) 

0 ' 2 ' 2 0 --J---'---------
,LLS (;v2 +s2 ) 1/2 {J2 (-v) + y2 (-v)} 

0 2 ' 2 ' 

( 31) 

z 
d 'V ' . (32) 

d•v ' . (33) 

Now, introducing the change of the variable r = s( into the above 

expression (33), we· obtain 
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Ll) 
R t C ( s'"' R ) C ( s'·· R ) 

u_ (R,O,s) = 
til 

of '2 i., 2£..0 

,u 0 u· 2 
+ 1 ) 

1
/

2 {J: ( s( ) + y: ( s( ) } 
d(. 

Next, using 

J (s(R) = 
H< 1 >(s(R) + H< 2 )(s(R) 

n · n 

li 
2 

and 

Y (s(R) = 
li ' 

H < 
1 >· ( s( R ) - H < 

2 
> ( s( R ) 

n n 

2i 

we obtain 

C ( s( R ) = J ( st ) Y ( st R ) - Y ( st ) J ( st R ) 
2. 2,1, 2.1' 

[ H < 
1 

> ( s( R) ( 2 ) ( ,_. ) H < 
2 > ( s( R) H~ 11 

( s() J = H s£ · 
2i 

1 , 2 . , 1 ' 

and 

1 
C (st"R) [ ( 1) ( ,_. ) H < 

2 1 
( st ) H < 

2 
> ( s( R ) (1)( ·-·)] = - H S£ R H s£, . 2 , 0 1 , 0 2 , 1 ' 0 2 

2i 

Also 

(34) 

(35) 

( 35' ) 

(36) 

( 36' ) 

J2 ( s( ) + Y2 ( s( ) = H < 1> ( sr ) H<2> ( s( ) • ( 36' ' ) 
2 2 2 , 2 ' 

Therefore, Eq.(34) becomes 

R 
00 r 

0 ' 
u_ (R,O,s) = f F(R,R ,s() d( 

til 

j((2+1) 
0 ' 

4,u 
0 

(37) 

64 



where 

and 

F ( ex , 6 , st ) 1 , 

F ( R , R , s[ ) + F ( R , R , s( ) 
1 0 . 2 0 

= F (R ,R,st) + F (R ,R.s() 
1 0 . 2 0 

= F(R ,R,s() 
0 

H< 1 >(st") 
\2i( ..... -.){ \1)( _,. ) (2)( .. 2 , _-} = H Si, f' H S(. c-4. - H s( 01) 
1 '"· 1 . :1 H 1 2 ; ( s( ) 

:z . 

(38) 

( 38' ) 

= H \ 1 
) ( sr ,-n {HI 2 ) ( s( 01 ) 

:1 , 1 , 

H t z > ( s( ) ·}· 
(i} ( .... ) 2 H S£ 01 ---------
:1 , H11 i(st) 

( 38'' ) 

2 . 

Using the asymptotic values of the Hankel functions for a large 

argument, it can be shown that 

( F (R,R_ ,s() 
:1 u 

2 r -is( (R
0 

-R) -is( (R+R
0 

-2)1 ---Le + e J 
J; n:sr 

0 

as Is() ~ crj , showing that 
( F

1 
(R,R

0 
,s() 

Jc£:"
2

+1) 

vanishes over 

(39) 

a large 

circular arc in the forth quadrant of the complex (-plane for 

R < R . 
0 
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Also 

2 

[ 

is( ( R -R) 
0 

e + ( 39' ) 

ns( ~ RR. 
u 

showing that 
( F (R,R ,s() 

2 0 
vanishes over a large circular arc in 

the first quadrant of the complex (-pla~e for R<R • Therefore, for 
(J 

R > R , 
0 

and 
( F ( R . , R , s( ) 

:1. u 

vanish over large circular arcs in the first and fourth quadrants, 

respectively, of the complex (-plane. 

Denoting the responses for field points inside (R < R ) 
0 

and 

outside (R > R ) the source by the subscripts I and 0 respectively, 
0 

we have for points inside the source (R < R ) 
0 

R 
l'l) 

0 f 
4,U 

0 

and for points outside the source (R > R ) 
0 

ll) 
R 

( [F ( R , R , st ) 
2 0 ' 

~((~+1) 
+ F ( R , R, s( )] dt" • :1 0 . , u

80
(R,O,s) = o I 

4,U 
0 
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In order to evaluate 

(.Jj 
( R 

0 ' 

I 
j((2+1) 4,u 

u 

which is the first part of 

F (R, R 
2 0 

, s() 

u (R,O,s) 
er 

d( l (41) 

we note first that the 

integrand has branch points at ( = ± i and also has a branch point 

at the origin of coordinates due to the presence of Hankel 

functions in the integrand. The integrand has also poles which 

correspond to the zeros of Hw ( s(). From Eq. ( 32) we note that in 
2 ' 

order that u_(R,Z,s) may be finite for large positive values of Z, e ... 

((
2

+1)
1

/
2 

should have a positive real part on the path of 

integration. Accordingly, we draw cuts parallel to the real axis 

from +i to -w+i and from -i to ~-i to satisfy our requirement. 'A 

cut along the negative real axis from the origin is also drawn to 

make Hankel functions single valued 

R 
F (R,R ,s() 

2 0 . 

0 

4,u 

is now integrated along the quadrant of a large circle lying in the 

first quadrant of the complex (-plane as shown in Fig. Sa. Since 

poles of the integrand are out side the path of integrationJ .the 

integral (41) becomes 
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a) 

------fl(\ ----- ..... -·-- --
0 

~ 

-r :It------

){ Oranch point 
- Uronch cut 
u Pules 

b) 

0 
0 _____ ...,r ______ -

Fig. 5. Integration paths in .the complex (-plane. 
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:1 
R ,.. v 

(J I .r F (R,R ,isv)dv + z 0 
4,u L - j ( 1 

2· 
0 -v ) 

00 
v 

] + f F (R,R ,isv)dv 
2 0 

Using the relations 

H{z> ( i v) = 
1 

H a> ( i v ) = 
2 

{2) ( ' ) H . 1V = -
2 

we have 

1 i~) 

2 

rr 

2 

iT 

2i 

·rr 

K ( v), 
1 

K ( v) + 
1 

K (v), 
2 

2I ( v) -
2 

2ii (v), 
1 

2i 
K (v), 

2 
f[ 

F (R,R ,isv) = 
2 0 

4i 

rr K,(svR
0

) {r,(svR) + K
1

(svR) 

Therfore, the expression (42) becomes 

iR 
1 

v 
-~J---

,urr I 2 
o ~ ( 1 -v ) 

(.(1 

I 2 (sv)·}· 

K ( sv ). 
2 

. 

R I (sv) v . r 
}dv. 

0 

I I ( svR) K ( svR) 
2 --- K

1 
( svR

0 
)1 + 

1 ~(v2 -1) 
:i :1 

K ( sv) ,Lm '"· 2 
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:I 

(43) 

(44) 

(45) 



The second part of u (R,O,s) is equal to 
8I 

((.l ,_. 
R t 

0 

f F ( R, R , s( )d( 
:1 0 , 

(46) 
4!--1 

0 j c(2 
+1 ) 

we draw cuts from +i to m+i and from -i to -ru-i as shown in Fig. 

(5b). A cut from the origin along the negative real axis is also 

drawn to make Hankel functions single valued. 

Taking a quadrant of a large circul~r contour in the fourth 

quadrant (Fig. (5b)) and noting that the poles of F (R,R ,s() 
1 0 

outside the contour, the inte~ral (46) takes the form 

1 

Ro [ J v 

4~ ~ 2 
o 1 ( 1 -v ) 

F (R,R ,-isv)dv -
1 0 

Using the relations 

Hw (- iv) = 
:1 

(2) ( ' ) H -1v = 
1 

2 

rr 

(_!J 
v 

-J--
:1 ;.~) 

F ( R, R , - i sv) dv .J, . 
1 0 

K ( v) 
1 

2 
K ( v) I 

1 
rr 

2ii (v), 
1 
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H \ 1> ( - i v ) = - 2 I ( v ) + 
2 2 

H\Z> (- i v) = 
2 

2i 
K ( v) I 

2 

the expression (47) becomes 

2i 
K ( v) I 

2 

1 
i R v 

~s---
r r2 c sv) ~l 

K ( s v R _ ) i I 
1 

( s v R ) + K
1 

( s v R ) j d v 
U'IT I 2 
' o ·!(v -1) 

1 
u t_ K ( sv) 

2 

(.(1 

R v 
0 r - -- J 

,u·rr 
1 j (v2

-1) 

K ( svR ) 
:1 0 

{ I, ( svR) + K, ( svR) 

Adding the relations (45) and (49), we obtain 

2R 
0 

L'(l 
v 

f . 
,un I 2 

1 ~(v -1) 

K ( svR ) X 
:1 0 

{

. I (sv) 
X I (svR)+K (svR)--

2
----

1 .i K ( sv) 
2 

Similarly, it can be shown that 

u
80

(R,O,s) = 
2R 

0 

,urr 

1)) 

v 
f --
:1 Jcv2

-1) 

K (svR) X 
:1. 

I (sv) 

-
2
-- }dv. 

K ( sv) 
2 

(48) 

(49) 

(50) 

I ( svR ) + K ( svR ) 
:1 0 :1 0 

I (sv) 
2 

}dv. (50' ) 
K ( sv) 

2 
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Laplace inversion of the relations (50) is now taken to obtain 

the displacement of points inside the source. Therefore 

00 
2R v 

u
91

(R,O,-r) 
0 J TSd r E(sv)dv, = - -- e s 

.J 

~ (v
2
-1) 

2rr i ,un 
B r· 1 

(51) 

where 

E(sv) = K
1

(svR
0

) {r
1

(svR) 

" 

I ( sv) · 
+ K

1
(svR) 

2 
}· 

K ( sv) 
(52) 

2 . 

Introducing the change of variable P. = sv, and changing the order 

of integration 

u ... I(R,O,-r) 
'=' 

where 

= -
2R 

0 --
,u n 

2R 
0 

=- --
,u. n 

(I) 

1 

r I dv I L 
1 j(v

2
-1) 

2n i 
Br-

E(r/v) dv, 

E (T /v) { E(p) }. 

(T /V) p .... 

dp ] E(p) e 

(53) 

We note that E(p) possesses no poles and is analytic for p > 

0. It has a branch point at the origin and therefore a cut is drawn 

from the origin along the negative-real axis of the complex p-plane 

in order to make E(p) single valued. 

Drawing a large semi-circular contour to the rig~t of the 
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Bromwich path AB in the complex p-plane, we conclude that E(T/v) = 

0 if the integral 

J E(p) e(T/V)p dp = 0 

2tr i 

over the semi-circular arc BC'A ·(Fig. 6). 

Now 

E( p) = J 
- t-r 'V'P E(p)e" .. ' dp 

BC 1 A 

=- --
2-rr i 

' <T /Yip 

J K ( pR ) I ( pR) e dp -
1 0 1 

Since 

and 

---
2-rr i 

BC'A 

I (p) 

J K1(pRd)K1(pR) _z __ 
K ( p) 

BC 1 A 2 

e'T...-VIp K (pR )I (pR) 
1 0 1 

2p~ RR_ 
e 

ll 

T 
[ v 

I (p) 
\T /Vlp - ( R ) ( ) 2 

T 
[ - (R+R -2l] p 

v 0 
e K1 p o Ii pR -K~(-p~) 

2 

e 
2p~ RR 

0 

<R -Rl] p 
0 

I I 

(54) 

as I P I ---7 m 

then the first integral on the right hand side of Eq.(54) vanishes 

for 0 < T/v < (R- R), whereas the second integral vanishes for 
0 

0 < T/V < (R + R - 2). 
0 

73 



B --' ' ' \ \ 
'c' ---~~1 
I 

I 
I 

/ 
/ ___ / p -plane 

A 

Fig. 6. Laplace inversion contour. 
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Therefore 

I 0, for 0 < T /v < (R - R), 
(J 

I 

E ( T /v) I D 
= 1 E (T/v), for (R - R) < T /v < (R + R -2)' 

1.) 1.) 

where 

I R 

L E (T/V), for (R + R -2) < r /v. 
0 

E
0

(T /v) = :£.'-
1 

[ K .(PR.) I (pR), ] , 

E ,T;V, = R ( I ) ·J:.,_.,.-1 [ 

1 u 1 

I (p) 

K
1

(pR
0

) \(pR) + K
1

(pR
0

) K
1

(pR) /(p) ]· 
i 

(55) 

(56) 

For value of ·r/v lying in the range (R .- R) < T/v < (R + R -2) 
0 0 

E(T/V) 
[I 

= E (T /v) = 
cr . .-~v;p 

e dp. (57) 
2tr i 

Therefore, putting r/v = (R -R+y), where y > o 
(I . 

D. 
E (R -R+y) = 

0 
2n i 

J [ 
pR 

0 
K ( pR. ) e 

1 0 ] [ 

-pR ] 
. I

1 
(pR) e eyp dp. 

Br· 

From the Laplace inversion table Erdelyi [1954], we find that 

'P-1 [ 
~· 

pR 
() OJ.,I= 1<. pR e 

1 0 

and 

H ( y) ( y+R ) 
0 

1/.2 R {y(y+2R } 
0 0 
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[H(y) - H(y-2R)] (R-y) 
j_:-1 Lr I1(pR) e-pR Jl = ---------

~ 1/2 
nR {y(2R - y)} 

So by the convolution theorem 

\l 
[H(n)-HCn-2R)J H(y-n)(R-n)(y-n+R

0
) 

0 

1/2 
trRR

0 
['1; ( 2R-n) ( y-(J) ( y-lj+2R

0
)] 

(58) 

For T/v lying in the range (R -R) < T/v < (R+R -2), T/v must be 
0 0 

less than (R+R ), i.e. y < 2R. 
0 

So 

Therefore we can write 

y 

0 
;rrRR 

0 

( R-r/) (y-·;,+R. ) 
() 

. 1/2 
rnC2R-n)(y-n)Cy-n+2R )J . 

0 

E(T/v) 
IJ = E (T /v) = 

= 
·r /v-{R -R) 

0 

J 
( R-n) ( T /v+R-·n) d·n 

0 
:rrRR. [D(2R-n)(T/v-R.+R-n)(T/v+R +R-n)J 

.u u 0 

for (R -R) < (T/V) < (R+R -2). 
0 u 

1/2 

For values of T/v satisfying the condition r/v > R+R -2, 
(J 
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E(T/V) 
R = E (T /v) = 

= 
Br· 

This integra 1 is equa 1 to the integral along the large 

semi-circular arc on the left side of the Bromwich path AB plus the 

integral on the two sides of the ·branch cut (Fig.6). Since the 

integral on the large semi-circular arc vanishes, then Eq. (60) 

becomes 

CD 

E(-r/v) = [ -J E-( i.rr) -<T/Vl'fJd ne e n + 
2rri 

0 

co 

+ J -( -i.rr) -<T/vrnd ] E ne e n . 
0 

Using the relations 

+;rr ±i.vrr 
IL_. (.,-,e--") = e I.C'o), 

~-· 

and 

±i.rr +i.l.m K (.,-,e ) = e Kv C'n) + in I~) <-o) , j.) 

we obtain (for -r/v > R+R -2) 
0 
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c::o u (R,rJ) u CR_ .n) 
-{T/V)Y! e . 

E(T/V) 
R r 2 2 u 

(62) = E (T /v) = - df/' J 2 2 2 

0 
K < n) + rr r e-n ) 

2 2 

where U (X, I)) = K (r/) I (X, ·n) + I (-r,) K (X, T/) • 
2 2 1 2 1 

Substituting these values of E(T/v) in Eq. (53), we obtain 

u_I(R,O,T) = 
t.l 

2R 
0 

r -r., 
=- -- [{+ - o I --;;-) 

T 

- R -R 

+ H (t - r+r:.-2J{ o J 
i' T 

R+R -z 
0 

T 

D 
E (T/v) dv + 

T 
R+R -2 

ER ( r I v ) Pv}] , 
1 0 1 

D. 

I E (T/v)dv + 

j v2 -1 1 J v2 
-1 

(63) 

D R where the values of E (T/v) and E (T/V) are given in Eqs. (59) and 

(62), respectively. 

Similarly, taking the inverse Laplace transform of Eq. (40' ), 

the displacement u
90

(R,O,T) on the free surface outside the ring 

source can be derived and it is found that 
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u
80 

( R, 0, T) = 

[{+ 2R r-r --
H ( t 

0 

~J = ---
,U'IT 11 

I" 

T 

D-D 

+ H (t - r+r:-2J{ " " 0 

f 
p 

T 

R+R -.2 
0 

R R· 
where F ('r/v) = E (T/v), and 

D 

} r+r: -2a) 
11 
I" 

T --
R-R 

() 

I 
~ :1 

T 

R+R -2 
0 

F
0 

( T I v ) d v + f 

C R -n) (T /v+R -n) d·n 
0 0 

D 
F ( T /v) dv + 

( 63' ) 

F (T/V) = I 
0 

:1/2 
nRR. [r; ( 2R. -r;) ( T /v-R+R. -r;) (T /v+R+Ru_ -r;)] 

u u u 

t64) 

First, the integrals of Eq. (63) are the displacements due to a 

direct wave from the ring· source before the arrival of the waves 

reflected from the wall of the cylindrical cavity. The last two 

. integrals together give the displacement after the arrival of the 

reflected wave. 

In order to obtain the response in the vicinity of the SH-wave 

front, we consider the displacement profile immediately behind the 

direct outgoing SH-wave. Accordingly, we shall have to study the 
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first integra 1 of Eq. ( 63' ) because it gives the response of the 

direct SH-wave before the arrival of the reflected wave front. 

Let R = R + T and R = R £R where R and R denote 
s 0 s s 0 s s 

points at and immediately behind the SH-wave front, respectively, 

£ is a small positive quantity. 

Then 

and 

T 

R - R 
s (! 

R 
s 

T 

R 
0 

= (65) 

= = q (T). (say) ( 65' ) 

Substituting these values in the first integral of Eq. (63' ), we 

obtain 

and 

u_
0

(R ,O,T) = 0, e s · 

2R 
0 

,un:. 

Therefore, we can write 

u_
0

(R , 0 ,·r) = -
8 s 

q ( T ) 1 

J ~ (v-1) { 
D - } F (R ,R

0
,T/v) dv. 

~ v+1 

2R 
q (T) 

0 

·f V(v)dv, --
-lV-1 ,u rr 

1 

(66) 

where V(v) is analytic portion of the integrand. For small value of 
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£ expanding V(v) by the Taylor's series about the point v = and 

integrating term by term, we obtain 

4R R 
1/2 

UAO(R~ 0 ,T) V(1) [ 0 ) 1/2 1/Z 
(say), (67) , ~ ~· = A e 

- ~ ,un T 

where A is a constant. 

It therefore follows that the displacement cqmponent is 

continuous i.e. there is no jump in displacement across the direct 

SH-wave front. 

Next, in orde~ to consider the behaviour of response just 

under the ring source, it should be remembered that the integral 

representations of transformed displacements given by Eqs. (50) 

were derived from Eqs. (40) assuming that R ~ R . For R = R the 
0 0 

integrals along large quarter circles in the first and fourth 

quadrants should be reexamined. In· this case it is found that 

though the contributions from the i~tegrals along large circular 

arcs in the first and fourth quadrants are not separately zero, but 

the combined sum of the integrals along the large arcs in the first 

and fourth quadrants of the (-plane ( Fig. 5a and 5b ) vanishes. So 

the transformed displacements for R = R are also given by Eqs. 
0 

(50). Making R -7 R_±, it can easily be shown by help of Eqs. (50) 
L1 

that the displacement has no jump discontinuity across the ring 

source. 
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Therefore, in order to derive the nature of the displacement 

as R ~ R , any one of the relations (63) may be studied. Consider, 
(I 

for example, the displacement at field points outside the source 

given by (63' ). As R ~ R, the upper limit of integration T/(R-R) 
(I (I 

~.r.l). 

Further, as 

T 

v ~ ---t co, 
R-R 

0 

~ (68) 

~ v 

and 

D 
F (T/V) --7 

Thus, from Eq. ( 63' ) 

lim u
80 

( R , 0 , 'f ) = 
R-?R 

0 

-

2R 
0 

2R 
0 --

,u n 

T 

R-R 
(} 

I dv + 
v 2R 

N 0 

+ a finite quantity, where N is large. 

( 68' ) 

(69) 

The integral is found to contribute a logarithmic singularity 

to the displacement just on the ring source. 
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4. FORMULATION AND GENERAL SOLUTION ( CASE - 2 ) 

Case. 2. In this case the problem considered is the same in all 

respects with the first, except that the cavity of the'radius a has 

been replaced by a _rigid cylindrical ·inclusion of the same radius. 

The cylindrical inclusion being in welded contact with the elastic 

half-space, there is no relative displacement at the interface. In 

this case, the condition on the cylindrical boundary is u
8

=o on r = 

a. In order to solve this problem, we take the solution in this 

form: 

u (R,Z,s) = e 

= 

((I 

(70) 

0 

where u_(R,Z,s) is the Laplace transform of u (R,Z,t) with respect 
e e 

to t. Now, using the boundary condition 

we have 

B (·•-·) = 
-~ ' L 

so u becomes 
c. 
'-" 

on R = 1 , 

A (-!··) ., . ._ 

J ("v) 
1 ' 

y ('}"" ) 
1. 
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u_(RIZ 1 s) = 
e 

Cl) 

= 
. I 2 2 

1 ~v +- Z 
I A. ( 'V ) [J Cv R ) y Cv ) - J ( r ) y ( r R ) ] e- • b dr I 

' 1 • 1 ' 1 1 

0 

where 
A (v) 

1 2 ' 
A Cv) = 

y (;v) 
J. 

(72) 

Therefore, the transformed stress component on the free 

surface Z = o is 

where 

T _ (R 1 0 1 S) = 
ez 

,U 

a 

((1 

I" :1 I . ., ., J A ( y ) ~ y ._ +s... C 
1 

( y R) d;•- 1 

0 

C (vR) = J (yR)Y (y)- J (y)Y (yR) 1 
:1 ' :1 :1 :1 . :1 

(73) 

(74) 

1 
r _ ( R I 0 1 s) shou 1 d be equa 1 to -. 6 ( R 
ez . as 

R ). In this case, the 
0 

required integral representation of the delta function can be 

obtained from the following expansion formula given by Titchmarsh 

[1962]: 

(X) 

( [J ((r)Y ((a) J (i:"a)Y (tr)] 
f(r) I 

:1 :1 1 . :1 . 
d( = 

/((a) + Y
2 cr a) 

0 :1 , :1 > 

X 

X j_, t ... f U,.. ) [ J ( r t ) Y ( ( a ) - J ( ( a ) Y ( r f ) ] dt 
:1 > • 1 . 1 . :1 • • ' I 

(75) 

a 
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where f(r) is a suitably restricted arbitrary function. 

Putting f ( ,-) 

f((') 

we get 

6 ( r- r ) = 
0 

= ?. ( r- r ) ._, 0 , 

= ou:-r ) , 
u 

where r > 
0 

a > 0, 

lt1 ,._. 
l., [J ((r)Y ((a)-J ((a)Y ((r)][J (/:"r. )Y ((a)-J ((a)Y ((r. )] 

1 1 1 1 1 u 1 1 1 u. . & 
J 2 ( r a ) + Y2 ( ( a ) ., . 

1 ' 1 , 

=r J 
0 

0 

(76) 

r 
Now putting, = R, 

r 
0 

= R ' 0 
.(a = t, we have 

a a 

o(R-R ) = 
(J 

m 
.·1·· 

' 
[J (vR)Y (v)-J (v)Y (vR)][J (vR )Y (v)-J (v)Y (v~ )] 

1' 1' 1 1 1' 1'0 1' 1' 1 1 0 
= R I 0 

0 

2 2 
J U··) +Y C···) 

1 1 • 

dy J 

so by the relation (74) 

(() 
C ('vR) C (·vR) 1' 

' :1 ' :1 ' 0 
o(R-R ) = R J d:r-. (77) 

0 0 2. 
'/ ('v ) J l 'V) + 

0 1 ' 1 I 

This result can also be obtained by the following technique already 

developed in Section-2 of this paper. 
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.1. 
Now, we find the value of A Cr) as 

:1 
. A (y) = 

,us ~ 2 2 
~Y +s 

Therefore u becomes e 

u_ (R,O,s) = 
8 

'(tl 

,us 

.,.. C ('<··R) C ('vR) 
I 1 I 1 I U 

(78) 

d •v 
I • (79) 

Carrying on a similar procedure as followed to obtain the 

displacement in the case 1, we find that in this case 

u
9 

I ( R , 0 , T ) = 

+ H [t -

and 

T 

- R -R 
r+r -2a~ { o 

o I r 
i"• J l .) 

I> 
'[ 

R+R -z 
(.r 

~ 

T 

R -R 
(I 

f 
:1 

D 
E (T/V)dv + 

86 

T 

R+R 
0 

I 

D 
E (T /v) dv + 

-2 

E:(T/V)dv}] 
~ 1 

(80) 



= 

u_ (R,O,-r) :: eo 

rrH r t 2R r-r __ 
H ( ... 0 __ ol 

ll·L -
J LlJ 

,u-rr (i 

T 

- R-R 
1-+r o-2al f ro 

(3 )ll .) 
T 

· R+R -z 
0 

-

1 

r+r -2a .... l 
o I 
i1 J J 

.T 
-
R-R 

(I 

r 
J 

~ 1 

T 

R-R +2 
0 

F
0

(-r/v)dv + J 

D 
F (T /v)dv + 

( 81 ) 

where E
0
(r/v) and F

0
(-r/v) are respectively given by Eq. (59) and 

(64) and · 

Ct) u ( R ' (I ) u ( R ' n ) e- ( T I v hi 
R 

E (-r/v) = R 
F (T /v) = 

1 I 
:1 :1 0 

1 2 2 2 
K (1i) + -rr r Cn) 

1 1 
0 

where 

U ( X , f! ) = K ( J) ) I ( XJ) ) - I ( Tl ) K ( XfJ ) • 
:1 1 :1 :i ' :1. 
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WAVES IN A SEMI-INFINITE ELASTIC MEDIUM DUE TO AN 

EXPANDING ELLIPTIC RING SOURCE ON THE FREE SURFACE 

1. INTRODUCTION 

Since Lamb's original study of the elasitc wave produced by a 

time-dependent point force acting normally to the surface of an 

elastic half-space, many authors have elaborated on his work. 

Aggarwal and Abolw [1967] discussed the exact solution of a class 

of half-space pulse propagation problems generated by impulsive 

sources. Gakenheimer and Miklowitz [1969] used a modification of. 

Cagniard's method [1962] to discuss the disturbance created by a 

moving point load. In case of finite sources, the most widely 

discussed model is that of a circular ring or disc load. Mitra 

[1964], Tupholme [1970] and Roy [1975] have studied the various 

aspects of the same problem. Elastic waves due to uniformly 

expanding disc or ring loads on the free surface of a semi-infinite 

medium have been studied extensively by Gakenheimer [1971]. The 

axisymmetric problem of the determination of the displacement due 

to a stress discqntinuity over a uniformly expanding circular 

region at a certain depth below the free surface has been studied 

by Ghosh [1971]. 

PUBLISHED IN "INDIAN J. PURE APPL. MATH.", V18(7), PP648-674, 1987. 
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However exact evaluation of the displacement field for finite 

source other than the circular model does not seem to have been 

attempted much in the literature. Burridge and Willis [1969] 

obtained a solution for radiation from a growing elliptical crack 

in an anisotropic medium. The problem of an elliptical shear crack 

growing in prestressed medium has been solved by Richards [1973] by 

the Cagniard-de Hoop Method. Roy [1981] also attempted the same 

technique to slave the problem of elastic wave propagation due to 

prescribed normal stress over an elliptic area on the free surface 

of an elastic half-space. 

In our problem, we have considered the propagation of 

elastic waves due to an expanding elliptical ring load over the 

free surface of a semi-infinite medium. The expression for 

displacement at points on the free surface has been derived in 

integral form by the application of Cagniard-de Hoop technique for 

different values of the rate of increase of the major and minor 

axes of the elliptic ring source. The displacement jumps across the 

different wave fronts have also been derived. 

2. FORMULATION OF THE PROBLEM AND ITS SOLUTION 

Let an elliptic ring load P acting normal to the surface of an 

elastic half-space emanating from the origin of co-ordinates expand 
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in such a way that the rates of increase of the major and minor 

axes of the ellipse are a and b respectively, a and b being 

constants. Major and minor axes of the ellipse are taken to 

coincide with the x and y-axes of co-ordinates wher~ as z-axis is 

taken vertically downwards into the medium (Fig. 1.). Thus we have 

on z = 0 

P f..1 t - (x a + - ( . 2 - 2 y2 b- 2. ) 1/2 J" 

= zz 

= T 
xz yz 

. 2 -2 2 -2 1/2 
tx a + y b ) 

= 0 

where P is constant and 6 is the Dirac delta function~ 

( 1 ) 

The displacement field· inside the elastic medium (z > 0) 1s 

given interms of potentials ¢ and ~ as 

u =V¢~+7>=.7::-~ 

where 

.2 ' .2 
iJ if' . iJ ~# 

.-.2 -z. 
v r.P = -- I v l/-' = ( 2 ) 

2 Jt 2 2 
ih 

2 
. c. c 

d. s 

e , e , e are unit vectors along co-ordinate axes and cd and c 
X '! Z S 

are the p- and s-wave velocities of the medium. 

In order to obtain solutions of wave equations (2), we 

introduce Laplace transform with respect to t and denote it by bar 

and also introduce bilateral Fourier transform with respect to x 
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X 

.... -....-------

z 

Fig. 1. Geometry of the problem. 
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and y to supress the time· parameter t and the x, y space 

co-ordinates. Taking Laplace transform with respect to t(-) and 

also bilateral Fourier transform with respect to x andy (~), the 

transformed boundary conditions are 

T = 
zz 

Pab 

( 
2, .. 2 2 2 

a ( + b n 2 ):1/2 I 

+ s 
T = T = 0 (3) 

xz yz 

Then satisfying the transformed boundary conditions (3) and 

performing the inverse Fourier transform, the Laplace transformed 

displacement field can be written as 

where 

and 

U. (_x 1 Y 1 Z 1 5 ) = U "d ( X 1 Y 1 Z 1 5 ) + U. ( X 1 Y 1 Z 1 5 ) 
J r JS 

u (x,y,z,s) = 
jc~ 

1 

00 00 

for j = X 1 y,z 

(4) 

= 1/2rr.,u J J Fj
01 

(( ,r,,s)exp[-(<-'ol.z + i((x+"T)Y)]d(drJ (5) 

-((I - (.1) 

F . ( ( , Yt , s ) = 
Xd 

F .(t ,r;,s) = 
yd. 

1 :1 

in(. G, 
u 

for ex = d,s 
1 

F (( ,TJ,S) = 2irt t G 
!<:3 ~ 'J .. d .. 9 , 

F ((" I.,.,, s) = 2 i (J ( .( G l 
ys d. s 
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F ('t ·,-~ s) = ( ( G 
- ... j .... ''r ' , .J ~ . ' 
L:_., ·~ U 

.. 2 2 .. = - 2 (( +n ) ( dG, 

Pab 
G = 

2 2 :J./2 
(s+r). T 0 

( 6) 

..... - c·2 2 +k2)1/2, ( 
,~2 2 2 )1/2' 

l = <· +[! = r +n +k 
'd d 9 ' 9 

s s 

(0 
k2 2((2 2 

= + + n ) , kd = k = 
8 c 8 c 

d s 

Now the De-Hoop transformation, 

( = s/cd(q cos e- w s1n e), ry = s/cd(q s1n e + w cos e) (7) 

where 
-1 

8 = tan y/x, 

is applied into (5). The Laplace transformed displacement field 

(5) can be written as 

u ·a ( R , Z , s ) = 
J 

1 

where 

00 (U 

1/21T,U J J 
- OC• - Cu 

F xd ( q , W , S ) = 

F. (q,w,s)exp[-s/c (m Z-iqR)] 
JU d 0! 

1 

i Pab ( q cos e - w sin e)m 
0 

s.s/c (E + 0) 1
/

2 .N 
d 1 

93 

2 
s 

dqdw 

( 8) 



F = 

F (Q 1 W,s) = 
xs 

F yd ( Q I w ' s ) = 

F (Q 1 W 1 S) = 
vs 

F zd ( Q 1 W , s ) = 

F (q,w~s) = 
zs 

2i Pab (q cos e - w sin e)m.m 
d 9 

Pab (q sin e + w cos e)m_ 
tl 

.1/2 
s.s/c (E + 0) .N. 

. d' 1 

2i Pab (q sin e + w cos 8) m m 
d ~ 

1/2 
s.s/c (E + 0) .N. 

d 1 

Pab m m 
d 0 

1/2 
s.s/c (E + 0) .N. 

d 1 

2 2. 
2 Pab (q + w )md 

1/2 
s.s/c (E +0) .N. 

d 1 

( 
2 2 ) 1/2 

m= q+w+1 1 
d 

(q 
2 2 12 )1/2 I m = + w + 

2 2 2 
m = 1 + 2(q + w ) 1 

0 

2 2 
E =(1+qD+wF) 1 

:1 

2 ., 
a b ... 

sin 
2 2 

8 + -- cos 8 
2 2 

Cd Cd 

~;.. 

, 0 = 

2 2 2 
1 = c I c , and R = x + y • 

d s 
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N = 

0 = 

- 2QW 

2 2 2 
m 4mdms (q + W ) 1 

0 

2 ., 
a b ... 

2 2 
cos to + -- sin 8 1 

:.! :.! 

Cd c 
d 

sine cose(a 
2 2. 2 - b )/cd 

( 9) 



For mathematical simplicity we confine our attention to the 

derivation of the displacement field at any point on the xz-plane. 

Obviously the displacement at any point on any plane through the 

z-axis can then easily be visualized. Accordingly in order to 

obtain the displacement at any point on the xz-plane, we put e = 0 

in (8} which then takes the form 

where 

and 

L\) (]) 

u. (X 1 Z 1 S) = 
lL'I. 

Pab 
2-n:uc 

' d 
I I 

.. 1 

K .(Q 1 W) = 
Xd 

K d(Q 1 W) = 
V• 

K zd ( q 1 w) = 

- (.() -(() 

iqm 
0 

• /? E ....... N 

lWm 
0 

1/Z 
E • N 

1/Z 
E .N 

K 

2 2 2 
E = (c · + a q 

d 

2 2. 2 
+ b w )/cd. 

jL\ 
1 
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s 
- -.(m z-iqx) 

c c~ 

d J dq (q 1 w) e 

Kx:;; ( q 1 w) = 

K (qlw) = vs 

K (qlw) = zs 

2iqm m 
,j ~ .... "' 

E
i/2 N . . 

2iwm m 
d s 

1/Z 

I 

E .N. 

2md (q 
2 

+ 

1/Z 

w 

E .N 

2 

dw 

( 10) 

( 11 ) 



3. DILATATIONAL CONTRIBUTION 

From ( 10) u is converted to the Lap 1 ace transform of a known 
zd 

function by mapp1ng (m z-iqx)/c into t through 
d. d. 

a contour 

integration in a complex q-plane. 

The singularities of the integrand of u are branch points at 
zd 

1-
q = s = + 

d 
. ( 2 )J./2 
1 w + 1 , 

+ 
q = s 

9 

+ . ( 2 2 )1/2 = 1 w + 1 , 

+ 
q = s- = + 

c 

2 ) 1/Z + c 
d 

a 

and the poles at (12) 

q = s + = + i ( w 2 + v 
2 

) 1/
2 

• 
k 'R 

The poles at q 
+ = s- correspond to the zeros 
R 

( 1 2 ) 

of the Rayleigh 

function N, where ·v = c./ c and c is the Ray 1 ei gh surface wave 
'R .j R R 

speed. The contours of integration in the q-plane are shown in Fig~ 

2(a,b,c) which also show the positions of singularities lying .in 

the upper half of the q-plane. 

Since the positions of the singularities and the transformed 

contour of integration depend on different values of a and b, three 

different cases arise for the evaluation of u 
zd 
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(a) Case a > b > Cd . 

The q-plane for a > b > Cd is shown in Fig. 2(a). 

t 
contour q = q: in the q-plane, is found by solving 

t = ( m Z - i qx) I c 
d d 

for q, where t is real , we get 

. 2 2 .1/2 . 
Q = qd = iTS i n ¢• ! ( T - T _ ) COS rj• 

+ 

for r > r , where 
vd 

vd 

l 1/2 
-r = ( w + 1 ) , ·-c = edt/ p 

vd 

The 

( 13) 

( 14) 

( 1 5) 

and (p,¢) are the polar coordinates in the xz-plane as shown in 

Fig.1. Equations (14) define one branch of a hyperbola with vertex 

.. 2 )1/Z I at q = 1 ( w + 1 x p, which is parametrically described by 

the dimensionless time parameter r as r var1es from r 
vd_ 

towards 

infinity. 

As shown in Fig. 2(a), the contour of integration has two 

possible configurations in the q-plane, depending upon ¢ and w. 

For the case(1) given by: 

Case(1) ¢ < d• and 
· cia 

0 < (..IJ < (.(.1 

or 

¢· < ¢' da. 
< r:f\ .. ::J. 

and w < w 
da 

< 00 ( 1 6) 
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Sn+ ·s + 
.R sR+-

Sc+ s+-s ss+ 

s+ s sc+- sd ... 
II 

i 
l\ 
~ 

for all w, a( c5 < cdJor O(W( w5a c5 (a(Cd for O<W(Wda Cl)Cd 

op a<.cs fop wsa<"fi(Wqo Q(Cd foPWcta(W.(.O 

(c) (b) (a) 

Fig. 2. Cagniard paths of integration in the q-plane. 
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where 

and 
2 

r 
C. -

d 
W. = I .ja 2 

I .... a Sll1 

= s i n -
1 c . I a ·, 

d 

2 2 - 1/2 
a S1n ¢' I 

I 2 
' 

2 
r.L' - b 

J 

f 

-1 
= sin b/a 

( 1 7 ) 

the vertex of the path q = q~ does not lie on the branch cuts and 

+ 
hence the path of integration contour is simply q = qd and is 

denoted by I. But for the case (2) g1ven by : 

Case ( 2): ~ < ¢ < ¢ and o < w < w · 'da ba da 

or ¢1 > and O<w<c.o ( 18) 

+ 
the vertex of the path q = qd lies on the branch cut between the 

. s~ ~ branch po1nts q = and q = S . Hence the integration 
c d 

given by 
+ 

q = q 
d 

for T > T vd which is denoted 

contour is 

by II, plus 

q = qda = i-rsi nc,b -
2 1/2 

T ) cos¢ ( 19) 

for T < T < T vda vd 
where 

C
z ) }1/2 2 2 z 1 ..-z · ] d cos¢ + ( w b + Cd) ·· sin ·P . 

(20) 

Transferring the ·path of integration from the real q-axis to 

the Cagniard's path we obtain 
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U zd (p , ¢1 , S ) = 2 Pab 
'ITL!C 

' d 

w t 
da 'Jd 

+ H(¢bu. - ¢)H(¢ - ¢da)J J Re[kzd(qdu. 

0 t 
•Jda 

+ H ( ¢ - ¢. )j" J Re [ 
bu. 

(J t 
•Jda. 

dq 
d·.J. 

dt 

dqda. ] -st 
,w) ---- e dtdw + 

dt 

e dtdw ] 
-st ] ( 21 ) 

where t = (p/Cd )T "d ·and t = (p/C )T The first term of ( 21) 
'Jd w 'Jda d 'Jda . 

+ 
is the contribution from qd and the second and third terms are the 

contributions from q 
da.. 

Now interchanging the order of integration in (21) and 

inverting the Laplace transform, we find that 

U (··, ,+, T) !Zd ,_., r, 

T 
dct 

.. r 
·"' J 

A 
da. 

... 

l 2 Pab 
H(T 1 ) = -

'ITUC 
I d 

[ 

dq 
da. 

Re k ( q w) 
zd da, 

dt 

T 
d 

J Re[ 
+ 

kzd ( qd 'W) 

(! 
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where 

+ H ( r}) - r})_ ) H ( T - T . ) >< 
' ' t:a da 

A 
da 

0 
A 

da 

{

0 for T <T < 1 
da 

= Td f 0 r 1 ( T < T ' 
. da 

= {o for -rd·.l <T< 

T for -r > 1 
d 

) 

0 2 . 2 ' ( 2 2) 2"' 
X d = T d b S 1 n rp + a - b T d COS '1--' 

2 
y =To b4 sin4J, + (az _ bz)z 2 4, 

d d 't" T d COS rp + 

Z_ = (-r_-
d d 

2 2 
-r = a -r 

d 

2 2 2 u . 2, 2, 
+ 2 ( a - b ) b -r -r s 1 n ¢' cos ¢' 

d d 

2 . 2 ' )2 
2Cd S1 n rp -

? ? 

2 2 2 
4C _ (a - c 

d d 

~ ~ i ) a. cos '+' 

1 0 1 

. 2 ' 2 .+ 
s 1 n r.p cos lf-' 

(22) 

(23) 

(24) 

(25) 



0 2 2 2 2 2 . 
(26) T = a -r (Cd - a cos ¢•) 

ci 

[ cl 2) 1/'2 1 
T = c cos¢ + C. sin 1-· J I (27) 

d·:J. a d •.:l 

2 bz 1/2 

r c -
l d 

(28) "[ = 
L I 

d·.:t 2 
sin 

2, -b2 J a (/.' 

The first term in u is due to the dilatational motion behind 
zd 

hemispherical wave front at T = 1 and the second and third terms 

are due to the dilatational motion behind the conical wave front at 

T-r for¢ > ~ • These wave fronts are shown in Fig. 3(a), T = 
'- da 'da 

Tda shown in Fig 3(a) by a dashed curve, is not a wave front 

because it 1s not a characteristic surface for governing wave 

equation for the dilatational motion. Similar non characteristic 

surfaces were found by Gakenheimer and Miklowitz [1969] for a point 

load travelling on an elastic half-space and also by Aggarwal and 

Ablow [1967] for the motion of an acoustic half-space due to an 

expanding surface load. They proved explicitly that their solution 

was analytic over the surfaces. The same thing can be proved in our 

case also. 

(b) Case a > cd > b 

In this case, the path of integration with respect to q 

transforms to the simple path given by contour I (Fig.2(a)) for all 
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\ 

~da 

z 

3 (a) for a > b > "" 

.... 
~ba 

'% 

\ 
I 
I 

't~>ba 

3 (c) for at < cd 

z 

\ 
\ 

\~ba 

3 (b) for at > ell > b 

F1o. 3. Wave patten for dilatational motion. 
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w when ¢ <¢ba and also for O<w<wda when <r.iJ • 'da whereas the 

path of integration with respect to q transform to the contour II 

(Fig.2(a)) fol- w <w <ct..' when dJ <¢<¢' and also for all w when d•J. ' ba da. 

¢ > ¢da.· The remaining details of inverting uzd for a > cd> b are 

exactly the same as for a> b> c, and one can easily find that 
d. 

T 

[H(r 
d 

2 Pab 
1) J Re [ U (p,dJ,T) 

'!' 

= - kzd ( qd 'W) zd ' 'T!UC . d 
0 

+ H ( ¢ - ¢. ) H ( ¢ . - ¢1 ) H ( T - T . ) X l:,a. da. da. 

'f 
da. 

dq 
X r Re r k ( q , w) d·.J. l dw + 

J l zd da. d t J . 
'f 

d 

+ H(d' - d1 )H(T - T. ) .Y.. . . da. da. 

T 
da. 

.x J Re [k ( q zd da. 
0 

A. da. 

+ dq, 
] dw 

.j 

+ 
dt 

(29) 

0 
where A is g1ven by (23). The wave geometry associated with this da. 

expression is shown in Fig.3(b). 
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(c) Case a < c 
d 

For this case the path of integration with respect to q 

transform to the simple path given by contour I [Figs. 2(b),2(c)] 

for all w when 0<¢ and also for O<w <w when~ >~ whereas the 
. bet. d·:t. ' 'bet.' 

path of integration with respect to q transforms to the contour II 

[Fig.2 (a)] for w <w<oo when ¢>¢ . Note that in this case the 
dct. bet. 

angle ¢ does not arise. Now preceding 
dct. 

i nvet-t i ng u we get 
zd 

U _(p,¢,T) = 
z,j 

2 Pab 
rr,uc d 

[ H(T -

T 
d·:J. 

as the 

dq 
H(¢1 l'f, )H ('r ·r' ) J Re[ kzd ( Qdu. 'W) 

dr.:1. 
+ - . ...., -

'h·:t. dct. 
dt 

T 
d 

case 

l dw 
J 

1 

a>b>c 
d 

J . 
(30) 

for 

The wave geometry associated with this expression is shown in 

Fig.3(c). As expected physically, contribution due to the conical 

wave front does not exist for this case. 

Summary 

Combin-ing (22),. (29) and (30) one finds that 

written as one expression for ail value of a and b. 

105 

u 
zd 

can be 



T .. d "'" 

Pab dw + 
u (pl¢1-r) 

2 l H(T 1)J Re [ k zd ( Q:, W) 
dqd ] 

= -
zd 'TI.UC. dt 

where 

I 

I 
A 

da i 
l 

I 

I 
I 

I 
I 
L 

. d 

r + lH(T -·1. )H(¢ 
Cia. 

0 

c.) + 
d 

+ H(a-c )H(c -b)lJ .. + H (-r -T '. ) H (ill - 1! ) f H ( a - c . ) r.. 
cta. ' ba. l ct 

d d 

x H(c - b)H(rb - rb) +·H(c- a)·_}] :,;. 
d ' da. ' ' d 

T. 
eta 

dqda ] ] s Re[ kzd ( Qda. I W ) ;1\. 
- dw 
dt 

A 
da 

= 0 for T < T < 1 l da. 

= T for 1 <·r <T' 
d da f ,, 

= T for T >·r '. J 
da a a. 

for ¢ <¢<¢ , a>b>c. 
da ba d 

= 0 for ·r <T < ·f l da I 

for rf' > ¢•. 1 a> b >cct. 
t>a 

( 
= T. for <T J for ¢ > ~ , a> c >b 

'da. d 
ct 

(31) 

T for > ·T/ 1 = ·r ' 
for w < w <¢ ,a > cd>b 

' ba. ' d a. 
d da 

L for¢>¢ ,a<c .. 
'ba. ct 

(32) 
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4. EQUIVOLUMINAL CONTRIBUTIONS 

Inve1~sion of u is comp1icated than the 
zs 

inversion of u 
zd 

because of the appearence of head waves (Von-Schmidt waves) 

otherwise it is same as u . Here the integration contour has more 
zd 

configurations in the q-plane though the singularities are the 

+ + 
same. Here the hyperbola q = q- arises in a similar way to q = q ., 

s d 

but its vertex can lie on the branch cut between the branch points 

+ + + + at q = s and q = S and at q = s and q = S as well as between q 
d s c s 

= s+ and q = s+, depending on the values of w, ¢, a and b. In this 
c d 

case, the straight line contour lying along the imaginary q-axis is 

denoted by q which is similar 
sa 

to q 
da 

appearing in the 

dilatational contributions. Now omiting details of inverting u"~ 
~"' 

one can easily find 

T 

r 
9 

u ( ,-, ¢' ., ) 4 Pab 
H(T 1 ) J [ (q 

"1-
,w) r-· , , ' = - Re k 

Z:d rruc. zg 9 
' •:i L .o 

"1-
dq 

g 

dt 

+ [H('f -r )H(cb- ¢ ){H(b- c) + H(c- b)H("a- c)} + 
9•:1 ' 9(1 9 9 9 

+ H(T - T
1 )H(¢ - ¢ ) {H(c - b)H(¢ - ¢) X 
sa ba s sa 

x H (a -c ) + H ( c - a)}] x 
s s 
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where 

T 
9U. dq 

J Re[ (q ,w) 
sa. 

] dw :,.:. k + 
:zs sa 

dt 
A 

9Ci 

+ H(T- T )H('r'.- T)H(¢'- q_, .) .". 
sd sd . sd 

T 
:=:d 

x. Jr Re [k ( q , w) 
zs sa 

A 
:=:d 

(33) 

for 0 < p < oo , 0 < ¢ < rr/2, 

0 < r <m, 05 a <m and 0 < b <co, a> b 

r = 0 for T < '[ < 1 r ¢ < ¢) <~ba'a>ed,a>b>e9 ,ae9 >bed SCi SCi 

I i ¢ <r./.> <¢
9
d,a>ed,a>b>e

9
,ae

9
<bed I S!•.J.. 

I I 
I = T for 1 (T < -r' l rj.J <o:f.> <¢. ,ed>a>b>e 

9 sa 9(.1. abs · s 
I 
I 
I 

I 
! 

0 for < < 1 { ¢ < 4' <¢'sci , a> b > e d , ae s > bed = ·r T 
sa ba 

= T for ·r > 1 l ¢ <¢ <dJ ,a>c >e >b ' s sa 'sd d s 

= 0 for '[ < T( T l 
sa sd ,, 

= T for T < T < r' l ,,.., >¢ .,a>b>e, ac >be 
( "T" 

sd sd sd sd d 9 d 

T for > -r' 
lj q., >d' , a> e.> e >b 

= -r 'sd d 9 

9 9d 

= 0 for T < T (T l 
sa. sd I 

I 
I 
I 

= T for T < T <T' ~ rj.> >¢ .,a>b>c.,ae <be. 
sd sd 9d Sd d 9 d 
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A 
sa 

I 
I 
l 
I 

I 
I 

I 
I 

I 
I 

,I 

J 
1, 

I 
I 
! 

I 
I 
I 
I 

= T for T' <T <T' 
s sd sa 

= T for T > T' 
9 9 •J. 

= T for -r' <-r<-r'. 
9 sa scta 

= T . for -r' <-rcr' 
sct sda sd 

= T for T">T'. 
9 sct 

= 0 for T ('[ < 1 
so. 

= T for 1 <T 
s 

<T' 
sda 

= T for -r' <T<T' 
sd sda sd 

= T for ·r>T' 
sd 

= 0 forT <T<·r' 
sa sda. 

= T
9
d for -r' <T <T' 

sda sd 

= T for T > T' 
sd 

= 0 for T u < 1 
9Ci 

= T 
9 

for l<T<T' 
,;;de. 

= T forT'. <T<T' 
9d ,;;aa ,;;d 

= T for T 1 <T<T' 
9 sd sa. 

= 0 for T < T <T' 
9da. 

= T for -r' <T<T' 
sd sd•J. sci 

= T for T 1 (T(T' 
sd sa 9 

j 
r 
i 
l 

l 
,' 
I 

r 
I, 
'I 
J 

l 

l 
( ,, 
I 

l 
l 

I ,, 

~ ll 
l 
I 
I 

~· 

l 
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¢ <~ <¢ ,a>c.>c >b 
h·J. ' 9 •J. d s 

¢'. <¢ <¢ . , c. >a>c > b 
be. C.b:S d s 

¢· < <P<r.P. ,a<c 
be. aus s 

4-, . <4-,<4· , c. >a>c >b 
:J.t~g ga. d g 

4J>rj.• . , a<c 
a.t1 :9 9 

(34) 

~>~ ,c.>a>c >b,u>0 
' 8(J d 9 

¢ <¢<¢ ,c >a>c >b,~>a>r' 
S•J. X d 9 

¢ >~ ,c >a>b>c ,a>0 
' ba. d 9 

¢ <~<~ ,c >a>b>c ,0>a>r 
l;uJ.' 'x d 9 

¢>¢ ,c >a>c >b,0>a>r' 
X d 9 

¢>¢ ,c >a>b>c .~>a>r 
X d 9 

¢•>¢. ; c >a>b>c. ,a<r 
l;)oJ. d 9 

~ <~<A c >a>b>c a>~ 
I a.bg I r ba. ' d 9 7 I 

¢ . <4,<¢ , c. >a>b>c ,(J>c.o;v 
a.bs b·J. d s 

¢ . <~<¢.• , c. >a>b>c ,a<y 
a.bs !~ d s 

¢ <¢<¢ ,c >a>b>c ,a<y. 
X be. d 9 



A . 
sct 

I 
I 

I 
II 

l, 

I 
I 
I 

I 

I 
I 
L 

= 0 for T <T < 1 ad 

= T for 
:3 

1 <T <T I 

sci 

= 0 for T <-r < 1 
sd 

= T for 1<-r<T 1 

s sa. 

= T forT' (T(T 1 

sa. sda.. sa 

= T for T
1

• <T<T' 
scta sd s 

= 0 for .,... <·' <·' 
L sd L L sa. 

l 
I 
J 

( 

= T for T < T <T 1 
1,' 

sa sda 1 sa 
I 

= T for T
1 

<T<T' 
s da s d l 

= 0 for T (T (T l 
ad. <s.: 

1 
f 

for t <T : 
sa ada = T 

sa 

= 0 for T 
1 

• <T < 1 
sda 

= T for 1 <T 
s 

<TI 
ed 

= 0 for ·r <r <T 
::;d 9a 

= T for r <T<T' 

= T 

sa sa. sa. 

8 

f 0 r ·r I ( .,- ( .,- I 

'au. ' 'sd 

J 

l 
I 
L 
I, 
I 
I 

J 

¢ d<¢<¢ b ,c >a>c >b s a·s d s 

¢ <¢<¢ ,c >a>b>c 
s d sa. d s 

¢ d<¢<¢ b ,a<c s a s 8 

¢. <¢<¢ ,c.>a>c >b 
abe sa d s 

¢ >¢ . , a< c 
at.s e 

·di >¢.' c.>a>c >b ot)ij' 
' sa' d s ' 1 

¢ <¢<¢ ,c.>a>c >b,~>a>r' 
sa x d s 

¢>¢ . , c. >a>b>c ,a>f3 
abs d 9 

¢. <¢<¢ ,c >a>b>c .~>a>r 
aba x d s 

¢ <¢<¢ ,c >a>b>c ,a<r 
abs x d s 

¢>¢ ,c >a>c >b,~>a>r' 
)( d 8 

¢>¢ ,c >a>b>c .~>a>r 
X d 9 

¢>~ ,c >a>b>c ;a~r 
' X : d :3 

(35) 
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and also where 

T 
9 

T 
sa 

X 
s 

y 
s 

= (T 

= [ 
I) 

= 'f s 

0 = T 
s 

2 12) 1/2 -

2 2, 
b

2 /z 1/2 1/2 
X - {Y -(a cos <:p - } . 

] 9 9 9 

2 2 b2 )2 (a cos ¢ -

2 . 2' 
(a 

2 b2) 2, 
b s1 n rp + - T cos cp 

:3 

2 
4 ' 4 ' ( 2 2 )2 2 4 ' b s 1 n cp + a - b T cos f/-' + 

s 

2 ' 2ri ' 2 2 2 ( 2 2 ) ' 2.4 2 . Z = ( T - 2c .s 1 n ~,) - 4 1 c a - c s 1 n wcos rJ_, 
9 9 d d 9 • • 

I) 

T 
s 

T 
sd 

T 
sa 

'f 
sd 

2 2 2 2 2 2,) = a ·r + 1 ( c - a cos q:.' 
s 

2 2 12 ( c2 2 2 ' ) = aT - - a cos q:.• 
s 

= [{cT - T )cosec¢ +J sd 

1/a[l(a
2 2 1/2 ' = - c_) cosq.' + 

"' 

- ~r/2 

cd sin'4] 

= [cl2 - 1//2 cos ¢> + sin ¢> J 

11 1 

(36) 

(37) 

(38) 
" 

(39) 

(40) 

(41) 



¢ 
){ 

·r I 
' = 

9•:1. 

-r' 
gd = 

-1 = sin 

¢. = at,,;; 

r 
12 ( b2 - cz) r2 s 

L b2 2 
sin 2 ' - a 1-' 

cl - 1 )1/2 sec¢• 

2 

1/2 
1) cos¢• + 

c. 

l
- ct 

2 
a 

-1 = sin 

2 
- b 

2 
- b 

c /a, 
g 

r:J_, 
'sd 

c /c., 4•. 
,;; d t.a 

z ., 

( 
c b"" 

sin 
-1 d 

1
2 

(a 
2 2 2 2 - b )+cd -a 

z z 
c. - a 

sin ¢• ] 

-1 = sin 

l 
1/2 

) 

b/a 

r/2 ( .j 
(~ ( 12 1/2 

(.lJ,. = = - 1 ) ' I ;-
I 2 b2 '- a 

·,.. = b ( ,z 
, a 

z 
(c. a a 

., ~ .1? 
b ... ) ........ ,· 

2 2 

c [ a - c.::, ( c~ _ b? )] l/2 
a,; ( 12 - 1 /...-z - ~ . -a-2--b; a -

+ 2 T2 )1/Z q = i T sin¢ + (T - cos¢ 
9 V9 

11 2 

(42) 

(4~) 

(44) 

(45) 

(46) 

l ( 47) 

(48) 

(49) 



2 2 1 /? 

T = (w + 1 ) .· ~ (50) 
\la 

iT sin¢, i(T 
z Tz )1/Z cos¢ (51) q = - -

sa W'S 

The first term in the expression (33) is the equivoluminal 

motion behind the hemispherical wave front at T = 1 and the second 

is due to the equivoluminal motion behind the conical wave front at 

T = T . The third term in u represents the equivoluminal motion 
sa zs 

due to the head wave fronts at T = T 
sd 

The wave fronts T = T . 
sa 

for r} >r.iJ and T = ·r are shown in Figs. 4(a-1). 
' 'sd sa 

The equations T = r' , T = r' and T = r' are shown in 
sa sd sda 

Fig. 4 by dashed curves which are similar to T = T' 
da 

appearing in 

the u . These dashed curved surfaces are not considered as wave 
zd 

fronts because it can be shown that displacements and their 

derivatives are continuous across these surfaces. 

5. WAVE FRONT EXPANSIONS 

The wave forms of the solution given in (31) and (33) are 

evaluted by approximate estimation of the integrals in the 

neighbourhood of the first arrival of the different waves. To 

facilitate this evaluation we put 

z 2 2. . z 1/2 
w =[A + (B- A )Slnc~.J (52) 

11 3 



in the integrals arising in and u where A and 8 are 
zs 

respectively the lower and upper limits of the particular integral 

in question, and the range of integration with respect to a is from 

0 to rr/2. 

Now for the first integral of (31), we put w = T. sin a and 
d 

hence for T ---t 1 +, we find that for any value of a, 

w ~ 0, 

d + cd qd cos ¢ 
···--7 

T cosot' 
dt 

p 
d 

m. ~ cos¢, 
a 

m ~ 
0 

( 12 . 2 ') - 2s 1 n rp , 

E 
1/2 

N ~ N 
1 

C. 
,•j ..... 

i 
c. 

a 

2 
(c. 

d 

2 ' 2 ' )1/2 as1nq:• , 

( 
2 . 2. 2)1.-'.2 

as1n¢-c , 
d 

for 

for ¢• > d• 
I :.:kt' 

( 
2 ' 2 ' )2 .. 2 ' . ( 2 . 2 . 1/2 where N = 1 - 2 s 1 n q:• + 4 s 1 n q:• cos ¢• 1 - s 1 n ¢•) • 

:1 

(53) 

(54) 

Substituting these approximate values in the first integral of 

(31) one can find, for¢<~ 
'da 

[ u ] ---t N as T ---t 1 + 
Z Z1. 

where 

N 
b 2.(2 ,2,) Pa cd cos ¢ 1 - 2s1n ~ 

= 
(

2 2 ,2,)1/2 
~p cd - a s1n rp .N

1 

Z1 
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Again in the second integral of (31) we put w·=T sina and as T~1-
da. 

for ¢>¢ we find that 
da. 

i s i n¢' - i cos¢ T da s i n a 

dq ic T sin a sin¢ + cos¢ da d da 
~ 

p 
( T~ 2· '1'2):1/2 .dt sin (~ + -

a a 

Puting these values in the second integral of (31), we get 

(57) 

TU2 
i c d 

J Re[ kzd ( i sin¢ i cos¢ sin sin a) 

I) 

= 

X 

+ 

X 

T da 

T sin a sin¢ + c6s ¢ da 

ot, T da 

2 ' 2 2 1/2 
(Tda Sln u + 1 - T ) 

] T COSOl dOl da 

E 

Re[ 
' 

f k ( i sin¢ -i cos ¢ T sin 0(, Tda sin zd da 
0 

T. sin a. si n¢• + cos¢ 

] da .,... 
COSC.~ de.~ + 

2 2 2) :1/2 
1 cla 

(T. sin (.~ + 1 - ·r 
da 

·t[/'2 

f Re[kz/isin ¢ icos¢ T sin sinot) - (.~ ' T. da da 
E 

Tdasin a sin¢' + cos¢• 

] T CO SOl de{ 
( 2 ' 2 2):1/2 da T Sln <.X + 1 - ·r 

da 

where E is very small. 

1 15 

X 

p 

(58) 

i cd 
0( ) -- X 

p 

i c cl 
X 

p 

(59) 



Since the main contribution to the integral (58) as T ~ 

arises from the first integral of (59) as ·r 
' 1 , so for the 

evaluation of (58) as -r ~ 1, we consider the approximate value of 

the integral given by 

E 
i cd 

k ( i s i nrh - i cos ,J.. T sin Ol T sin 01) -- x 
zd ..,. 'V da ' da p 

0 

T sin ('{ sin¢ + cos¢ ] da 
:..:.. T CO SOl de.~ (60) 

2 2 2) :1/2 da 
(T. sin (~ + 1 - T 

da 

as -r ---t 1 • 

Since E is very small so a is also small. So for the evaluation of. 

the integral (60) as T ~ 1 we also use the fact that a ~o, from 

which we get, 

' ' ,;, ( 12 . 2 ' )1/2 w ---+ 0, qda ~ 1 S1nf[J, md ~ cos'~-', m
9 
~ - s1n t:p , 

( 61 ) . 

1/2 . I ( 2 . 2 , 2 )1/2 for , ¢ 
N ~ N :L , E ~ 1 c d a s 1 n q; - c cl q; > 'do. • 

Now substituting these approximate values in (60) and integrating 

we obtain the approximate value of the integral as 

11 6 



So for ¢' > 

where 

2 2,(2 .2,) cd cos ~ 1 - 2s1n ~ 
1 og IT - 1 I 

( 
2 . 2 ' 2) :1/2 

p a Sln r.p- C. .N 
d 1 

2,(2 .. 2-1) 2Pabc cos rp 1 -· 2 s1n '+' 
d 

N = 
Z4 

( 
2 . 2 .J 2 1/2 

ITf.lp a s 1 n cp - .c . ) . N 
.j :1 

when T ---1: 1 • 

In order to obtain the value of u as T ~ T we put 
zd da 

2 
w 

2 = A 
da. 

2 . . 2 
A.)Slnot. 

da. ' 

in the second integral of (31). 

When T ~ T. +, we find that 
da 

w ~ 0 

q . ____,. ; 
da. 

c 
d 

a 

dq_/dt~iA' 
cta 

2 2 

... 

where A' = c d ( _a __ -_zc_d J :1/2 for a > cd' 
pa L 

- ·T 
da 

11 7 
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where 

where 

m ___, 
d 

1/a(a 

1 
m ___, 

,; a 

N ---t N 
2 

2 
(a 

2 2 )1/2 for - cd 

c2)v2 - m 
9 0 

E
1/2 . 1/2 ( )1/2 __,. lK T - -r 

da. 

a 

___, 

2 2 2 1/2 
cos a(a -c.) . 

2a d 

> cd, 

z 
1 

(a 
2 

2 
a 

K = 
cd (< az 2 ) 1/2 . A. · A.] -cd s1n~ - cdcos~ 

(65) 

2 - 2c ), 
s 

Using these approximate values in the second integral of (31) 

we find that for a > cd 

where 

[u J ---t N 
Z4 z 

N 
2Pab = Z4 

as T ---tT 
da. 

+ 

2)1/2( 2 - c a 
d 

( 2KA )
1

/
2 

N 
2 
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r 

where Z ( 2 Z )1/Z , ¢ , 
C = Ba c dT da a -c d s 1 n ~ cosq:., 

2 2 2) 2 0) 2 2. 2. ( 0. 
A=a(a-b cos¢7: (T +T +abs1n¢Td T.-TdaJ da da da a cia 

It may be noted that conical wave front T 

for a < c 
d 

(68) 

= T does not arise 
da 

Next when ¢ < rj.1 , for the eva 1 uat ion of u as r ---t 1 , we put 
.sa zs 

w = T sina in the first integral of (33). When T--;, 1, we find that 
s 

in the above integral 

w --;, 0 

+ 
il sin¢' q -t 

s 

dq+ cd s 
1 cos¢ 

~ 

dt p T co sex 
s 

( 
2 2) 2. 2, 

q +w ---t - 1 s 1 n q:., 

m ---t 1 cos¢' 
s 

11 9 



2 ( zd . 2 , ) m __,. 1 cos , ' - s 1 n rp 
0 

1/2 1 2 2 ' 2 '{/2 E. ~ -(c a s1 n !f' c g 
9 

(a 
2 2. c2 )1/2 ---t sin¢ for 

c g 
g 

N ____,. 1
3

N 
!'I 

for ¢.• < ¢'Q·:J. 

¢> > q., 
sa 

where [ 1 ( 2-/, , 2,)2 , 2, A.(· 12, 2-/,)1/2] N
9 

= cos 'f' - s 1 n f/J + 4s 1 n f!J cos'f' 1 - s 1 n 'f' • 

Using these approximate values in the first integral of (33) 

one can find for all values of a and b, 

where 

[ u ] ---t N for ¢ < ¢ as T ---t 1 
z z2 sa 

N = 
Z2 

2pabc 
:9 

,up 

' 2¢ ' 
51 n ' COS!f' ( . 1 2 ' 2 .:1. ) 1 / 2 1- s1n 'f' 

2 2 ' 2 1/2 
(c -a s1n ¢) .N 

9 9 

(70) 

(71 ) 

For ¢ > ¢ , considering approximate evalu~tion of last two 
sa 

integrals of (33) as T---t 1 it can be shown that for the case· 

a > b >c 
d 

u ~ N 1 og IT - 1 I for ¢ > ¢ as T ---t 1 
z z3 ad 
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(73) 



and for the case cd > a > b > cs 

and also for the case c > a > b , 

where 

N 
z5 

N 
Z9 

= 

= 

2pabc 
s 

8pabc 
s 

IT,Up 

as T ~ 1 

'2,J '( 12 '2-~·)1/2 
S 1 n 'tl COS!f' 1 - . S 1 n '+' 

2 . 2 -~- c2 ) 1 / 2 (a s1n 'P - N 
g 9 

. 4 ,J, 2 ' ' ( 2 ' 2 ,J, ) s1n ..,., cos !fJ 1 s1n ..,., - 1 

2 . 2¢ c2 )1/2 (a s1n · :.. N 
g 4 

(75) 

(76) 

(77) 

(78) 

. 2 ' ¢ ( 2 ' 2d ) 1/2 ( 2d ' 2 . )2 2pabc. s1n q_1 cos 1 1 s1n ,1 - 1 cos.'- s1n ¢ 
d 

N = 
z6 

'IT.,Up (c
2 2 .2.)1/2N - a s1n ¢• 
g 4 

[ 1
2 ( 2 ' • 2¢ ) 4 ' 4 ' 2 ,J, ( 2 . 2 _,J_ ) ] N = cos ({-1 - s 1 n I + 1 6 s 1 n !fJ cos ..,., 1 s 1 n o/ - 1 

4 

(79) 

(80) 

For the approximate evaluation of the displacements at the 

wave fronts T = T 
sa 

and T = T 
sd 

we follow 

1 21 

similar procedure as 



followed for the evaluation of u as T ~ T and we find that 
zd da 

where 

N = 
Z6 

[ u ] ~ N as T ~ T for a > c 
z z5 ea. d 

[ u z ] ~ N z<5 as T ~ T sa. for c d > a > c 
9 

[ U ] ___,. N ( T - T ) 
3
/Z f > 

3 d 
as T ~ T ~d or a cd z z 9 ~ 

[ U ] ~ N ( T - T . ) as T ~ T . f 0 r a < C . 
z z? ed sd d 

N = 
z!5 

2 2 :1/2 
4Pbc d A

9 
[ (a -c d ) D 

9 
] 

2 . :1/2 
·rr,u a ( 2 K B A ) 

9 :3 9 

2 :~ ( 2 2 [ (a· 2 _ cz ) 0 ] 1/2 16Pa bed cd-a ) A
8 8 8 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 
2 1/Z 6 2 Z 4 4 Z Z Z 2 

·rr,u(2K-=- 1 A
9

) [1 (a -2c
9

) - 16c. (c -a )(a -c )] 
~ d d 9 

4Pab 

[ 
2 coseo:jJ r/2 2 

N = - -- Asd 8
sd 

B A (87) 
z3 sd sd z z 

rr,u a - C. 
.j 

4Pab 

[ 
2 cosec¢ r2 2 

N = Asd 8
sd 

A (88) 
z7 sd 2 2 

·rr,u c. - a 
.j 

2 ., 1 ... , 

1 cd (a - c ... ) .· .... 
s 

A = (89) 
s 2 2 1/2 . . ,:, [ l(a -c ) s1 nd> c. cos¢' ] 

9 ' u 

122 



z 2 c2 )1...-2 D = 8a 1 c -r s i ncb cos¢• (a -
s d s;a ' 9 

(90) 

[ 
2 z 0 ) . 2 ' ( 2 2) z 2 ' ( 0 )] ( ) 

A 
9 

= ·r sa a b ( T sa- T 
9 

a s 1 n q; + a - b a cos q; T sa.+ T sa. 9 2 

A =·rr4 [ 
sd 

(93) 

(94) 

B = 4 A ( 1
2 

-· 1 //
2 

B
2 

sd sd sd 
(95) 

A = ( 1 2 - 1 ) uz ( 1 2 - 1 ) V"Z s i n¢• - cos¢• cd [ ]-1 
sd p 

(96) 

In these expressions the notations [u ] stands for the change 
z 

in u across a wave front and N etc. are wave front coefficients. 
z Z1 

It may also be noted that if we put a = b in this problem, it 

re'duces to the problem of uniformly expanding circular ring source 

and in that case our derived results coincide with the results 

given in the paper of Gakenheimer [1971]. 
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Fig. 4. 
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4 (a) for ct > c,,. a > b.> c., a c. > b cd. 

'\ ., 

z 

' rJisd 

........ 
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'I' be 

4 (b) for a > c," ct > b > c., a c, < bed.· 

X 

X 

Wave pattern for eq~ivoluminal and head wave motion. 
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\ 

4>ba 

\ 
\ 

' '-~sd 

\ 41sa 

4 (c) for a > cd > ca > b. 

:z: 

4 (d) for cd ::> a > b > c6, a > p . 

)( 

Fig. 4. Wave pattern for equivoluminal and head wave motion. 
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Fig, 4. 
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Wave pattern for equivoluminal and head wave motion. 
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0 

Fig. 4. 

z 

4 (g) for cd > a > c·, > b, cr > [3, acJ < bed. 

\ 
\ 
\ 

............ ....-\ 
q,sd 

z 
4 (h) for Cd > a> c, > b, (3 > cr > y', ac, < bed. 

' ~~'aba' 

"'· 

X 

Wave pattern for equivoluminal and head wave motion. 
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z 
4 (i) for Ctl > a> c, > b, oc > ~. a Cs > b Ctl. 

z 

4 (j) for ct~> a > c, > b, ~ > « > y', ac1 > bed. 

Fig. 4. Wave pattern for equivoluminal and head wave motion. 
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Fig. 4. 
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4 (I) for u _ < c1, ac, > b cd. 
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Wave pattern for equivoluminal and head wave motion. 
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