INTRODUCTION

The study of wave and vibration phenomena 1in elastic solids

has a distinguished history of more than hundred years. Some

pioneer workers in %he field of wave propagation in elastic medium

and vibrating bodies are Cauchy, Rayleigh, Love, Poisson, -

Ostrogadsky, Green, Lame, Stokes, Kelvin.

Seismology has made a tremendous progress. during the Tlast

three decades, mainly because of the technological developments,
which have enabled seismologist to make measurements with far

greater precision and sophistication than was previously possible.

Here, some of the major progress 1in the field of wave

propagation are given in chronological order.

1678 : Robert Hooke (England) established the stress-strain
relation. for elastic bodies.

1821 : Louis Nevier (France) derived the differential equations
of the theory of elasticity. '

1822 : Cauchy developed most of the aspects_of the pure theory
of e1asticity 1nciud1ng the dynamical equations of
motion for a solid. |

1828 : Simeo-Denis Poisson (France) predicted theoretically the

existance of longitudinal and tranverse elastic waves.
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George Gabriel Stokés (England) conceived the first
mathematical model of an earthguake source.

First systematic attempt to apply physical principles to
earthquake effects by Robert Mallet (Ireland).
Clebsch found the general theory for the free vibratiéh
of solid bodies using normal modes.
J. Hopkinson performed'the first experiments on plastic
waves propagation in wires.
saint Venant summarized the work on impact of earlier
investigators and presented his results on transverse
impact.
Rosi-Forel scale for earthquake effects published.
C. Somigliana (Italy) produced formal solutions to Navier
equations for a wide class o% sources and boundary
conditions.

Lord Rayleigh (England) predicted the existance of
elastic surface waves.
C. G. Knott (England) aerived the general . equations for
the reflection and refraction of plane seismic waves at
plane boundaries.
A. E. H. Love (Eng1and) developed the fundamental theory
of point sources in an ﬁnfinite elastic space.
Horance Lamb (England) made thev first 1investigation of

pulse propagation in a semi-infinite soiid.
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1911 : Love developed the theory of waves 1in a thin Jlayer
overlying a solid and showed that such waves accounted
for certain anomalies in seismogram records.

1949 . ; Devies published an extensive theoretical and
experimental study on waves in bars.

1959 : Ari Ben-Menahem (Israel) discovered that the energy
release in earthquakes takes place through a propagating
rupture over the causative fault.

1967 : Global seismicity patterﬁé and earthquake generation
1inked to plate motions.

During the first two decades of this century the subject was
not given so much importance by Matheﬁaticians or Physicists. But
Tater, interest in the study of waves in elastic solids attracted
the attention of the researchers because of. applications 1in - the
field of geophysics and engingering constructions. Since that time
in seismology the wave propagation has remained an interesting area
because of the need for details information on earthquake
phenomena, prospecting techniques and the detection of nuclear
explosions. Bullen [1963], Ewing et al [1957], Cagniard [1962],
Pilant [1979] and Aki and Richards [1980] have d{scussed about
seismic waves in their books.

During last 30-40 years the development of theory of wave
propagation in elasticity has been characterized by a detailed

investigation of the classical methods of mathematical ana]ysié and



the trends to obtain specific results. The solution of many of the
problems in elastodynamics, which are frequently encountered 1in
practice need advanhce level of mathematica] techn%que, which may
roughly be grouped into the following categories:
(a) Theory of ana1yt1c function
(b) The Fredholm 1ntegra1‘equat10n
-(c) The singular 1ntégra1 equat%on
“(d) Integral transférms and Representations
(e) Dual integral and series equations
(f) Harmonic function. Potentié] theory
(g) The Drichlet and ﬁeumann problems
(h) Green’s functions
(i) The Cauchy problem
(j) Cagniard-deHoop tec%nique
(k) Wiener - Hopf technique
(1) Riemann - Hilbert problem
(m) The method of Matched Asymptotic expansions
(n) Perturbation technique
(o) Vvariational method, The Ritz method
(p) The method of finite element
(a) The method of boundary element
and others.
While earlier investigation in the theory of elasticity was

essentially reduced to the construction of particular solution; the



invention of computer technology has led to the deveiopment Qf
general and quite_universa1 methods of solving the problems of this
theory, namely, the boundafy value problems and 1initial boundary
value problems for systems of differential equations having partial
derivatives of a definite structure.

Most of the experimental works carried out on the wave
propagation are concerned with studying propagation in specimens of
compafative1y simple geometrical shape. The results of this
experiment could be compared directly with exact or approximate
theoretical predictions. The agreement, with experimental results
and theoretical predictions, inspires confidence  in taking up .
complicated problems and makes possible theoretical predictions and
interpretations of observations.

The propagation of waves through homogeneous isotropic e1aét1c
materials of unbounded extension 1is not a subject of very
complexity. The waves are either dilatiational or distortional or a
combination there of. The picture changes radicaﬁ]y as soon as
there is a boundary. Interaction Qf two types of waves occurs, when
boundary 1is present and this 1interaction presents an inherent
difficulty in the solution of elastodynamic probliems.

More over the effect of a free surface on the generation and
propagation of waves 1in e1éstic hedium has been the subject of many
investigations ever since the discovery of existance of surféce

waves by LORD RAYLEIGH.



In general, problems which mostly attract the researchers both
theoretical and experimental, in relation to the generation and
propagation of waves in an elastic medium may be c1assifiedi as
follows;

(i) diffraction of propagating waves through the medium due
to any obstacle, cavity br a crack of any shape situated
some where in the medium;

(ii) reflection, refraction and diffraction of propagating
waves due to mixed boundary conditions;

(iii) wave motion generated due to a punch on some bounded
region of the medium;

(iv) radiation of waves i.e. the wave motions generated due
to some fixed external disturbance and propagating away
from the source of disturbance;

(v) wave motion generated in a medium when a source of
disturbance moves along the medium.

Depending on the nature of the source of disturbance, shape of
the punch or normal loading on the free surfacé and the presence of
discontinuities 1in the medium,’ different complicated problems
arise. The solution of these prob]ems need an advance Tlevel of
sophisticated mathematical techniques some of which have been
mentioned earlier.

The dynamic response of an elastic half space due to an

external load or punch on the free surface and also the scattering



of elastic waves by a finite crack or a strip 1inside an e1ast1c
medium may be investigated by the use of integral transform-
technique.

fhe propagation of waves due to the application of loads at
the boundary of a semi—infinitg medium was first considered by Lamb
[1904], who studied the axisymmetric propagation of a pulse created
by transient normal point load oh the surface of the half-space. BY
means of Fourier Synthesis ofvsteady state sojutions, Lamb showed
the predominant character of the ARay]eigh wave response. Later,
Sauter [1950] derived a closed form solution by means of an
integral superposition of p1ane harmonic waves. Many authors ha&e
subsequently viewed and reviewed the problems which deal with the
disturbance produced by a point or 1line source acting on the
sufface or buried in an elastic half-space 5} means of Laplace
transform. Pekefisv[1955] derived the exact expression forA the
vertical and horizontal components of +the displacement on the
surface of a uniform elastic half-space due to a point 1load with
step function time variation, situated on the surface and also at a
finite depth below the surface. Thiruvenkatachar [1955] derived the
exact expression for the Laplace transform of the disp]acement over
a circular region which is more realistic physically. Knopoff and
Gilbert [1959] and Lang [1961] derived the wave front approximation
by the app]icétion of saddle point method +to - the Laplace

transformed solution and Timit theorems of Tauberian type. While




Cagniard [1962] developed powerful technique of finding the
Laplace inversion for this class of problems. Mitra [1964]
investigated this type of problem 1in detail, verified Pekaris’é
result and pointed out that Cagniard’s method can be applied more
widely than either Pekaris’s or Chao’s method. This type'of problem
was then 1investigated by Eason [1964, 1966], Mitra [1964],
Chakraborty and De {19711, Gakenheimer [1871], Ghosh [1971]1 and
many others. All these are axisymmétric problems.

Very few wave propagation prdb1ems of non-axisymmetric type
have been solved. Chao [1960]'der1ved the exact solution for the
half-space problem in which the disturbance is due to a tangential
surface point load. Pekeris and . Longman [1958] . investigated thg
motion of the surface of a unifofm elastic ha]f—sbace produced by
the application of torque pulse at a point below the surface. Usihg
a modification of Cagniard’s method, Gakenheimer and Miklowitz
[1969] analysed transient excitation of the elastic half-space by a
point load travelling on the surface. All these non-axisymmetric
problems deal with the point load.

For the problems dealing with the ring load we refer Maiti
[1978], Ghosh [1980-81] and éthers. Maiti [1978] treated the

problem of asymmetric finite source, examined the effect of a

half-space of impulsive shearing traction over a circular portion -

of the surface. The formal solution is obtained by expressing the

displacement components in terms of scalar and vector potentials



and using Laplace and double Fourier transforms. The inverse
transforms are evaluated by modified Cagniard’s techinque which
yields the solution within and on the half-space in a closed
integral form. Ghosh [1980-81] treated the problem of disturbance
in an elastic semi-infinite medium due to the tofsona1 motion of a
circular ring source on the free surface of homogeneous and
1nh§mogeneous medium. Using Laplace transform and the Hankel
transform and the Laplace inversion by Cagniard’s method the
integrals for displacement are evaluated numerica11y}

On the other hand Pal and Ghosh [1987] considered the elliptic
ring load prépagating over the free surface of a semi—infinife
medium. The expression for displacement at _points on the free
surface has been derived in Hntegral form by the application of
Cagnhiard-de-Hoop technique for different values of the rate df
increase of the major and minor axes of the elliptic ring source
The displacement jumps across the different wave fronts have also
been derived. A comprehensive survey of the fie]d due to extended
'source problems has been given by Scott and Miklowitz [1964].

The probiems relating to the propagation of‘e1astic waves, due
to applied boundary tractions, in semi-infinite media containing
1nﬁerna1_boundar1es are of immense importance in seismology and
geophysics rather than of point sourcg problems 1in homogeneous
semi-infinite medium. This type of problem was f%rst considered by

Johnson and Parnes [1977]. The problem, they treated, 1is that of a



semi-infinite elastic body containing a rigid 1lubricted inclusion
whose axis is perpendicular to the plane surface subjected to an
axisymmetric concentric line load applied dynamically as a step
function in time at the pltane surface. The dynamic problem was
formu1éted interms of two potential functions which satisfy
uncoupled two dimensionhal wave equations with coupled boundary
conditions. Using Laplace transform, the integral solution for the
transformed stress and disp1aceﬁent fields throughout the medium
are obtained. The behaviour near the wave fronts was analyzed and
singu]arﬁties at the load were determined.

This type of work has been treated by Pal, Ghosh and Chowdhur1i
[1985]. They solved the problem of SH-type of elastic wave
propagating in the semi-infinite medium 'due to a ring source
producing SH-waves 1in presence of circular cylindrical cavity as
we1i as circular cylindrical inclusion in the semi-infinite medium.

The diffraction of elastic waves by cracks 1is the most
1nterest1ng branch of elastodynamics. Normally cracks are present
in all structural materials, either as natural defects or asv a
result of fabrication processes. In 'many cases, the éracks are
sufficiently small so that their presence does not significantly
reduce the strength of the material. In other cases,: however, the
cracks are large enough, or they may become large enough through
fatigue, stress corrosion cracking, etc., so that they must be

taken into account 1in determining the strength. The body of
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knowledge which has been developed for the analysis of stresses in
cracked solids is known generally as fracture mechanics. In recent
years problems éf diffraction of elastic waves by cracks are of
consfderab]e importance in view of their application in seismology
énd geophysics. Indeed in geophysical stratifications, faults occur
at the interfaces while 1in manufactured laminates 1mperfections
occur at the 1interface of the adjoining Tlayers. This stress
singularity near the edge of finite crack at the bimaterial
interface is important in view of its pracfica] application. Also
the results of resear;h on dynhamic crack propégation. are re]event'
in numerous applications. For exémp]e, a priméry objective 1in
engineering structures is to avoid a running fracture, or at least
to arrest a running crack once it 13 initiated. 1Indeed there are
several kinds of large engineering structures in which rapid crack
gfowth is a definite possibi]ity; In earth science, study of ’the

elastic fieild near about the pfobagating fault 1is also 1mportéht
from the stand point of earthquake engineering.

Whithin the framework of a continuum model, such as the
homogeneous, isotropic 1linearly elastic continuum, the <classic
analytical problem of fracture mechanics consists of the
computation of the fields of stress and deformation in the vicinity
of the tip of a crack, together with the application of a Tfracture
criterioﬁ. In a conventional analysis inertia (or dynamic) effects

are neglected and the analytical work is quasi-static in nature.
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Because of Tloading bonditions and material characteristics,
however, there are many fracture mechanics problems which can not
be viewed as being quasi—stafic and for which the 1inertia of the
material must be taken into account. Also inertia effects become of
importance if the propagation of the crack is so fast, as fpr
example in essentially brittle fracture, that rapid motions are
generated in the medium. The iabel “dynamic loading"” is attached to
the effects of inertia on fracture due to rapidly applied loads.

There are fwo broad classes of fracture mecﬁanics problems
that have to be treated as dynamic¢ problems. These are concerned
with

1. cracked bodies\subjected(to rapidly varyjng,]oads,
2. bodies containing rapidly prapagating cracks.

In both the cases the crack tip is an environment disturbedﬁby
wave motion.

Impact and vibration problems fall into the first class Of,
dynamic problems. In the analysis of such prob}ems it is often
founa that at inhomogeneities in a body the dynamic stressés aFe
higher than the stresses computed from the corresponding problem of
static equilibrium. This effect occurs when a proéagating
mechanical disturbance strikesf a cavity. The dynamic stress
"overshoot"” is especiaily pronounced if the cavity contains a sharp.
edge. For a qrack ﬁhe intensity of the stress field in the Vicinity;

of the crack tip can be significantly affected by dynamic effects.
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In view of the dynamic amplification, it is conceivable that there
are cases for which fracture at é crack tip does not occur under a
gradually applied system of joads, but where a crack does indeed
propagate when the same system of Toads is rapidly applied, and
gives rise to wave which strike the crack tip.

The second class of problems is equally important. Indeed,
there are several kinds of large engineering structure in which
rapid crack growth is a definite possibility. Examples are gas
transmission pipelines, ship hulls, aircraft fuselages ahd nueciear
reactor components. Dynamic effects affect the stress fields near
rapidly propagating cracks, and hence the conditions for further
unstable crack propagation or for crack arrest. Anothef area to
which the analysis of rapidIy propagating cracks is relevant is the
study of earthquake mechanisims.

There have been a number of comprehensive review articles in
the general area of elastodynamic fracture mechanics.'some of them
are Achenbach [1972], Freund [1975], Achenbach [1976], Freund
[1976] and Kanninen [1978],

At present, dynamic fracture mechanics So1utfons are largely
confined to conditions where Lineér Elastic Fracture Mechanics
(LEFM) is valid. These are appropriate when the plastic deformation
attending the crack tip is small enough to be dominated by the
elastic Tield surrouqding it. Prob]ems-of crack growth dnitiation

under impact loads and of rapid unstable crack propagation and
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arrest can be treated with LEFM by using dynamically computed
fields of stress and deformation; Engineering structures requring
protection against the possibility of large-scale cétéstropic crack
propagation are, however, generally constructed of ductile, tough
materiais. For the initiation of crack growth, LEFM procedures can
éive only approximately correct pfedictions for such materials. The
elastic-piastic treatments required %0 give precise results have
not yet been developed in a compiete]y acceptable manner, even
under static conditions.

The shapes of the cracks which have been studied uptil now are
as follows

(i) Semi-infinite plane cracks;

(ii) Finite Griffith cracks;

(i1i1) Penny shaped and énnu]ar cracks;
(iv) Non-planar cracks.

A transient problem 1nvo1ying the sudden appearance of a
semi-infinite crack in a stretched elastic plate was considered by
Maue [1954]. Baker [1962] studied the problem of a semi-infinite
crack suddenly appearing and growing at constant velocity in a
stretched elastic body. The mixed boundary value problem is solved
by transform methods 1including the Weiner-Hopf and Cagniard
techniques. Atkinson.and List {1978] considered the - steady state
semi-infinite crack propagation into media with spatja]]y varying

elastic properties. The quasi-static problem of an infinite elastic
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medium weakened by an infinite number of semi-infinite,

rectilinear, parallel and equally spaced cracks whiphl are

subjected to identical loads satisfying the conditions of amtiplane
state of strain was solved by Matczynski [1973]. Sarkar, Ghosh 'and
Mandal [1991] studied the problem ‘of scattering of horizontally
polarized shear wave by a semi-infinite crack runnihg with uniform

velocity along the interface of two dissimilar semi-infinite

elastic media.

The powerful technique to solve the diffraction prop]em of
semi-infinite crack is the Wiener-Hopf [Noble 1958] tgchnique.

The in-plane problem of finite Griffith crack propagating at a
constant velocity under a uniform load was first solved by " Yoffe
[1951]. Sih [1968] has also provided a Riemann—H11bert formulation
of the same problem where both in-plane extensional and antiplane
shear loads were considered.

Other references treating elastodynamic prbb]em involving a
single finite Griffith crack are Loebef and Sih [1967]. Ang and
Knopoff [1964]. Mal [1970, 1972], cChang [1971], Kassir and
Bandyopadhyay [1983], Kassir and Tse [1983]. Loeber and Sih [1967]
solved the problem of diffraction of antiplane shear waves by a
finite crack: - by using integral . transform method. Kassfr and
Bondyopadhyay [1983] considered the problem of impact response of a
cracked orthotropic medium. Laplace and Fourier transfor%s were

employed to reduce the transient problem to the solution of

1183&6 15 m{fﬂ S
- 4 NOV 397 et



’

standard integral equation in the Laplace transform plane and was
solved by Laplace inversion technique [Krylov et al, 1957];. Miller
~and Guy [1966].

The problems of fTinite Griffith crack lying at the 1interface
of two dissimilar elastic media have been studied by Srivastava,
Palaiya and Karaulia [19801], Nishida, Shindo and Atsumi [1984] and
Bostrom [1987]. Bostrom [1987] used the method of Krenk and Schmidt
[{1982] to solve the two—dimensiéna1 scalar probiem of scattering 6?
elastic waves under antiplane strain from an interface crack
between two elastic ha1f—spaces. Sih and Chen [1980] analyzed the
dynamic response of a layered combosite containing a Griffith crack
under normal and shear impact.

The problems of diffraction of elastic waves become more
complicated when boundaries are present in the medium. Chen [1978]
considered the probiem of dynamic response of a central crack in a
finite elastic strip. The crack was assumed to appear suddenly when
the strip is being stretched at its two ends. The problem was
solved By Laplace and Fourier transform technique. Some other
references are Srivastava, Gupta and Palaiya [1981], Srivastava,
Palaiya and Karaulia [1983]}, Shindo, Nozaki and Higaki' [1986], De
and Patra [1990].

High frequency solution of the diffraction of elastic waves by
a crack of finite size is interesting in view of the fact that

transient solution close to the wave front can be represented by an
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integral of the high frequency combonant of the solution. Green’s
function method together with a function—théoretic technique based
upon an extended w1eher—Hopf argument has been developed by ' Keogh
[1985 a, 1985 b] for solving the problem of high frequency
scattering of elastic waves by a Griffith crack situated 1in an
infinite homogeneous elastic medium. Pal and  Ghosh  [1990]
considered the problem of diffraction of normally incident
antiplane shear waves by a crack of finite length situated at the
1nterface of two bonded dissimiiar elastic half-spaces. Tﬁe problem
is reduced to the solution of a Wiener-Hopf problem. The

expressions for the stress intensity factor and the crack opening

displacement have been derived for the case of wave-lengths short

compared to the iength of the crack. Recently Pal and Ghosh [1993]
have 1nvestigated the high frequency solution of the problem of
diffrac;ion of horizontally polarized shear waves by a finite crack
moving on a bimaterial interface. Fb]]owing the method of Chang
[1971], the probliem has been formujated as ah extended Wienef;Hopf
equation and the asymptotic solutions for high frequencies or for
wave lengths which are sﬁort compared to the length of the crack
have been derived. Expressions for the dynamic stress 1intensity
factor at the crack tip and the <crack opening displacement have
been derived.

Vibratory motion of a body ~on an elastic ha1f~p1ane was

treated by Karasudhi, Keer and Lee [1968]. They considered the




vertical, horizontal and rocking vibrations of a body on the
surface of an otherwise un]oaded half-plane. The problem was
formulated so that shearing stress vanishes over the entire
surface, and an oscillating displacement is prescribed 1in the
Toaded regiqn. The problems were mixed with. respect to the
prescribed displacement and the remaining stress. Each case led to
a mixed boundary value problem represented by dual integral
equations which were reduced to a single Fredholm integral
equation.

Wickham [1977] studied the problem of the forced two
dimensional oscillations of a rigid strip in smooth contact with a
semi-infinite elastic solid. He reduced the mixed boundary value
problem with the help of Green’s function to Fredholm integral
equation of the first kind involving .'disp1acement boundary
conditions. Using Noble’s [1962] method, this equation was reduced
to Fredholm integrail equation of the second kind with a kerneil
which was small in the low frequéncy limit. Then applying the
method of iteration, a simple explicit long-wave asymptotic formula
for the normal stress in terms of the prescribed displacement apd,
dimensionless wave number K was rigorously derived.

Rocking motion of, a rigid sﬁriﬁ on é semi-infinite elastic
medium has been studied by Ghosh and Ghosh [1985] by wusing ‘a
different technique. The forced roéking of the strip about the

horizontal axis has been reduced to a soiution of a dual 1integral
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equation. Following Tranter’s [1968] method the dual integral
equation was solved for low frequency osci]iations by reducing the
equation to a system of linear algebraic eguations. | |

Studies of single Griffith crack as well as two parallel and
coplanar Griffith cracks have been made by Mal [1970], Jain and
Kanwal [1572] and Itou [1978, 1980 a, 1980 bl]. The coreéponding
probiems of diffraction by a singlie and two parallel rigid strips
have been solved by Wickham [1977], Jain and Kanwal [1872] and
Mandal and Ghosh [1992] respectively. And three dimensionai probiem
of mbving crack was considered by Itou [1979]. In most of the cases
the probiems were solved by integral équation technidue.

The problem involving single Griffith crack in orthotropic
medium was investigated by Kassir and Bandopadhyay [1983], Shindo
‘et al [1986] and De and Patra [1990]. Sindo et al [1991] have
investigated the impact response of symmetric -edge cracks jn an
orthotropic strip. Mandal and Ghosh [1994] considered the prﬁb]em
vof interaction of elastic waves with a periodic array of coplanar
Griffith cracks in an orthotropic elastic medium.

Recently Mandal, Pal and Ghosh [1996 a] considered the
two-dimensional problems of diffraction of elastic waves by four
coplanar parallel rigid strips embedded in an infinite orthotropic
medium. The five part mixed boundary value problem 1is reduced to
the solution of a set of integral equations. The normal stress

under the strips and displacement out side the strips were derived
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in close analytical form. In another paper, Mandal, Pal and GHosh
[1996 b] considered the vertical vibration of four rigid strips 1in
smooth contact with a semi-infinite elastic medium. The résu]ting
mixed boundary value problem has been reduced to the sq1ution of
quadruple 1nt§gra1 equations, which have further been reduced to
the solution of a integrofdifferentia1 equations. An iterative
solution valid for 1low frequency has been obtained. From the
solution, the stress just below the strips and aliso the vertical
displacement at points outside the trips on the free surfacé have
been found.

In case of low frequency oscillations Noble’s [1563] method of"
solving dual integral equations, Tranter’s [1968] technigque for’
solving dual integral equations, Matched Asymptotic Expansioh, and
variational principle are found to be very useful technigues.

Different tecﬁniques have been applied by many authors to
ﬁaok1e these type of crack problems. From thesé stand point, these
probiems may be divided into two categories : one for low frequency
osci11ation‘of the source or long wave scattering or transmission
and the other for high fregquency oscillation or short wéve
scattering or transmission in the medium. The term long and shor£
are used in compariscon to the region of the source of. distrubance
or the size of the crack or strip étc. inside 'the medium to the
wave length of disturbance. The useful techniques for Tow freguency

scattering are due to Noble [1963] and Tranter [1968]. In case of
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high frequency osciilations Wiener-Hopf [Noble, 1958] technique and

Keller’s [1958] geometrical theory are found to be most suitable.

Here we briefly discuss some of the useful methods.

GREEN’S FUNCTIONS

The general  theory of linear equations suggests two methods

which can be used to solve the equation of the type

where L is an ordinary linear  differential operator, f a khown

function, and u the unknown function.

One mefhod is to find the operator iﬁvefée to L, that 1is, té'
find an operatof L™ such that the product Lt L is the identity
operator. We shall Find‘that the inverse of a differential operator
is an integral 6perator. The kernel of that ihtegré1 opérator will
be called the Green’s function of the differential operator. The
techniques which we shali provide for finding the Green’s function
use a tool which has_broved valuable in many branches of applied
* mathematics, namely, the Dirac 5—fqnction.

Inverse of a differentia1 operator can be obtained, following

Friedman [1966], Roach [1982], as follows:
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Suppose that ¥ and ¢ are testing functions and consider the

equation

Ly = fid (2)

Here we assume that the inverse operator L Yogs an integral

operator with some kernel G(x,t) such that

L ¢ = j G(x,t) ¢{t) dt. (3)

Now we permit G(x,t) to be symbolic function. Applying the

differential operator L to both sides of this equation, we get
LL g = ¢ = J L G ¢ dt. (4)

This equation will be satisfied if we find g such that
LG = &(x-t), - (5)

where the differentiation 1is to be understood as symbolic

differentiation.
To illustrate the method of inverting an operator, .we consider

the special case when

then (5) becomes



G(x,t) = &(x-t) | ' (6)
dx '
This equation can be so1vea by straightforward 1integration and
using the fact that the &-function 1is the derivative of ﬁhe
Heaviside unit function and we get
d

— G(x,t) = H(x-t) + a(t) (7)
dx '

where a(t) is an arbitrary function.

Integrating again, we get

G(x,t) J H(x-t)dt + xa(t) + 3(t)

(x-t)H(x-t) + xa(t) + fi(t), ‘ (8)

where ﬁ(t) is another arbitrary function. It can be proved that any
symbolic function which is a so1ution of (6) may be written in the
form (8). Note that G(x,t) s a continuous, piecewise,
differentiab]e function, and note also that if f(x) 1is . aﬁ
integrable function which vanishes outside a fiﬁite interval, then(

it is easy to show that the function

u(x) = j a(x,t) f(t) dt (9)

satisfies the differential equation
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— = f(x) . (10)°

By the suitable choice of the.function a(t) and 3(t) we can in
general find a solution of (10) which satisfies two conditions.
Thus, to find a solution of (10) which satisfies the conditions
u(0) = u(1) = 0, we proceed as féﬁ]ows

From (9) we have

X o

u(x) = J {x~t) T(t) dt + x J a(t) f(t) dt +
w _
+ [ f(t) f(t) dt. - (11)

-

Substituting x = 0 and x = 1 in (11) we get

() w

0 = —;[ t f(t) dt + 0 + #A{t) F(t) dt (12)
- -
1 ‘ w
0 = J (1-t) f(t) dt + J a(t) f(t) dt +
- ) | -
o
r fi(t) f(t) dt. (13)

")

w
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From equation (12) we get
fi(t) = t H(-t), . (14)
and then from (13) we obtéin
Lv.(ﬁ) SN t H(t), o £t 5 1 : (15)

= 0, for all other values of t.

Substituting (14) and (15) in (9) we get

bg 1
u(x) = J (x-t) F(t) dt - xJ (1-t) f(t) dt. (16)

(8] o

So, in this case the kernel ( Green’s function )

G(x,t) = (x-t) H(x-t) - x (1-t), 05 x, t=1 (17)
also satisfies the boundary conditions

G(0,t) = G(1,t) =0 (18)

The Other Method is to find the spectral representation of L

by studing the solution of the equation
Lu = Au, : ' (19)

where X is an arbitrary constant.

Let L be an ordinary self-adjoint differential operator and

suppose that U, u, ... are its eigenfunctions and kl, hz, ... the
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corresponding eigenvalues. We  shall also suppose that the
eigenfunctions span the domain of the given operator, and that, in

consequence, any square integrable function u(x) may be expanded as
u(x) 2 U (x), (20)

where @ = ( u U ). | (21)

Now, it follows that

Lu(x) = ukALuk(x) . ‘ (22)

and if f(x) denotes a function which 1is analytic 1in a region

containing the eigenvalues, we define

£ = Y (A )a . '

(L)u(x) 2 (A, ), U, (x) | (23)
For the particuiar case when

f(t) = (A - ’c,)_1 we obtain

. o u (X) |
[ ]u(x) = Z LI | (24)
A-L Ao~ A

k

The Teft hand side of (24) can be expressed in terms of the Green’s

function for the differential operator L-x. Therefore, we put
-1
wix) = (A - L) u(x);

and we have (L-XA )W = - u.



If G(x,¥,~) is the Green’s function for the operator L-A, we have
W(X) = - J G(xsf,)'-) U(E )dl’fs ’ E (25)

and consequentiy,

[ Ju(x) = - J G(x,6,n) u(é)dé (26)
A - L

Now, integrating (24) over a Tlarge circle of radius R 1in the

complex A-plane, we get

1 u(x) 1 a u (x) '
[ V' J EE oo (27)

T S—
2 )i L L oni o=k

Now, as the radius of the cifc]e approaches infinity, the
" right-hand side of (27) includes more and more residues, and we

obtain, bearing in mind that necessarily u is also a function of X,

1 U(X) —
Lt J dn = - L akuk:(X) = - u(x) . (28)
R —m 211 L - &

I4S

This result, which connects thé Green’s function with the
eigenfgnctions, was .obtained, by making a gfeat many assumpﬁions,
such as that the eigénfunctions ‘were known and that they were
compiete. In practice, we try to work it backwards. We start with a

knowledge of the Green’'s function G(x,f;\) for the operator L-A;
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then we consider the following integral in the complex h—p]ahe;

1 u(x) 1 ' :
J dh = — [ dh. jG(x,if ;R u(d )dE, (29)
i L - A 27 .

and then, by evaluating it in terms of residues, we hope to get
(28), that is, an expansion of u(x) in terms of the eigenfunctions

of L.

CAGNIARD-DEHOOP TRANSFORMATION
Following PiTant [1979] Cagniard-deHoop technique can better
be explined taking an example. We find a solution of the

inhomogeneous scalar wave equation

—_— At — = R

ax . 8z v a2

- 2n&(x)4(z2)b(t)

&(r)é(t)

R — ' (30)
r
Taking a Laplace transform with respect to-time, we get
025 625 SZ
— 4 —— - — ¢ = - 2 nd(x)(2), (31)
x> 822 V2 |
Sow
- -st
where ¢ = J ¢p(x,z,t) e dt. : ’ (32)
. _ .



In order

modified

with the

to simplify what is to come, we shall take a slightly

Fourier transform with respect to x, i.e.,

o

= - -isgx/v
¢ (q,z,s) = J d(x,z,s) e dx , (33)
-3 . '

inverse

- 1 *oz isax/v

¢ = — j #(a,z,s) e d(sqg/v). - (34)

21T o ’ :

(sa/v)Pp + %470 25 - (/)% @ = - 2n6(z) (35)

Finally,

have

where

Inverting with

taking a two-sided Lap]ace transform with respect to z, we
[ 2 2 , 2 =
1'0 - (s/v) (g + 1) y ¢ = - 2n, (36)
m
= 1 = -pz
¢ = — J #{q,z,8) e dz
2
~x
respect to p, we have
2 1/2
= ~(s/v)(a%+1)" | z| -1/2
= (q +1) (37)

(nv /s ) e



. Inverting with respect to g, we obtain

_ tS e Pzl —2 dsaxy
¢(x,z,8) = — f e (g +1) e dg
2 4
~
= Kylsr/v) ' | (38)

The ekpression-(38) is just the integral representation of the

Macdonald function Ko(sr/v).

Cagniafd-deHdop transformation involves the following change

of varijable

- 1/2
cosf (g +1) - ig sin@ = 1 = vt/r, » (39) .

where r cos? = z, r sin? = x, and T is8 the reduced time variable as

shown in Fig. 1. Note that r-¢ system is not standard cylindrical

co-ordinates. The inverse of this transformation is

» 1/2
g(t) = it sin® + cosB (7 -1) ; (40)
Therefore
dg T cosf (q‘+1)1/2
—_ = 1 SinE) + —-— = — 3 (41)
dr (T2_1)1/2 (T2_1)1/2
. . 2 /2
The last expression comes from solving for (g +1) from

(39) while substituting (40) for gq. Taking account of the symmetry
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Fig.

1.

Two dimensional co-ordinate systems.
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of the real and imaginary parts of exp(isgx/v), we can write (38)

as

w —(s/v)(q2+1)1/2]zl + isqx/v
- e
¢ = Re da (42)

o S a® s 1)?

we cah now write this using (41) in terms of the new variable T

S

and obtain

? -st
- e dg v
¢ (x,z,8) = Re ——————T7§ — = dt (43)
2 dt r
2 (g +1)
? -st .
e v
= — dt
Re - 172 - d
(r -1)

Equation ' (43) can now be recoghized as the Lapiace transform of the

function
[ 1 v
= Re | -
PN
L (q_‘ _1) r d
looked at as a function of the time variablie "t". However, we have

to look at a few details before we can say that this identification
is valid and place proper 1limits on the integral. First of all, we

want to look at the path g takes as we let the variab1e T run from
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0O tom . For T = 0 , we have that g = - 1 cosf where the sign has
been choosen in (40) to satisfy (3%9). The variab?e‘q then»moves up
the imaginary axis to g = i sing, énd then branches out ihto the
first guadrant along a hyperbola as defined by (40) and along an
asymptote at an angle & as ‘'in Fig. 2(a). Inasmuch aé the
singularities of (42) are branch points at q = * i, we see that the
original path can be deformed 1n£o tbe dashed 1ine path as 1in
Fig. 2(b). However, on the vertical s;gment from 0 to ising we seé
that the integrand of (42) has mno rea1 part. Conseqgquently .the
Timits on (43) maylbe written

o
.~st

- : e v ]

#(x,z,8) = Re J ——'2——1—/—2- — dt l (44)
(t -1) r | ‘

r/v
By inspection we have
1 : _,
¢ = ‘ H(t-r/v), . (45)
1/2 .

( t2 - r2/v2 )
where H is the Heaviside Unit Step Function defined by

H(x)

"

X
v
(=]

= 0, X <0 (46)

There is a sharp wavefront associated with the response to a

delta-function source, but in two dimensions we aiso have a tail
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Origiral  Path

T .=C0 o q — plane
g=-LCos ’

Fig. 2(a). The relationship between the originq1 path of
integration in (42) and the path which g

takes as T varies between zero and infinity.

part here

no real

—) K
% Original Path )

q - plane

Fig. 2(b) The relationship between the original path and
the deformed path ( Cagniard Path ) in  the

compiex g-plane.



associated with the waveform 1in contrast to the delta-function

which has zero width.

INTEGRAL TRANSFORM TECHNIQUE

As the equations of motion in the theory of elasticity are
partial differential equations which may be discussed with
reference either to Helmholtz equation or to Lapiace’s equation,
the method of integral transform Tis one of ‘the most effective
methods for solving such equafions:as application of this method to
such equations results in the JOWéring of the dimension of an
equation by one. There:are several forms of integral fransform and
the choice of an integral transfo?m depends on the structure of the-
equétion and the geometry of the domain.

The integral transform f(a) of a function f(x) defined on an

interval (a,w) 1is an expression of the form

w

Fla) ='j F(x) K(x,a) dx (47)
R .

where a is a real number and « isfa comp 1ex parameﬁer varying over

some region D 6f the compilex plane. K(x,a).is called the kernel of

the transformation. The transformAtion (47) becomes particularly

useful if it possesses inverse mapping. In that case oée can

express f(x) in terms of its integral transform by
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f(x) = E%? Fla) M(x,a) da (48)
wﬁere M(x,x) is a suitable function defined ih a ¢ x < wand a & D
and is called the kernel of the inverse transform, which is defined
for all x 1in the interval (a,®). The comp1ex " is a Suitab]e path
of .integration in D. Afﬁer reducing the | governing partial
differential équation, the reduced problem can be solved for F(a).
The solution of phe original equétion can be expressed in terms of
the inverse integral, which may then be evafuatéd. The 1inversion
from the transformed épace fo the space of actua]:variab1es uSua]]y
involved very-comp11cated integrations. In many cases even the
numerical integration can no£ be performed successfully because of
the highly oscillatory character of the 1integrands ( :cf. Eringen
and Suhubi [1975], chap.7; Achenbach [1975), chap.7 ). Iﬁ
particular, mixed boundary value problems 11ké.th; dynamic response
of a punch on an elastic half-space and the problem involving the
presence of a crack or a strip inside an elastic medium may be

reduced to Fredholm integral equation of first Kkind or to dual

integral equations. -
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HILBERT TRANSFORM TECHNIQUE

If P(y) & L2(a,b), then the equation

b
[ hi{x) : o
=n , = (a,b 49

| xy dx Ply) y a,b) (49)

a

has the solution
b
2 e 12 c
noo = 1 [£2] “P__lJ_ PY) gy 4+ ———— (50)
% y-a X Y 4 (x=a) (b-x)

where C is an arbitrary constant, and the first term belongs to the

class L2(a,b).

Using the above theorem, we find that the solution to the

integral eqqation

vb 2xh(x2)
I dx = nP(y), Yy € (a,b) (51)

| N
_a y

(provided that P satisfies the conditions of the above theorem) 1is

given by

2 2.2 /2 b 2 2 /2, |
hix?)y = - [ 2 2 ] J [ 7 2 ] I A
s x“-y

C

{(x2-a?) (b2-x2)

where C is an arbitrary constant.



THE WIENER-HOPF TECHNIQUE
Let a function ¢(z) analytic in the interval y < Im 2z < Y, be

defined in the plane of a complex variable z. It is required to

express ¢(z) in the form

#(2) = ¢ (2) ¢_(z) (52)

where ¢+(z) and ¢ (z) are functions analytic in the half-plane Im z
> y_ and the half-plane im z < y+ respectively. The problem '1s
called factorization probiem. In a more general case, it is
required to define two functions ¢+(z) and @;(z) which are analytic
in the same half-planes respectively and which satisfy the

following relation in the 1interval

Alz)¢ (z) + B(z)¢_(z) + C(z) =0 | : (63)

where A(z), B(z) and C(z) are given analytic functions 1in the
interval. It 1is obvious that if ¢€(z) = 0, we obtain the
representation .(52) aftter the correspondjng 'changes - 1in the
notatign.

Let us assume that the funcpion #¢(z) which is to be faqtorised
does not have any zeros in the interval y < Im z (< y+_and tends to
infinity as x —éam . In this casé; neither of the funétions ¢+(2)

and ¢_(z) will have any zero, and we can'take the logarithm of both
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sjdes of the relation (52)
Tog ¢(z) = log ¢ (z) + Tog ¢_(2) . (54)
The function F(z) = log ¢(z) satisfies the condition
, -p
| Fix+iy) | < ¢ |x] , (P>0 for x-— w) (55)

and hence the re1at10n»(54) can always be solved with the help of

the transformation
F(z) = F (z) + F_(2) (56)

Finally, we get

F (z) F (2)
$(z) = e = . e ¥ = ¢ (2)¢_(2) (57)

If the function ¢(z) has zeros in the intervals we must consider a

new funhctionh

N/2
(2°+6%)  #(2) |
¢, (2) = & (58)
1 o,
N (z- 21) !

i=1

where z, and ai are the zeros, their multiplicity in the interval
N1 < N, where N is the total number of zeros, b > (y+, Yy ). The
factor in the numerator of (58) ensures that the properties of

auxiliary functions are conserved at infinity.

Let us now consider the relation (63) and carry out its

39



factorisation into L+ and 1/L_ for the same interval of the ratio

A/B. The relation (53) can be represented in the form
L+(z)¢+(z) + L (z)2 (z) + L (z)C(z)/B(z) = 0 (59)

The expression L_(z)C(z)/B(z) can ibe represented 1in the

following form in accordance with (56)
E+(z) + E (2)

where ¢+(z) and ¢ (z) are functions analytic in the half-plane
y > y_ and the half-plane y < Y, respectively. Taking this into

account, we get
L (z)¢, (z) + E (2) = -~ L _(2)¢_(z) - E_(2) (60)

It fo1iows frém the generalized Liouville’s theorem that the
left as well as right hand side of (60) repfésents “the same
polynomial Pn(z) of nth degree.

Wiener-Hopf technique and different other techniques . for
solving paftia] differential eqguation arising 1in Solid Mechanics

have been elaborately discussed by Duffy [1994] in his book.

The thesis presented here ~consists of some boundary value
probiems in elastodynamics involving wave propagation due to some
finite source or cracks. The work has been presented 1in three

chapters. The first chapter deals with problems on moving source on

40



the free surface.

The problems on scattering of waves by moving 1nterfacé crack

have been presented in the second chapter.

The third chapter deals with the diffraction brob1ems in

elastic medium.
The summary of the thesis is presented here chapter wise.

The first problem of chapter-1 has been formulated -as follows:

We have considered the proB]em of the SH-type of elastic wave
propagation in the semi-infinite medium due to a ring source
producing SH-waves in the presence of a circular cylindrical cavity
and the problem of SH-wave propagation 1h the presence of rigid
circu1ar‘cy1indr1ca1 inclusion in the semi-infinite medium due a
ring source.

An jntegra1 representation of the Dirac delta functidn
required for solving the above axisymmetric boundary value brob1em
has been derived first.

In the second problem of chapter-1, an e1i1pt1cv ring - load
emanating from the origin of co-ordinates at t = 0 1is - assumed to

expand on the free-surface of an elastic half-space. The
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displacement at points on the free-surface has been derived 1in
integral form by Cagniard-De Hoop technique. Displacement Jjumps

across different wave fronts have also been derived.

In chapter-2, the problem of diffraction of normally 1ncideﬁ£
antiplane shear wave by a crack of finite length situated at the
interface of two bonded dissimilar elastic haif-spaces has been
considered in fhe first problem. The problem 1is reduced 'td' the
soﬁutién of a w1ener—Hop¥ equation. The expressions for tHe stress
- intensity factor (SIF) andvthe crack opening displacement have been
derived for the case of wave length short compared to the Tength of
the crack. The numericé1 results for two different pairs of samples
have beenlpresented graphically. -

in thé'second problem of this chapter, the diffraction of
hqrizonta]ly polarized shéar waves by a finite crack movfng' on a
bimaterial interface is studied. In order to obtain a high
frequency solution, the problem is formulated as an extended
Wiener-Hopf problem. The expressions for the dynamic stress
fntansity -factor at the crack "tip ana the crack - opening
displacement are derived for the case of wave 1e69ths§ which are
short compared to the iength of the crack. The‘ dynamic stress
intensity factor for high frequencies 1is 1illustrated graphically
for two pairs of different types of material for d{ffgrent crack

velocities and angles of incidence.
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Ih chabter—S, first paper deals -with the problem of two
dimansional oscj11ations of four rigid strips, situated on a
homogeneous isotropic semifinfinite elasitic solid and forcéd by a
specified normal component of the displacement. Thé mixed boundary
value probiem of determining the unknown stress distribution Jjust
below the strips and vertical displacement outside the strips has
been converted to the determination of the solution of quadruple
integral equations by the use of Fourier transform. An iterative
solution of these integral equatjons valid for low frequency has
been found by the application of the finite Hilbert transform. The
normal stress just below the strips and the vertical disb]acemeﬁt
away from the strips have been obtained. Finally dgraphs are
presented which illustrate the salient features of the displacement
and stress intensity factors at the edges of the strips.

The last problem of this chapter deals with the elastodynamic
response of four coplanar rigid strips embedded 1in an 1infinite
‘orthopropic medium due to elastic waves incident normally on the
strips. The resu]ﬁing mixed boundary value problem has been solved
byAIntegra1 Equation method. The normal stress and the vertical
displacement have been derived in c1ésed analytic form. . Numerical
values of stress intensity factors at the edges of the strips and
the vertical displacement at points in the plane of the strips - for
several orthotropic materials have been caliculated and plotted

graphicaiiy.
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With this much of introduction,j we how present the thesis
chapterwise. References given in the thesis do not include ail the

previous workers in this line. But attempt has been made to include

most of theh.
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