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'cHAPTER II 

EXPERI~ENTAL TECHNIQUE AND THEORIES OF MEASUREMENT. 

In the previous chapter the object of the present inveS

tigation has been dealt Clearly. For putting these objects 

in the field of. application and for achieving the desired· 

result, the techniques·adopted and employed for perfor

ming the exp~riment, are described in this chapter. 

In order to investigate molecular behaviour 

of l.iq\U.ds s~ch as 

(a) qipol. emoments and molecular structqre of pol.ar 

molecules (b) diel~ctric relaxation phenomena of polar 

molecules in nonpolar solvents (c) electrical conducti

vity of critical opalescent mixture near critical tempe

ratures, the following measureme~ts have been made in 

the laborato~y. 

(i) Measurement of radio frequency and high 

frequency conductivity (K') of. liquids at different 

temperatures and concentrations. 

(11) Determination of dipole moment of polar 

liquids. 

(iii) Measurement of coefficient of viscosity 

( "1 ) at dif.fEtren t temper~ tures~ 
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2. 1 • Theory.of Measurement and Experimental Arrange~ 

'~ent for Determining·Radiofreguency Conductivity. 

A. Theory of Measurement of Radio-Frequency 

· Cond ucti vi ty. 

Th~ block diagram of the experimental arrangement 

can be represented by a simple network circuit as shown 

in Fig. 2.1. 

Let Zp be the·equivalent impedance, then for 

paraJ.l e~ combination 

R 
1 + j wCR • • • 2. 1 

and the impedance for the series combination 

• • • 2. 2 

From eq. (2.1) and (2.2) 

R 
" ... 2.:3 

and 

1 wcR
2 

0c/ 1 +- GJc2R2 

•. 
• • • 2.4 

and as w 2c2
R

2 > > 1 ' then 

Further the resonant current (Io) with empty glass cell 

is given by 

E 
Io - R 

0 
5. • 2. 5 
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where R
0 

is the r.f. resistanqe for the secondary 

tuning circuit. ·At the resonance condition the R
0 

can be represented as 

••• 2.6 

where !
0 

i¢. the reeo~ant current, c1 and c2 are 

the iower half power ·and upper half power point capa

ci t.ance ~esp~ctively, that is at the resonance current 

1 1 = 0.707 of I
0

• ~he capacitance were ~easured by the 

hel.p of a LOR l:>ridge (Model. No. Universai bridge, 

No. 2700, MarcQni., Instruments Ltd.) .. 

Again when the cell is filled with dielectric 

liquid, the re$onant current becomes 12 and is 

given by 
E 

or E 

••• 

If we cal.l io :: o( 1 then from eq. ( 2.5) and 
2 

eq. (2.7) we get the radio frequency res~stance 

R -
1. +- J 1 - 4 R~ (o( -1)20 ~./"cz. 

2 Ro(o< -1) u)c2 ••• 2.8 

J 
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In the prese~t experi~ental set up 
2 2 2 2 

4 Ro ( o( -1) W C < ( 1 

then r;f. re~istance of d-ielectric liquid 

R - 1 ••• 2.9 

But we know resist~ce 
l 

R =- P5 

-_ when f is the specific resistance, is the 

electrode distance and S is the· cross sectional 

area of the electrodes. 

If K' is the conductivity of the dielectric_ 

then K' can be written as 

or, · 

I 1 
K ;:T 

k ' = __.._l---
SR • • • 2.10 

Since tbe cell 1 s a pa.raJ.l el pl. ate condenser t~ue the 

capaci tarice of the ceil can be w:ri tten &fi 

c ;::: s • • • 2.11 
2rtl 

Therefore tqe r.f. conductivity can be expressed 
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as 

I 1 
K =- --:-4-TI_R_C __ 

This is the fundamental formUla for measuring the radio 

frequency conduc-tivity of the dielectric liquids. 

B. The Ultra High Frequency and Microwave 

conductivity ( Kjj ) of the polar liquid 

dielectrics in non polar solvent were calcu

lated from the experimental val.ue of dialect-

'' ric lo ~s factor ( E ij ) and di~l ectric eons-

' tant ( E·· )~at the centimeter wave length . ' IJ 

region. 

As we know from Murphy and Morgan rel~-

tion 
. I II 

that hi§;h frequency conduet1v1 ty ·is K·.-= K·· + J. K~. 
· · ,; · I J I J , I J 

I (J f· • If G.J f." 
K ij = 4 T'\rJ 1 s tb e reaJ. part and K ij ::: 

4 
rt'J where 

is the imaginary part of the conductivity. The magni-

tude of high frequency conductivity can ~e calculated 

from the relation 

K .. = 4~ J e,? + E'~~ . IJ I\ IJ IJ ••• 2.1'3 

·where c0 is the angular frequency = 2Tif • 

The complex diel.ectrio constant of the sol.u

tion can be written as 

• • • 2.14 
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the imagin~ry part 
•I/ 

f .. 
IJ which is the dielectric lqs~ 

is reeponsib~e for absorption of electrical enetgy to 

give the resistance to polarisation. But at dilute solu

tion, under t,he application of microwave electric field 
I I/ 

1 t can be consid~r as E.. ) ) E.. • There-
IJ IJ 

fore microwave conductivity of the solution becomes, 

I /f 

as (. )/E .. 
IJ IJ 

Considering Debye equat~on (1.36, 1.37) we 

can write 

Theretore &rt Q.t. r¢gion assuming 

eq.(2.15) c~n ~e written as 

I 

E·· IJ 

,, 
E E1: =- . . -t- ---=-u_ 

ljo() w "C 

• • • 2.15 

••• 2.16. 

• • • 2.17 

where E .. 
lJ 00 

is the optical dielectric constant of 

the sol uti on• Tperefore at infinite dilute solution 

h. f. conductivity ( K .. 
IJ 

) becomes the form 

I 

K .. =K K·· 
2.18 + IJ • • • IJ . O(j 

W'Ls 
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where K oO is a constant apd '"t
5 

is the relaxation 

time of the solute molecule in solution. 

2.2. Theor: of Determination of Dipole Moment:-

~ To calculate the dipole moment of polar solute 

in non pola~ ~otvent we consider the eq. (1.7~) ~s 

Q't; 
-·1 

2 2 2 
K:~. = (_ CiJ + 2)' NC.i .A-tJ • W T 

1J '\ 3 . 3kT 1 + w'l-r;2 

I 
·K .. = 

IJ 

2 2 
~.Nf;F; • W 't's ·W 
3 MJk T i + W'l.T~ j 

••• 2.19 

wher.e ,11-{ j is the dipole moment of polar solute, 

N is the Avog~d:pows number, ¥ is the Bol. tzmann cons-

tant c.= f; Wj 
J M. 

i.J· 

where is the mol. ecuJ.ar 

weight of the sol. ute, wj 1s the weight fraction, A 
is the densit1 of the solvent at infinite dilution, 

ly 
F 1 = is the l.ocal field of the sol. vent at infi:rti te 

. ( E + 2 _ ~2 
dU uti on = 1 

3 ) , E· I 
static d~electric constant of the solvent and 't"

5 

is the 

we have 

:re+axation time of the solute. 
., 

Sino~ K·· - IJ is ~ function of 

from f,tq. (2.18); 

W T ( d. Ku ) ::: GJ l's ~ 
s c) w. w 0 J . --7 

J . 

W· 
;: 

J 

•• 1' 

so 

2.20 



where ~ 

.w. ~0. 
J ' 

:i,s the slope of K .. - W· 
IJ J 

curve ~t 

Now frotp eq. (2t!19) and eq. (2~20) 
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••• 2.21 

sq. (2.21) is used to caJ.cul.ate the dipole moment of 

polar solute in non polar sol vent. 

2.:5a. Activfi.t1.~n Eners:y for Dipole Rotation: 

The dielectric relaxation has been treated 

as a rate prqcess in which polar moleoule rotate from 

one equil~b~i~ position to another. 

Eyring ideQt~fies K, the number of time~ 

per seconq that-a dipole acquires sufficient energy 

to pass over the potential barrier from one equilibrium 

position to the other, with 1/ T' where -r' is the 

(micros·copic) relaxation time. Therefore, the relaxa

tion time is given by the rate expression 
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r' ~ __b_ eX p rD Fx)· 
k T \RT 

••• 2.22 

where h is the Pl.anck constant, k is the Bol tzma.nn 

constant, T is the absol. ute temperature, R is the 

universal gas constant and is th~ free 

ene~gy of activation for dipole relaxation, 

since 
••• 2.2'3 

Th e:refore, 

--r' ·= _!}_ exp(- f\~l\~xp(6Hi·)·· 
kT ·~ RT 

••• 2.24 . 

where and are the molar enthalpy 

and molar entropy of activation for dipole ~elaxation 

respectively. is ob~ained from the slope of 

the curvt:l obtained by plotting In (--r'T) against 
1/ A ~I 
1 T • Knowing L...l H -c and 1.. 

can be cal aula ted from tb.e eqo ( 2.24) .. 

Activation Ener,sy for Viscous FloW: 

Th~ viscosity of liqqdds may be aRproached 1~ 

an analogous manner, 

Visco~s flow is prefered as movement of one· 

layer of mo~ecul.es with respect to another layer, 
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invo~ving tranSlatiop as wel~ as rotational motion of 

molecules with an activation energy to pass over a 

potential. barri~r. The equation for vis co si ty terms 

·of this mech~nism may be written as 

··~ 2.25 

whe:re is the ftee energy of activation for 

viscous now, · .tl the P:lahck constant, N. the 

Avogadro Is number and v is the mol.ar vo~ ume and 

Then eq. (2.25) may be written as 

wb.ere B = h N 
y 

• e -t.5l£. /R) 

energy for viscous flow and 

activation for viscous flow. 

• • • 2.2p 

• • • 2.27-

the heat activation 

the entropy of 

;2. 4. Theory: of Least Square Fit Method: 

It is 4e$cribed to fit a· straight ~ine or a 

parabolic equa~ion to a set of experimental data 
(x,,y1),~z.,Y2);"·-·,.(xn, Yn) • 

j 
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In case of str~ight line equation for each 

val. ue· of x there are two val. ues of y the actual. 

v.allle y and the value y' predicted by the fitting 

straight line 

y = a+ bx ••• 2.28 

some deviatione 

cl. - Y. 
I I 

y ' -: y. ...... (o + b x 1 ) I I . ' • • • 

are positive, others are negative. The squares are 

ail positive. we consid~r that line as the line of 

best fits which ~inimise the sum of squared devi~ 

tiona~ 

n 2 
f(a,b):: J. ( Y.- a- bxi) ••• 2.30 

I= 1 I 

To find the suj. table val. ues of . a, b for this pur-

pose, we write; 

and 

~f -0 
"'Cl - ' 

~f -0 ab - ) 

r.e. 

). E'. 

• • • 

a)x. -t- b~ x?:::. L. x. y. 
L I L- I I I • •• 2.32 



_)!! 9 2 

I~ 

By solving the~e equations {2.31) and (2.32) we can ~ 

get a and b. Putting the values of constants a and 

b in eq. (2-.28) we get the desired fitted striagllt line 

equation. 

Now in ~b~ case of parabolic equation 

. 2 
(1 + ~,)( + C X ::: y ••• 

We can get the val. ues of the constant a., p and c 

by so~ving the fo~~owing equations, 

na+ b.Lx. +c~x?:::: '\y. 
I L I L I 

• •• 2.'34 

2 3 a[x. + b.[x. +c.[x. :: Ix. y .. 
I I I I I • • • 

2 . 3 4 2 
a[x. +bL:x. -t c,Lx. · ;: :Lx. y 

I I . I I j • • • 

Then the reqqited fitted parabolic equation may be 

obtained by putting the values of a, b and c in 

the equation (2.'3'3). 

2.5. Determination of coefficient of Vis~osity 

of the Liquid: 

The co ~ffi ci en t of viscosity of -liqui~s at 

clifferent temp~ratures were me~sured by the help of 

Ostwald's viscometer. The vis co si ty ~ oftb.e 

liquid at a desired temperature was ca-t. cul at ed from 

\ I 
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the rel-ation 

Y) -:::: 1 d, tl 
1 2 d2t2 

••• 2.'37 

where . 1 is the coefficient of viscosity of a. stan
'2 

dard liquid (water) d1 and d2 are the densities. 

· The time of fall · t 1 
and t 2 of the investigating 

liquid and standard liquid (water) were noted by the 

help of a high precession. stop watoh at the desired 

temperature. 

Purification of Liquids: 

The purity of liquids are very important 

factor to the study of ~olecular behaviour of dielect-

·ric liquid. In the present work, we have used pure 

qual.i ty of chemic~ a wbi.cll we have obtained f;tom repu

ted manufacturing c~mpanies, namely E.Merck, British 

Drug Hous~ (B.D.H.).· 

Washing and Cleaning of the.Dielectric Cell: 

Initially the g].ass cell, tube fUld other glass 

wares ~ere thoroughly washed with dilute chronic acid 
' 

and after that ~hese are thoroughly washed with NaOH 

solution and then washed several times with distilled 

water. 

J 



To remove traces of waterp the wash glass wares 

and instruments were kept inside the thermostat. 

Th~ dried glass instruments and wares wer~ again 
,, I • 

Washed with dehydrated pure 'benzene and then 

dried. 
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