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'cHAPTER II 

EXPERI~ENTAL TECHNIQUE AND THEORIES OF MEASUREMENT. 

In the previous chapter the object of the present inveS­

tigation has been dealt Clearly. For putting these objects 

in the field of. application and for achieving the desired· 

result, the techniques·adopted and employed for perfor­

ming the exp~riment, are described in this chapter. 

In order to investigate molecular behaviour 

of l.iq\U.ds s~ch as 

(a) qipol. emoments and molecular structqre of pol.ar 

molecules (b) diel~ctric relaxation phenomena of polar 

molecules in nonpolar solvents (c) electrical conducti­

vity of critical opalescent mixture near critical tempe­

ratures, the following measureme~ts have been made in 

the laborato~y. 

(i) Measurement of radio frequency and high 

frequency conductivity (K') of. liquids at different 

temperatures and concentrations. 

(11) Determination of dipole moment of polar 

liquids. 

(iii) Measurement of coefficient of viscosity 

( "1 ) at dif.fEtren t temper~ tures~ 



82 

2. 1 • Theory.of Measurement and Experimental Arrange~ 

'~ent for Determining·Radiofreguency Conductivity. 

A. Theory of Measurement of Radio-Frequency 

· Cond ucti vi ty. 

Th~ block diagram of the experimental arrangement 

can be represented by a simple network circuit as shown 

in Fig. 2.1. 

Let Zp be the·equivalent impedance, then for 

paraJ.l e~ combination 

R 
1 + j wCR • • • 2. 1 

and the impedance for the series combination 

• • • 2. 2 

From eq. (2.1) and (2.2) 

R 
" ... 2.:3 

and 

1 wcR
2 

0c/ 1 +- GJc2R2 

•. 
• • • 2.4 

and as w 2c2
R

2 > > 1 ' then 

Further the resonant current (Io) with empty glass cell 

is given by 

E 
Io - R 

0 
5. • 2. 5 
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where R
0 

is the r.f. resistanqe for the secondary 

tuning circuit. ·At the resonance condition the R
0 

can be represented as 

••• 2.6 

where !
0 

i¢. the reeo~ant current, c1 and c2 are 

the iower half power ·and upper half power point capa­

ci t.ance ~esp~ctively, that is at the resonance current 

1 1 = 0.707 of I
0

• ~he capacitance were ~easured by the 

hel.p of a LOR l:>ridge (Model. No. Universai bridge, 

No. 2700, MarcQni., Instruments Ltd.) .. 

Again when the cell is filled with dielectric 

liquid, the re$onant current becomes 12 and is 

given by 
E 

or E 

••• 

If we cal.l io :: o( 1 then from eq. ( 2.5) and 
2 

eq. (2.7) we get the radio frequency res~stance 

R -
1. +- J 1 - 4 R~ (o( -1)20 ~./"cz. 

2 Ro(o< -1) u)c2 ••• 2.8 

J 
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In the prese~t experi~ental set up 
2 2 2 2 

4 Ro ( o( -1) W C < ( 1 

then r;f. re~istance of d-ielectric liquid 

R - 1 ••• 2.9 

But we know resist~ce 
l 

R =- P5 

-_ when f is the specific resistance, is the 

electrode distance and S is the· cross sectional 

area of the electrodes. 

If K' is the conductivity of the dielectric_ 

then K' can be written as 

or, · 

I 1 
K ;:T 

k ' = __.._l---­
SR • • • 2.10 

Since tbe cell 1 s a pa.raJ.l el pl. ate condenser t~ue the 

capaci tarice of the ceil can be w:ri tten &fi 

c ;::: s • • • 2.11 
2rtl 

Therefore tqe r.f. conductivity can be expressed 
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as 

I 1 
K =- --:-4-TI_R_C __ 

This is the fundamental formUla for measuring the radio 

frequency conduc-tivity of the dielectric liquids. 

B. The Ultra High Frequency and Microwave 

conductivity ( Kjj ) of the polar liquid 

dielectrics in non polar solvent were calcu­

lated from the experimental val.ue of dialect-

'' ric lo ~s factor ( E ij ) and di~l ectric eons-

' tant ( E·· )~at the centimeter wave length . ' IJ 

region. 

As we know from Murphy and Morgan rel~-

tion 
. I II 

that hi§;h frequency conduet1v1 ty ·is K·.-= K·· + J. K~. 
· · ,; · I J I J , I J 

I (J f· • If G.J f." 
K ij = 4 T'\rJ 1 s tb e reaJ. part and K ij ::: 

4 
rt'J where 

is the imaginary part of the conductivity. The magni-

tude of high frequency conductivity can ~e calculated 

from the relation 

K .. = 4~ J e,? + E'~~ . IJ I\ IJ IJ ••• 2.1'3 

·where c0 is the angular frequency = 2Tif • 

The complex diel.ectrio constant of the sol.u­

tion can be written as 

• • • 2.14 
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the imagin~ry part 
•I/ 

f .. 
IJ which is the dielectric lqs~ 

is reeponsib~e for absorption of electrical enetgy to 

give the resistance to polarisation. But at dilute solu­

tion, under t,he application of microwave electric field 
I I/ 

1 t can be consid~r as E.. ) ) E.. • There-
IJ IJ 

fore microwave conductivity of the solution becomes, 

I /f 

as (. )/E .. 
IJ IJ 

Considering Debye equat~on (1.36, 1.37) we 

can write 

Theretore &rt Q.t. r¢gion assuming 

eq.(2.15) c~n ~e written as 

I 

E·· IJ 

,, 
E E1: =- . . -t- ---=-u_ 

ljo() w "C 

• • • 2.15 

••• 2.16. 

• • • 2.17 

where E .. 
lJ 00 

is the optical dielectric constant of 

the sol uti on• Tperefore at infinite dilute solution 

h. f. conductivity ( K .. 
IJ 

) becomes the form 

I 

K .. =K K·· 
2.18 + IJ • • • IJ . O(j 

W'Ls 
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where K oO is a constant apd '"t
5 

is the relaxation 

time of the solute molecule in solution. 

2.2. Theor: of Determination of Dipole Moment:-

~ To calculate the dipole moment of polar solute 

in non pola~ ~otvent we consider the eq. (1.7~) ~s 

Q't; 
-·1 

2 2 2 
K:~. = (_ CiJ + 2)' NC.i .A-tJ • W T 

1J '\ 3 . 3kT 1 + w'l-r;2 

I 
·K .. = 

IJ 

2 2 
~.Nf;F; • W 't's ·W 
3 MJk T i + W'l.T~ j 

••• 2.19 

wher.e ,11-{ j is the dipole moment of polar solute, 

N is the Avog~d:pows number, ¥ is the Bol. tzmann cons-

tant c.= f; Wj 
J M. 

i.J· 

where is the mol. ecuJ.ar 

weight of the sol. ute, wj 1s the weight fraction, A 
is the densit1 of the solvent at infinite dilution, 

ly 
F 1 = is the l.ocal field of the sol. vent at infi:rti te 

. ( E + 2 _ ~2 
dU uti on = 1 

3 ) , E· I 
static d~electric constant of the solvent and 't"

5 

is the 

we have 

:re+axation time of the solute. 
., 

Sino~ K·· - IJ is ~ function of 

from f,tq. (2.18); 

W T ( d. Ku ) ::: GJ l's ~ 
s c) w. w 0 J . --7 

J . 

W· 
;: 

J 

•• 1' 

so 

2.20 



where ~ 

.w. ~0. 
J ' 

:i,s the slope of K .. - W· 
IJ J 

curve ~t 

Now frotp eq. (2t!19) and eq. (2~20) 
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••• 2.21 

sq. (2.21) is used to caJ.cul.ate the dipole moment of 

polar solute in non polar sol vent. 

2.:5a. Activfi.t1.~n Eners:y for Dipole Rotation: 

The dielectric relaxation has been treated 

as a rate prqcess in which polar moleoule rotate from 

one equil~b~i~ position to another. 

Eyring ideQt~fies K, the number of time~ 

per seconq that-a dipole acquires sufficient energy 

to pass over the potential barrier from one equilibrium 

position to the other, with 1/ T' where -r' is the 

(micros·copic) relaxation time. Therefore, the relaxa­

tion time is given by the rate expression 
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r' ~ __b_ eX p rD Fx)· 
k T \RT 

••• 2.22 

where h is the Pl.anck constant, k is the Bol tzma.nn 

constant, T is the absol. ute temperature, R is the 

universal gas constant and is th~ free 

ene~gy of activation for dipole relaxation, 

since 
••• 2.2'3 

Th e:refore, 

--r' ·= _!}_ exp(- f\~l\~xp(6Hi·)·· 
kT ·~ RT 

••• 2.24 . 

where and are the molar enthalpy 

and molar entropy of activation for dipole ~elaxation 

respectively. is ob~ained from the slope of 

the curvt:l obtained by plotting In (--r'T) against 
1/ A ~I 
1 T • Knowing L...l H -c and 1.. 

can be cal aula ted from tb.e eqo ( 2.24) .. 

Activation Ener,sy for Viscous FloW: 

Th~ viscosity of liqqdds may be aRproached 1~ 

an analogous manner, 

Visco~s flow is prefered as movement of one· 

layer of mo~ecul.es with respect to another layer, 
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invo~ving tranSlatiop as wel~ as rotational motion of 

molecules with an activation energy to pass over a 

potential. barri~r. The equation for vis co si ty terms 

·of this mech~nism may be written as 

··~ 2.25 

whe:re is the ftee energy of activation for 

viscous now, · .tl the P:lahck constant, N. the 

Avogadro Is number and v is the mol.ar vo~ ume and 

Then eq. (2.25) may be written as 

wb.ere B = h N 
y 

• e -t.5l£. /R) 

energy for viscous flow and 

activation for viscous flow. 

• • • 2.2p 

• • • 2.27-

the heat activation 

the entropy of 

;2. 4. Theory: of Least Square Fit Method: 

It is 4e$cribed to fit a· straight ~ine or a 

parabolic equa~ion to a set of experimental data 
(x,,y1),~z.,Y2);"·-·,.(xn, Yn) • 

j 
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In case of str~ight line equation for each 

val. ue· of x there are two val. ues of y the actual. 

v.allle y and the value y' predicted by the fitting 

straight line 

y = a+ bx ••• 2.28 

some deviatione 

cl. - Y. 
I I 

y ' -: y. ...... (o + b x 1 ) I I . ' • • • 

are positive, others are negative. The squares are 

ail positive. we consid~r that line as the line of 

best fits which ~inimise the sum of squared devi~ 

tiona~ 

n 2 
f(a,b):: J. ( Y.- a- bxi) ••• 2.30 

I= 1 I 

To find the suj. table val. ues of . a, b for this pur-

pose, we write; 

and 

~f -0 
"'Cl - ' 

~f -0 ab - ) 

r.e. 

). E'. 

• • • 

a)x. -t- b~ x?:::. L. x. y. 
L I L- I I I • •• 2.32 
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I~ 

By solving the~e equations {2.31) and (2.32) we can ~ 

get a and b. Putting the values of constants a and 

b in eq. (2-.28) we get the desired fitted striagllt line 

equation. 

Now in ~b~ case of parabolic equation 

. 2 
(1 + ~,)( + C X ::: y ••• 

We can get the val. ues of the constant a., p and c 

by so~ving the fo~~owing equations, 

na+ b.Lx. +c~x?:::: '\y. 
I L I L I 

• •• 2.'34 

2 3 a[x. + b.[x. +c.[x. :: Ix. y .. 
I I I I I • • • 

2 . 3 4 2 
a[x. +bL:x. -t c,Lx. · ;: :Lx. y 

I I . I I j • • • 

Then the reqqited fitted parabolic equation may be 

obtained by putting the values of a, b and c in 

the equation (2.'3'3). 

2.5. Determination of coefficient of Vis~osity 

of the Liquid: 

The co ~ffi ci en t of viscosity of -liqui~s at 

clifferent temp~ratures were me~sured by the help of 

Ostwald's viscometer. The vis co si ty ~ oftb.e 

liquid at a desired temperature was ca-t. cul at ed from 

\ I 
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the rel-ation 

Y) -:::: 1 d, tl 
1 2 d2t2 

••• 2.'37 

where . 1 is the coefficient of viscosity of a. stan­
'2 

dard liquid (water) d1 and d2 are the densities. 

· The time of fall · t 1 
and t 2 of the investigating 

liquid and standard liquid (water) were noted by the 

help of a high precession. stop watoh at the desired 

temperature. 

Purification of Liquids: 

The purity of liquids are very important 

factor to the study of ~olecular behaviour of dielect-

·ric liquid. In the present work, we have used pure 

qual.i ty of chemic~ a wbi.cll we have obtained f;tom repu­

ted manufacturing c~mpanies, namely E.Merck, British 

Drug Hous~ (B.D.H.).· 

Washing and Cleaning of the.Dielectric Cell: 

Initially the g].ass cell, tube fUld other glass 

wares ~ere thoroughly washed with dilute chronic acid 
' 

and after that ~hese are thoroughly washed with NaOH 

solution and then washed several times with distilled 

water. 

J 



To remove traces of waterp the wash glass wares 

and instruments were kept inside the thermostat. 

Th~ dried glass instruments and wares wer~ again 
,, I • 

Washed with dehydrated pure 'benzene and then 

dried. 
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