
Chapter -I 

INTRODUCTION 

1-1 Physical background : 
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If we consider the history of development of Physics, the present time may 

quite aptly_ be called the age of High-Energy Physics. With the 

commissioning of many high-energy particle accelerators in advance 

Labon,ttories of the globe, physicists are now all very eager to know the 

inner mysteries of the material world. So there should , of course, be 

proper theoretical framework to explain the new experimental 

observations. If not, new theories have to be developed with the urge to 

understand the experimental data. That is how physics progress. 

One very common feature of the high energy experiments IS the 

proliferation of number of particles and anti-particles, subject to the 

ConserVation laws and Einstein's mass energy relationship, E=mc2 
• For 

example, in case of electron-nucleon scattering with the electron energy in 

the range of 100 Gev (1 Gev = 109 eV) required, which is quite available 

today. Obviously, the theoretical framework that can describe such an 

experimental observation cannot be single-particle Quantum Mechanics, 

but has to be one that can deal with a many-particle system, especially 

creation of new particle. 
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Max Planck recognized the relationship between a field and many particle 

systems at the early beginning of the 20th century by his "blackbody 

radiation" - concept, which is an Electromagnetic Field. 

The relationship between fields and particles proposed by Planck was a 

hypothesis only. It took more than 30 years to translate this into a theory. 

This is because physicists had to wait for the development of Relativity, 

Quantum 1y1echanics and Relativistic Quantum Mechanics, which could 

provide the necessary theoretical background for the formulation of field 

theory. Today field theory is considered to be the essential language of 

the high-energy physics although it has been applied successfully to low 

energy· many particle systems also. 

To search for a theoretical background to explain the connection between 

a field and a many particle system, we have to give a prescription for the 

quantization of field and extract particle properties from the Quantized 

Field or Quantum Field. 

A field before quantization may be called a Classical Field. A Classical 

Field may be prescribed by associating a set of observable at each space

time point. For the Classical Electromagnetic Field the set of observable or 

variables consist of Scalar Potential and 3-components of Vector Potential 
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1.e. (~. Ax, Ay ,Az) at each point of space time (x,t). In the case of 

Quantum Field we have to elevate the variables to the status of operators. 

Different phases of the fields are represented by space-time co-ordinate. If 

the phases of the fields are altered in such an amount that is function of 

space and time, is called the Gauge Transformation. A Gauge Theory is 

such a theory in which all measurable quantities remain unchanged under 

a Gauge Transformation. Examples of Gauge Theories are Quantum 

Electrodynamics, Quantum Chromoqynamics, Electro Weak Theories etc. 

Most of the field theories of physical interest are highly nonlinear. This is 

especially true of theories like the models of Strong Interaction. To 

explain or describe the behavior of the particle and field one has to write 

some equation relating to them and try to solve them to have a relation 

between the particles and field. But, as we say that the physical fields are 

mostly nonlinear hence they cannot. be solved with the help of simple 

algorithms. That is why one has to rely on non-perturbative methods for 

these. It has been found that some of these field theories possess 

localized, stable solutions with finite energy at classical level. It is 

interesting to note that in some cases the nonlinearity leads to solitionic 

solutions whereas in some other cases . the nonlinearity leads to chaos. 

Our investigation is oriented along this direction in the area of nonlinear 

field equations. 



1-2 A few words about Nonlinearity: 

1-2-1 What is nonlinearity ? 
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Physical fields are mostly non-linear. Non-linear systems, unlike their 

linear coq.nterparts, do not have closed form solutions. Hence one has to 

' numerically simulate the behavior of the nonlinear system. 

Eugene Wigner pointed out that the chief role of mathematics in physics 

consists not in its being an instrument (i.e. computations) but in being the 

language of physics( details in [1] ). This role of mathematics is being 

served for about last few hundred years chiefly by differential equations. 

The general practice is to formulate the laws of physics in the form of 

differential equations and then to solve the differential equations in 

different physical situations. Though the process of getting the solutions of 

. differential equations is just the inverse of the process of the formation of 

those equations, it is for several reasons much more difficult to get the 

solutions. Thus, to get the solutions of differential equations has become a 

central problem of theoretical physics. The problem has become still more 

difficult with the fact that' differential equations arising from physical 

situations are mostly nonlinear. 

It is not far back when the nonlinear differential equations were something 

of a closed chapter. The reason is that such equations are very difficult to 

study. Linear differential equations have the advantage that the principle 
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of (linear) superposition holds in their cases, i.e. by adding two or more 

solutions, one can always get a new solution and the general solution can 

be expressed as linear combination of the particular solutions. 

The non-linear differential equations do not obey the principle of linear 

superposition. This is a severe loss on the part of non-linear differential 

equations and to obtain general exact" solutions for the non-linear 

differential equations become more complicated. However, there exists 

classes of non-linear (and even linear) equations which posses non-linear 

superposition principles. Of course, there is no universal non-linear 

superposition (details in [2,3] ). 

As a result of these difficulties natural scientists preferred for a long time 

to use the assumptions like "fluid is inviscid", "given a perfect insulator" 

or "for constant thermal conductivity".... etc. [ 4]. Such assumptions 

enabled them to keep themselves within the safe zone of linear differential · 

equations. And there was not very much to reveal the mysteries of 

nonlinear differential equations. 

The boost for the study of nonlinear partial differential equations (nPDEs) 

started with the work of Zabusky and Kruskal [5] in the year of 1965. 

Their work was stimulated by a physical problem and is also a classic 

example of how computational results may lead to the development of 

new mathematics, just as observational and experimental results have done 

since the time of Archimedes ( for details see [ 6] ). 
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1-2-2 Different approaches for understanding nonlinearity: 

(a) One can seek steady-state solutions [6], i.e. waves of permanent 

form. A soliton is such a solution, although such a solution is in 

general not a soliton. 

(b) One can seek the similarity solutions [6,7]. They may be found by 

use of dimensional analysis or of the group of transformations 

from one dynamically similar solution to another. 

(c) One can seek this group and other groups of transformations 

[ 6, 7 ,8]under which the nonlinear system is invariant. They are 

likely to underlie the character of all methods of solution of the 

system. 

(d) .One can see as many conservation laws of [9] the given system as 

possible. Infinity of conservation laws seems to be associated with 

th~ existence of soliton interactions. 

(e) One can seek a Hamiltonian representation [10] of the g1ven 

nonlinear system would have an infinite dimensional Hamiltonian 

representation or none at all. 

(f) One can seek the Lax representation [11] of the given nonlinear 

partial differential equation. In.this representation the given nPDE 

comes out as an integrability condition of the linear equations. 

Actually this identification is more an art than a science, because it 

depends upon the use of trial and error rather than an algorithm. 
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However, there exist at least two systematic procedures, which 

work in a large number of cases. J'he first one is due to 

M.J.Ablowitz, A.Ramani and H.Segur [12] where they leave some 

arbitrary coefficients in the linear Lax-equation and then determine 

to arbitrary coefficients which are compatible with the integrability 

condition ofthe line~ equations. And naturally the corresponding 

nonlinear partial differential equations are also found out. The work 

of Ablowitz et al [12] is based on the pioneering work of 

Zakharov and Shabat [ 13]. Another procedure is due to Wahlquist 

and Estabrook [ 14]. In essence they try to force the nonlinear 

equation of interest to be an integrability condition of two linear 

equations containing the unknown variables and its x-derivatives as 

coefficients. In doing so, they obtain dimensional algebra or, to put 

it another way, a set of commutation relations that are not closed. 

One can close the algebra with the help of symmetry of the original 

nPDE [ 15, 16] or with the help of some adhoc procedure analysed by 

Shadwick [ 1 7]. 

Once Lax-pair is obtained one can go for solutions through Inverse 

Scattering Transform (iST) [18a,b] or through Riemann-Hilbert 

problem [18c]. 



(g) One can seek a relevant Backlund transformation of the nPDE 

[19,20]. Backlund transformations were shown to be closely 

associated with the method of inverse scattering [20] and to be 

useful in finding multisoliton solutions. 

8 

(h) One can check using the formalism of Ablowitz, Ramani and 

Segur (ARS) [12] whether all ordinary differential equations 

(ODEs) derivable from the given nonlinear partial differential 

equation have Painleve' property. 

(i) One can check using the formalism of Weiss, Tabor and Carnevale 

[21a] whether the given nonlinear partial differential equation 

possesses the Painleve' property in the sense of Weiss et. al [21a] . 

. One can also try to obtain the Lax pair, the Backlund Transform, 

rational solutions etc.. In recent times this approach is gaining more 

and more interest due to several reasons. 

(j) In order to obtain exact solutions in a straightforward manner one 

can take the help of the method due to Hirota [22a]. However, 

recent findings indicate that Hirota's method plays a much more 

central role in the theory than heretofore believed [23]. It is also 

becoming more and more visible that the method due to Hirota and 

Painleve' property are closely related [22 ; 23]. One can check 

this in relation with the particular nPDE. 
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The above list do not exhaust all possible approaches towards a given 

nPDE. But it is believed that they arethe most prominent uptill now. 

The connections among the findings . obtained tlrrough different 

approaches are not very clear . even today. For a guideline in this 

direction one can see the work of Newell [23]. For details see ref [24] 

and [25]. 

1-2-3 An introduction to Solitons 

The axon or nerve fiber in neuron (neuron: the basic structural unit of the 

nervous system), which may be as long as 1 meter carries the electrical 

signal to muscles, glands, or other neurons. But a natural question may 

arise, . how can a small electric signal can travel along the axon over a 

relatively large distance without almost any loss of energy? 

The possible answer is: The electrical signal travels in the form of 

'solitons'. 

Solitons are actually solitary waves in contrast to plane waves which 

consist of a train of waveforms. In case of a plane wave profile it moves in 

the forward direction without any change of form. But natural systems are 

dissipative in nature. So in reality the wave profile dies down with the 

corresponding loss of energy associated with it. On the other hand, a 

natural system can be nonlinear as well. Such a system undergoes so 

called self-focussing. 
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What happens when both of the above two effects are present? There is a 

chance of proper balance and getting solitary waves or even solitons. 

All solitary waves are not again solitons. A solitary wave is said to be a 

soliton, only when it is having collision properties of solitions. The 

behavior of the ~oliton .is very surprising, because it is exactly similar to 

linear interaction except for the phase difference. 

An example of soli tonic equations can be given as follows: 

For linear waves the equation is 

For self -focussing waves the equation is 

Adding above two equations, 

: Ut + b Uxxx = 0 

: Ut - a U Uxx = 0 

we have the equation of solitons as : Ut- a u Uxx + b Uxxx = 0, 

the celebrated kdV equation. 

1-2-4: An introduction to Chaos 

As has been stated earlier, the solution to most physical problems 

involves setting up and solving differential equations. For example, in 

mechanical systems, Newton's laws provide us with the required second 

order differential equations whose solution gives the path taken by the 

system being studied. As. most· systems are non-linear, until recently 

approximations had to be used for solving these equations analytically. 

While solving some non-linear equations using these techniques, it is 

found that the dynamics is very different from that of linear equations, one 

notable feature being the tendency of very close initial conditions to lead 
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to completely different motion. This is the central identifying feature of 

chaotic systems. Such systems therefore appear Ulipredictable, since small 

changes in initial conditions can become amplified. 

Chaos is a science of everyday things: it has been implicated in areas 

ranging from heart failure, meteorology, economic modelling, population 

biology to chemical reactions, neural networks, fluid turbulence and more 

speculatively. even manic-depressive behavior. It also seems to occur 

everywhere - in rising columns of cigarette smoke, in fluttering flags, in 

·traffic jams and so on. 

To specify the position of a single particle, we need its Cartesian 

coordinates x, y, z. Another set of three numbers is required in order to fix 

the corresponding components of its velocity. Thus for N particles we 

· need 6N independent quantities. The state of the system can then be 

represented as a point in a 6N dimensional abstract space called phase 

space. The motion of the whole system then corresponds to the trajectory 

of this single representative phase point in this phase space. Deterministic 

dynamics implies that there is a unique trajectory through any given phase 

or state point, and it is calculable in principle. This absolute determinism 

was probably first recognized by the 19 th Century French mathematician 

· Pierre Simon ·de Laplace. But the Laplacian determinism is now known to 

have serious errors. The macroscopic uncertainty, or rather the 
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unpredictability, emerges in an entirely different and rather subtle manner 

out of the very deterministic nature of the classical laws. When this 

happens we say that we have chaos. 

Now one can question how can a system be deterministic and yet become 

chaotic? 

The answer. lies in the sensitive dependence on initial conditions. The 

deterministic laws permit a given initial state to evolve to a unique and 

calculable state of the system at the future instant of time. What if the 

initial conditions are known only approximately? If we start identical 

systems from two neighboring state points, then we generally expect their 

trajectories to stay close by for all future times. Such a system is said to be 

well behaved. But if initial errors actually grow with time say 

exponentially, then, any two trajectories that started off at some 

neighboring points initially, will begin to diverge/converge rapidly 

accordingly as the exponent is positive/negative respectively. This is 

precisely what is meant by sensitive dependence on initial conditions. It 

makes the flow in the phase space complex almost random. For, then the 

approximately known initial conditions do not give the distant future states 

with comparable approximation. This is often referred to picturesquely as 

the Butterfly Effect. The flapping of a butterfly's wings in America may 

set off a tornado in Kolkata. 


