
CHAPTER 2* 

FORBIDDEN CONFIGURATIONS AND RECOGNITION ALGORITHM 
OF INTERVAL DIGRAPHJBIGRAPH 

2.1 Introduction 

An interval digraph is a directed graph D(V, E) for which every vertex v E V is 

assigned a pair of closed intervals (Sv, Tv) such that uv is an edge (arc) iff Su and Tv have a 

non-empty intersection. An interval bigraph is a basically equivalent concept of an interval 

· digraph. It is a bipartite graph B(U, V, E) having bipartite sets U and V, for which there are 

two families of intervals {Su : u E U} and {Tv : v E V} such that uv E E iff Su n Tv ~-

An interval bigraph was introduced in [Harray,Kabel, McMorris, 1982] while an 

interval digraph was introduced in [Sen et al., 1989a]. That the two concepts are equivalent 

can be seen from the following . 

Given a digraph D(V, E), consider the bipartite graph B=B(D) whose partite sets are 

two disjoint copies U and Vofthe set Vof D and let two vertices u and v in B(D) be adjacent 

iff uv E E. Then it is not difficult to show that D is an interval digraph iff B(D) is an interval 

bigraph. On the other hand, B(U, V, E) is an interval bigraph iff the directed graph D(U u 

V, E), obtained from B by directing all the edges from U to Vis an interval digraph. 

Several characterizations of an interval digraph I bigraph are known [MUller, 1997; 

Sanyal&Sen,1996; Sen eta/., 1989a]. In [Sen eta/., I 989a] it was characterized in terms of 

its adjacency matrix and in terms ofFerrers digraphs. We recall the following theorem that 

characterizes an interval digraph. 

Theorem [Sen et. a/., 1989a] The following conditions are equivalent. 

(A) D is an interval digraph. 

(B) The rows and columns of the adjacency matrix ofD can be (independently) permuted 

so that each 0 can be replaced by one of {R, C) in such a way that every R has only R 's to 

* This Chapter has been communicated to Discrete Appl. Math 
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its right and every C has only C 's below it. 

(C) Dis intersection of two Ferrers digraphs whose union is complete. 

From the above theorem it follows that the Ferrers dimensionf(D) of an interval digraph D 

is at most 2. It was also shown by them that the converse is not true and in fact there exists 

a digraph off{D) =2which is not an interval digraph. The Ferrers dimension of a digraph D 

will also be referred to as the Ferrers dimension of its corresponding bigraph B(D). A digraph 

with j{D) =2 was characterized independently by Cogis [1979] and also in [Doignon, 

· Ducamp, Falmagne,1984;Sen et al.,1989a; Sen, Sanyal and West ,1995] in different contexts. 

Cogis [1979] introduced the concept of the associated graph H(D) corresponding to 

a digraph D. It is the graph whose vertices correspond to the O's of the adjacency matrix 

A(D) of D with two such vertices are joined by an edge in H(D) when the corresponding O's 

form the permutation matrix (1 0\ in A (D). The (Js are then said to form an obstruction. 
o·IJ 

Alternatively H(D) can be defined in following manner: let D= (V, E) be a digraph, i.e., E 

c VxV Then H(D) is an undirected graph with vertex set (VxV)\E and two non-edges(u, 

v) and (x, y) of Dare adjacent in H(D) if and only if (x, v) EE and (u, y) EE. 

Cogis [1979] proved thatf(D) of a digraph Dis at most 2 iff H(D) is bipartite. Then 

he used this result to obtain a recognition algorithm for a digraph ofj{D) =2 in a polynomial 

time. 

Muller [ 1997] obtained a dynamic programming algorithm to recognize an interval 

bigraph in a polynomial time. He first observed that an interval bigraph is chordal bipartite. 

It is easily observed that a cycle oflength at least 6 is ofFerrers dimension 3. So a bigraph 

which contains an induced cycle oflength;:::: 6 is necessarily ofj{D);:::: 3. Since an interval 

digraph (bigraph) is off{ D) at most 2, it follows that it must be bichordal. ln order to obtain 

his algorithm, Muller relies on the theorem by Golumbic and Goss [6] that a bipartite graph 

is chordal bipartite iff each minimal vertex separator induces a complete bipartite subgraph. 

He then recursively constructs a bipartite interval representation of a graph from interval 
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representations of its proper subgraphs. 

D~s and Sen [1993] tried to characterize an interval digraph in terms of forbidden 

configurations of its adjacency matrix. As a matter of fact, Muller had also made an attempt 

to solve this problem. In section 2.2, we continue from the paper by Das and Sen [1993] and 

obtain a complete list of forbidden configurations of the adjacency matrix of an interval 

digraph. In the process we obtain in section 2.3, a recognition algorithm of an interval 

digraph in a polynomial time O(n3
). 

2.2. Forbidden Configurations of Interval Digraphs/Bigraphs 

As noted in the introduction, an interval digraph is ofFerrers dimension at most 2, but the 

converse is not true. In [Das and Sen, 1993], an effort was made to find out the forbidden 

configurations of an interval digraph from the perspective of its relations with the associated 

bipartite graph H (D) of D. The present paper is, in effect, a continuation of that paper. So it may be 

worth recalling the main results contained therein for the sake of motivation. Cogis [1979] proved 

that.f(D) of a directed graph Dis at most 2 iff H(D) is bipartite. The graph H(D) may have more than 

one connected component; besides it may have one or more isolated vertices (corresponding to the 

O's which do not belong to any obstruction). The graph obtained by deleting the isolated vertices 

from H(D) is denoted by Hb(D) and is called the bare graph associated with D [Doignon eta!., 

1984]. 

Let D be a digraph of f(D) = 2 so that H(D) is bipartite. The set of all isolated vertices of 

H(D) is denoted by I(H) or I and a bicolouration of H(D) by (R, C). Recall that a colouration of a 

graph is an assignment of colours to its vertices so that no two adjacent vertices have the same 

colours. Naturally, a bicolourable graph uses two colours only. If Hb(D) has more than one 

connected components H1, H2, ... , HP, a bicolouration of H; will be denoted by (R;, C;). It is evident 

that R= CJRi and C= L.Ci for any labelling of the bicolouration {R;, CJ of H;. Also the elements of the 

set R, C. R;, C;, or I are denoted by the corresponding capital letters R, C, R;, C;, or Irespectively. 

The stable sets R; and C; are called the fragments of Hb(D). While proving his result, Cogis obtained 

the particular bicolouration (R, C) of H6(D) in such a way that adjoining all the edges of I (H) to each 



37 

of Rand C yielded the required Ferrers digraph realization G1 and G2 where G1 = Rul(H) and G2 

= Cu l(f--!J. Such a bicololl!ation (R, 9 of Hb(D) for which GI = Ru l(H) and G2 = Cu I(H) are 

Ferrers digraphs, is called a satisfactory bicolouration. Clearly if H(D) has no isolated vertex then 

D is an interval digraph. 

While the recognition of a digraph of f(D) = 2 requires the realization of its complement as 

the union of two Ferrers digraph G1 and G2, not necessarily disjoint, such that Dc = G1 uG2, the 

problem for an interval digraph recognition, however is to cover its complement by two Ferrers 

digraph which should necessarily be disjoint, Dc = HI u H2, HI n H2 =tjJ. This is equivalent to 

adjoining every edge of l(H) into only one of two digraphs G 1(V,R) and G2(V, C) so that they 

become two disjoint Ferrers digraphs. 

To this end, the notion of interior edges was introduced in the same paper. 

Let (R, C) be a satisfactory bicolouration of Hb(D) leading to a realization of If= G~(V,EJ) 

uG2(V, EJ) where E1 = R ul(H) andE2 = C ul(H). Let the rows and columns ofA(GJ be so 

arranged that all the ones are clustered in the upper right. Similarly, the rows and columns of A(G2) 

are so arranged that all the ones are clustered in the lower left. 

RJ I(H) 0 

A(q)= A(~)= 

0 aJ I(H) 

An edge IE I is said to be an interior edge of G1, denoted by 4, if there exists a 

configuration of the form 

in A(GJ; similarly, an IE I is said to be an interior edge of G2 denoted by .k, ifthere exist 
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reo! 
~ 

in A (G~. With reference to a particular realization of If as the union of G 1 and G2, If =G 1 

u G2, the set of all interior edges of G 1 is called interior of G1 and is denoted by lr(G 1) or Ir 

and all interior edges of G2 is called interior of G2 and is denoted by lc(G~ or Ic. Note that 

the sets Ir and Ic are identified with reference to a particular realization of If and will change 

. if the realization changes. With these notions, it was proved in the same paper that for a 

digraph off(D) = 2, the property Irnlc:;e¢ is invariant under any satisfactory bicolouration of 

Hb(D). This means that if Irnlc4 for a certain satisfactory bicolouration (R, C) of Hb(D) of 

a digraph D of ftD) =2 then the same is true for any satisfactory bicolouration of Hb(D). As 

a matter of fact, the following proposition was proved in [Das and Sen, 1993]. 

Proposition 2.1[ Das and Sen, 1993]. Let D be a digraph off(D) = 2. !flrnlc:;Ct/J for a 

certain satisfactory bicolouration (R, C) of Hb(D), then the same is true for any satisfactory 

bicolouration of Hb(D). 

Lastly the paper concluded with the following proposition. 

Proposition 2.2 [ Das and Sen ,1993]). Let D be a digraph off(D) = 2. JfD is an interval 

digraph, then for any satisfactory bicolouration of Hb(D ), Irnlc=¢; but the converse is not 

true. 

In the Theorems 2.1 and 2.2 of the present chapter we do away with the restriction of 

a satisfactory bicolouration and prove the same result for any bicolouration Hb(D). Thus the 

Theorems 2.1 and 2.2 of this chapter are improvements upon the previous one. This 

generalization, as we will later see, will have a lasting effect when we come to the question 

of recognition algorithm. 

For this generalization, we require extending the definition of .4- and .{for any 
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bicolouration of Hb(D). With reference to any bicolouration (R,C) of Hb(D), an .10 El will 

be termed .4 or .4: if A (D) contains a configuration 

~ 
~ 

or ~ 
~ 

respectively. We also need the following notions of a core matrix of a matrix and of the 

compatibility between two rows/columns in a matrix. 

Let two rows (columns) of the adjacency matrix of a digraph D be identical. It means that 

_the out-neighbours (in-neighbours) of the two vertices are the same. Alternatively the two vertices 

of the bipartite graph obtained by vertex splitting operations [Miiller, 1997] are copies of one 

another. Since an interval digraph (bigraph) property is a hereditary property, we are not interested 

in such identical row or columns (copies). Deleting those rows or columns of a matrix A which are 

identically equal to a previous row (or column) the resulting matrix will be called the core matrix 

of A and the corresponding digraph, the core digraph of D. 

In a (0, I) matrix, we will frequently use a'-' in any position to indicate that it is either 0 or 

I. The rows (or columns) of a binary matrix are compatible, if for some combination of values of 

the '-' positions they become identical; otherwise they are incompatible. For example in the matrix 

Mbelow of Fig. 2.1, the rows 2 and 3 are compatible, because they become identical but putting the 

values 0 to the positions (2,5) and (3,7); but since (1,6) and (2,6) positions have values 0 and I 

respectively, the rows 1 and 2 are incompatible. 

By a configuration of an adjacency matrix A, we shall mean a sub-matrix of A 

obtained by any (independent) permutation of rows and of columns. 

Proposition 2.3 Let D be a digraph of Ferrers dimension 2 and let Irnlc :;e fjJ for a 

satisfactory bicolouration (R, C) of Hb(D). Then the same is true for any other bicolouration 

ofHb(D). 

The proof of the proposition relies heavily on the following lemma. 

Lemma 2.1 Let D be a digraph of f(D) = 2 and let lrnfc :;e fjJ for a satisfactory bicolouration 

of Hb(D). Then the adjacency matrix A(D) of D must contain the core matrix of the matrix 
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M or its transpose M (subject to independent permutations of rows and/or columns) where 

1234567 

1 1 1 1 1 1 0 0 

2 1 1 1 1 - 1 0 

M= 
3 I 1 1 I 0 I -

4 I I 1 I 0 0 1 

5 I - 0 0 - 0 0 

6 0 1 1 0 0 0 0 

7 0 0 - 1 0 0 -

Fig. 2.1 

Proof of lemma 2.1. We first make some observations on the matrix M If the values of the 

'-' positions are all O's, then the column 2 becomes identical with the column 3 and so also the 

rows 2 and 3. Then the core matrix of M with a bicolouration of the vertices of H (D) is of the 

form 

I 1 I I R1 R2 

I I I c1 1 R3 

I I I Cz c3 1 

I R4 R5 I I I 

c4 I R6 I I I 

c5 c6 1 I I I 

But if the values of the (5,5) and (7,7) positions are both 1 then all the components coalesce 

into one component. Now we begin the proof oflemma 2.1. Since lrnlc :;e¢, there is an IE 
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r-ei 
~ 

must be present in the adjacency matrix A (D) of D. 

So the adjacency matrixA(D) must have configuration 

1 4 6 

1 1 R 

4 1 c ••• 000 00 (1) 

6 c R I 

We label the rows and columns of the configuration conveniently so that they will ultimately 

coincide with those of the matrix M Now every Rand C in the above configuration must be 

in obstruction with some C and R respectively in the required matrix A(D). We pay our 

attention to them. 

The R and C of (1 ,6) and ( 4,6) position require the structure 

6 

1~ 
-I c 1 

and 

6 

-~ 
41C 1 

respectively. Note that we have not labelled the new rows and columns in the above two structures. 

Several possibilities may occur; we can give them different labels or we can identify two rows 

and/or two columns, whenever we find them compatible. Our aim is now to explore all possibilities 

and find out the forbidden configurations. 

First we consider the case when two rows and columns in the above structure are given different, 

as in the following 



5 6 

1~ 
31 c 1 

In this case the configuration gets the form 

1 4 5 

1 1 1 

2 

3 c 
4 1 

6 c R 

42 

and 

6 7 

R 

1 R 

1 

c 1 

I 

6 7 

2~ 
4jc 1 

......... 1(a) 

Next we explore other possibilities as regards the shape of the matrix when some 

rows/columns in the above configuration coincide. 

For example, we first consider the case by identifying rows 2 and 3 m the 

configuration l(a). Then the configuration is 

1 4 5 6 7 

1 1 1 R 

2=3 - c 1 R 

4 1 c 1 ......... 1(b) 

6 c R I 

Note that all the four rows in 1 (b) are incompatible to one another and so we try to 

identify the possible compatible columns. As an example, let us see what happens when 

column 1 becomes identical with column 7 and also column 4 with column 6. Then the 

configuration becomes 
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1(7) 2(5) 6 

1 1 R 

4 1 c 
6 c R I 

2(3) R c 1 

In this case we look at the structure 

4(5) 6 

6~ 
2(3) 1 c 1 

Here C and I are in obstruction in the matrix C ul, which is contradictory to our 

hypothesis, because Cu.l is a Ferrers digraph in a satisfactory bicolouration. So this 

possibilities is ruled out. 

By similar reasoning, we can check that in whatever way we identify the columns 

either in the configuration l(b) or in l(a) we will reach an impossible situation. Therefore 

we are now left to search for the matrix coming up from the configurations l(a) and l(b) 

only. 

First we consider the configuration l(a). In that configuration the structure 

6 7 

implies that positions (1,7) and (6,7) must be 0 (otherwise it would contradict the property 

that Ru.l is a Ferrers digraph for~ satisfactory bicolouration). Again since Cui is a Ferrers 

digraph, the structure 
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5 6 

implies that the positions (4,5) and (6,5) are 0. 

Now by the same logic, 

I 

4 

1 6 

~ 
I I c 

implies that (I, I) position cannot C or I Also 

I 4 

I~ 
6 I c R 

means that (I, I) position cannot be R or I So (I,l) position must be I. Similarly (4,4) 

position is J. The configuration thus takes the shape 

I 4 5 6 7 

I 1 1 1 R 0 

2 1 R 

3 c 1 

4 1 1 0 c 1 

6 c R 0 I 0 

The structure 

5 7 

I 

~ 4 1 
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means that the two O's are of two distinct colours and for a satisfactory bicolouration the 

position ( 1, 7) must be R and position ( 4, 5) is C. 

Next the structure 

1 6 

~IT 
implies that the position (2,1) must be 1. On similar grounds the positions (3,1), (2,4) and 

. (3,4) are allJ.Thus the configuration gets the form 

1 4 5 6 7 

1 1 1 1 R R 
2 1 1 1 R 
3 1 1 c 1 
4 1 1 0 c 1 
6 c R 0 I 0 

Now we consider the obstruction corresponding to C and R in the positions (6,1) and (6,4) 

respectively. For them we have the structures 

1 4 

~ lc 1 

and 6 ~ lc 1 6 

Arguing similarly as before we arrive at the matrix 

1 2 3 4 5 6 7 

1 1 1 1 1 1 R R 

2 1 1 1 1 1 R 

3 1 1 1 1 c 1 

4 1 1 1 1 c c 1 

5 1 R R 0 0 

6 c 1 1 R 0 I 0 

7 c c 1 0 0 
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We note that rows 2 and 3 are the only compatible rows and the columns 2 and 3 are the only 

compatible columns in the above matrix. We also note that the rows 5 and 7 constructed in 

the way can not be merged with any other row. Replacing Rs and Cs by O's we arrive at the 

required matrix M 

If we now start with the configuration l (b), and consider the obstructions of C and R in the 

positions (6,1) and (6,4) respectively, then exactly as before we will arrive only at the matrix 

M where with rows 2 and 3 identifying together. • 

. Proof of Proposition 2.3. We divide the proof into three cases according to the values of 

the positions (5,5) and (7,7) in the above matrix M 

( i) When both of them are 1; 

( ii) When both of them are 0; and 

(iii) When one of them is 1 and the other is 0. 

In case (i), the graph Hb(D) is connected and we have nothing to prove. 

In case (ii), the number of components of graph Hb(D) is 6 and a possible bicolouration is 
given by 

1 

2 

3 

4 

5 

6 

7 

1 

1 

1 

1 

1 

1 

c4 
c5 

2 

1 

I 

1 

1 

-

1 

c6 

3 4 

1 1 

1 1 

1 1 

1 1 

R4 R5 
1 R6 
- 1 

5 6 7 

1 R1 R2 
- 1 R3 
cl 1 -

c2 c3 1 

I I I 

I I I 

I I I 

The above matrix has the interesting feature that if the matrix is divided into four blocks as in the 

figure, the upper left (UL) block has all its elements equal to 1, while all the .ls comprise the lower 

right (LR) block The upper right (UR) block has the fra~ll~ pf~e components H 1, H2 and H3 

whereas those of H4 , H5 and H6 all have th~iff~ \Jl·tb~ lower left (LL) block. 
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We now come to the question of interchange of colours. Suppose, as a case in point, we . . 

interchange the colours of H1 only without changing the colours of the other components. Here we 

observe that the column 6 has two fragments of the same colour and so the Iofthe (6,6) position 

loses the property that it is both an .z;. and ../;:. But then the column 5 has fragments of two colours 

and so the Iin the (6,5) position becomes both .z;. and ..!;:. If we interchange the fragment of colours 

of any number of components in the UR-block, keeping the colours of the components in the other 

block unchanged, we find that at least one column in the UR-block must have fragments of two 

different colours and one of the Is in the 6th row becomes both an .z;. and an ../;:. 

Similar things happen when we interchange the fragment colours of the components in the 

LL-block, this time the Is of the 6th column coming to satisfy the requirement. 

This loss and gain property of an IE l.,.nlc is clearly manifest in the block diagram of the 

matrix and remains the motivating spirit behind our assertion. 

Considering the other possibility, if we interchange the fragment colours in both the blocks, 

then all because of the in-built pattern of the different blocks in the matrix, one column in the OR

block and one row in the LL-block have fraglnents of both the colours and the corresponding row 

and the column intersect at the required I 

For an instance, suppose the colours of components H2, H5 and H6 are interchanged, the first 

lying in the UR-block and the other two in the LL-block. Then the two blocks UR and LL take the 

look 

5 6 7 

1 1 R1 c2 
2 1 R3 
3 c1 1 
4 R2 c3 1 

UR-block 

and 
1 2 3 4 

5 1 R4 c5 
6 c4 1 1 c6 
7 R5 R6 I 

LL-block 
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Here we see that all the columns in the UR-block and the 5th row in the LL-block have the 

features of containing fragments of both colours and the corresponding Is get the required 

criterion. 

Lastly we come to case (iii) when of the two positions (5,5) and (7,7) one has the 

value 1 and other 0. Specifically, suppose (5,5) is 1 and (7,7) is 0. Here the components H1, 

H 2, H 4 and H5 coalesce into one component and the matrix takes the following configuration. 

12 3 4 56 7 

1 

2 

3 

4 

5 

6 

7 

I 

1 

1 

1 

1 

c 
c 

1 

I 

1 

1 

-

1 

c6 

I I 

I 1 

I 1 

1 1 

R R 

I 14 
- 1 

Fig.2.2 

1 R R 

- 1 R3 
c 1 -

c c3 1 

1 0 R 
0 I I 

c I I 

As is clear from the above configuration any change in fragment colours has its effect 

on the two rows 6 and 7 and the two columns 6 and 7 and the required I varies its position 

at the four corresponding intersecting positions. The other case when (5,5) is 0 and (7,7) is 

I can be similarly proved, Is taking the positions at the intersections of rows 5, 6 and 

columns 5, 6. 

Proposition 2.4. Let D be a digraph off(D) = 2 and let for a satisfactory bicolouration of 

Hb(D), 

ii) A(D) contain the configuration (2). 
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R 

1 I 

-4: 
c ..z; 
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(2) 

Then the same is true for any other bicolouration of Hb(D). 

To prove the Proposition we need the following lemma: 

Lemma 2.2 Let D be a digraph off(D) = 2 with Irnlc=¢for a satisfactory bicolouration 

of Hb(D) and A(D) contain the configuration (2) 

· Then A (D) must contain the core matrix of Nor its transpose, 

where 

I 2 3 4 5 6 7 8 9 IO 11 

1 1 1 I I I I 1 I 0 0 0 

2 I I 1 1 I 1 1 I - 1 0 

3 1 I 1 I I I 1 I 0 1 -

4 1 - 0 0 - - - - - 0 0 

N= 5 0 1 1 0 0 - - - 0 0 0 

6 1 I I I 0 - - - 0 0 1 

7 0 0 - I 0 - - - 0 0 -

8 - - - 0 I - 0 0 - 0 0 

9 - - - 0 0 I 1 0 0 0 0 

IO - - - 0 1 I I I I 0 0 

11 - - - - 0 0 - 1 0 0 -

Fig.2.3. 

where '-'positions are either 0 or I subject to the conditions that Dis off(D) = 2 and l,.nlc=r/J. 

Proof of lemma 2.2 Before taking up proof of the lemma we observe that for a certain 

combination of values 1 or 0 to the'-' positions, the digraph D may tum out to be ofFerrers 

dimension 3. But since an interval digraph is necessarily ofFerrers dimension:::::; 2, we simply 

ignore those and consider only those combination of values in the '-' positions for which D 
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is off(D) = 2. For instance if we consider the case when four positions (2,9), (3,11), (7,3) 

and (11,7) alii and the rest are all Os, then the graph Hb(D) is bipartite and soD is off(D) 

= 2.(As a matter of fact, Hb(D) in this case has seven components). 

Overlooking the values of the'-' positions a possible bicolouration of Hb(D) is as in the 

following: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
11 

I 

1 

I 

1 

1 

c2 
1 

c4 

-

-

-
-

2 

1 

1 

I 

-

I 

I 

c3 

-

-

-
-

3 

1 

I 

I 

R2 
I 

I 

-
-
-

-
-

4 5 6 

1 1 1 

I I 1 

I I I 

R4 - -

R3 0 -

I c1 -
I c1 -

R1 1 -

0 c1 I 

R7 I I 
- c~ c, 

Fig.2.4. 

7 8 9 IO 11 

1 1 c1 I R1 
I I - 1 R1 

I I CJ I -

- - - 0 0 

- - 0 ..0 0 

- - c1 c1 I 

- - c1 0 -

R1 R6 - 0 R1 

I Rs 0 .z;. 0 

I 1 I R7 R7 
- I 0 0 -

Note that since Ienir=¢, we will riot entertain those values in the '-'positions in which 

an ../;; in the above matrix also becomes an ..(.and an ..(.also becomes an · ../;;. Also note that 

for appropriate values, the number of components may tum out to be other than seven. As it 

can be observed during the proof, if it is more than seven, the additional components will not 

play any role, whereas as in Proposition 2.3 our arguments in the course of the proof will also 

hold good when it is less than seven (and some components coalesce). 

With this observation, we begin our proof We start with the configuration 

4 5 IO 

1 1 1 I 

5 R ..0 

9 c .z;. 
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We label the rows and column as above as they will tum out to be convenient and 

fitting in with the labelling of the matrix N subsequently. The presence of 1; and ..Z:: in 

configuration (2) require the structures 

9 

IO 

8 IO 

~ 
I I R 

and 5 

6 

I IO 

~ 
II c 

· in the adjacency matrix. This implies that the matrix should contain the configuration 

I 4 5 8 IO 

I I I I 

5 c R .{: 

6 1 c 
9 c R I,. 

IO - 1 R 

In the above configuration the presence of the structures 

5 

IO 

4 IO 

~ I - R 

and 6 

9 

5 IO 

~ lc z,. 

force us to put values 0 to (10,4) (6,5) positions as otherwise we will have Irnlc¥¢(in either 

case) which will contradict our hypothesis. So the structure become 

I 4 5 8 IO 

I I 1 I 

5 c R - .{: 

6 1 0 - c ...... ·-- (3) 

9 c R I,. 

10 0 - 1 R 

In the above configuration we can check that only column 1 and column 8 are compatible but 
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no two rows. So we can identify column 1 and column 8 to achieve the configuration (3a). 

1=8 4 5 10 

1 1 1 I 

5 c R - -4: 
6 1 - 0 c (3a) 
9 R - c I,. 
10 I 0 - R 

The presence of a C implies that it has an obstruction with an R. So corresponding to the Cs 

in the (9,5), (6,10) and (5,1), we consider the obstructions 

5 7 10 11 1 3 

8fJR 211"R and 4fJR 
91 C I , 61 C I 51 C I 

Next we draw our attention to the three Rs in the positions (9,8), (10,10) and (5,4). They call 

for the following structures in A{D) 

6 8 

9flR 
njc 1 . 

9 10 

3•~ 
IO' I R 

and 

2 4 

5flR 
71 C I 

respectively, which when combined with the earlier matrix gives us 

I 2 3 4 .5 6 7 8 9 

I I I 

2 

3 c 
4 I R 

5 c I I R 

6 I 0 

7 c 1 

8 I R 

9 c I I R 

IO 0 1 I 

11 c I 

10 11 

I 

I R 

1 

-4: 
c 1 

R 
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Note that we have arrived at the above matrix from the configuration (3) by adding 6 rows 

and 6 columns more to it. In the process, some rows/columns can be found compatible to one 

another. As in the case of lemma 2.1, it can be verified that whenever we identify any two 

compatible rows/columns, we either get a matrix which does not yield a satisfactory 

bicolouration, thereby arriving at an impossible situation, or otherwise obtain a core matrix 

of the matrix N. 

Now the structure 

5 10 1ri 2 - 1 

3 - 1 

implies that the positions (2,5) and (3,5) are 1. 

Also the structure 

6 7 10 

2 - 1 

3 - 1 

9 1 1 .4; 

implies that all the positions (2,6), (2,7), (3,6) and (3,7) are 1. Again the structure 

implies that the position ( 6,5) is C. 

Next from the structures 

2 

6 

5 11 

~ 



7 11 

2fll? 
81 R -
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and 

we conclude that the position (8, II) is an R. 

Also from the structures 

IO 11 

1 ji----=-
21I R 

we have the position (I, 11) is an R. 

Also the structure 

9 IO 

I~ 
31 C I 

implies that the position (1,9) is 0. 

Next the structure 

6 8 IO 

2 I I 

IO - I 1 

11 c 1 -

and 

5 1J 

6~ 
811 -

5 11 

I flO 
61 C I 

implies that the position (2,8) must be 1, as otherwise we have the structures 

none of which is possible. 

Similarly from the structure 

6 8 10 

3 1 1 

10 I R 

11 c 1 



it follows that the position (3,8) is I. 

Also the structures 

7 IO 
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6 IO 

8j.R--=-
91I .z;. 

and ~r 
implies that the positions {8,10) and (11,1 0) are 0. 

Again the structures 

9 IO 

3~. 
91- .z;. ' 

IO 11 

2~ 
IOI R -

and 

2 

9 

3 

11 

IO 11 

I]~ ~ . 
6 9 

~ -

implies that all the positions (9,9), {9, 11 ), (1 0,11) and (11 ,9) are 0. 

Now the structure 

7 8 9 

3 I C 

9 I R -

10 - I I 

implies that the position ( 10, 7) is 1. 

Also the structures 

6 8 9 

3 1 c 
9 I R 

IO - I 1 
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and 

5 7 

3 1 

8 1 R 

10 - 1 

implies that the positions ( 1 0,6) and ( 1 0,5) are 1. 

Next the structures 

5 6 

9~ 
111- c 

and 

imply that the positions (11 ,5) and (8,8) are 0. 

Now the structure 

4 10 1ri 2- 1 

3- 1 

. implies that the positions (2,4) and (3,4) are 1. 

Then from 

4 9 

3flC 
10,0 1 

we conclude that the position (10,4) is an R. 

Now the structure 

4 5 6 

1F1-9 - c 1 

10 R - 1 

9 

c 

1 

7 8 

8~ 9,1 R 



57 

implies that the position (1 ,6) is J. 

Similarly from the structures 

4 5 7 

1 1 1 

9 c 1 

10 R 1 

4 6 8 

1 1 1 

10 R 1 

11 c 1 

we conclude that the positions (1,7) and (1,8) are 1. 

Now the structures 

4 7 4 8 

8~ 
101 R 1 

9~ 
101 R 1 

And 

implies that the positions (8,4) and (9,4) are 0. 

Substituting all these values in the configuration (4) we get the matrix 

1 
2 
3 

4 

5 
6 
7 

8 
9 
10 
II 

1 

-
-
-

1 
c 
I 
-

-
-
-
-

2 

-

-
-

-
1 
-

.c 

-
-
-
-

3 4 

- 1 

- 1 
- 1 

R -
1 -
- -
- 1 

- 0 
- 0 
- R 
- -

5 6 7 8 9 

I I I I 0 
1 1 1 1 -
I 1 I 1 c 

- - - - -
- - - - -
c - - - -
- - - - -

I - R 0 -
c 1 1 R 0 
I 1 1 1 I 
0 c - I 0 

10 11 

I R 
1 R 
1 -

- -

Ic -
c I 
- -

0 R 
.z;. 0 
R 0 
0 -
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Repeating the same logic for other positions as above (required for a satisfactory 

bicolouration of H(D) and proceeding, it can be seen that the matrix N is the required matrix 

containing the configuration (2). 

It may also be noted that, if we start from the configuration (3a) instead of the 

configuration (3) then as in the case oflemma 2.1, we will arrive at a core matrix ofN. 

Proof of Proposition 2.4 We first suppose that the graph Hb(D) has all the seven 

components fL ( 1 :::;;i::=;;7) as manifest in the figure 4. We will prove that the presence of the 

configuration (2) is independent of the different combinations of bicolours (Rj,CJ of the 

components fL of the graph H(D). Finally we will-consider the case, when, because of the 

elimination of compatible rows, some components coalesce and the number of components 

becomes less than 7. It is very important to note in this context that after elimination of some 

identical rows, the property Irnlc=fft in the matrix may get lost in some case, so that 

according to the Proposition 2.3, the matrix N contains the core matrix of Mas a submatrix. 

As in the present proposition we are interested in only those matrices for which Irnlc=f/J, we 

will simply ignore those matrices from our considerations. 

As in Proposition 2.3, the proof of this proposition relies heavily on the block diagram 

of the matrix N as given in figures 2.3 and 2.4. For convenience, we name the 9 blocks of N 

as follows 

A 

B 

c 

1 

AI 

BI 

cl 

2 3 

A2 ~3 

Bl ~3 

c2 c3 
Looking at the matrix N, we check that the 9 elements of the configuration (2) belong to 

the 9 different blocks, no two to the same block. The block B1 contains the fragments of the 

components H2, H3 and H4 excludingly, while those of H1, H5 and H 6 belong to the block C2 . 

Also we observe that 1; and 4belong to the blocks B3 and C3 respectively. 
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Now we come to the question of other bicolourations by interchange of colours of the 

fragments in different components. We first consider the block B1; A little scrutiny will reveal 

that for any change of colours of the components of this block there is a row which contains 

fragments ofboth colours and ifby such change, the Iof(S,IO) position loses its property 

of being an ..{,there will be another .Z reappearing from amongst the (Js of the lOth column 

in the same block. This interdependence between the change of colours in block B and the 

loss and recovery characteristic of an ..Z: in the block B 3 and similarly between the blocks C 2 

and C 3 for an -4- is the essence of the proof and tells us all. 

For instance, let {R2, C~ be replaced by {C2,R2). Then the position (5,10) no longer 

remains an ..Z: and the configuration (2) seemingly gets lost. But from the configuration 

3 4 9 IO 

2 ,~, I 
4 R4 - 0 

it follows that 

9 

2 r 4 

is not possible and so the 0 ofthe (4,10) must be an I Again the configuration 

4 

6 

3 IO 

~ 
II c1 

implies that (4,10) is an I; and the configuration (2) resurfaces with the column 1 replaced 

by column 3 and row 5 by row 4. 

The same argument applies for every bicolouration of Hb(D) and with an ..{shifting 

its position in the column I 0 of block B3 and an -4- in the same column of block C3, we see 

that the configuration is manifest in every bicolouration of Hb(D). 
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Finally we consider the case when some compatible rows are identical in the process 

of which some of the components of Hi may coalesce. Here our arguments remain mainly the 

same as in the previous case; the only difference is that here the blocks lose their distinct 

identity and the border line between the blocks breaks down. 

Let us take two examples. First consider the matrix N' obtained from Nby identifying 

the rows 5 and 9. This case is quite revealing in the sense that the I: and .4 of the (5, IO) 

position and the (9,IO) position are superimposed upon one another and we have an Iwhich 

belongs to both I, and lc. This case is covered by Proposition 2.3 and accordingly this matrix 

N' should contain the core matrix of M of Proposition 2.3 as a submatrix. As a matter of fact, 

as we can check that the matrix M can be obtained from N' in the following way: identify the 

· rows 4 and 8 and again the rows 7 and II; then consider the matrix with the rows 2, 3, I 0, 

6, 4, 5, 7 and the columns I, 2, 3, 8, 9, 10, and II; and fill in the blank positions to satisfy the 

requirements that H(D) of the submatrix is bipartite. Since this case is outside the purview 

of the present Proposition we ignore this case. 

For another example identifying the rows 4 and 9 in the matrix N, we have the matrix 

1 
2 
3 

5 

6 

7 

(9)4 

8 

10 

lJ 

1 
1 
I 
I 

c2 
I 

c4 
I 

-
-

-

2 
1 

I 
I 

I 

I 

c3 
-

-

-

-

3 4 
1 1 

I I 
I I 

I R3 
I I 

- I 

R2 R4 
- R1 
- R1 
- -

5 6 7 8 
1 1 1 1 
I 1 I 1 
1 I 1 I 

0 - - -

c1 - - -

c1 - - -

c1 1 1 Rs 
I - R1 R4 
I 1 1 1 

c4 Cs - I 

We draw our attention to two particular subcases here; 

(i) when either of the (6,6) and (6,7) positions are 0 and 

( ii) when both of them are 1. 

9 10 11 
r:7 I R7 
- 1 R7 
c1 1 -
0 Ic 0 

c1 c1 I 

c1 0 -

0 I,- 0 

- 0 R 

1 R1 R1 
0 0 -
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In subcase (i), the components H2, H4 and H7 coalesce into one component, say H7. 

If we now interchange the colours of H7 then the .1; and .1; of the (5,10) and the (4,10) are 

also interchanged, whereas if we change the colours of H7 as well as of H1, then (5,10) 

becomes an ..l;while the 0 of the (8,10) becomes an .1;. 

In the subcase (ii), H2 is distinct from H7 and then interchanging the colours of H2 

only leads to the ..z;. of(9,10) becoming an .1; again, so that we come back to Proposition 2.3 

again. (Since for this combination of colours Irnlc:A/J, according to the Proposition 3 this 

matrix should again contain the matrix M, which can be verified with a careful scrutiny). 

Exactly analogous to Proposition 2.4, we have the following proposition. 

Proposition 2.5 Let D be a digraph off(D) = 2 and let for a certain bicolouration (R,C) of 

Hb(D) 

(ii) A(D) contains the configuration (4) 

(4) 

Then the same is true for any other bicolouration ofH(D) 

The proof of the above proposition is a consequence of the following lemma. 

Lemma 2.3 Let D be a digraph off(D) = 2 and let Irnlc=¢for a certain bicolouration 

(R,C) of H (D). If A(D) contains the configuration (4), then A(D) must contain the core 

matrix of the following matrix or its transpose (subject to independent permutations of rows 

and/or columns). 



P= 

1 

1 

I 

I 1 

2 I 

3 1 

4 1 

5 -

6 I 

7 1 

8 1 

9 0 

() 1 

1 0 

2 

1 

I 

1 

1 

-
I 

I 

-
1 

I 

,0 

3 4 5 

1 1 -
I I -
1 1 -
1 1 -
- - -
I I 0 

1 I 0 

0 0 -

1 0 0 

I 1 I 

- I 0 
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6 7 8 9 10 II 

1 1 1 0 1 0 

I 1 - 1 1 0 

1 1 0 1 1 -

1 1 0 0 I I 

0 0 - 0 I 0 

0 1 0 0 0 0 

1 1 - - - -

0 - - 0 - 0 

0 - 0 0 0 0 

0 - - 0 - 0 

0 - 0 0 0 -

Fig. 2.5 

The theorem and the lemma can be proved in exactly similar way to those of Proposition ·2.4 

and Lemma2.2 and so is omitted here. The possible bicolouration of the above matrix is only 

noted below. 

I 

2 

3 

4 

5 

6 

7 

8 

9 

IO 

11 

I 

I 

I 

I 

I 

-

I 

I 

I 

c4 
I 

Cs 

2 3 

I I 

I I 

I I 

I I 

- -

I I 

I I 

- R4 
I 1 

1 1 

c6 -

4 5 6 

I - I 

I - I 

I - I 

I - I 

- - 0 

I 0 I 

I c~ I 

Rs - 0 

R6 0 I,. 

1 I R1 

1 0 0 

7 8 9 IO II 

I I R1 I R2 

I - I I R3 
I c1 I I -

I c2 c3 I 1 

Rs - 0 I 0 

I 0 Ic Cs 0 

I - - - -

- - 0 - 0 

- 0 0 0 0 

- - 0 - 0 

- 0 0 0 -
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From Proposition 2.4 and 2.5 we derive the following Proposition. 

Proposition 2.6 Let D be a digraph of F. D. 2 and let for a satisfactory bicolouration 

Irnlc=¢. Then the same is true for any bicolouration. 

We see that the Proposition 2.3 and 2.6 virtually complement one another and 

combining the two we get the following important theorem, upon which as we will later see, 

our recognition algorithm for an interval digraph will heavily rely. 

Theorem 2.1 Let D be a digraph of F.D. 2, then 

(i) iflrnlc :;r¢for a certain bicolouration ofHb(D) then the same is true 

for any other bicolouration of Hb(D), and on the other hand 

{ii) if Irnlc=¢. for a certain bicolouration of Hb(D), then the same is true 

for any other bicolouration of Hb(D) 

Proof. (i) Let Irnlc ~for a certain bicolouration of Hb(D), our proof will be complete if we 

can prove that Irnlc ~for every satisfactory bicolouration of Hb(D) (because this will imply 

from Proposition 2.3 that the same is true for any bicolouration of Hb(D) ). Let now if 

possible it be not true for a certain satisfactory bicolouration of Hb(D) that is Irnlc=¢ for a 

certain satisfactory bicolouration of Hb(D). Then Proposition 2.6 implies that lrnlc=¢ for 

every bicolouration of Hb(D). Contradictory to our hypothesis. 

(ii) Follows as a consequence of {i). 

Combining Proposition 2.2 and Theorem 2.1, we get the following stronger version 

of Proposition 2.2. 

Theorem 2.2 Let D(V,E) be a digraph off(D) = 2. if Dis an interval digraph then for any 

bicolouration of Hb(D), Irnlc=¢. 
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Theorem 2.3 Let D(V,E) be a digraph off(D) = 2 and let for any bicolouration o[Hb(D), 

Irnlc=f/J. Then Dis an interval digraph iff the adjacency matrix A(D) of D does not contain 

any one of the configurations (2) and (4) of the form 

(i) 

1 1 I 

c I,. ...... (2) 

R .{ 

or (ii) 

1 I R 

I I .{ ...... (4) 

c I,. -

or their transposes. 

Proof.(=>) LetA(D) contain a configuration of either of the given forms. First consider the 

simple case, when the base graph Hb(D) has one component only. From the configurations, 

it follows that there exists an Isuch that A(D) contains both the structures 

and ~ 
L__ij 

This means that there exists an -4 which is in conflict with both the F errers digraphs 

Rulr and Culc and so this Ican not be included in either of Rulr and Culc (retaining the 

Ferrers digraph property). Hence decomposition of D into two disjoint Ferrers digraphs is not 

possible and soD is not an interval digraph. 

Next consider the case when Hb(D) consist of more than one component. From 

Theorem 2.1 and propositions 2.4 and 2.5, it follows that the presence of the given 

configurations in A(D) for a particular bicolouration implies the existence of the given 

configurations for any satisfactory bicolouration as well. Let now (R, C) be any satisfactory 

bicolouration of Hb(D). 
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Then as in the earlier case, there is an I which can not be included in the Ferrers 

digraphs Rulr or Culc. As this is true for any satisfactory bicolouration of Hb(D), Dis not 

an interval digraph. 

( <=). Let D be not an interval digraph. Then we need to prove that A(D) must contain either 

of the configurations (2) or (4) or their transposes. Again from propositions 2.4 and 2.5, we 

need to prove the result for satisfactory bicolouration only. So let (R,C) be satisfactory 

bicolouration of Hb(D) so that G=Rul and G=Cul are Ferrers digraphs. Also since l,.nlc=¢, 

H 1=Rulr and H 2=Culc are two disjoint Ferrers digraphs. 

Since Dis not an interval digraph, there exists an Isay .10 which is conflict with an 

element of Rulr as well as with an element Culc. This means that A(D) has the 

configurations 

where '-'s are elements outsideR U/7 , and 

where '-'s are elements outside Culc. 

Consider the configuration 

We show below that the only configuration containing this structure is of the form 

CJ 
all other possibilities leading to contradictions. We observe that the configurations in A(D) 
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~ 
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and f1Il 
~ 

are impossible because Rul is a Ferrers digraph. Again for the same reason and because .10 
is in conflict with R ulr, 

is not possible. 

So the only possibility for this case is 

Next consider the configuration 

~ 
~ 

Exactly as before, it can be seen that 

is the only possibility conforming to this structure. But this implies the existence of 

X y Z 

a 1 .10 

b I R 

c R 

If the ax-position is 0, then it must be C, but then again 

X Z 

a 

c 
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is a contradiction because Culc is a Ferrers digraph. Hence ax-position is 1 and the structure 

is an implication of the existence of 

Similarly 

~ 
~ 

a 

c 

implies the existence of the configuration 

f1Cl 
~ 

X Z 

Combining Theorem 2.3 and Theorem 2.2 we state the following theorem: 

Theorem 2.4 A digraph is an interval digraph if and only if it is of F. D. s 2 and when it is 

off(D) = 2,forany bicolouration ofHb(D), 

and (b) A(D) does not contain either of the configurations (2) and (4) and their transposes. 

In terms forbidden adjacency matrices, we state the above result in the following form. 

Corollary 2.1 A digraph is an interval digraph if and only if it is ofF.D.Q andA(D) does 

not contain the core matrix of either of the matrices M., N, P and their transposes M, NT, PT, 

where M., N, Pare as given as figures 2.1, 2.3 and 2.5. 

2.3 Recognition Algorithm 

Muller obtained a recognition algorithm of an interval digraphlbigraph m a 
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polynomial time O(n m6 (n+m)log n) , where n and m are the number of vertices and edges 

respectively of the bigraph. 

In our algorithm, we first check whether Ferrers dimension of D is equal to two by 

identifying a bipartition of Hb(D). Then apply the results of the section 2 to recognition an 

interval digraph. Identifying whether Hh(D) is bipartite generally runs in O(n4
) time, where 

n is the number of vertices of D. But our procedure bipartite described below determines it 

in O(n3
) time. This, intern, gives the O(n3

) as the time complexity of the problem. 

For a digraph D of F.D. 2, consider any bicolouration (R,C) of Hb(D) and with 

reference to this bicolouration, obtain the ..Z:s and .I;s by the Procedure conjig. described 

below. If Irnlc ~¢, then D is not an interval digraph. Else, check by the Procedure config. 

again, whether H(D) contains the configuration (2) or (4) or their transposes. If so, the 

Theorem 2.3 tells us that D is not an interval digraph. Otherwise D is an interval digraph. 

Although our algorithm takes much less time, Muller's one has an added advantage 

that it gives us the interval representation as well, in case D turns out to be an interval 

bigraph. 

The following Algorithm recog. alongwith the Procedure conjig. describes the steps 

for an interval digraph recognition. 

Algorithm recog : Interval digraph recognition 

Input: Adjacency matrix 

Output: recognition of the graph G 

I. Identify a bipartite partition of Hb(D) by procedure bipartite. 

If no such partition is found then the graph is not an interval digraph. 

2. Satisfying step(l), denote the set of all isolated vertices by I and a bicolouration of.f-4(D) 

by (R,C). 
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3. I* use procedure config. For Step 3 *I 

for all isolated vertices Iin the matrix do 

begin 

(a) check if there exists a configuration of the form 

Q 
(b) check if there exist a configuration of the form 

D 
(c) if an I satisfy both (a) and (b) then G is not an interval digraph. 

I* lrnlc~f/J *I 

If I satisfy (a) denote it by .(.else if I satisfy (b) then by ..{. 

end· 
' 

4 .. I* use procedure config. For Step 4 *I 

for each vertex I do 

begin 

check if there exist configurations of the form 

(i) 

(ii) 

~ 
~ 

or fCll 
~ 

D or D 
if both the configurations (i) and (ii) exist then G is not an interval digraph. 

end· 
' 

5. Otherwise, G is an interval digraph. 

Procedure bipartite 

Data Structure : 

• For each pair of columns (ij),j > i, maintain the two sets L\ and L\ where 

L 1 
if = {A[k, i] I A[k, i] = 0 and A[k, j]= 1} 

L2
iJ = {A[k',j] I A[k', i] = 1 andA{k',jj=O} 
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• For each pair of columns (i,j),j > i, attach a tag variable T iJ' where T iJ initiaUy contains 

0 and is set tol as the column pair is processed. 

• For each i, maintain a setS i containing the column indices j for which A[i, j)= 1 

• Attach a field to each vertex indicating one colour taken from a given set of two colours. 

Initiate the procedure with no colour to any vertex. 

• In addition, maintain a stack containing the O's ofA(D), that is the vertices of Hb(D). As 

soon as a vertex is coloured, it may be used to colour other vertices adjacent to it but still 

not coloured. Once a vertex is popped up from the stack, it is not pushed into the stack 

anymore. 

Step 1: ComputeL1ifandL2ifforalli,j(f>i). ifL1ij=¢ thenL2ij=¢ and vice versa. 

Step 2: Compute Si for all i. 

Step 3: Find a '0' element in the matrix A which is not already coloured. 

Step 4: Assign a colour to this element and push it into the stack. 

Step 5: Pop an elementA[i,j]from the stack. 

Step 6: For all elements k E si do the following 

if ~k, j<k (Tkj, k> j) is not set 

Step 6(a): 

Step 6(b) 

begin 

Assign the value 1 to ~k 

For each element of L1
1k do 

if it is not already coloured, push it into the stack with the colour of A[i, 

j] 

assigned to it 

else if it is already coloured and of colour other than that of A[i, j}, then 

Hb(D) is not bipartite. 

For each element of L 21k do 

if it is not already coloured, push it into the stack with the colour other 
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than 

that of A[i, j] assigned to it 

else if it is already coloured and of the same colour of A[i, j], then Hb(D) 

is not bipartite. 

end 

Step 7: Repeat Step 5 through Step 6 until the stack is empty. 

Step 8: If any 0 of A(D) still remains to be coloured, repeat Step 3 through Step 7 

else declare that the graph Hb(D) is bipartite. 

The following procedure conjig. describes a technique to search for a 2x2 configuration of 

the form 

in A (D) which is used in steps 3 and 4 of the above algorithm. 

Procedure config. 

Algorithms for checking the existence of the configurations of the form 

for all Iin the n xn matrix A. 

Input: Adjacency matrix(A) 

Output: Marking the Is in A that form the configuration 

Data structure: An nxn matrix B initialized by 1 to its all entries. 

1. [Creation of matrix B] 

for column i= I ton do 

begin 
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find rows ab a2, ••• ak such thatA[a1,i}=a for 1 ~j ~k 

for row r= 1 to n do 

end; 

begin 

ifA[r,i}=ythen B[r,a}=O for I~} ~k 

end; 

2. For i=l ton do 

forj=1 ton do 

begin 

if A{ij)=I then 

begin 

for m=l ton do 

begin 

ifA{mJJ=Pthen 

if B[i,m)=O then there exists the desired configuration in the matrix for the I 

m [i,j) position. 

end· 
' 

end· 
' 

end· 
' 

Complexity Analysis: 

We first show that the complexity of Procedure bipartite (which determines if Hb(D) is 

bipartite) is O(n3
), where n denotes the number of vertices of D. 

The Step 1 of the procedure can be performed in O(n3
) time. The maximum number of 

repetition of the cycle between Step 3 and Step8 is O(n2
). In Step 6, at most n elements of S1 

are considered. If 'Fjk is set, the Step 6(a) and 6(b) will not be executed. Otherwise 6(a) and 

6(b) will be repeated O(n) times. In other words for each pair {j, k) O(n) entry in the matrix 

will be coloured. Hence the repetition of the cycle between Step 3 and Step 8 is performed 

in O(n3
) times. Thus the complexity of the Procedure bipartite is O(n3

). 

Next it can be easily shown that the time complexity of the Procedure Config. is O(n3
). 
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Now for our Algorithm recog. the time complexity of Step 1 (using Procedure bipartite) is 

O(n3
) and the time complexity of Step 3 and 4 (using Procedure Config.) is O(n3

). Hence the 

overall time complexity of our recognition algorithm is O{n3
). Hence we have the following 

theorem. 

Theorem 2.5 An interval digraph D can be recognised in time O(n3
), where n is the number of 

vertices of D. 


