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We review various topological properties of a dimer Su-Schrieffer-Heeger tight-binding model.

Exact analytical expressions of the energy spectrum and corresponding eigenstates for any choice

of system parameters are provided. We discuss the system’s parity, time-reversal, and chiral sym-

metries. The system undergoes a topological phase transition while tuning the hopping parameters.

The topological phase is associated with the presence of the boundary modes and establishes the

bulk-boundary correspondence.

I. INTRODUCTION

One of the successful applications of early quantum mechanics is the band theory of crystallne materials

[1]. The superposition of the Bloch states leads to the formation of well separated energy bands. The

crystalline materials can be classified into two categories, namely the insulator and the metal, depending

on whether the bands are completely or partially filled. Completely filled bands are well separated from

the completely empty bands in a band insulator. The energy gap prohibits the flow of the charge carriers in

the band insulator. On the other hand, materials having partially filled bands are conductors, where charge

carriers can easily flow at the cost of very low energy.

After the phenomenal discovery of the integer quantum Hall effect [2] in early 1980s, the simple concept

of the band insulator has changed. In the integer quantum Hall effect, a strong perpendicular magnetic field

freezes the electron’s motion in the bulk of a two-dimensional (2D) semiconductor but the edge states at the

boundary conducts current. Thus, a 2D system subjected to a strong magnetic field behaves like an insulator

in the bulk and metallic at the boundaries, by forming a discrete number of edge states. The number of edge

states is directly related to the topological invariant of the bulk bands, namely the Chern number.

Over the last few decades, it has been established that the nontrivial topology of the bulk bands gives rise

to the conducting edge states in the insulating materials. Such systems are usually called as the topological

material/insulator [3–6]. Generally a topological phase transition may take place if a band gap closes and

then reappears again as we change the parameter(s) of the system continuously while preserving the internal

symmetry. The simplest topological system is an one-dimensional (1D) tight-binding dimer chain with

alternating hopping parameters known as the Su-Schrieffer-Heeger (SSH) model [7]. Polyacetylene, a 1D
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long polymer having large number of -CH- monomers, can be modeled by the tight-binding Hamiltonian

of the SSH model. The SSH model is the simplest model to understand band topology, edge states, and

bulk-boundary correspondence in 1D lattice systems. This would help us to understand more topological

phenomena in higher dimensions. For example, the zero-energy edge states of the SSH model generalizes

into 1D edge states of 2D topological insulators, and surface states of three-dimensional (3D) topological

insulators, although the bulk-edge correspondence properties may differ. The topological phase of a finite

system is manifested by the presence of exponentially localized zero-energy edge states.

The Zak phase [8] similar to the Berry phase [9] and the winding number have been used as a topolog-

ical invariant quantity to classify various inversion-symmetric 1D topological systems. The Zak phase is

quantized to π or 0 (mod 2π), whereas the winding number is either 1 or 0 [10]. The existence of the edge

states and the Zak phase are confirmed in various artificial 1D systems such as cold atomic gases in optical

lattices [11], photonic crystals [12, 13] and acoustic crystals [14].

This article is organized as follows. In Sec. II, we discuss some basic symmetry properties and bulk

band structure of the SSH model Hamiltonian. The topological phase transition and bulk-boundary cor-

respondence are discussed in Sec. III. In Sec. IV, we summarize the results. In Appendix A, we present

alternative Bloch Hamiltonian for the SSH model.

II. SSH MODEL

The SSH model is described by the following nearest-neighbour (NN) tight-binding Hamiltonian

H = v
N∑
j=1

(a†jbj + b†jaj) + w
N−1∑
j=1

(a†j+1bj + b†jaj+1), (1)

where a†j(aj) and b†j(bj) are the creation (annihilation) operator defined at the sub-lattice sites A and B,

respectively in the j-th unit cell (Fig. 1). In the present case the nearest-neighbour (NN) real hopping

parameters v andw may be called intra-cell and inter-cell hopping amplitudes, respectively. We will discuss

FIG. 1: Schematic diagram of the dimer SSH model. The unit cell of length a is depicted by the dotted rectangle

contains two sub-lattices A and B.
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some basic properties of the Bloch Hamiltonian of the SSH model. There are mainly two representations

of the Bloch Hamiltonian depending on the two distinct choices of the basis states: the periodic Bloch

Hamiltonian and the canonical Bloch Hamiltonian. Both the representations are useful and convenient to

study certain topological aspects of the systems. We proceed with the periodic Bloch Hamiltonian. The

derivation of the canonical Bloch Hamiltonian is provided in Appendix A.

A. Periodic Bloch Hamiltonian

As the system is translationally invariant, we can diagonalize the Hamiltonian using the cell index j. We

expand the real space field operators defined at the sites A and B in the j-th cell

aj =
1√
N

∑
k∈BZ

eikajak, bj =
1√
N

∑
k∈BZ

eikajbk, (2)

where k is the crystal wave vector lying within the first Brillouin zone (BZ) (−π to π), N is the number of

unit cells, a is the length of the unit cell and a/2 is the spacing between two successive sites. Using

N∑
j=1

ei(k−k
′)ja = Nδk,k′ , (3)

the Hamiltonian in Eq. (1) reduces to the following form

H = v
∑
k

(a†kbk + b†kak) + w
∑
k

(eikaa†kbk + e−ikab†kak) =
∑
k

ψ†kH(k)ψk, (4)

where the spinor ψ†k = (a†k, b
†
k). Here,H(k) is given by

H(k) =

 0 v + we−ika

v + weika 0

 =

 0 hx(k)− ihy(k)

hx(k) + ihy(k) 0

 (5)

with hx(k) = v+w cos(ka) and hy(k) = w sin(ka). Note thatH(k) can be expressed in terms of the Pauli

matrices (σx, σy) as

H(k) = σ · h(k), (6)

where h(k) is h(k) = hx(k)̂i+hy(k)ĵ. The Pauli matrices σ do not represent the real spin of the fermions,

they act on the sublattice sites (A, B). In real space, the SSH Hamiltonian is a 2N × 2N matrix, whereas it

becomes a 2× 2 matrix H(k) for each value of k. This Hamiltonian H(k) is periodic in k with periodicity

2π/a: H(k + 2π/a) = H(k) due to the fact that only the cell index j is used to perform the Fourier

transformation of the real space Hamiltonian.
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Interestingly, the periodic Hamiltonian H(k) has the same structure as that of a spin-1/2 particle in an

in-plane rotating magnetic field. Here, h(k) plays the role of the in-plane rotating magnetic field and the

two sublattices A and B play the roles of spin-up and spin-down components. Therefore, the Zak phase due

to variation of the parameter k equals half of the solid angle extended by a closed path in the h-space.

B. Symmetry properties of the SSH model Hamiltonian

In this sub-section, we shall discuss some of basic symmetries of the Bloch Hamiltonian.

Space-inversion symmetry: The space-inversion symmetry is equivalent to the reflection symmetry.

Considering the mid-point between the two sublattices A and B as the center of space-inversion and its

operation simply exchanges the two sublattices. Then the space inversion operator in the pseudospin space

can be simply written as σx. Under the space-inversion operation, the coordinates in phase space transform

as x → −x and k → −k. Further, hx(−k) = hx(k) and hy(−k) = −hy(k). Therefore, under the space

inversion operation

PH(k)P = σxH(−k)σx = H(k). (7)

Here we have used σxσy = −σyσx. Thus, the Hamiltonian H(k) is invariant under the space-inversion

with respect to the mid-point of the two sublattices.

Time-reversal symmetry: As the Pauli matrices do not represent the real spin of the charge carrier, the

time-reversal operator T for a spinless fermion is simply T = C, with C being the complex conjugation

operator, along with k → −k. Note that CσyC = −σy and the remaining Pauli matrices are even under

time-reversal operation. Under the time-reversal operation,

T H(k)T = CH(−k)C = H(k). (8)

Therefore, the SSH Hamiltonian is invariant under time-reversal operation.

Chiral symmetry: The chiral symmetry, also known as sublattice symmetry, states that if there is a state

uk with energy E(k) for a given Hamiltonian H(k), there must be a state Suk with energy −E(k), with S

being the chiral operator. Mathematically, it can be written as SH(k)S = −H(k), or H(k)S = −SH(k).

The spectrum is symmetric around zero energy of a chiral symmetric Hamiltonian which explains the

particle-hole symmetry. In the present case, it can be easily checked that σzH(k)σz = −H(k). There-

fore σz is identified as the chiral operator and the system has a chiral symmetry. The chiral symmetry will

be lost if σz is present in the HamiltonianH(k). The absence of σz arises due to hz(k) = 0. Therefore, the

chiral symmetry enforces the vector h(k) to lie on the equator plane of the Bloch sphere.
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The periodic Bloch Hamiltonian H(k) and its eigenstates (discussed below) for each k are expressed

in terms of the unit vector ĥ(k) = h(k)/|h(k)| on the equator of the Bloch sphere. The BZ of 1D lattice

structure has the shape of a circle since the eigenstates at the two end-points (k = ±π) of the BZ are

equivalent. At the same time, the tip of the unit vector ĥ(k) traces a circle on the equator of the Bloch

sphere while k runs across the BZ. The mapping of the circular BZ to the circle on the equator traced by

ĥ(k) allows us to define a winding number ν of h(k) around the origin. Thus, the winding number ν is

protected by the chiral symmetry.

There is an ambiguity of labelling ν = 0 or ν = 1 to trivial phase or non-trivial phase. For an infinite

system, we can not determine whether the system is in trivial phase or non-trivial phase based on integer

values of ν since the unit cell can be chosen in two different ways. There is no ambiguity if the changes in

the winding number is ∆ν = ±1 while going from one phase to another phase. There is no ambiguity for

finite chain since the unit cell can be chosen uniquely.

The sublattice symmetry operator can be written in terms of the sub-lattice projection operators Pα of

each sub-lattice α = A,B as S = PA − PB , where the projection operators are

PA = |A〉〈A| =

 0 1

0 0

 and PB = |B〉〈B| =

 0 0

1 0

 . (9)

C. Energy bands, eigenstates and their properties

We obtain the energy band structure of the SSH model, by diagonalizing the HamiltonianH(k), as

E±(k) = ±|h(k)| = ±
√
v2 + w2 + 2vw cos(ka). (10)

The energy bands are symmetric around zero energy axis since the chiral symmetry is preserved. Further, the

energy bands are symmetric in k, E±(−k) = E±(k), due to the space inversion symmetry. The maximum

bandwidth at the Γ-point (k = 0) is 2(v + w). The two energy bands satisfy following relations: (i)

E+(k) + E−(k) = 0 as expected since trace of the Hamiltonian H(k) is zero and (ii) E2
+(k) + E2

−(k) =

2|h(k)|2, describing a circle of radius
√

2|h(k)| centered at origin.

Figure 2 displays the band dispersion for various parameters. For staggered hopping parameters, v 6= w

(see left and right panels of Fig. 2), there is a minimum energy gap Eg = E+(k) − E−(k) = 2|w − v|

at k = ±π/a. On the other hand, the gap Eg closes at k = ±π/a when v = w, which is equivalent to

a monatomic chain of lattice constant a/2 with the metallic dispersion E(k) = 2t cos(ka/2). Therefore,

staggered hopping parameters are required in order to open a gap in the dispersion. Moreover, the gap

closing at v = w indicates a topological phase transition.
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FIG. 2: Energy band dispersion: Left panel: v = 0.7, w = 1, Middle panel: v = w = 1, Right panel: v = 1.3, w = 1.

The eigenspinors ofH(k) located on the equator of the Bloch sphere are given by

u+(k) =
1√
2

 1

eiγk

 and u−(k) =
1√
2

 1

−eiγk

 (11)

with the phase angle γk = arctan(hy/hx) in the hx-hy plane on the equator of the Bloch sphere. Both the

eigenspinors are well-defined for all values of k with v 6= w. Note that u−(k) = σzu+(k) as expected from

the chiral symmetry.

Let us first rewrite the band dispersion E±(k) in terms of z = δ/(2t) with t = (v+w)/2 and δ = w−v

as

E±(k) = ±2t

√
1− (1− z2) sin2(ka/2). (12)

This form of E±(k) will be convenient to study the group velocity, density of states and effective mass.

The group velocity can be obtained as

vg =
1

~
dE

dk
=

at

~
(z2 − 1) sin(ka)√

1− (1− z2) sin2(ka/2)
. (13)

Total number of states per unit length in one-dimension is N(k) = k/π. The density of states is then

given by

dN(k)

dE
=

1

π

dk

dE
.

The density of states of either bands for the spinless fermions can be obtained as

D(E) =
1

π

dk

dE
=

1

πa

|E|√
(4t2 − E2)(E2 − δ2)

. (14)

The density of states has Van Hove singularity at E = δ and at E = 2t. There is no available density of

states in the gap region −δ < E < δ.
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Limiting case: Note that when δ = 0, the lattice is equivalent to a monatomic chain of lattice constant

a/2 with the dispersion E = 2t cos(ka/2). The BZ is now −2π/a ≤ k ≤ 2π/a. The band minimum

(Emin = −2t) occurs at k = ±2π/a and maximum Emax = 2t at k = 0.

In this case (z = 0), the group velocity becomes vg = −(at/~) sin(ka/2). The density of states

correctly reproduces to

D(E) =
1

πa

1√
(4t2 − E2)

. (15)

III. BULK AND EDGE STATES OF A FINITE SSH MODEL

The SSH model supports the bulk as well as the edge states. In the previous Section, we have discussed

properties of the bulk bands for an infinite SSH chain. The difference between the bulk and the edge states

is characterized by the spreading of energy eigenstates in the real space. Now we shall consider a finite

chain and study both the bulk and the edge states by diagonalizing the Hamiltonian in Eq. 1 in real space.

As an example, here we provide the matrix eigenvalue equation, HΨ = EΨ, for 4 unit cells as given by

HΨ =



0 v 0 0 0 0 0 0

v 0 w 0 0 0 0 0

0 w 0 v 0 0 0 0

0 0 v 0 w 0 0 0

0 0 0 w 0 v 0 0

0 0 0 0 v 0 w 0

0 0 0 0 0 w 0 v

0 0 0 0 0 0 v 0





a1

b1

a2

b2

a3

b3

a4

b4



= E



a1

b1

a2

b2

a3

b3

a4

b4



. (16)

Here, the eigenvector for four unit cells is Ψ = (a1, b1, a2, b2, a3, b3, a4, b4)
T with the subscript in (aj , bj)

denotes the cell index and T denotes the transpose. One can easily extend the matrix eigenvalue equations

for an arbitrary N cells and solve the eigenvalue problem for all 2N discrete eigenvalues E as well as the

corresponding real space eigenvectors.

Figures 3(a) and 3(b) display the spectrum of a finite SSH model of N = 12 and N = 25 unit cells

considering the open boundary condition, while varying v for fixed w = 1. A careful analysis of the

dispersion reveals that there are two nearly zero-energy states within the bulk band gap when v < w. The

eigenvectors of the zero-energy edge states for v = 0.2 in the form of symmetric and anti-symmetric pairs

(blue dot for N = 12) are shown in Figs. 3(c) and 3(d). Only the sub-lattice A at the left edge and the
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sub-lattice B at the right edge are occupied. The amplitude of the eigenvectors inside the lattice is simply

zero, thus the eigenvectors are exponentially localized.

The amplitude of the eigenvectors begins to spread inside the lattice and the bulk band gap shrinks to

zero as v approaches to w. Similar to the previous case, two eigenvectors of the nearly-zero-energy edge

states at v = 0.7 (maroon dot for N = 12) are shown in Figs. 3(e) and 3(f). It shows that amplitude of

the eigenvectors become finite inside the lattice, giving rise to splitting in the energy levels. The edge state

energies for N = 12 case start splitting earlier than that of the N = 25 case, due to the finite size effects.

There is no edge states within the bulk gap when v > w. The eigenvectors for v = 2.5 (red dots for

N = 12) are shown in Figs. 3(e) and 3(f). The eigenvector profile of the bulk modes looks like a standing

wave on the chain.

For v < w, only A sub-lattices are occupied at left half of the lattice, whereas B sub-lattices are occupied

at right-half of the lattice. On the other hand, both the sub-lattices are occupied across the lattice for v > w

case. These zero-energy states localized at the edges are responsible for the topological phase for v < w

case. This phase can be characterized by the topological invariants, namely, the Zak phase and the winding

number.

N=25

(a)

(b)

vw

E (c)

(d)

(e)

(f)

(g)

(h)

N=12

 
 Ψ

 Ψ

v=0.2

v=0.2

v=0.7 v=2.5

v=2.5v=0.7

Lattice sites Lattice sites Lattice sites

FIG. 3: Bulk bands and edge states of the finite SSH model in the open boundary condition, as a function v for fixed

w = 1. Second, third and fourth panels show the eigenvectors of the hybridized states for various values of v.
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A. Space inversion symmetry and sub-lattice symmetry operator for finite SSH Hamiltonian

Like the space inversion symmetry operator for bulk Hamiltonian, one can also construct the same for

the finite SSH Hamiltonian. It is given by I = off-diag(1, 1,......)2N , satisfying the relation IHI = H .

The sub-lattice operator for the finite SSH Hamiltonian can be written as Σ = PA −PB , where the sub-

lattice projection operators for the finite system are PA =
∑N

j=1 |j, A〉〈j, A| and PB =
∑N

j=1 |j, B〉〈j, B|.

For N = 2, the sub-lattice symmetry operator can be expressed in matrix form as

Σ =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 . (17)

It can be easily checked that ΣHΣ = −H.

B. Approximate expression of the zero-energy eigenstates

The SSH Hamiltonian is

H = [v + w cos(ka)]σx + w sin(ka)σy. (18)

Expanding cos(ka) and sin(ka) around the gap closing points ka = ±π as ka = ±π + qa, and keeping

upto linear in qa, we get the low-energy Hamiltonian around the gap closing point as

H ' (v − w)σx − wqaσy. (19)

Setting q → −i∂x, the Hamiltonian in real space reads as

H = (v − w)σx + iwaσy∂x. (20)

Let us see if there is any zero-energy edge state under certain conditions or not. The zero-energy eigen-

value equation can be written as

[(v − w)σx + iwaσy∂x]ψ(x) = 0, (21)

where ψ(x) is the zero-energy eigenstate. Multiplying σy, we get

σ0∂xψ(x) =
(v − w)

wa
σzψ(x), (22)

where σ0 is the 2× 2 identity matrix.
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Consider a finite SSH chain of length L = Na with N number of unit cells and the left end is at x = 0.

Now, we substitute the following ansatz in the above equation, which will satisfy the boundary condition at

x = L

ψr(x) =

 0

1

φr(x).

The first-order differential equation for φr(x) has the solution

φr(x) = e
(v−w)
wa

(L−x). (23)

It clearly shows that the condition, w > v, must be satisfied in order to get a normalizable solution. Thus

the zero-energy (unnormalized) eigenstate at the right edge is

φr(x < L) = e−
(w−v)
wa

(L−x), (24)

with w > v. Similarly, the zero-energy (unnormalized) eigenstate at the left edge can be obtained as

ψl(x > 0) =

 1

0

 e−
(w−v)
wa

x, (25)

with v < w.

Both the eigenstates ψl(x) and ψr(x) are exponentially decaying functions with the decay length ξc =

wa/(w−v). The decay length decreases with the increase of (w−v). Further, the spinor parts of ψl(x) and

ψr(x) show that sublattice A at the left edge and the sublattice B at the right edge support a zero-energy

state.

IV. BAND GEOMETRIC QUANTITIES AND BULK TOPOLOGICAL INVARIANT

The Berry connection for E−(k) band is

A−(k) = i〈u−(k)|∂ku−(k)〉 =
1

2

dγk
dk

. (26)

The Zak phase acquired which is while traveling along a closed path in BZ is given by

Z− =

∫
BZ

A−(k)dk =
1

2

∮
BZ

dγk. (27)

A care must be taken while calculating the above integral of the phase angle γk in h(k)-space for two

different cases: v < w and v > w. Note that hx(k) = v + w cos(ka) and hy(k) = w sin(ka) parameterize

a circle. When we vary k across the first BZ, the tip of h(k) sketches a circle of radius w whose center is
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at v in the hx-hy plane as shown in Fig. 4. The gap closing points ka = ±π for v = w correspond to the

origin of the hx-hy plane. When w > v, the trajectory of h encloses the origin when k varies across the

first BZ. Therefore,
∮
BZ dγk = 2π and so the Zak phase is π. When w < v, the trajectory of the vector h

excludes the origin, which leads to
∮
BZ dγk = 0 and so the Zak phase for this path is simply zero. The Zak

phase for different cases can be written as

Z− =


π v < w (topological insulator)

0 v > w (band insulator)
(28)

The topology of this kind of closed loop can also be characterized by an integer, the bulk winding number

ν. This counts the number of times the loop winds around the origin of the hx-hy plane. We have ν = 0

when w < v, ν = 1 when w > v and ν is undefined when w = v since the loop passes through the origin.

FIG. 4: Sketch of the trajectory of the tip of the h(k) vector while k varies in the first BZ for different choices of the

hopping energies v and w.

Electric polarization: The electric polarization is created due to spatially separated charges. The elec-

tric polarization at k of a given band can be defined as

Pn(k) = e〈x〉 = ie〈∂k〉. (29)

The total polarization is the sum over all the occupied states in a given band

Pn =
e

2π

∮
Pn(k)dk =

e

2π

∮
i〈∂k〉dk =

e

2π

∮
A(k)dk =

e

2π
Zn. (30)

Therefore, the electric polarization P is given by

P =
e

2π

∮
BZ

A(k)dk (31)

=


e
2 , v < w

0 v > w.

. (32)
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V. SUMMARY

In this article, we have discussed some interesting topological properties of the dimer SSH model. Vari-

ous symmetries like the parity, the time-reversal and the chiral symmetries of the bulk Hamiltonian are also

mentioned. We provide exact analytical expressions of the bulk band structures and corresponding eigen-

states. The appearance of the boundary modes is shown by studying a finite SSH chain and establishing the

bulk-boundary correspondence.

APPENDIX A: CANONICAL BLOCH HAMILTONIAN

In order to get the canonical Bloch Hamiltonian from the real space Hamiltonian given in Eq. (1), we

use the Fourier transformation

aj =
1√
N

∑
k

eikajak, bj =
1√
N

∑
k

eika(j+1/2)bk. (33)

The real space Hamiltonian H reduces to the form

H = v
∑
k

(eika/2a†kbk + e−ika/2b†kak) + w
∑
k

(e−ika/2a†kbk + eika/2b†kak) (34)

=
∑
k

ψ†kH(k)ψk, (35)

where ψ†k = (a†k, b
†
k). Here, the Hamiltonian H(k) is given by

H(k) =

 0 dx(k)− idy(k)

dx(k) + idy(k) 0

 (36)

with dx(k) = (v + w) cos(ka/2) and dy(k) = (w − v) sin(ka/2). The canonical Bloch Hamiltonian can

be further written as

H(k) = σ · d(k), (37)

where d(k) = îdx(k) + ĵdy(k).

Note that the periodicity of the Bloch Hamiltonian has increased by two times: H(k + 4π/a) = H(k)

because the separation distance between the sites in a given unit cell becomes half of the size of the unit cell.

It is noteworthy that the canonical Bloch Hamiltonian H(k) is directly obtained from the periodic Bloch

Hamiltonian H(k) via the unitary transformation: H(k) = UH(k)U †, where the unitary matrix U is given

by U = diag(1, eika).
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As expected, the energy dispersion is given by

E±(k) = ±|d(k)| = ±
√
v2 + w2 + 2vw cos(ka). (38)

The eigenspinors for the canonical Bloch Hamiltonian H(k) located on the equator of the Bloch sphere

are

u+(k) =
1√
2

 1

eiφk

 , u−(k) =
1√
2

 1

−eiφk

 , (39)

where φk = arctan[dy(k)/dx(k)]. The eigenspinors are not single-valued and ill-defined at k = ±π/a.
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