Dedicated

to

AAMA AND BABA

DECLARATION

I declare that the thesis entitled "Exploration of Catalytic Activities of Some Transition Metal Borates for Green Synthesis of Nitrogen Containing Heterocyclic Compounds" has been prepared by me under the supervision of Dr. Biswajit Sinha, Professor, Department of Chemistry, University of North Bengal and Dr. Dhiraj Brahman, Assistant Professor, Department of Chemistry, St. Joseph's College, Darjeeling. No part of this thesis has formed the basis for the award of any degree or fellowship previously.

Sailish Orethi

SAILESH CHETTRI

Department of Chemistry University of North Bengal Darjeeling- 734013 West Bengal, India

Date: 19/07/2022.

UNIVERSITY OF NORTH BENGAL

Prof. Biswajit Sinha, Ph. D Professor Department of Chemistry E-mail: biswachem@nbu.ac.in biswachem@gmail.com M: 9932738973, 9641967211

जमानी मस समिति सताती Accredited by NAAC with Grade B**

Ph: +91-353-2776381 University of North Bengal Darjeeling 734 013 INDIA

CERTIFICATE

I declare that Mr. SAILESH CHETTRI has prepared the thesis entitled "Exploration of Catalytic Activities of Some Transition Metal Borates for Green Synthesis of Nitrogen Containing Heterocyclic Compounds" for the award of Ph. D degree of University of North Bengal under joint supervision of me and Dr. Dhiraj Brahman of Department of Chemistry, St. Joseph College, Darjeeling. He has carried out most of the work at the Department of Chemistry, University of North Bengal.

Kih

Prof. Biswajit Sinha

Department of Chemistry University of North Bengal University of North Bennal Darjeeling-734013 West Bengal, India

Prof. Biswajit Sinha Department of Chemist y

Date: 19-07-2022

St. Joseph's College

P.O.North Point, Darjeeling - 734104

E-mail: dhirajslg2@gmail.com

Accredited by the National Assessment and Accreditation Conneil, Bangalore, with Grade 'B' (3rd Cycle)

From:

Dr. Dhiraj Brahman

Assistant Professor

CERTIFICATE

I declare that Mr. Sailesh Chettri has prepared the thesis entitled "Exploration of Catalytic Activities of Some Transition Metal Borates for Green Synthesis of Nitrogen Containing Heterocyclic Compounds" for the award of Ph.D degree on University of North Bengal under joint supervision of me and Prof. Biswajit Sinha of Department of Chemistry, University of North Bengal. He has carried out some of the work at the Department of Chemistry, St. Joseph's College, Darjeeling.

Boahman 10. 19-2022 DUTON

Dr. Dhiral Brahr

T. Loseph's Coll Darjueling:734

(Dhiraj Brahman)

Anti-Plagiarism Report of the Ph. D Thesis

Title of the Thesis:

Exploration of Catalytic Activities of Some Transition Metal Borates for Green Synthesis of Nitrogen Containing Heterocyclic Compounds

Curiginal

Document Information

Analyzed document
Submitted
Submitted by
Submitter email
Similarity
Analysis address

Saleth Chertri, Chernistry pdf (0141972347)	
7712/2022 8 18:00 AM	
University of North Bengal	
newpigdnbu ac in	
IX	
ribublg noutranalysis unjund zoes	

Sailesh Chitti

(Signature of the Candidate)

F- 19-09-2022

(Signature of the Supervisor)

Prof. Biswajit Sinha Department of Chemistry University of North Bengal

19.07.2022 Brahm Dhra

(Signature of the Supervisor)

Dr. Dhira) Brahman Assistant Protessor Department of Chemisury ST. Joseph's College Durjeeling-734104

Preface

With the development of the idea of Green Chemistry as given by Prof, P.T. Anastas, solvent free multicomponent reactions are becoming very popular in the present days. Keeping this theme in mind and also with an enthusiasm of exploring the catalytic activity of some selected transition metal borates, this research work is carried out by the author under the joint guidance of Dr. Biswajit Sinha, Professor, Department of Chemistry, University of North Bengal and Dr. Dhiraj Brahman, Assistant Professor, Department of Chemistry, St. Joseph's College, Darjeeling.

While going through the literatures it was observed that there were numerous applications of transition metal borates in various fields, however, it was observed that the catalytic activity of these borates were very poorly explored. Therefore, this encouraged us to explore the catalytic activity of these borates in some famous organic reactions involving the synthesis of 2,4,5-triaryl imidazoles, 3,4-dihydropyrimidine-2[1H]-ones, 1-hydroxy-2-arylimidazole-3-oxide and 2-substituted benzimidazoles and 1, 2-disubstituited benzimidazoles. Looking at the diverse applications of these Nitrogen Containing Heterocyclic Compounds, the synthesis of these compounds in a cleaner and milder way following the principles of Green Chemistry with the transition metal borates as catalysts may evolve as an attractive field of research in the field of chemical sciences.

Transition metal borates have been used profoundly in glass industries and have tremendous applications in lithium-ion batteries, glass electrodes, non linear optical devices and optical communication devices. Taking inspiration from the famous scientists like Hawthorne, Grimes and Braunschweig who have done various works in the field of borates, the present dissertation was undertaken for exploring the catalytic activity of some selected transition metal borates, namely Copper Borate, Iron Borate and Nickel Borate for the green synthesis of Nitrogen Containing Heterocyclic Compounds and the results of this work are quite promising.

Density Functional Theory (DFT), Molecular Docking, Computer Aided Drug Design (CADD) are widely used now-a-days for investigating the physical properties as well as for identification of suitable and specific drug target molecules. An attempt has been made to study the theoretical properties and drug likeliness of some of the selected synthesized compounds using DFT and Molecular Docking Studies and some of the theoretical parameters have also been compared with experimental results to get into a deep insight into the structures of the selected compounds.

Acknowledgements...

First and foremost, I would like to thank the **Supreme Power of the Universe** "Almighty God" for giving me power and strength to complete this work. When I started with my research work, it was a completely a new experience for me but the support, motivation and blessings of some great souls made this experience a great and an enjoyable one and the knowledge that I have gained from this work is completely ineffable.

It goes without saying, I would like to thank and acknowledge the efforts put in this research work by my Principal Supervisor, **Prof. Biswajit Sinha**, Department of Chemistry, University of North Bengal. He has always been a kind-hearted person whose constant motivation and words of wisdom never made me feel uncomfortable with my work. It's a blessing to work with such a great person of vision and knowledge. The success of this research work is the result of his constant dedication towards his students.

From the bottom of my heart, I would like to thank my Co-Supervisor, **Dr**. **Dhiraj Brahman**, Assistant Professor, St.Joseph's College, Darjeeling. Sir has always been my **"Genie-The Genius"** always there with his magical gesture to protect me and take me out from almost all the kinds of trouble that came to me. Without him, my research career would not have been possible. He has been a friend, a philosopher and a guide whose hard work and sincerity is reflected in this work. I shall always remain indebted to him and "No words" can describe my feeling of gratitude towards him.

Most respectfully I would like to thank **Prof. Pranab Ghosh**, Department of Chemistry, University of North Bengal for his valuable help and suggestions which played a great role in completion of my research work.

With deep sense of gratitude and respect, I would like to thank respected **Fr**. **Dr. Donatus Kujur**, Principal, St.Joseph's College, Darjeeling for his blessings and constant support which has played a crucial and a pivotal role in my personal as well as my research life. Without his guidance and help this work would have never been a successful one.

I am extremely thankful to **Dr.Kiran Pradhan**, Associate Professor, Department of Chemistry, University of North Bengal for his guidance, motivation and support right from my student life to my research career.

I would like to thank the support and help that I received from all the faculty members, Scientific Officers and all the staffs of the Department of Chemistry, University of North Bengal.

I am extremely thankful to all the faculty members and my teachers **Dr. Rupa Bhowmick**, **Dr. Rajendra Pradhan**, **Ms.Antara Sharma**, **Dr. Rajani Dewan** from the Department of Chemistry, St.Joseph's College, Darjeeling for their teachings and guidance and making me what I am today. I would also like to thank **Mr.Meghraj Tamang** and **Mr.Roshan Rizal** from the Department of chemistry, St.Joseph's College, Darjeeling for their valuable help and support.

My heartfelt gratitude to my friends and lab mates **Mr.Sudarshan Pradhan**, **Mr.Anmol Chettri and Ms.Pritika Gurung.** My life wouldnot have been easy without the support of you all.

I would also like to thank my seniors Mr. Uttam.Kr.Singha, Dr. Ananya Das, Dr. Dipu.Kr.Mishra, Dr.Amarjit Kamath, Mr.Dhrubajyoti Roy, Dr. Kaushik Acharjee and my junior lab mate Mr.Prajal Chhetri. I would also like to acknowledge the support provided by my dear brothers and sisters from the Department of Chemistry, University of North Bengal namely Mr.Munna Mukhia (Munna Bhai), Mr. Sangharaj Diyali(Shankee), Ms.Yachna Rai and Ms, Prasansha Rai.

My parents are my pillars of success. This work is dedicated to my father Mr.Bikram Kumar Chettri and my mother Mrs. Rupa Chettri as without their blessings and support I would not have made it through

This acknowledgement note would not be complete without mentioning my junior lab mate and my dear bhai **Mr. Sumiran Tamang**. The hardwork and enthusiasm that he has shown for helping me out in my research work is highly acknowledged and shall be forever remembered. I would also like thank my friends and my well-wishers especially **Miss Nikita Chhetri**, **Mr.Shivanand Chettri** and **Mr.Bikram Gurung** for their love, support and constant motivation.

. I would like to thank my teachers **Dr. Ramesh Sharma**, **Prof. Nayan Kamal Bhattacharyya**, **Dr. Joydeep Biswas**, **Prof. Sanjay Dahal** and **Mr.Suraj Tamang** for their valuable guidance and support in every step of my life.

Finally, I gracefully acknowledge the analytical services for the characterization of synthesized products provided by

- 1. Incubation Centre, St. Joseph's College, Darjeeling
- 2. CDRI Lucknow
- 3. SAIF NEHU Shillong
- 4. Central University of Sikkim
- 5. Department of Microbiology, St. Joseph's College, Darjeeling and
- 6. Research Centre for Crystalline Material, Sunway University, Malaysia.

-Sailesh Chettri Research Scholar Department of Chemistry University of North Bengal.

LIST OF TABLES

Tables		Page No.
Table 2.1	Provenance and purity of Chemicals	98-99
Table 2.2	Particulars of the catalyst	100
Table 2.3	Provenance and purity of the solvent used	101
Table 3.A.1	Screening of the solvent for model reaction	113
Table 3.A.2	Screening of the amount of the catalyst for the model reaction	114
Table 3.A.3	CuB ₄ O ₇ catalyzed solvent free synthesis of 2,4,5- triarylimidazole derivatives (4a-4w)	116
Table 3.A.4.	Comparision of Catalytic efficacy of CuB ₄ O ₇ with other reported Catalysts	118-119
Table 3.B.1	Crystallographic parameters of complex (1)	141
Table 3.B.2.	Selected geometric parameters of complex (1)	142
Table 3.B.3	Hydrogen Bond geometry for complex (1)	144
Table 3.B.4	Summary of short interatomic contacts (Å) in complex	146
	(1)	
Table 3.B.5	Percentage contributions of interatomic contacts to the Hirschfield surface for the complex in (i) and overall (II)	150
Table 3.B.6	Crystal data collection and structure refinement for	152
	compound (2)	
Table 3.B.7	The selected bond lengths (Å) and bond angles (°) for compound (2)	153
Table 3.B.8	Hydrogen bonded geometries in compound (2)	154
Table 3.B.9	Optimization of catalyst loading	155
Table 3.B.10	Optimization of reaction parameters for the C-S coupling reaction	156
Table 3.C.1	Structural parameters (bond lengths, bond angle and dihedral angle) of the studied compounds (IM-1 to IM- 6)	165-170
Table 3.C.2	Energies of HOMO and LUMO orbitals, ionization energy (I), electron affinity (A), Chemical potential (μ), Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (IM-1 to IM-6)	174
Table 3.C.3	Experimental and theoretical vibrational frequencies of compounds (IM-1 to IM-6) (with B3LYP/6- 31G+(d 2p)) with proposed assignments	175-178
Table 3.C.4	Detailed description of MEP surface for	181
	compounds IM-1 to IM-6	

Table 3.C.5	Dipole moments, dipole polarizabilities, anisotropic polarizabilities and First order hyperpolarizabilities of	183
	the studied compounds (IM-1 to IM-6)	
Table 3.C.6	Second order hyperpolarizabilities of studied compounds IM-1 to IM-6	185
Table 3.C.7	Summary of docking of the compound (IM-1 to IM-6)	188
	against insulin receptor protein 1IR3 with corresponding	
	binding energy (ΔG), predicted inhibitory constant	
	(pK _i), interacting amino acid residues and type of	
Table 3 C 8	Interactions Lipinski's properties and pharmacokinetic properties	196
1 4010 5.0.0.	(ADATE) CO 4.5 (Construction of the state of	170
	(ADME) of 2, 4, 5-triarylimidazole derivatives (IM-1 to	
	IM-6)	
Table 4.A.1	Screening of the solvent for control reaction	206
Table 4.A.2	Screening of the amount of the catalyst for the model	207
	reaction	
Table 4.A.3	Iron Borate catalyzed solvent free neat synthesis of 3,4-	209
	dihydropyrimidine-2-one derivatives (4a-4q)	
Table 4.A.4.	Study on the recyclability of the catalyst	210
Table 4.A.5.	Comparison of Catalytic efficiency of Iron Borate with	211
	other reported catalysts for the synthesis of 3,4-	
T-1-1- 4 D 1	dihydropyrimidine-2-one derivatives (4a-4q).	241 242
Table 4.B.1.	Structural parameters (bond lengths, bond angles and dihedral angles) of the studied compounds (DP 1 to DP	241-243
	3)	
Table 4.B.2.	Energies of HOMO and LUMO orbitals, ionization	245
	energy (I), electron affinity (A), Chemical potential (μ) ,	
	Electronegativity (χ), Global hardness (η) and Global	
	Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP 1 to DP 3)	
Table 4 B.3.	Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3	246-247
Table 4.B.3. Table 4.B.4	Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3 Detailed description of MEP surface for compounds	<u>246-247</u> 251
Table 4.B.3. Table 4.B.4	 Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3 Detailed description of MEP surface for compounds DP-1 to DP-3 	246-247 251
Table 4.B.3. Table 4.B.4 Table 4.B.5	Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3 Detailed description of MEP surface for compounds DP-1 to DP-3 Computed Dipole moments, dipole polarizabilities and	246-247 251 253
Table 4.B.3. Table 4.B.4 Table 4.B.5	 Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3 Detailed description of MEP surface for compounds DP-1 to DP-3 Computed Dipole moments, dipole polarizabilities and anisotropic Polarizabilities and first-order 	246-247 251 253
Table 4.B.3. Table 4.B.4 Table 4.B.5	Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3 Detailed description of MEP surface for compounds DP-1 to DP-3 Computed Dipole moments, dipole polarizabilities and anisotropic Polarizabilities and first-order hyperpolarizabilitiues of compounds DP-1 to DP-3	246-247 251 253
Table 4.B.3.Table 4.B.4Table 4.B.5Table 4.B.6	 Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3 Detailed description of MEP surface for compounds DP-1 to DP-3 Computed Dipole moments, dipole polarizabilities and anisotropic Polarizabilities and first-order hyperpolarizabilities of compounds DP-1 to DP-3 Second order hyperpolarizabilities of studied compounds DP-1 to DP-3 	246-247 251 253 254
Table 4.B.3. Table 4.B.4 Table 4.B.5 Table 4.B.6 Table 4.B.7	 Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3 Detailed description of MEP surface for compounds DP-1 to DP-3 Computed Dipole moments, dipole polarizabilities and anisotropic Polarizabilities and first-order hyperpolarizabilities of compounds DP-1 to DP-3 Second order hyperpolarizabilities of studied compounds DP-1 to DP-3 Summary of docking of the compound (IM-1 to IM-6) 	246-247 251 253 254 256
Table 4.B.3.Table 4.B.4Table 4.B.5Table 4.B.6Table 4.B.7	 Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3 Detailed description of MEP surface for compounds DP-1 to DP-3 Computed Dipole moments, dipole polarizabilities and anisotropic Polarizabilities and first-order hyperpolarizabilities of compounds DP-1 to DP-3 Second order hyperpolarizabilities of studied compounds DP-1 to DP-3 Summary of docking of the compound (IM-1 to IM-6) against insulin receptor protein 1IR3 with corresponding 	246-247 251 253 254 256
Table 4.B.3.Table 4.B.4Table 4.B.5Table 4.B.6Table 4.B.7	Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3 Detailed description of MEP surface for compounds DP-1 to DP-3 Computed Dipole moments, dipole polarizabilities and anisotropic Polarizabilities and first-order hyperpolarizabilitiues of compounds DP-1 to DP-3 Second order hyperpolarizabilities of studied compounds DP-1 to DP-3 Summary of docking of the compound (IM-1 to IM-6) against insulin receptor protein 1IR3 with corresponding binding energy (Δ G), predicted inhibitory constant	246-247 251 253 254 256
Table 4.B.3.Table 4.B.4Table 4.B.5Table 4.B.6Table 4.B.7	Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3 Detailed description of MEP surface for compounds DP-1 to DP-3 Computed Dipole moments, dipole polarizabilities and anisotropic Polarizabilities and first-order hyperpolarizabilitiues of compounds DP-1 to DP-3 Second order hyperpolarizabilities of studied compounds DP-1 to DP-3 Summary of docking of the compound (IM-1 to IM-6) against insulin receptor protein 1IR3 with corresponding binding energy (Δ G), predicted inhibitory constant (pK _i), interacting amino acid residues and type of	246-247 251 253 254 256
Table 4.B.3.Table 4.B.4Table 4.B.5Table 4.B.6Table 4.B.7	Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3 Detailed description of MEP surface for compounds DP-1 to DP-3 Computed Dipole moments, dipole polarizabilities and anisotropic Polarizabilities and first-order hyperpolarizabilitiues of compounds DP-1 to DP-3 Second order hyperpolarizabilities of studied compounds DP-1 to DP-3 Summary of docking of the compound (IM-1 to IM-6) against insulin receptor protein 1IR3 with corresponding binding energy (Δ G), predicted inhibitory constant (pK _i), interacting amino acid residues and type of interactions.	246-247 251 253 254 256
Table 4.B.3. Table 4.B.4 Table 4.B.5 Table 4.B.6 Table 4.B.7	Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3 Detailed description of MEP surface for compounds DP-1 to DP-3 Computed Dipole moments, dipole polarizabilities and anisotropic Polarizabilities and first-order hyperpolarizabilitiues of compounds DP-1 to DP-3 Second order hyperpolarizabilities of studied compounds DP-1 to DP-3 Summary of docking of the compound (IM-1 to IM-6) against insulin receptor protein 1IR3 with corresponding binding energy (Δ G), predicted inhibitory constant (nKi) interacting amino acid residues and type of	246-247 251 253 254 256
Table 4.B.3. Table 4.B.4 Table 4.B.5 Table 4.B.6 Table 4.B.7 Table 4.B.8	Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (DP-1 to DP-3) FT-IR analysis of studied compounds DP-1 to DP-3 Detailed description of MEP surface for compounds DP-1 to DP-3 Computed Dipole moments, dipole polarizabilities and anisotropic Polarizabilities and first-order hyperpolarizabilitiues of compounds DP-1 to DP-3 Second order hyperpolarizabilities of studied compounds DP-1 to DP-3 Summary of docking of the compound (IM-1 to IM-6) against insulin receptor protein 1IR3 with corresponding binding energy (Δ G), predicted inhibitory constant (pK _i), interacting amino acid residues and type of interactions. Lipinski's properties and pharmacokinetic properties	246-247 251 253 254 256 261

Table 5.A.1	Screening of the reaction condition (solvent) for model reaction	274
Table5.A.2	Screening of the amount of catalyst loading for the model reaction	275
Table 5.A.3	CuB ₄ O ₇ catalyzed solvent free synthesis of 1-hydroxy- 2-(aryl)-4,5-dimethylimidazole-3-oxide (4a-4m)	276
Table. 5.A.4	Recyclability of copper borate in model reaction	278
Table 5.A.5	Crystal data collection and structure refinement for (4m)	281
Table 5.A.6	Selected bond lengths (Å), bond angles (°) and torsion angles (°) for (4m)	282
Table 5.A.7	Hydrogen bonded geometries in (4m)	282
Table 5.A.8	X–H··· <i>Cg</i> interactions in (4m)	282
Table 5.B.1.	Structural parameters (bond lengths, bond angle and dihedral angle) of the studied compounds (IMO-1 to IMO-6)	303-307
Table 5.B.2.	Energies of HOMO and LUMO orbitals, ionization energy (I), electron affinity (A), Chemical potential (μ), Electronegativity (χ), Global hardness (η) and Global electrophilicity power (ω) of the studied compounds (IMO-1 to IMO-6)	311
Table 5.B.3.	Theoretical vibrational spectra of the studied compounds (IMO-1 to IMO-6)	313-316
Table 5.B.4	Detailed description of MEP surface for compounds IMO-1 to IMO-6	321
Table 5.B.5	Dipole moments, dipole polarizabilities, anisotropic polarizabilities and First order hyperpolarizabilities of IMO-1 to IMO-6	323
Table 5.B.6	Second order hyperpolarizabilities of compound IMO-1	325
	to IMO-6	
Table 5.B.7.	Summary of docking of the compound (IM-1 to IM-6) against insulin receptor protein 1IR3 with corresponding binding energy (ΔG), predicted inhibitory constant (pK _i), interacting amino acid residues and type of interactions.	327
Table 5.B.8.	Lipinski's properties and pharmacokinetic properties (ADME) of 1-hydroxy-2-arylimidazole-3-oxide derivatives (IMO-1 to IMO-6)	334
Table 6.1.1	Optimization of reaction temperature for the model	345
	reaction	
Table 6.1.2	Optimization of catalyst loading for the model reaction	345
Table 6.1.3.	Isolated yield and melting point of the synthesized benzimidazole derivatives (3a-3i)	346
Table 6.1.4	Recyclability of the catalyst	347

Table 6.2.1.	Optimization of reaction temperature for the model	349
	reaction	
Table 6.2.2	Optimization of catalyst loading for the model reaction	350
Table 6.2.3	Isolated yield and melting point of the synthesized	351
	benzimidazole derivatives $(3a'-3k')$	
Table 6.2.4	Recyclability of the catalyst	352

LIST OF FIGURES

Figure		Page No.
Fig. 1.1	Examples of naturally occurring N-containing heterocyclic compounds	1
Fig. 1.2	Molecular structures of some of the prescribed drugs containing N-heterocyclic scaffold	2
Fig 1.3	Molecular structures of nitrogenous bases of DNA and RNA	3
Fig. 1.4	Molecular structures of some of the N-heterocyclic scaffolds	3
Fig.1.5	Molecular structures of amino acids containing N- heterocyclic motifs	4
Fig. 1.6	Molecular structures of Penicillin, Cephalosporin and Puromycin	5
Fig. 1.7	Structures of some of the biologically active N- heterocyclic motifs	6
Fig. 1.8	Wohler's Synthesis of ammonia	10
Fig. 1.9	Bayer-Villiger oxidation of ketones with mCPBA	10
Fig. 1.10	Claisen rearrangement	10
Fig. 1.11	Important organic reactions in solvent free condition.	11
Fig. 1.12	Solventless reaction protocols for synthesis of some N- containing heterocyclic compounds	13
Fig. 1.13	Historical development of Multi Component Reactions	22
Fig. 1.14	Molecular structures of 2,4,5-triarylimidazole, 3,4- dihydropyrimidin-2(1 <i>H</i>)-one, 1-hydroxyimidazole 3-oxide	24
	and 1,2-disubstituted benzimidazoles	
Fig.1.15	Structures of few drugs containing imidazole scaffold	25
Fig. 1.16	Structures of few naturally occurring biomolecules	25
Fig. 1.17	Structures of some biologically important substituted imidazoles	26
Fig. 1.18	Structures of few drugs having Imidazole Scaffold.	27
Fig. 1.19	Structures of 3,4-dihydropyrimidin-2(1 <i>H</i>)-ones and 3,4- dihydropyrimidine-2-(1H)-thiones	37
Fig. 1.20	Some biologically important Bigenelli Compounds	38
Fig. 1.21	Structure of Benzimidazole	51
Fig. 1.22	Some of the biologically important benzimidazole derivatives	52
Fig. 1.23	Some of the important drugs containing benzimidazole nucleus	52
Fig. 2.1	a. Pulvurization of reactant and catalyst in agate motor and pestle	98
	b. Heating the reaction mixture in oil bath.	98
Fig. 2.2	Determination of melting point by open capillary method	102
Fig. 2.3	Bruker Alpha-II FT-IR spectrophotometer	102
Fig. 2.4	Bruker Advance neo-FT-NMR spectrometer	103

Fig. 3.A.1	Structures of commercially available drugs containing	111
	imidazole core	
Fig. 3.A.2	2,4,5 triarylimidazole derivatives	115
Fig.3.A.7.1	1H NMR spectra of 2,4,5-triphenyl-1H-imidazole	125
Fig. 3.A.7.2	FT-IR spectra of 2,4,5-triphenyl-1H-imidazole	125
Fig. 3.A.7.3	1H NMR spectra of 2-(2-nitrophenyl)-4,5-diphenyl-1H-	126
_	imidazole	
Fig. 3.A.7.4	FT-IR spectra of 2-(2-nitrophenyl)-4,5-diphenyl-1H-	126
	imidazole	
Fig. 3.A.7.5	1H NMR of 2-(3-bromophenyl)-4,5-diphenyl-1H-	127
	imidazole	
Fig. 3.A.7.6	FT-IR spectra of 2-(3-bromophenyl)-4,5-diphenyl-1H-	127
	imidazole	
Fig. 3.A.7.7	1H NMR of 4-(4,5-diphenyl-1H-imidazol-2-	128
	yl)benzonitrile	
Fig. 3.A.7.8	FT-IR spectra of 4-(4,5-diphenyl-1H-imidazol-2-	128
	yl)benzonitrile	
Fig. 3.A.7.9	1H NMR of 4-chloro-2-(4,5-diphenyl-1H-imidazol-2-	129
	yl)phenol	
Fig. 3.A.7.10	FT-IR spectra of 4-chloro-2-(4,5-diphenyl-1H-imidazol-2-	129
	yl)phenol	
Fig. 3.B.1	Structure of plastocyanin	135
Fig.3.B.2	a. Molecular structure of complex (1)	136
	b. Crystal structure of the complex	137
	molecule (1), showing the atom-	
	labeling scheme and with displacement	
	ellipsoids drawn at the 70% probability	
	level	
Fig. 3.B.3	1. FT-IR spectra of the reaction mixture of	139
	CuSO ₄ and NH ₄ OAc	
	2. FT-IR spectra of the reaction mixture of	139
	CuCl ₂ and NH ₄ OAc	1.0.0
	3. FT-IR spectra of the reaction mixture of	139
	CuO and NH4OAc	120
	4. FI-IK spectra of commercially	139
E: 2 D 4	$\frac{\text{available Cu(OAc)}_{2.2\text{H}_2\text{O}}}{\text{Cu}(OAc)}$	1 / 1
F1g. 3.B.4.	A view of the molecular structure of the complex	141
	molecule in (1), highlighting the distorted coordination	
	geometry about the copper (11) atom.	1/2
	a. The molecular packing in the crystal of (1): a supramolecular layer parallel to (101) sustained by	143
	\square Supramore una rayer parametric (101) sustained by \square H \square N H \square and C H \square interactions	
	shown as orange hlue and green dashed lines	
	respectively	
	h a view of the unit-cell contents in projection down	143
	the c axis with $\pi - \pi$ and C—H π interactions	145
	shown as nurnle and nink dashed lines	
	respectively	
1	respectively	

Fig. 3.B.5.	Different views of the Hirshfeld surfaces	
	for the constituents of (I) mapped over	
	dnorm for the:	
	a. water-O1W molecule [in the range -	144
	0.2369 to +1.2173 arbitrary units (au)]	
	b. water-O2W molecule (-0.2114 to +	144
	0.7500 au)	
	c-e. complex molecule (-0.1170 to $+ 1.6287$ au).	144
Fig.3.B.6	Two views of the Hirshfeld surface mapped with the	
	shape-index property for the complex molecule in (1) from	
	_1.0 to +1.0 arbitrary units highlighting:	
	a. the donor and acceptor atoms of the C—H π	146
	interaction through a blue bump near the H34 atom	
	and bright-orange curvature, enclosed within the	
	black circle,	
	b. the O2W—H4W π interaction by the bright-	146
	orange region enclosed within the black circle.	
Fig. 3.B.7	Different views of the Hirschfeld surfaces for	
	the constituents of (1) mapped over the	
	electrostatic potential (the red and blue regions	
	represent negative and positive electrostatic	
	potentials, respectively) for the:	1.4.6
	a. water-OIW molecule [in the range _0.1001	146
	to +0.1943 atomic units (a.u.)],	1.1.6
	b. water-O2W molecule $(-0.1013 \text{ to } +0.1751)$	146
	a.u.)	146
	c. complex molecule $(-0.1209 \text{ to } +0.20/6)$	146
E: 2 D 9	a.u.).	140
F1g. 3.B.8	I wo views of the Hirschfeld surface mapped	140
	(1) highlighting flat regions enclosing	
	(1), inginging that regions enclosing	
	symmetry related initiazore and introbenzene rings involved in π , π stacking labelled Cal	
	and C_{q3} for one pair of rings in (a) and C_{q2}	
	and $Cg4$ for the other pair in (b)	
Fig 3 B 9	Different views of the Hirschfeld surfaces calculated for	147
1 Ig. 5.D.5	the copper (II) centre in (I) highlighting the coordination	11/
	by the N ₂ O ₄ donor set mapped over (a)/(b) shape-index in	
	the range -1.0 to $+1.0$ arbitrary units and (c)/(d)	
	curvedness in the range -4.0 to $+0.4$ arbitrary units.	
	6	
Fig. 3.B.10	The two-dimensional fingerprint plot taking into account	148
	only the Hirschfeld surface calculated about the copper	
	(II) atom	
Fig.3.B.11a-f	A comparison of the full two-dimensional fingerprint plot	149
	for (1) and those delineated into (b) HH, (c) OH/H	
	O, (d) CH/HC, (e) CC and (f) CO/OC	
	contacts.	
Fig.3.B.12	a. Asymmetric unit of compound (2)	152

	b. ortep diagram of (2) with 50% probability	152
Fig.3.B.13	Hydrogen bonding pattern in compound (2)	153
Fig.3.B.14	C-S coupled product (2a-t)	156
Fig. 3.C.1	Molecular structure of 2, 4, 5-triarylimidazole derivatives	163
	(IM-1 to IM-6)	
Fig. 3.C.2	Optimized gas phase molecular geometry of the	171
	compounds (IM-1 to IM-6) with atom labelling scheme.	
Fig. 3. C.3	Labelling of different phenyl ring attached to imidazole	172
	ring	
Fig. 3.C.4	Energies of HOMO and LUMO orbitals of the studied	173
	compounds (IM-1 to IM-6)	
Fig 3.C.5	Theoritical and experimental FT-IR spectra of IM-1 to IM-	179
	6	
Fig.3.C.6	MEP plot of studied compounds (IM-1 to IM-6)	180
Fig. 3.C.7	The N-terminal and C-terminal lobe in the protein 1IR3	186
Fig.3.C.8	Molecular structure of SB202190	187
Fig. 3.C.9	Visualisation of docking results of ligand IM-1 with the	189
	protein kinase 1IR3	
Fig. 3.C.10	Visualisation of docking results of ligand IM-2 with the	190
	protein kinase 11R3	
Fig.3.C.11	Visualisation of docking results of ligand IM-3 with the	191
	protein kinase 11R3	100
F1g. 3.C.12	Visualisation of docking results of ligand IM-4 with the	192
E: 2 G 12	protein kinase IIR3	102
F1g.3.C.13	Visualisation of docking results of ligand IM-5 with the	193
E: 2 C 14	Viscolisation of the bing more the of the and DA (with the	104
F1g.3.C.14	visualisation of docking results of ligand livi-o with the	194
Fig 1 A 1	2. Structure of 2.4 dihydropyrimiding 2 (1H)	204
ГI <u>g</u> . 4.А.1	a. Structure of 5,4-diffydropyfillindifie-2-(1ff)-	204
	b Structure of 3.4 dihydronyrimidine 2 (1H)	204
	b. Structure of 5,4-uniydropyfinnume-2-(111)-	204
Fig 4 A 2	Structures of few drugs that contain the DHPM moiety	204
Fig 4 A 3	Pictorial representation of the Biginelli products (4a-4a)	201
Fig 4 A 4	Recyclability of the catalyst	200
Fig 4 A 7 1	¹ H NMR spectra of Ethyl 1 2 3 4-tetrahydro-6-methyl-2-	200
1 15. 1.2 1.7.1	oxo-4-phenylpyrimidine-5-carboxylate(4a)	217
Fig.4.A.7.2	FT-IR spectra of Ethyl 1.2.3.4-tetrahydro-6-methyl-2-oxo-	217
1 19. 10 10, 12	4-phenylpyrimidine-5-carboxylate(4b)	21,
Fig.4.A.7.3	¹ H NMR spectra of Ethyl 1.2.3.4-tetrahydro-6-methyl-4-	218
	(2-nitrophenyl)-2-oxopyrimidine-5-carboxylate(4b)	
Fig.4.A.7.4	FT-IR spectra of Ethyl 1,2,3,4-tetrahydro-6-	218
	methyl-4-(2-nitrophenyl)-2-oxopyrimidine-5-carboxylate	-
	(4b)	
Fig.4.A.7.5	¹ H NMR spectra of Ethyl 1,2,3,4-tetrahydro-6-	219
	methyl-4-(3-nitrophenyl)-2-oxopyrimidine-5-carboxylate	
	(4c)	

Fig.4.A.7.6	FT-IR spectra of Ethyl 1,2,3,4-tetrahydro-6-	219
	methyl-4-(3-nitrophenyl)-2-oxopyrimidine-5-carboxylate	
	(4c)	
Fig.4.A.7.7	¹ H NMR spectra of Ethyl 1,2,3,4-tetrahydro-6-methyl-4-	220
	(4-nitrophenyl)-2-oxopyrimidine-5-carboxylate (4d).	
Fig.4.A.7.8	FT-IR spectra of Ethyl 1,2,3,4-tetrahydro-6-methyl-4-(4-	220
	nitrophenyl)-2-oxopyrimidine-5-carboxylate (4d)	
Fig.4.A.7.9	¹ H NMR spectra of Ethyl 4-(3-bromophenyl)-1,2,3,4-	221
	tetrahydro-6-methyl-2-oxopyrimidine-5-carboxylate (4e)	
Fig.4.A.7.10	FT-IR spectra of Ethyl 4-(3-bromophenyl)-1.2.3.4-	221
0	tetrahydro-6-methyl-2-oxopyrimidine-5-carboxylate (4e)	
Fig.4.A.7.11	¹ H NMR spectra of Ethyl 1,2,3,4-tetrahydro-4-(2,4-	222
	dihvdroxyphenyl)-6-methyl-2-oxopyrimidine-5-	
	carboxylate (4i)	
Fig.4.A.7.12	FT-IR spectra of Ethyl 1.2.3.4-tetrahydro-4-(2.4-	222
	dihvdroxyphenyl)-6-methyl-2-oxopyrimidine-5-	
	carboxylate (4i)	
Fig.4.A.7.13	¹ H NMR spectra of Ethyl 4-(5-chloro-2-hydroxyphenyl)-	223
0	1.2.3.4-tetrahydro-6-methyl-2-oxopyrimidine-5-	_
	carboxylate (4k)	
Fig.4.A.7.14	FT-IR spectra of Ethyl 4-(5-chloro-2-hydroxyphenyl)-	223
	1.2.3.4-tetrahydro-6-methyl-2-oxopyrimidine-5-	-
	carboxylate (4k)	
Fig.4.A.7.15	¹ H NMR spectra of Ethyl 1.2.3.4-tetrahydro-4-(2-hydroxy-	224
0	5-nitrophenyl)-6-methyl-2-oxopyrimidine-5-carboxylate	
	(41)	
Fig.4.A.7.16	FT-IR spectra of Ethyl 1.2.3.4-tetrahydro-4-(2-hydroxy-5-	224
	nitrophenyl)-6-methyl-2-oxopyrimidine-5-carboxylate (41)	
Fig.4.A.7.17	¹ H NMR spectra of Ethyl 1.2.3.4-tetrahydro-4-(4-hydroxy-	225
6	3-methoxyphenyl)-6-methyl-2-oxopyrimidine-5-	-
	carboxylate (4m)	
Fig.4.A.7.18	FT-IR spectra of Ethyl 1.2.3.4-tetrahydro-4-(4-hydroxy-3-	225
0	methoxyphenyl)-6-methyl-2-oxopyrimidine-5-carboxylate	-
	(4m).	
Fig.4.A.7.19	¹ H NMR spectra of Ethyl 1.2.3.4-tetrahydro-4-(3-	226
0	hydroxyphenyl)-6-methyl-2-oxopyrimidine-5-carboxylate	-
	(4n)	
Fig.4.A.7.20	FT-IR spectra of Ethyl 1,2,3,4-tetrahydro-4-(3-	226
	hydroxyphenyl)-6-methyl-2-oxopyrimidine-5-carboxylate	
	(4n)	
Fig.4.A.7.21	¹ H NMR spectra of Ethyl 1,2,3,4-tetrahydro-4-(3,4,5-	227
	trimethoxyphenyl)-6-methyl-2-oxopyrimidine-5-	
	carboxylate (40)	
Fig.4.A.7.22	FT-IR spectra of Ethyl 1,2,3,4-tetrahydro-4-(3,4,5-	227
	trimethoxyphenyl)-6-methyl-2-oxopyrimidine-5-	
	carboxylate(40)	
Fig.4.A.7.23	¹ H NMR spectra of Ethyl 1,2,3,4-tetrahydro-4-(4-hydroxy-	228
	3,5-dimethoxyphenyl)-6-methyl-2-oxopyrimidine-5-	
	carboxylate (4p)	
h	· · · · · · · · · · · · · · · · · · ·	

Fig.4.A.7.24	FT-IR spectra of Ethyl 1,2,3,4-tetrahydro-4-(4-hydroxy-	228
	3,5-dimethoxyphenyl)-6-methyl-2-oxopyrimidine-5-	
	carboxylate (4p)	
Fig.4.A.7.25	¹ H NMR spectra of Ethyl 1,2,3,4-tetrahydro-4-(1H-indol-	229
_	3-yl)-6-methyl-2-oxopyrimidine-5-carboxylate (4q)	
Fig.4.A.7.26	FT-IR spectra of Ethyl 1,2,3,4-tetrahydro-4-(1H-indol-3-	229
	yl)-6-methyl-2-oxopyrimidine-5-carboxylate (4q)	
Fig.4.B.1	DHPMs as essential building blocks	236
Fig. 4.B.2	Molecular Structures of selected 3, 4-dihydropyrimidin-	237
	(2H)-one derivatives (DP-1 to DP-3)	
Fig.4.B.3	Atom labelling of the DHPM nucleus (1) and the phenyl	239
e	ring (2) in the studied compounds	
Fig.4.B.4	Optimized gas phase molecular geometry of the	240
	compounds (DP-1 to DP-3) with atom labelling scheme.	
Fig.4.B.5	Pictorial representation of the HOMO-LUMO of selected	243
8	compounds (DP-1 to DP-3)	
Fig.4.B.6	Theoretical and experimental FTIR spectra of DP-1 to DP-	249
8	3	
Fig.4.B.7	MEP plots of studied compounds (DP-1 to DP-3)	250
Fig 4.B.8	Visualisation of docking results of ligand DP-1 within a	257
e	receptor site in the protein 3DH4	
Fig.4.B.9	Visualisation of docking results of ligand DP-2 with	258
	receptor protein 3DH4	
Fig.4.B.10	Visualisation of docking results of ligand DP-3 within a	259
e	receptor site in the protein 3DH4	
Fig. 5.A.1	. Examples of drugs containing imidazole scaffold	270
Fig.5.A.2	Examples of 1-hydroxyimidazole compounds having	271
	biological activities	
Fig.5.A.3	Schematic representation of product formed under the	277
	stated reaction condition	
Fig 5.A.4	Recyclability of the catalyst	278
Fig.5.A.5	Prototropic tautomeric equilibrium of 1-hydroxyimidazole	279
e	and N-hydroxybenzimidazole, a/a') N-hydroxy form and	
	b/b [/]) N-oxide form.	
Fig.5.A.6	Structure of 1,3-dihydroxy-2-(4-methoxyphenyl)-4,5-	279
	dimethyl-1 <i>H</i> -imidazol-3-ium chloride (4m).	
Fig. 5.A.7	Asymmetric unit of 4m with displacement ellipsoids drawn	280
e	at 50% probability level.	
Fig. 5.A.8	The molecular arrangement of 4m in the <i>ac</i> plane	282
Fig. 5.A.9	Hydrogen bonding interaction in 4m, (dotted lines	283
	indicate the interionic $C-H\cdots Cl$ interactions in 4m).	
Fig. 5.A.10	C–H····Cg interaction in the cationic unit of 4m	283
	(Dotted line indicates the C–H···Cg interaction)	
Fig.5.A.5.1	¹ H NMR spectra of 1-hydroxy-2-phenyl-4,5-	288
6	dimethylimidazole-3-oxide (4a)	
Fig. 5.A.5.2	FT-IR spectra of 1-hvdroxy-2-phenyl-4.5-	288
8	dimethylimidazole-3-oxide(4a)	
l		

Fig.5.A.5.3	¹ H NMR spectra of 1-hydroxy-2-(3-nitrophenyl)-4,5- dimethylimidazola 3 oxida (4b)	289
Fig 5 A 5 A	ET IP spectre of hydroxy 2 (2 nitronhonyl) 4.5	280
F1g. 5.A.5.4	dimethylimidazole-3-oxide (4b)	289
Fig. 5.A.5.5	¹ HNMR spectra of 1-hydroxy-2(4-fluorophenyl)-4, 5-	290
1 19:011 110:00	dimethylimidazole-3-oxide (4c)	220
Fig. 5.A.5.6	FT-IR spectra of -hydroxy-2(4-fluorophenyl)-4,5-	290
	dimethylimidazole-3-oxide (4c)	
Fig.5.A.5.7	¹ HNMR spectra of 1-hydroxy-2-(3-hydroxyphenyl)-4, 5-	291
	dimethylimidazole-3- oxide (4d).	
Fig. 5.A.5.8	FT-IR spectra of 1-hydroxy-2-(3-hydroxyphenyl)-4,5-	291
	dimethylimidazole-3-oxide (4d)	
Fig.5.5.A.9	¹ HNMR spectra of 1-hydroxy-2-(2, 4-dihydroxyphenyl)-4,	292
	5-dimethylimidazole-3- oxide (4e).	
Fig.5.A.5.10	FT-IR spectra of 1-hydroxy-2-(2, 4-dihydroxyphenyl)-4,	292
	5-dimethylimidazole-3- oxide (4e).	
Fig.5.A.511	¹ HNMR spectra of 1-hydroxy-2-(2-hydroxyphenyl)-4, 5-	293
	dimethylimidazole-3- oxide (4f).	
Fig.5.A.5.12	FT-IR spectra of 1-hydroxy-2-(2-hydroxyphenyl)-4, 5-	293
	dimethylimidazole-3- oxide (4f).	
Fig.5.A.5.13	¹ HNMR spectra of 1-hydroxy-2-(5-chloro-2-	294
	hydroxyphenyl)-4, 5-dimethylimidazole-3- oxide (4h).	
Fig.5.A.5.14	FT-IR spectra of 1-hydroxy-2-(5-chloro-2-	294
	hydroxyphenyl)-4, 5-dimethylimidazole-3- oxide (4h).	
Fig.5.A.5.15	¹ HNMR spectra of 1-hydroxy-2(5-bromo-2-	295
	hydroxyphenyl)-4, 5-dimethylimidazole-3- oxide (4i).	
Fig.5.A.5.16	FT-IR spectra of 1-hydroxy-2(5-bromo-2-hydroxyphenyl)-	295
	4, 5-dimethylimidazole-3- oxide (4i).	
Fig.5.A.5.17	¹ HNMR spectra of 1-hydroxy-2(2-hydroxy-3-	296
	methoxyphenyl)-4, 5-dimethylimidazole-3- oxide (4j).	
Fig.5.A.5.18	FT-IR spectra of 1-hydroxy-2(2-hydrox-3-	296
	methoxyyphenyl)-4, 5-dimethylimidazole-3- oxide (4j).	
Fig. 5.A.5.19	¹ HNMR spectra of 1-hydroxy-2(3, 4, 5-tri-	297
	methoxyphenyl)-4, 5-dimethylimidazole-3- oxide(41).	
Fig.5.A.5.20.	FT-IR spectra of 1-hydroxy-2(3, 4, 5-tri-	297
	methoxyyphenyl)-4, 5-dimethylimidazole-3- oxide (4l).	
Fig 5 R 1	Labeling of the phenyl ring and the imidazole ring	308
115. J.D.1	in the studied compounds	500
Fig 5 R 2	DFT ontimized geometry of the compounds IMO-1	308
1 15. 5.10.2	to IMO-6 with atom labeling scheme	500
Fig 5 R 3	Pictorial representation of the HOMO-LUMO of selected	310
1.6. 5.15.5	compounds (IMO-1 to IMO-6)	510
Fig.5.B.4	Theoritical and experimental FTIR spectra of IMO-1 to	318
	IMO-6	210
Fig. 5.B.5	MEP plot of studied compounds (IMO-1 to IMO-6)	320
Fig 5.B.6	Visualisation of docking results of ligand IMO-1 with the	328
	protein 3ERT	520
Fig.5.B.7	Visualization of docking results of ligand IMO-2 with the	329
	protein 3ERT	22)
L		

Fig 5.B.8	Visualization of docking results of ligand IMO-3 with the	330
_	protein 3ERT	
Fig 5.B.9.	Visualization of docking results of ligand IMO-4 with the	331
	protein 3ERT	
Fig 5.B.10	Visualization of docking results of ligand IMO-5 with the	332
	protein 3ERT	
Fig 5.B.11	Visualization of docking results of ligand IMO-6 with the	333
	protein 3ERT	
Fig.6.1.1	Structures of some clinically approved drugs containing	342
	the benzimidazole scaffold	
Fig.6.1.2	Structures of some new drugs containing the	342
	benzimidazole scaffold	
Fig 6.1.3	Synthesized benzimidazole derivatives (3a-3j)	347
Fig 6.1.4	Recyclability of the catalyst	347
Fig 6.2.1	Synthesized 1, 2-benzimidazole derivatives $(3a'-3k')$	352
Fig 6.2.2	Recyclability of the catalyst	353
Fig.6.6.1	¹ HNMR of 1-(3-nitrobenzyl)-2-(3-nitrophenyl-1H-	359
	benzo[d]imidazole (3c')	
Fig.6.6.2	¹ HNMR of 1-(4-nitrobenzyl)-2-(4-nitrophenyl-1H-	359
	benzo[d]imidazole (3d')	
Fig.6.6.3	¹ HNMR of 1-((1 <i>H</i> -Indol-3-yl)methyl)-2-(1 <i>H</i> -	360
	indol-3-yl)-1 <i>H</i> -benzimidazole $(3j')$	
Fig 6.6.4	¹ HNMR of 1-(2-chlorobenzyl)-2-(2-chlorophenyl-1H-	360
	benzo[d]imidazole (31/)	

LIST OF SCHEMES

Schemes		Page
		No.
Scheme 1.1	Graphical illustration of the classes of MCRs	15
Scheme 1.2	Strecker's Reaction	15
Scheme 1.3	Debus-Raziszewski Synthesis	16
Scheme 1.4	Hantzch Synthesis of substituted dihydropyridines	16
Scheme 1.5	Hantzch Synthesis of pyrrole	16
Scheme 1.6	Bigenelli synthesis of dihydropyrimidinones	17
Scheme 1.7	Mannich Reaction	17
Scheme 1.8	Robinson's synthesis of bioactive alkaloid	18
Scheme 1.9	Bucherer and Bergs synthesis	18
Scheme 1.10	Asinger Reaction	18
Scheme 1.11	Ugi Reaction	19
Scheme 1.12	Povarov's reaction	19
Scheme 1.13	Gewald's Synthesis	19
Scheme 1.14	Petasis Multicomponent Reaction	20
Scheme 1.15	Synthesis of perfluoroalkyl isoxazoles by using	20
	perfluoroalkyl reagents	
Scheme 1.16	Synthesis of 1,4-dihydropyridines under green	21
	condition using PEG-400	
Scheme 1.17	Sequential One-Pot Ugi/Heck	21
	Carbocyclization/Sonogashira/Nucleophilic Addition	
	reaction.	
Scheme 1.18	Ugi-Mumm and Ugi Smiles Reaction	22
Scheme 1.19	a) Radziszewski and b) Japp imidazole synthesis	28
Scheme 1.20	Modern synthetic route for the synthesis of 2, 4, 5-	29
	triarylimidazole derivatives	
Scheme 1.21	Synthesis of 2,4,5-triarylimidazole derivatives under	30
	solvent free conditions	
Scheme 1.22	Synthesis of 2,4,5-triaryl imidazoles under microwave	32
	irradiation	
Scheme 1.23	(a) Synthesis of Lepidiline, (b) Synthesis of Trifenagrel	32
Scheme 1.24	Synthesis of substituted tri-aryl imidazole from keto-	33
	oxime	
Scheme 1.25	Microwave assisted synthesis of 2-substituted-4,5-di(2-	34
	furyl)-1-H-imidazole	
Scheme 1.26	Microwave assisted, solvent and catalyst free synthesis of	34
	tri-aryl imidazole	

Scheme 1.27	Synthesis of tri-substituted imidazoles containing	35
	carboxamido and cyano groups	
Scheme 1.28	Synthesis of 2,4,5-triaryl imidazoles under Ultrasound	35
	irradiation	
Scheme 1.29	Synthesis of 3,4-dihydropyrimidine-2-(1H)-ones	36
Scheme 1.30	Classical method for the synthesis of 3, 4-	39
	dihydropyrimidin-2(1H)-one	
Scheme 1.31	Synthesis of 3, 4-dihydropyrimidin-2(1H)-one	39
Scheme 1.32	Synthesis of 3, 4-dihydropyrimidin-2(1 <i>H</i>)-one from	40
	Cinnamaldehyde and Furfural.	
Scheme 1.33	Solvent free synthesis of 3, 4-dihydropyrimidin-2(1 <i>H</i>)-	42
	one derivatives	
Scheme 1.34	Ultrasound assisted synthesis of 3, 4-dihydropyrimidin-	44
	2(1H)-one derivatives	
Scheme 1.35	Ultrasound assisted synthesis of 3, 4-dihydropyrimidin-	45
	2(1H)-one derivatives using CAN catalyst	
Scheme 1.36	Synthesis of novel 4-(2-phenyl-1,2,3-triazol-4-yl)-3,4-	46
	dihydropyrimidin-2(1H)-(thio)ones	
Scheme 1.37	Synthesis of Imidazole-N-oxide by using 2,2'-	46
	diimidazolyl	
Scheme 1.38	Synthesis of Imidazole-N-oxide from 1-aryl-4-	47
	dimethylamino-1,3-diaza-1, 3-butadienes	
Scheme 1.39	Synthesis of imidazole-N-oxides from α -amino oximes	47
	and triethyl orthoformate	
Scheme 1.40	Synthesis of enantiomerically pure imidazole-N-oxide	48
Scheme 1.41	Synthesis of enantiomerically pure imidazole-N-oxide	48
Scheme 1.42	Synthesis of imidazole-N-oxide from 3-	49
	hydroxyamino-2-butanone oxime	
Scheme 1.43	Synthesis of bulky bulky imidazole-N-oxide	49
	using 1-amino admantane	
Scheme 1.44	Synthesis of aryl imidazole-N-oxides	50
Scheme 1.45	Solvent free, self catalysed reaction for the	50
	synthesis of N-substituted imidazole-3-oxides	
Scheme 1.46	Numerous methods for the synthesis of disubstituted	53
	benzimidazoles	
Scheme 1.47	Synthesis of 1,2-disubstituted Benzimidazole	54
Scheme 1.48	Hoebrecker's synthesis of Benzimidazole	54
Scheme 1.49	Synthesis of 1,2 disubstituted imidazoles using	55
	N, N'-disubstituted-o-phenylenediamine	
Scheme 1.50	Synthesis of 1,2 disubstituted benzimidazole	55
	using Bismuth nitrate as catalyst	
Scheme 1.51	Synthesis of benzimidazole derivatives from	55
	chloroacetyl chloride	

Scheme 1.52	Synthesis of benzimidazole derivatives from	56
	tertiary butane sulfoxide	
Scheme 1.53	Synthesis of benzimidazole derivatives using	56
	Ammonium chloride catalyst	
Scheme 1.54	Synthesis of benzimidazole derivatives using SDS	57
	catalyst	
Scheme 1.55	Two separate procedures for synthesis of	57
	benzimidazole derivatives	
Scheme 1.56	Synthesis of 1-(2-aryl-2-oxoethyl)-2-	58
	aryloylbenzimidazoles	
Scheme 1.57	Synthesis of two regio isomers of 1,2-Disubstituted	58
	benzimidazoles	
Scheme 1.58	Synthesis of Benzimidazoles using Palladium based	59
	catalyst	
Scheme 1.59	Synthesis of benzimidazole scaffold by using an	59
	active deep eutectic solvent	
Scheme 1.60	Synthesis of Benzimidazoles from amidine	59
Scheme 1.61	Synthesis of benzimidazoles by using CuO	60
	nanoparticle as catalyst	
Scheme 1.62	Synthesis of benzimidazoles using ortho-bromo-	60
	amidines	
Scheme 1.63	Synthesis of benzimidazole derivatives using	61
	diarylcarbodiimides	
Scheme 1.64	Synthesis of benzimidazole from ortho-halo	61
	anilines	
Scheme 1.65	Synthesis of 2 fluoroalkylbenzimidazoles	61
Scheme 1.66	Synthesis of substituted benzimidazoles using	62
	DABCO as a catalyst	
Scheme 1.67	Synthesis of substituted benzimidazoles from	62
	dibromomethylarenes	
Scheme 1.68	Synthesis of 1,2 disubstituted benzimidazole by	63
	dehydrogenative coupling	
Scheme 1.69	Synthesis of bezimidazole derivatives using	64
	$(ZrO_2-\beta-CD)$ catalyst	
Scheme 1.70	Synthesis of 1,2-disubstituted benzimidazole	64
	using PIL	
Scheme 1.71	Synthesis of 1,2-disubstituted benzimidazole	65
	using microwave irradiation	
Scheme 1.72	Synthesis of 1, 2-disubstituted benzimidazole	65
	derivatives from orthophenylene diammine	
Scheme 1.73	Synthesis of 1, 2-disubstituted benzimidazole by	66
	using molecular I_2 as catalyst	

Scheme 1.74	Synthesis of 1, 2-disubstituted benzimidazole	67
	derivatives under Ultrasound irradiation	
Scheme 1.75	Synthesis of 1, 2-disubstituted benzimidazoles	67
	using YCl ₃	
Scheme 1.76	Synthesis of 1, 2-disubstituted benzimidazole	68
	derivatives using CuI as an efficient catalyst	
Scheme 1.77	Synthesis of 1, 2-disubstituted benzimidazoles	68
	using aqueous hydrotropic solution	
Scheme	A. Debus-Radziszewski imidazole synthesis	113
3.A.1		
	B. Synthesis of tri-substituited imidazole	113
	using α-hydroxyketone.	
Scheme	Model reaction for the synthesis of 2,4,5	114
3.A.2.	triaryl imidazole	
Scheme	Proposed mechanism for the synthesis of	121
3.A.3	2,4,5 -triarylimidazole	
Scheme	a. Reaction between ligand 4n and	138
3.B.1	CuB ₄ O ₇	
	b. Reaction between ligand 4n and	138
	CuB4O7 in presence of NH4OAc for	
	the synthesis of (1)	
	c. Reaction between CuB ₄ O ₇ and	138
	NH ₄ OAc to for compound (2)	
	d. Reaction between ligand 4n and	138
	compound (2) to form compound (1)	
Scheme	C-S cross-coupling between aryl	155
3.B.2	halide and aryl thiols using complex	
	(1) as a catalyst.	
Scheme	Schematic representation of Bigenelli reaction catalyzed	209
4.A.1	by Fe borate catalyst	
Scheme	Proposed mechanism for the synthesis of 3, 4-	215
4.A.2	dihydropyrimidine-2-one catalyzed by Fe-borate	
Scheme	Method of synthesis of N-alkylimidazole3-oxide (4)	271
5.A.1		
Scheme	Synthesis of 1-hydroxyimidazole derivatives (4)	272
5.A.2		
Scheme	Synthesis of 1-hydroxy-2-(aryl)-4,5-dimethylimidazole-	272
5.A.3	3-oxide (4).	
Scheme	Model reaction for the synthesis of 1-hydroxy-2-(aryl)-	273
5.A.4	4,5-dimethylimidazole-3-oxide	
Scheme	Optimized reaction condition for the synthesis of 1-	274
5.A.5	hydroxy-2-(aryl)-4,5-dimethylimidazole-3-oxide	

Scheme 6.1.1	Synthetic methodology for the synthesis of 2-substituted	343
	benzimidazole derivatives	
Scheme 6.1.2	Model reaction for the synthesis of 2-substituted	344
	benzimidazole	
Scheme 6.2.1	Classical method for the synthesis of 1,2-disubstituted	348
	benzimidazole	
Scheme 6.2.2	Modern methods for the synthesis of 1, 2-disubstituted	348
	benzimidazole derivatives.	
Scheme 6.2.3	Model reaction for the synthesis of 1, 2-disubstituted	349
	benzimidazole	
Scheme 6.2.4	Optimization of reaction condition for model reaction to	350
	synthesize (3a'-3k')	

LIST OF APPENDICES

Appendix	Page No.
I. Supplementary spectra of Chapter III-A	367-371
II. List of Publications	372
III. List of communicated Articles	373
IV. List of Seminars, Webinars, Symposiums and Conferences atter	nded 374