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Preface 

With the development of the idea of Green Chemistry as given by 
Prof,P.T.Anastas, solvent free multicomponent reactions are becoming very popular in 
the present days. Keeping this theme in mind and also with an enthusiasm of exploring 
the catalytic activity of some selected transition metal borates, this research work is 
carried out by the author under the joint guidance of Dr.Biswajit Sinha, Professor, 
Department of Chemistry, University of North Bengal and Dr. Dhiraj Brahman, 
Assistant Professor, Department of Chemistry,St.Joseph’s College, Darjeeling. 

 While going through the literatures it was observed that there were numerous 
applications of transition metal borates in various fields, however, it was observed 
that the catalytic activity of these borates were very poorly explored. Therefore, this 
encouraged us to explore the catalytic activity of these borates in some famous organic 
reactions involving the synthesis of 2,4,5-triaryl imidazoles, 3,4-dihydropyrimidine-
2[1H]-ones, 1-hydroxy-2-arylimidazole-3-oxide and 2-substituted benzimidazoles and 
1, 2-disubstituited benzimidazoles. Looking at the diverse applications of these 
Nitrogen Containing Heterocyclic Compounds, the synthesis of these compounds in a 
cleaner and milder way following the principles of Green Chemistry with the 
transition metal borates as catalysts may evolve as an attractive field of research in 
the field of chemical sciences.  

 Transition metal borates have been used profoundly in glass industries and 
have tremendous applications in lithium-ion batteries, glass electrodes, non linear 
optical devices and optical communication devices. Taking inspiration from the 
famous scientists like Hawthorne, Grimes and Braunschweig who have done various 
works in the field of borates, the present dissertation was undertaken for exploring the 
catalytic activity of some selected transition metal borates, namely Copper Borate, 
Iron Borate and Nickel Borate for the green synthesis of Nitrogen Containing 
Heterocyclic Compounds and the results of this work are quite promising.  

 Density Functional Theory (DFT), Molecular Docking, Computer Aided Drug 
Design (CADD) are widely used now-a-days for investigating the physical properties 
as well as for identification of suitable and specific drug target molecules. An attempt 
has been made to study the theoretical properties and drug likeliness of some of the 
selected synthesized compounds using DFT and Molecular Docking Studies and some 
of the theoretical parameters have also been compared with experimental results to get 
into a deep insight into the structures of the selected compounds. 
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