Contents

Item	Page Nos.
Declaration	i
Certificate	ii
Plagiarism Analysis Result	iii
Acknowledgement	iv-v
Abstract	vi-ix
List of Tables	x-xiv
List of Figures	xv-xxxi
List of Appendices	xxxii
1. Introduction	1-8
2. Literature Review	9-65
2.1. Silk and its aspects	9
2.1.1. Vanya (wild) silk	11
2.1.2. Mulberry silk	14
2.1.3. Silk in West Bengal	23
2.1.4. Problems associated with mulberry silk production	25
2.2. Nanosilver with special reference to green technology	26
2.2.1. Nano Technology	27
2.2.2. Nanoparticles	28
2.2.3. Types of Nanoparticles	28
2.2.4. Silver and its nano form	28
2.2.5. Methods for nanoparticle synthesis	29
2.2.5.1. Physical methods of nanoparticles synthesis	30
2.2.5.2. Chemical methods of nanoparticles synthesis	31
2.2.5.3. Biological synthesis of nanoparticles	32
2.2.5.3.1. Synthesis of silver nanoparticle by algal extract	32
2.2.5.3.1. Synthesis of silver nanoparticle by fungal extract	34
2.2.5.3.2. Synthesis of silver nanoparticle by bacterial extract	34
2.2.5.3.4. Synthesis of silver nanoparticle by plants extract	44
2.2.6. Characterization and validation of green synthesized silver	44
nanoparticles	77
2.2.6.1. UV-Visible spectroscopy	44
2.2.6.2. Fourier-transform infrared spectroscopy (FT-IR)	45
2.2.6.3. X-ray diffraction (XRD)	52
2.2.6.4. Dynamic light scattering (DLS)	52
2.2.6.5. Scanning electron microscopy (SEM) and energy	52 52
dispersive X-ray (EDX)	32
2.2.6.6. Transmission electron microscopy (TEM)	53
2.2.7. Factors affecting nanoparticles formation	53
2.2.7.1. Effect of temperature on silver nanoparticle synthesis	53
2.2.7.2. Effect of pH on silver nanoparticle synthesis	54
2.2.7.3. Effect of concentration on silver nanoparticle	54
synthesis	5-1
2.2.7.4. Effect of reaction time on silver nanoparticle synthesis	54
- •	55
2.2.8. Bioactive potentiality assessment of green synthesized silver nanoparticles	33

2.2.8.1. Antioxidant activity of green synthesized silver	55
nanoparticles	<i>5.5</i>
2.2.8.2. Efficiency of green synthesized silver nanoparticles	55
against microorganisms	- -
2.2.9. Application of green synthesized silver nanoparticles	56
2.2.9.1. Application of silver nanoparticles in enhancing post	56
harvest shelf life of horticultural crops	
2.2.9.2. Application of silver nanoparticles in food packaged	57
2.2.9.3. Application of silver nanoparticles in medicine	58
industry	30
2.2.9.4. Application of silver nanoparticles in cosmetics	58
industry	36
	59
2.3. Biochemical, enzymological and histological perspective of	39
post-harvest preservation	<i>C</i> 1
2.4. Role of nanosilver and silver salts in senescence alteration and	61
oxidative stress mitigation	
2.5. Proteomic analysis of mulberry leaves and silkworm larvae	62
with special reference to gel electrophoresis	
2.6. Next-generation sequencing with special reference mulberry	63
and cellular senescence	
3. Study Area	66-73
4. Material & Methods	74-114
4.1. Collection of mulberry leaves	74
4.2. Preparation of voucher specimens	74
4.3. Screening of mulberry cultivar for experimental setup	74
4.3.1. Study of foliar macro-morphology	75
4.3.2. Study of foliar micro-morphology	75
4.3.2.1. Study of Venation pattern	75
4.3.2.2. Study of Indumentum	75
4.3.2.3. Detection and study of stomatal parameters	75
4.3.3. Statistical data analysis of macro- and micro-morphological	76
data	
4.4. Experimental setup leading to post harvest mulberry leaf	77
preservation	
4.5. Screening of preservative solutions	77
4.6. Phytosynthesis of silver nanoparticles	79
4.6.1. Preparation of plant extract	79
4.6.2. Preparation of silver nitrate (AgNO3) solution	79
4.6.3. Biosynthesis of nanosilver	79
4.7. Validation and characterization of phytosynthesized silver	80
nanoparticles	
4.7.1. Colour transformation	80
4.7.2. Spectrophotometric analysis	80
4.7.3. Fourier transformed infrared spectroscopy (FT-IR)	80
4.7.4. Scanning electron microscopy (SEM)	80
4.7.5. Field emission scanning electron microscope (FESEM)	82
4.7.6. Energy dispersive X-ray spectroscopy (EDX)	82
4.7.7. Transmission electron microscopy (TEM)	82
4.7.8. High resolution transmission electron microscopy (HR-TEM)	82
4.7.9. X-ray diffraction analysis (XRD)	83
4.7.10. Dynamic light scattering (DLS)	83

4.7.11. Zeta potential	84
4.8. Time kinetics of nanosilver formation	84
4.9. Bioactivity assessment of phytosynthesized silver nanoparticles	84
4.9.1. Antioxidant activity assessment	84
4.9.1.1.DPPH (2,2-diphenyl-1-picrylhydrazyl) radical	84
scavenging assay	0.
4.9.1.2. ABTS+ (2,2-azino-bis 3-ethylbenzthiazoline-6-sulphonic	85
acid) scavenging assay	05
4.9.1.3. Nitric oxide (NO) scavenging assay	85
4.9.1.4. Superoxide radical (SO) scavenging assay	85
4.9.1.5. Metal chelating activity (MC)	85
4.9.2. Antimicrobial activity assessment	86
4.10. Process variation of nanosilver formation	86
4.10.1. Determination of effective concentration of silver nitrate for	87
nanosilver formation	0.
4.10.2. Determination of appropriate volume of plant extract for	87
nanosilver formation	0.
4.10.3. Determination of appropriate ratio of plant extract to silver	87
nitrate for nanosilver formation	0,
4.10.4. Determination of suitable genotype of mulberry for	87
nanosilver formation	0.
4.10.5.Determination of impact of light on nanosilver synthesis	88
4.10.6. Determination of impact of pH on nanosilver synthesis	88
4.10.7. Determination of impact of temperature on nanosilver	88
synthesis	00
4.11.Stability assessment of phytosynthesized silver nanoparticles	88
4.12. Bio-potentiality assessment of silver nanoparticles prepared by	89
process variation	-
4.13. Screening of least effective concentration of silver nanoparticle	89
4.14. Evaluation of preservative potentiality of least effective	89
concentration of phytosynthesized silver nanoparticles	0)
4.15. Quantitative chemical profiling of mulberry leaves at post	90
preservation stage	70
4.15.1. Quantitative profiling of primary metabolite content	90
4.15.1.1 Determination of total chlorophyll content	90
4.15.1.2. Determination of total soluble protein content	90
4.15.1.3. Determination of total soluble protein content	91
4.15.1.4. Determination of total soluble sugar and reducing sugar	91
content	71
4.15.2. Quantitative profiling of reactive oxygen species and lipid	91
peroxidation	71
4.15.2.1. Determination of hydrogen peroxide (H_2O_2) content	91
4.15.2.2. Determination of superoxide (O_2^{\bullet}) content	91
4.13.2.2. Determination of superoxide (0 ₂) content	
4.15.2.3. Determination of lipid peroxidation	92
4.15.3. Quantitative profiling of free radical scavenging activities	92
and metal chelating activity	
4.15.4. Determination of enzymatic antioxidant activity	93
4.15.4.1. Detection of superoxide dismutase (SOD) activity	93
4.15.4.2. Detection of catalase (CAT) activity	93
4.15.4.3. Detection of glutathione disulfide reductase (GSR)	94
activity	

4.15.4.4. Detection of glutathione peroxidase (GPOX) activity	94
4.15.4.5. Detection of glutathione S-transferase (GST) activity	94
4.15.4.6. Detection of ascorbate peroxidase (APX) activity	95
4.15.5. Determination of non-enzymatic antioxidant activity	95
4.15.5.1. Determination of carotenoids content	95
4.15.5.2. Determination of ascorbic acid content	95
4.15.5.3. Determination of total glutathione content	95
4.15.6. Estimation of polyphenol content	96
4.15.6.1. Detection of total phenol content	96
4.15.6.2. Detection of orthodihydric phenol content	96
4.15.6.3. Detection of flavonoid content	96
4.15.7. Data analysis	96
4.16. Investigation of protein profile of preserved mulberry leaves	97
4.16.1. Sodium dodecyl (lauryl) sulphate (SDS) Gel Electrophoresis	97
of leaf protein	
4.16.1.1. Extraction of leaf protein	97
4.16.1.2. Reagents and detection technique of Sodium dodecyl	97
sulphate – polyacrylamide gel electrophoresis (SDS PAGE)	
4.16.1.2.1. Preparation of acrylamide and bisacrylamide	97
solution	
4.16.1.2.2. Preparation of sodium dodecyl sulphate (SDS)	98
solution	
4.16.1.2.3. Preparation of Tris-HCl (pH 8.8) buffer for	98
resolving gel	
4.16.1.2.4. Preparation of Tris-HCl (pH 6.8) buffer for	98
stacking gel	
4.16.1.2.5. Preparation of sample loading buffer	98
4.16.1.2.6. Preparation of electrophoresis running buffer (pH 8.3)	98
4.16.1.2.7. Preparation of ammonium persulfate (APS) solution	99
4.16.1.2.8. Sample preparation for SDS gel electrophoresis	99
4.16.1.2.9. Gel formulations	99
4.16.1.2.10. Electrophoresis set up	99
4.16.1.2.11. Post electrophoresis gel staining	99
4.16.1.2.12. Destaining of stained gel	99
4.16.1.2.13. Gel scanning	100
4.16.2. Orbitrap high resolution liquid chromatography mass	100
spectrometry (OHR-LCMS)	100
4.16.2.1. In-gel digestion of differentially expressed SDS gel	100
band	
4.16.2.2. Zip Tip C18 for MS Analysis	101
4.16.2.3. Column Details	101
4.16.2.3.1. Analytical Column	101
4.16.2.3.2. Mobile Phase	101
4.16.2.3.3. Run time of sample	101
4.16.2.3.4. Data analysis software	102
4.16.2.3.5. Databases used	102
4.16.2.4. Protein - protein networking analysis	102
4.16.3. Native PAGE detecting leaf isozymes	102
4.16.3.1. Preparation of plant extract for on-gel assay	102
4.16.3.2.Electrophoresis set up	102
- • • • • • • • • • • • • • • • • • • •	

4.16.3.3. Staining of isozymes	103
4.16.3.3.1. NADPH Oxidase (NOX)	103
4.16.3.3.2. Superoxide dismutase (SOD)	103
4.16.3.3.3. Catalase (CAT)	103
4.16.3.3.4. Peroxidase (POD)	104
4.17. Determination of microbial load in preservative solution	104
4.18. Evaluation of preservative potentiality of phytosynthesized silver	104
nanoparticles against five studied genotypes	
4.19. Histochemical detection of preserved tissues	104
4.19.1. Light microscopic detection of xylem blockage	104
4.19.1.1. Preparation of Bradford reagent	104
4.19.1.2. Preparation of Azure B	105
4.19.1.3. Preparation of Phloroglucinol-HCl	105
4.19.1.4. Preparation of Sudan IV	105
4.19.2. Scanning electron microscopic detection of xylem blockage	105
4.19.3. Histochemical detection of oxidative stress	106
4.19.3.1. Detection of hydrogen peroxide localization	106
4.19.3.2. Detection of plasma membrane integrity	106
4.19.4. Statistical analysis of anatomical data	106
4.20. Transcriptome analysis of preserved mulberry leaves using	107
Illumina platform	
4.20.1.RNA extraction and high-throughput Illumina sequencing	107
4.20.2. Preprocessing of RNA-Seq data set	107
4.20.3. Prediction of simple sequence repeats (SSRs)	107
4.20.4. de novo transcriptome profile and differential gene	108
expression analysis	100
4.20.5. Functional annotation of differentially expressed genes	108
4.20.6. Functional enrichment analysis of differentially expressed	108
genes	100
4.21. Validation of differentially expressed genes by quantitative real-	109
time PCR	110
4.22. Feeding experiment and rearing data collection 4.22.1. Collection of silk worm larvae	110
	110
4.22.2. Experimental setup for rearing	110
4.22.3. Collection of cocoon parameters	110 111
4.22.4. Post cocoon analysis (cocoon quality assessment)	111
4.22.5. Data analysis of rearing parameters4.23. Investigation of protein profile of silkworm larvae fed with	111
preserved mulberry leaves	112
4.23.1. Sodium dodecyl (lauryl) sulphate (SDS) Gel Electrophoresis	112
of larval protein	112
4.23.1.1. Extraction of larval protein	112
4.23.1.2. Reagents and detection technique of Sodium dodecyl	112
sulphate polyacrylamide gel electrophoresis (SDS PAGE)	112
4.23.2. Orbitrap high resolution liquid chromatography mass	112
spectrometry (OHR-LCMS) of differentially expressed larval	112
proteins	
4.23.3. Native PAGE detecting larval isozymes	112
5. Results	115-49
5.1. Study of Foliar macro- and micro-morphology	115
5.1.1. Foliar macro-morphology	115
5.1.2. Morphology of stomata	117
	-

5.1.3. Study of venation morphology	122
5.1.3.1. Major venation pattern	122
5.1.3.2. Minor venation pattern	122
5.1.3.3. Study of areolation	126
5.1.4. Morphology of indumentums	126
5.1.5. Statistical analysis of foliar macro and micro morphology	133
5.2. Screening of effective preservative solution	136
5.3. Characteristic transformation of silver nitrate solution	145
5.4. Phytosynthesis of silver nanoparticles and its characterization	145
5.4.1. UV - Visible spectral analysis	145
5.4.2. Fourier transformed infrared spectroscopic (FTIR) analysis	145
5.4.3. Scanning electron microscopy (SEM) and Field emission scanning electron microscope (FESEM)	149
5.4.4. Energy dispersive x-ray spectroscopy (EDX)	149
5.4.5. Transmission electron microscopy (TEM) and High resolution transmission electron microscopy (HR-TEM)	149
5.4.6. X-ray diffraction analysis (XRD)	154
5.4.7. Dynamic light scattering (DLS) and Zeta potential analysis	154
5.5. Time kinetics of nanosilver formation	156
5.6. Bioactivity assessment of phytosynthesized silver nanoparticles	159
5.6.1. Antioxidant property assessment	159
5.6.2. Antimicrobial property assessment	163
5.7. Process variation of silver nanoparticle formation	163
5.7.1. Effect of silver nitrate concentration variation on phytosynthesis of silver nanoparticle	163
5.7.2. Effect of variation of biogenic extract on phytosynthesis of silver nanoparticle	169
5.7.3. Effect of variation of plant extract to silver nitrate ratio on phytosynthesis of silver nanoparticle	170
5.7.4. Determination of suitable genotype of mulberry for phytosynthesis of silver nanoparticle	179
5.7.5. Effect of light intensity on phytosynthesis of silver nanoparticle	179
5.7.6. Effect of pH variation of leaf extract on phytosynthesis of	182
silver nanoparticle 5.7.7. Effect of temperature variation on phytosynthesis of silver	191
nanoparticle 5.8. Assessment of long term stability of phytosynthesized silver	195
nanoparticles 5.9. Bio-potentiality assessment of prepared nanosilver solution under	202
different process variation 5.10. Determination of least effective preservative concentration of	209
screened silver nanoparticle	
5.11. Assessment of preservative potentiality of least effective concentration of phytosynthesized silver nanoparticles	209
5.11.1. Assessment of physical condition of preserved mulberry leaves	209
5.11.2. Quantitative chemical profiling of mulberry leaves at post preservation stage	213
5.11.2.1. Changes in primary metabolites and proline content	213
5.11.2.2. Changes in reactive oxygen species and MDA content	213
5.11.2.3. Changes in free radical scavenging activities, and metal	219

chelating activity		
·	zymatic antioxidant activities	219
_	n-enzymatic antioxidant activities	224
5.11.2.6. Changes in pol	•	224
-	n profile of preserved mulberry leaves	229
through gel electrophoresis	in profile of preserved mathemy leaves	22)
	ially expressed SDS protein band of	238
•	• •	236
mulberry leaves through	1 0	
chromatography mass spectro	• ,	246
5.14. Isozyme profiling of pre	•	246
	count in preservative solutions used for	252
mulberry leaf preservation	C 11 CC	25.4
	ervative aspect of different genotype of	254
* *	n nanosilver, silver nitrate and distilled	
water		
5.17. Anatomical organization		260
<u> </u>	of transverse section of mulberry leaf	260
petioles at post preservation st	C	
	letection of xylem blockage	260
5.18.1.1. Staining with I	Bradford Reagent	261
5.18.1.2. Staining with A	Azure B	261
5.18.1.3. Staining with F	Phloroglucinol-HCl	267
5.18.1.4. Staining with S	Sudan IV	267
5.18.2. Scanning Electron N	Micrograph detection of xylem blockage	270
5.18.3. Histochemical stre	ess assessment of transverse section of	273
petioles at post preservation	ı stage	
5.18.3.1. Hydrogen pero	xide localization	273
5.18.3.2. Plasma membr	ane integrity	273
5.18.4. Statistical analysis of	of observed xylem blockage pattern	273
5.19. Transcriptome analysi	s of preserved mulberry leaves using	280
Illumina platform		
5.19.1. Illumina De novo pa	aired end transcriptome assembly	280
5.19.2. Annotation of unige	enes	282
5.19.3. SSR prediction		283
5.19.4. Differential Express	sion Analysis (DEG)	294
-	ation of differentially expressed up-	294
	ated genes with respect to Arabidopsis	
database		
5.19.6. Functional classific	cation and identification of differentially	359
	and down-regulated genes related to	
	sion using STRING and Cytoscape	
	GG based functional categorization of	423
differentially expressed train		.20
	ally expressed genes by quantitative real-	424
time PCR	my expressed genes by quantitative real	727
	performance of silkworm larvae on	461
supplementing with preserved	-	701
5.21.1. Rearing practice of		461
	multi-voltine silkworm larvae	464
5.21.2. Rearing practice of 5.22. Post cocoon analysis	muni-volume shaworm farvae	470
•	profile of internal argans of cillary	470
	n profile of internal organs of silkworm	4/0
iaivae aitei ieedilig with p	preserved mulberry leaves through gel	

electrophoresis	
5.24. Analysis of differentially expressed SDS protein band of	481
silkworm larvae supplemented with nanosilver preserved leaves	
through orbitrap high resolution liquid chromatography mass	
spectrometry (OHR-LCMS)	
5.25. Isozyme analysis of silk gland proteins	481
6. Discussion	492-546
6.1. Screening of mulberry cultivars	493
6.2. Selection of suitable preservative solution for post-harvest shelf	496
life extension	
6.3. Phytosynthesis and characterization of silver nanoparticles	498
6.4. Bioactivity assessment of phytosynthesized silver nanoparticles	501
6.5. Time Kinetics, Process variation, stability and bioactivity	503
assessment of phytosynthesized silver nanoparticles	
6.6. Determination of least effective concentration of screened	511
nanosilver solution	
6.7. Assessment of preservative potential of phytosynthesized silver	512
nanoparticles at least effective concentration	
6.8. Protein and isozyme profiling of preserved mulberry leaves	518
through gel electrophoresis and prediction of differential expression	
through OHR-LCMS analysis	
6.9. Evaluation of preservative potential of preservative solutions by	523
assessing microbial count	
6.10. Determination of preservative aspect of nanosilver solution	523
against different cultivars of mulberry	
6.11. Histochemical detection of stress and xylem blockage	524
6.12. Transcriptome profiling of preserved mulberry leaves using	530
Illumina platform	
6.13. Performance assessment of silkworm larvae on supplementing	540
with preserved mulberry leaves in terms of feeding, rearing and protein	
profiling	
7. Conclusion	547-548
8. Summary	549-552
9. Bibliography	553-654
10.A. Appendix-1: List of Chemicals	655-656
10.B. Appendix-2: Abbreviations & Symbols	657-659
10.C. Appendix-3: Index	660-662
10.D. Appendix-4: List of Publications	663
10.E. Appendix-5: Reprints	664