
    NBUJPS                                                ISSN No. 0974-6927 
NBU Journal of Plant Sciences                                                                   Vol. 13(2021), pp. 19-26 
 

 
 

Copyright © 2021, University of North Bengal. All Rights Reserved 

19 

Genetic Resources of Wild Rice (Oryza rufipogon) for Biotic and Abiotic Stress 

Tolerance Traits  

Subhas Chandra Roy*  

Plant Genetics & Molecular Breeding Laboratory, Department of Botany, University of North Bengal, PO-NBU, Siliguri-
734013, WB, India. 
 
Abstract 

Rice (Oryza sativa L.) is the most important staple food crop of the world; nearly half 
of the global population depend on it for majority of their dietary intake.  Many 
stresses (biotic and abiotic) have critically affected rice production throughout the 
world due to global warming, changing climatic conditions and in addition non-
durability of biotic resistance gene (s) incorporated into cultivars. Yield increase is 
not as per the required rate and becomes yield rate is in stagnation. Primary reason of 
yield stagnation is due to the narrow genetic base in the released varieties.  Minimum 
number of parental lines were utilised to develop new crop varieties which ultimately 
leads to narrow genetic base.  The narrow genetic base in the improved varieties is 
going to be a main bottleneck for crop improvement program which shield the yield 
increase. Genetic bottleneck during domestication causes erosion of the genetic 
diversity in the well adapted cultivars which leads to yield stagnation. Yield plateaus 
can be surmount through genetic gain by combining the yield related genes/QTLs 
from different genetic resources of rice germplasm both from local landraces (CLR) 
and crop wild relatives (CWR). Wild species are the reservoir of genetic diversity with 
wide adaptability and tolerance to many biotic and abiotic stresses. It is utmost 
necessary to characterize and conserve rice germplasm for evaluation and effective 
use of the genetic diversity prevailed in the rice gene pool. Genetic variability in 
respect to biotic/abiotic resistance is inadequate in the genetic resources of cultivated 
rice; however, these traits specific genes are available in the unexplored wild species 
of Oryza which are considered as rich source of agronomically important traits 
including biotic/abiotic traits. Therefore, breeders are trying to identify and transfer 
of these valuable genes from wild Oryza species to improve varieties through pre-
breeding method and with the assistance of molecular breeding technology. 
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Introduction 

 

Rice (Oryza sativa L.) is most important and staple 
food crop because more than half of the world’s 
population (>3.5 billion) depends on it for their 
livelihood (Yang and Zhang 2010; Hu et al. 2014; 
Qian et al. 2016). It is needed to produce double 
amount of rice by 2050 to feed the more than 9 
billion people in this world (Ray et al. 2013; 
Arbelaez et al. 2015). Total world production was 
748 Mt from 163.1 million hectares with 
productivity of 4.6 tons/hectare (t/ha) in 2016 of 
which 676.5 million tons was produced by Asian 
countries. India   needs   to  produce 150 Mt  rice by  
 
 

 
 
2030 to feed the increased population with yield 
increase rate 4.2 t/h (from present rate 3.2 t/h).  
Production rate in the released varieties has come to  
the plateaus due to narrow genetic base in the 
parental lines used in breeding programs (Khush 
1997; 2005; Khush et al. 1990; Tanksley and 
McCouch 1997; Tian et al. 2006). Genetic 
bottleneck during domestication also causes erosion 
of the genetic diversity in the well adapted cultivars 
which leads to yield stagnation (Tanksley and 
McCouch 1997). Yield plateaus can be surmount 
through genetic gain by combining the yield related 
genes/QTLs from different genetic resources of rice 
germplasm both from local landraces (CLR) and * Correspondence - subhascr2011@gmail.com 
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crop wild relatives (CWR). So, it is utmost necessary 
to characterize and conserve rice germplasm for 
evaluation and effective use of the genetic diversity 
prevailed in the rice gene pool. Also needed to 
reprogram future breeding program to improve and 
sustain genetic diversity, broadening the genetic 
base for improvement of agronomically important 
traits with the help of marker assisted selection 
(MAS). Breeder could introgress these 
agronomically important genes/QTLs using 
knowledge of molecular breeding techniques such as 
MAS to widen the genetic base for the improvement 
of yield potentiality as well as quality (Likian and 
Graner 2012; McCouch et al. 2012; Li and Zhang 
2013; Ahmad et al. 2015; Agarwal et al. 2016; Babu 
et al. 2017; Singh et al. 2018).  Genetic variability, 
heritability and genetic advance and QTLs mapping 
in rice has been studied in details to analyse the yield 
and yield components for crop improvement 
(Kalyan et al. 2017; Tefera et al. 2017; Sandeep et 
al. 2018; Laxmi and Chaudhari 2019; Roy and Shil 
2020). Out of 950 million hectare arable land, 250 
million hectare irrigated land is affected by salinity 
(Shahbaz and Ashraf 2013). Rice is the most 
sensitive cereal crops to salinity which is highly 
affected by saline soil conditions and considered as 
one of the major abiotic stresses (Eynard et al. 2015). 
More than 163 million hectare lands are used for rice 
cultivation over 100 countries mainly in South Asia 
and South-East Asia, because the region is 
climatically suitable for rice cultivation. Rice is the 
most important food crop, more than half (½) of the 
world’s population depends on it for their 
sustainable livelihood. Population growth is 
increasing day by day and it will reach more than > 
9 billion by 2050, and to feed the overpopulation we 
need to produce nearly double amount of food grains 
to fulfil the demand (Mammadov et al. 2018).  Yield 
increase is not as per the required rate and becomes 
yield rate is in stagnation. Primary reason of yield 
stagnation is due to the narrow genetic base in the 
released varieties.  Minimum number of parental 
lines were utilised to develop new crop varieties 
which ultimately leads to narrow genetic base.  The 
narrow genetic base in the improved varieties is 
going to be a main bottleneck for crop improvement 
program which shield the yield increase.  
 
Wild Rice as a Reservoir of Agronomically 

Important Traits 

 

Many stresses (biotic and abiotic) have critically 
affected rice production throughout the world due to 
global warming, changing climatic conditions and in 

addition non-durability of biotic resistance gene (s) 
incorporated into cultivars (Normile 2008). 
Previously it was considered that tolerance traits are 
negatively correlated with yield trait (Strauss et al. 
2002; Wise 2007). Although reality is that transfer 
of diverse resistance traits into cultivars is not 
always easy task. Sexually compatible donor wild 
rice species can be used in conventional breeding 
process otherwise transgenic technique is to be 
employed to introgress the desired gene (s) from 
CWR to cultivars.  Some poor qualities unwanted 
traits can be introgressed from the CWR during 
conventional breeding process due to linkage drag as 
a result complication arises in the varietal 
development. There is a hope to use modern 
biotechnological approaches such as DNA based 
molecular markers to eliminate the linkage drag. 
Thus, marker-assisted backcross breeding (MABB) 
has been employed as competent technique to 
quickly eliminate the linkage drag with a minimum 
number of generations (Peng et al. 2014; 
Vishwakarma et al. 2014). Different kinds of tools 
and techniques are being used to characterize and 
dissect the genetic traits prevailed in the wild rice 
species for introgression into the cultivars such as 
chromosomal assignment, monosomic alien addition 
lines, disomic introgression lines, chromosome 
segment substitution lines (CSSL), and backcross 
inbred lines (BIL) (Ali et al. 2010; Jena 2010). Wild 
species of Oryza are the genetic resources of many 
important traits (Yang et al. 2012; Sanchez et al. 
2013) such as resistance to biotic and abiotic stresses 
(salinity, submergence, aluminium toxicity and 
drought) (Figure 1). 

 

Wide Hybridization to Introgress Wild Gene 

into Cultivars  

 

Development of CSSL and NIL lines through Pre-

Breeding 

Huge number of cultivated rice germplasm exist in 
the world but harbour a limited genetic diversity due 
to common parents and origin within single species 
Oryza sativa (Zheng et al. 2017). Due to narrow 
genetic base in these cultivated varieties, they are 
prone to attack of diseases and pest and less 
tolerance to abiotic stresses in this climate change 
scenario which leads to yield loss as a whole. It is 
needed to broaden the genetic base of the cultivated 
germplasm to make them sustainable and more 
efficient in yield potentiality (Zheng et al. 2017).  
Pre-breeding is one of the prime important 
approaches to utilize the wild germplasm of rice for 
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introgression of novel genes / QTLs / chromosomal 
segment with important traits to widen the genetic 
base of the cultivar as well as gaining popularity in 
rice improvement program. Whole genome 
sequencing (WGS) research has recognized that a 
large number of genetic loci have been selected and 
improved during hybridization and breeding (Huang 
et al. 2012; Xie et al. 2015; Zheng et al. 2017). 

Chromosome segment substitution lines (CSSLs) 
are the genetic construct of wide hybridization in 
pre-breeding method and can be used as novel 
genetic stocks to be exploited in breeding program 
and genomic analysis services to identify and detect 
the characteristic features of agronomically 
important traits for crop improvement program 
(Balakrishan et al. 2018).  
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Linkage Mapping and QTL Analysis 

 
Linkage map will be constructed based on genotypic 
data of 150 plants of BC2F1 lines using 200 
polymorphic SSR markers on all 12 chromosomes. 
The genetic linkage maps are to be prepared using 
the Software MapDisto v.1.7.5 (Lorieux 2012; 
http://mapdisto.free.fr/MapDisto/) and/or 
IciMapping software v4.1 (www.isbreeding.net). 
Recombination fraction is transferred to estimate 
map distance using the Kosambi mapping function 
(Kosambi 1943; Lorieux 2012). Genotyping by 
sequencing (GBS, Elshire et al. 2011) is to be 
conducted in the final generation of CSSL 
population BC4F2 for fine mapping of the 
quantitative traits (QTLs).  
 

Improvement of Basmati Rice Varieties Using 

Marker Assisted Selection 

 

Marker assisted backcross breeding (MABC) has 
been utilized for the introgression of disease 
resistance genes such as Xa13 and Xa21 (bacterial 
blight), genes for Blast, BPH (brown plant hopper) 
resistance genes and several abiotic stress tolerance 
components have been introgressed into a number of 
Basmati rice varieties.  Marker assisted backcross 
breeding (MABC) has been utilized for the 
introgression of these genes into various rice 
cultivars Pusa Basmati 1, Pusa Basmati 1121 and 
Pusa Basmati 6 (Singh et al. 2012; Singh et al. 2013; 
Singh and Gopalakrishnan 2016). Wild rice Oryza 

rufipogon and O. nivara were used for yield 
enhancement in elite cultivars through introgression 
line development and QTL mapping (Sudhakar et 
al., 2012; Swamy et al., 2012). Yield improvement 
has been achieved through wide crossing by using 
wild rice Oryza rufipogon as a donor parent in elite 
cultivars (Thalapati et al., 2012; Thalapati et al., 
2015). Utilization of “hidden genes” from wild 
species has emerged as a novel option for 
enrichment of genetic diversity for productivity 
traits. Alien gene has been introgressed into popular 
rice variety Pusa44 for yield enhancement (Gaikwad 
et al., 2014) from O. rufipogon.  
 

Fungal Blast Disease Resistance Rice Varieties 

 

Biotic stress such as blast disease is continued to be 
the constraint in rice production and becoming a 
severe problem worldwide in this global warming 
and climate change scenario (Umakanth et al. 

2017).  Blast is measured as the most severe and 
economically crucial disease caused by a fungal 
pathogen Magnaporthe oryzae (M. oryzae) (Wang et 
al. 2014).  One of the most identifiable major biotic 
stresses is the blast disease caused by Magnaporthe 
oryzae (Umakanth et al. 2017). Although 100 major 
blast resistance genes (R-genes) have been 
identified, mapped and their tightly linked DNA 
markers are available (Miah et al. 2013), only one 
major gene (Pb1) has been reported for neck blast 
(Hayashi et al. 2010). In case of blast control, 
identification of resistance gene (termed as R-gene) 
is in prime importance, thus many R-genes (more 
than 100) and about 350 QTLs have been 
investigated from wild species of rice (Wang et al. 
2014; Ashkani et al. 2015; Vasudevan et al. 2015). 
Some major R gene clusters viz. Piz, Pik, and Pita, 
were identified and mapped to chromosomes 6, 11, 
and 12, respectively and some of these are cloned 
(Wang et al. 2014). Cloned R-genes have been 
extensively studied at molecular level and have been 
found to encode nucleotide binding site-leucine-rich 
repeat (NBS-LRR) proteins (Wang et al. 2014). 
These types of R genes for blast tolerance have been 
characterized from wild rice species O. minuta, O. 

autraliensis, O. rufipogon, and O. rhizomatis, and 
considered as precious germplasm to harbor blast 
resistance R-genes (Wang et al. 2014).  These R 
genes have been transferred into susceptible 
varieties and confirmed the effectiveness against rice 
blast severe attack (Sharma et al. 2012). Durability 
is not so long if single R-gene has been introgressed, 
it will break by the various pathotypes within a 
minimum time span. Therefore, it is suggested to 
make staking of broad spectrum R-genes to develop 
more durable resistance varieties with overlapping 
resistance spectra (Sharma et al. 2014). Therefore, it 
is necessary to explore new gene pool for R-genes 
from wild species to get ready before transfer to 
cultivars.  Crop landraces are genetically more 
dynamic and adaptive equilibrium with both the 
environment and pathogens (Harlan 1975). Many 
potential landraces of rice are being replaced by high 
yielding varieties to meet the food requirements 
(Umakanth et al. 2017). Despite being less 
productive they are known to have a high genetic 
variability for several biotic stresses (Hanamaratti et 
al. 2008), so they can be explored for rice 
improvement. Genetic diversity among the rice 
populations has been precisely assessed by using 
advance marker technology along with 
morphological traits (Kumbhar et al. 2015).  
Molecular markers systems have been successfully 
exploited      by      others   in     rice       germplasm

http://mapdisto.free.fr/MapDisto/
http://www.isbreeding.net/
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characterization (Zhang et al. 2011; Liu et al. 2015; 
Nachimuthu et al. 2015; Anandan et al. 2016). 
Among the molecular markers SSRs aid in 
accurately estimating the genetic diversity among 
rice germplasm and are accounted to be more 
efficient than single-nucleotide polymorphic 
markers (SNPs) (Singh et al. 2013; Nachimuthu et 
al. 2015).  
 

Bacterial blight (BB) resistance rice varieties 

 

Leaf blight is a devastating rice disease caused by 
bacterial pathogen Xanthomonas oryzae pv. oryzae 
(Xoo), yield loss goes as high as 75% in India, 
Indonesia, and the Philippines (Shakiba and Eizenga 
2014). To date near about 41 resistance genes have 
been identified and out of which eight genes are very 
extensively characterized for use in breeding 
program (Ellur et al. 2016). Wild species are the 
main sources of resistance genes to be used in 
breeding program. One important bacterial blight 
resistance gene Xa21, was isolated through 
positional cloning approach from wild rice species, 
and found to encode a kinase-like receptor protein 
(Song et al. 1995).  It has been reported that Xa21 is 
the first gene tagged with DNA markers and used 
extensively to develop resistant varieties through 
MAS. More durable resistance gene Xa23, a single 
dominant gene has been identified from wild rice O. 

rufipogon, with broad spectrum resistance efficacy 
and considered most promising gene highly resistant 
to majority of the Xoo strains (Zhang et al. 2001; 
Zhang and Xie 2014). 
A new resistance gene, Xa38, has been recognized 
from O. nivara and its exploitation in breeding 
strategies is expected in near future (Ellur et al. 
2016).  
 

Conventional Breeding for the Development of 

Virus resistance rice varieties 

 

It was reported that approximately 20 different types 
of viruses can infect rice and a majority of them use 
insects as vectors for their transmission.  Among 
these two are more important because they cause 
significant damage to rice production such as rice 
grassy stunt disease; caused by rice grassy stunt 
virus (RGSV), and rice tungro disease; caused by 
two different variant- rice tungro bacilliform virus 
(RTBV) and rice tungro spherical virus (RTSV). 
Insect brown planthopper (BPh) is the vector for 
transmission of RGSV. Infected plant shows stunted 
growth with a few panicles with deformed grains 

sometimes no panicle. After screening of rice 
germplasm both cultivated and wild species, only 
wild rice O. nivara (AA genome, 2n= 24) was 
identified as a source of virus resistant trait of single 
dominant gene, Gs.  It was the first successful report 
of transfer of agronomically useful gene (Gs) 
resistance to RGSV disease from wild rice species to 
cultivar (Khush et al. 1977). Other wild rice species 
O. longistaminata and O. rufipogon reported to be 
found as a source of resistance gene against tungro-
virus diseases and has been used as donor to develop 
resistant varieties (Khush et al. 2004). 
  

Conclusion 

 

Wild rice germplasm is the good source of 
agronomically important traits and can be utilized all 
of these untapped hidden genes associated with 
many biotic and abiotic stress tolerance traits. 
Characterization and conservation of these wild 
Oryza species is utmost important for future food 
security purpose. Climate resilient and disease 
resistant improved rice varieties may be developed 
utilizing wild rice species in conventional breeding 
program. 
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