LIST OF TABLES

Table	Page No.
I. 1. Examples of some bioactive compound and its bioactivity.	2
II. 1. Reduction methodologies using hydrogen gas.	12
II. 2. Reduction methodologies using NaBH ₄ .	13
II. 3. Reduction methodologies using Silyl reagents.	13
II.4. Reduction methodologies using hydrazine.	14
II.5. Reduction methodologies by In situ hydrogen generation.	15
II. 6. Reduction methodologies using direct metal.	15
II. 7. Reduction methodologies using non- classical reagents.	16
II. 8. Reduction methodologies using light sources.	17
II. 9. Reduction methodologies using natural sources.	17
II. 10. Optimization of the reaction condition for reduction of	18
Nitroarenes to the corresponding Anilines.	
II. 11. Optimization of amount of Zn and CuSO ₄ .	19
II. 12. Zn and CuSO ₄ mediated reduction to amines.	20
III. 1. Reaction (Scheme-2a) condition optimization.	44
III. 2. Reaction (Scheme III. 38b) conditions optimization.	45
III. 3. Optimization of amount of Zn and NaHSO ₃ .	45
III. 4. Zn and NaHSO ₃ mediated reduction to amines.	46
IV. 1. Some synthetic approaches of pyrazine derivatives.	59
IV. 2. Reaction conditions optimization by various solvents.	65
IV. 3. Reaction (Scheme-1) condition optimization.	66
IV. 4. Isolated yield and the catalytic synthesis of product.	67
V. 1. Model reaction on pure silica.	85
V. 2. Optimization of temperature.	86
V. 3. Screening of catalyst recycling.	86
V. 4. Synthesis of 2, 4, 5-trisubstituted immidazole.	89
V. 5. Optimization table.	91
V. 6. Synthesis of 2, 4, 5-trisubstituted immidazole.	92
V. 7. Comparing different conditions of solid phase and solution	94
phase synthesis of tri- substituted imidazole.	