TABLE OF CONTENTS

	Page No.
Abstract (3 pages)	i-iii
Preface (1 page)	V
List of Tables (1 page)	xiii
List of Schemes (4 pages)	xv-xviii
List of Figures (3 pages)	xix-xxi
List of Appendices (1 page)	xxiii
Appendix A: List of Research Publications (1 page)	XXV
Appendix B: Oral and Poster Presentations (1 page)	xxvii
Abbreviation (3 pages)	xxix-xxxi

CHAPTER I Section A

		Carbonaceous Nanomaterials	1-17			
I.A.1	Carbonaceo	us nanomaterials	3			
I.A.2	The wond nanoscience	er material graphene: A breakthrough invention in	5			
	I.A.2.1	Functionalization of graphenes	6			
	I.A.2.2	I.A.2.2 Covalent functionalization of graphene				
	I.A.2.3 Graphene oxide					
	I.A.2.4 Milestones in the synthesis of graphene oxide					
		I.A.2.4a Chlorate methods	11			
		I.A.2.4b Permanganate methods	12			
		I.A.2.4c Other methods	12			
	I.A.2.5	Structure of graphene oxide	13			
	I.A.2.6	Reduced graphene oxide (rGO)	16			
	I.A.2.7	Other graphene derivatives	17			
	I.A.2.8	Non-covalent functionalization of graphene	17			
I.A.3	References		17			

CHAPTER I Section B

Gra	phene (Dxide (GO) Promoted Direct C–H Sulfenylation of	19-49
		Aromatic Compounds	
I.B.1	Introduc	ction	21
I.B.2	Backgro	ound and objectives	24
I.B.3	Present	work: Results and discussions	28
	I.B.3.1	Optimization of reaction conditions	29
	I.B.3.2	Synthesis of 3-sulfenylindoles	30
	I.B.3.3	Sulfenylation of 2-naphthol, resorcinol and 2-naphthylamine	32
	I.B.3.4	Recyclability of graphene oxide	34
	I.B.3.5	Plausible mechanism for the sulfenylation of indoles	36
I.B.4	Conclus	sion	37
I.B.5	Experimental Section		
	I.B.5.1	General Information	37
	I.B.5.2	Preparation of graphene oxide (GO)	38
	I.B.5.3	General procedure for the sulfenylation of aromatic compounds	38
	I.B.5.4	Characterization data of compounds listed in Table I.B.2-I.B.5	39
	I.B.5.5	Scanned copies of ¹ H, ¹³ C NMR and HRMS spectra of 3-(pentylthio)-1 <i>H</i> -indole (3f)	48
I.B.6	Referen	ces	49

CHAPTER I Section C

Amine Functionalized Graphene Oxide Nanosheets (AFGONs):51-90An Efficient Bifunctional Catalyst for the Synthesis of 1,4-
Dihydropyridines51-90

55
59
60
61

	I.C.3.3	Catalytic activity of AFGONs: Optimization of reaction conditions	63			
	I.C.3.4	Synthesis of 1,4-dihydropyridine derivatives	64			
	I.C.3.5	Synthesis of 1,8-dioxodecahydroacridine derivatives	67			
	I.C.3.6	Synthesis of polyhydroquinoline derivatives	68			
	I.C.3.7	Gram scale synthesis of 1,4-dihydropyridine (4a)				
	I.C.3.8	Recyclability of AFGONs	70			
	I.C.3.9	Control experiments	72			
	I.C.3.10	Plausible mechanism for the synthesis of 1,4-dihydropyridine	73			
	I.C.3.11	Comparison of AFGONs with previously reported catalytic systems	74			
I.C.4	Conclusi	on	75			
I.C.5	Experime	ental Section	75			
	I.C.5.1	General Information	75			
	I.C.5.2	Preparation of graphene oxide (GO)	76			
	I.C.5.3	Preparation of AFGONs	76			
	I.C.5.4	General procedure for the synthesis of 1,4-dihydropyridines (4a-q) using AFGONs	76			
	I.C.5.5	General procedure for the synthesis of 1,8- dioxodecahydroacridines (5a-i) using AFGONs	77			
	I.C.5.6	General procedure for the synthesis of polyhydroquinolines (6a-g) using AFGONs	77			
	I.C.5.7	Characterization data of compounds listed in Table I.C.2-I.C.4	77			
	I.C.5.8	Scanned copies of ¹ H, ¹³ C NMR and HRMS spectra of a representative compound (6c)	89			
I.C.6	Referenc	es	90			

CHAPTER I Section D

Grap	Graphene Oxide (GO) Catalyzed Synthesis of Thioethers under		91-114
		Continuous Flow Mode	
ID 1	Introduction		03

I.D.1	Introduct	Introduction		
I.D.2	Backgrou	98		
I.D.3	Present v	Present work: Results and discussions		
	I.D.3.1	Optimization of reaction conditions	102	
	I.D.3.2	Synthesis of thioethers through flow reaction	104	
	I.D.3.3	Recyclability of the GO flow reaction bed	107	

	I.D.3.4	Control experiments	108			
	I.D.3.5	Plausible mechanism for the flow synthesis of thioethers	109			
I.D.4	Conclusi	on	109			
I.D.5	Experime	ental Section	110			
	I.D.5.1	General Information	110			
	I.D.5.2	Preparation of graphene oxide (GO)	110			
	I.D.5.3	Typical procedure for the synthesis of thioethers using flow reaction technique	110			
	I.D.5.4	Characterization data for various thioethers (3a-3l)	111			
	I.D.5.5 Scanned copies of ¹ H and ¹³ C NMR spectra of (4- chlorophenyl)(4-methoxyphenyl)sulfane (3 c)					
I.D.6	Referenc	es	114			

CHAPTER II Section A

Graphene-based Composites in Heterogeneous Catalysis			115-122		
II.A.1	Graphen	117			
	II.A.1.1	Graphene-zeolite composites	117		
	II.A.1.2	Graphene-silica composites	118		
	II.A.1.3 Graphene-metal composites				
	II.A.1.4	Graphene-metal oxide composites	121		
II.A.2	Conclusi	on	122		
II.A.3	Referenc	References			

CHAPTER II Section B

Ni Decorated Reduced Graphene Oxide Zeolite Nanocomposite			123-154	
	(Catalyzed Synthesis of 1,2,3-Triazoles		
II.B.1	Introduct	tion	125	
II.B.2	Background and objectives			
II.B.3	Present v	vork: Results and discussions	134	
	II.B.3.1	Preparation of Ni-rGO-zeolite nanocomposite	135	
	II.B.3.2	Characterization of Ni-rGO-zeolite nanocomposite	135	

	II.B.3.3	Catalytic activity of Ni–rGO–zeolite: Optimization of reaction conditions	140		
	II.B.3.4	Synthesis of 1,4-disubstituted-1,2,3-triazoles	142		
	II.B.3.5	Recyclability of the catalyst	144		
	II.B.3.6	Plausible mechanism for the reaction	146		
II.B.4	Conclusi	on	147		
II.B.5	Experime	ental Section	147		
	II.B.5.1	General Information	147		
	II.B.5.2	Preparation of graphene oxide (GO)			
	II.B.5.3	Preparation of GO-zeolite nanocomposite	148		
	II.B.5.4	Preparation of Ni-rGO-zeolite nanocomposite	148		
	II.B.5.5	Preparation of Ni-zeolite catalyst	149		
	II.B.5.6	Preparation of Ni–rGO catalyst	149		
	II.B.5.7	Typical procedure for the synthesis of 1,2,3-triazoles	149		
	II.B.5.8	Characterization data of various 1,2,3-triazole derivatives	150		
	II.B.5.9	Scanned copies of ¹ H and ¹³ C NMR spectra of 1 -benzyl-4-phenyl-1 <i>H</i> -1,2,3-triazole (3a)	154		
II.B.6	Referenc	es	154		

CHAPTER II Section C

Cu@GO–SiO ₂ Nanocomposite Catalyzed Diverse Cross-Coupling					ling	155-182	
			Reactions				
II.C.1	Introduct	ion					157
II.C.2	Backgrou	and and obje	ectives				158
II.C.3	II.C.3 Present work: Results and discussions						160
II.C.3.1 Preparation of Cu@GO–SiO ₂ nanocomposite							160
	II.C.3.2 Characterization of Cu@GO–SiO ₂ nanocomposite						160
	II.C.3.3	Catalytic a	activity of Cu@G	O–SiO ₂ nanocom	posite		164
		II.C.3.3a	Cu@GO–SiO ₂ cross-coupling	nanocomposite	catalyzed	C–S	164
		II.C.3.3b	Cu@GO–SiO ₂ cross-coupling r	nanocomposite eaction	catalyzed	С–С	167

		II.C.3.3c	Cu@GO-SiO ₂	nanocomposite	catalyzed	С–О	169
			cross-coupling r	reaction			
		II.C.3.3d	Cu@GO–SiO ₂	nanocomposite	catalyzed	C–N	170
			cross-coupling r	reaction			
	II.C.3.4	Recyclability of Cu@GO–SiO ₂ nanocomposite 1					
II.C.4	Conclusi	ion					173
II.C.5	Experimental section					173	
	II.C.5.1	General Information					173
	II.C.5.2	Preparation of graphene oxide (GO)					174
	II.C.5.3	Preparation of GO–SiO ₂ hybrid nanocomposite					174
	II.C.5.4	Preparation of Cu@GO–SiO ₂ composite					174
	II.C.5.5	Typical procedure for the cross-coupling reactions					175
	II.C.5.6	Characteri	zation data of	various products	listed in	Table	175
		II.C.2, II.C	C.4, II.C.6 and II.	C.8			
	II.C.5.7	Scanned c	opies of ¹ H and	¹³ C NMR spectr	a of 1-nitro	-3-(<i>p</i> -	182
		tolyloxy)b	enzene (7c)				
II.C.6	References						182

183-206
183
186
190
193
196
200
204

Index	207-208
Index	207-208