
Chapter 6

Baryonic Tully-Fisher test of

Grumiller’s modified gravity

model

6.1 Introduction

Several astrophysical observations and specially the observation of flat rotation

curve of galaxies lead to the hypothesis of dark matter. However, despite several

efforts so far there is no direct evidence of dark matter particles, nor their existence

is predicted by any standard theoretical model of particle physics. Consequently

many alternative explanations of flat rotation curve of galaxies exist in the chapter

including modification of gravitational law at large distances [240], [241] or even

modification of Newton’s laws of dynamics [29].

Grumiller proposed a quantum motivated theory of gravity that aims to explain

the galactic flat rotation in terms of a Rindler acceleration term without the need

of any dark matter [31], [242]. Assuming spherical symmetry, Grumiller considered

the most general form of metric in four dimensions

ds2 = gαβ(xµ)dxαdxβ + Φ2(xµ)
(
dθ2 + sin2θdϕ2

)
, α, β, µ = 0, 1 (6.1)

where gαβ(xµ) is a two dimensional metric and the surface radius Φ2(xµ) is a 2-

dimensional dilaton field. To obtain gαβ(xµ) and Φ2(xµ) Grumiller considered the

most general two dimensional renormalizable gravitational theory of the form
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S = −
∫ √−g[Φ2R + 2∂Φ2 − 6ΛΦ2 + 8aΦ + 2]d2x , (6.2)

which contains two fundamental constants, Λ and a, the cosmological constant

and a Rindler acceleration, respectively. The specialty of the gravitational theory

driven by the above action is that it gives a standard Newtonian kind of potential,

and the theory has no curvature singularities at large Φ(xµ). The solution of the

two dimensional fields gαβ(xµ) and Φ(xµ) are given by

gαβdx
αdxβ = −B(r)dt2 +

dr2

B(r)
, (6.3)

Φ2(xµ) = r2, (6.4)

where

B(r) = 1− 2M

r
− Λr2 + 2ar, (6.5)

M is a constant of motion. When Λ = a = 0, the above solution reduces to the

Schwarzschild solution and for M = Λ = 0 the solution becomes the 2-dimensional

Rindler metric. The above solutions are mapped into the four dimensional world

through equation (6.1).

The theory has found to explain the rotation curves of spiral galaxies well [243].

By fitting the rotation curves of eight galaxies of The HI Nearby Galaxy Survey

(THINGS) [244] the Rindler acceleration term was found as a ∼ 3× 10−11 m s−2

[243]. When a larger sample (thirty galaxies) of rotation curves were considered the

fitting of the data by the Rindler acceleration was found not very good [246], [247]

but the goodness of fitting with the Grumiller’s theory was still found comparable

to that using standard Navarro-Frenk-White (NFW) profile [238], [245]. The fitted

Rindler acceleration parameter, however, exhibit considerably large spread, at

least one order of magnitude with mean around 3× 10−11 m s−2 [247].

The rotation velocity of galaxies is known to relate with their (galaxies) luminosity

[232]. The optical Tully-Fisher relation, however, shows break; the relation is not

universal for bright and faint galaxies [231]. Instead galactic rotation velocity is

found to exhibit universal relation with the total baryonic mass (M) of the galaxy

with the form M ∝ v4
rot [231].
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In this chapter we would like to test the Grumiller theory against baryonic Tully-

Fisher relation and subsequently we shall estimate the Rindler acceleration pa-

rameter in the framework of Grumiller’s model using observed total baryonic mass

versus rotation velocity data for a sample of sixty galaxies.

6.2 Rotation velocity as a function of baryonic

matter in Grumiller theory

For the metric given by equation (6.1) with equation (6.3) the expression of rota-

tion velocity (vrot) of galaxies is given by,

v2
rot =

rB′(r)

2B(r)
(6.6)

where B′(r) signifies the derivative with respect to r, r is the co-ordinate distance

from galactic centre. For the solution of B(r) given by equation (6.5) the rotation

velocity becomes

v2
rot ≈ (

m

r
− Λr2 + ar)1/2 (6.7)

Because of very small magnitude of Λ we henceforth ignore the corresponding term

in the expression of rotation velocity. The observed rotation velocity in galaxies

is in general not strictly constant even at large distances but often has some weak

dependence on radial distance. The rotation velocity in Grumiller gravity is also

not exactly flat (constant) at large r but slowly increases with r. So an obvious

question is what value of rotation velocity will be considered for testing the Tully-

Fisher relation. For Grumillers theory we consider (local) extremum value of

rotation velocity. The radial distance (re) at which rotation velocity reaches its

extremum value can be obtained by differentiating equation (6.7) with respect to

r and equating it to zero which gives

r2
e '

m

a
(6.8)

Inserting it to equation (6.7), we get,
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v′4rot = 4am, (6.9)

where v′) denotes the extremum rotation velocity. The above expression shows

that Grumiller’s theory correctly describe the baryonic Tully-Fisher relation, at

least at the theoretical level.

To match with the observed rotation curve feature a power-law generalization of

the Rindler modified Newtonian potential (−M/r+arn) is proposed in the chapter

[247]. Such a power law generalization modifies the equation (6.9) as

v′4rot ∝ m
n
n+1 (6.10)

In the above case baryonic mass is not strictly proportional to fourth power of

rotation velocity but varies as m ∝ v
′4(n+1)/2n
rot .

6.3 Estimation of Rindler acceleration parame-

ter from observed rotation velocity vs Mass

data

In this section our objective is to estimate the Rindler acceleration parameter from

observed rotation velocity vs baryonic mass data for a sample of disk galaxies. We

use the compiled data of Sanders and MacGaugh [235] as given in Table 6.1 that

include the early works of many good astronomer.

The major luminous matter components in a typical spiral galaxy are stars and

gas. Accordingly the total mass of the galaxy is considered as sum of the stellar

mass and gas mass. In the used sample the mass is estimated through photometry,

particularly using redder passbands as tracer. The HI thickness method was used

for measuring the rotation velocity. The details of the data used and procedure of

estimation of mass and rotating velocity are discussed in [231], [235].

The equation (6.9) is used to estimate the Rindler acceleration parameter a from

the observed data. We fit the observed rotation velocity versus baryonic mass data

by the Tully-Fisher relation (equation (6.9)) using the χ2 goodness-of-fit test. The
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fitting gives a = (3.81± 0.01) × 10−11 ms−2 with reduced χ2 = 2.0. The fitted

curve is shown in figure (6.1).
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Figure 6.1: Variation of observed total baryonic mass with rotation velocity.
The filled (blue) circle represent the observed data, solid (black) line gives the
fitting of the data for standard Rindler acceleration (power index fixed at 4)
and the dotted (red) line shows the fitting of the data with generalized Rindler

acceleration under Grumiller’s modified gravity model.

The estimated values of a for individual galaxies are given in the last column of

the Table 6.1. It has a small spread, ranges from 1.99 × 10−11 ms−2 for UGC

6446 to 7.79 × 10−11 ms−2 for NGC 3949 with mean value 3.8 × 10−11 ms−2 and

standard deviation 0.90. The frequency distribution of estimated a for the sample

of sixty galaxies is shown in figure (6.2).

We also fit the observed rotation velocity versus baryonic mass data for the modi-

fied Tully-Fisher relation (equation (6.10)) led by power-law generalization of the

Rindler modified Newtonian potential using the χ2 goodness-of-fit test which is

also depicted in figure (6.2). In this case the fitted value of the parameters are

found n = 1.19 and a = 9.08× 10−11 ms−2 with reduced χ2 = 1.77.
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Table 6.1: Galaxy data

Galaxy Vrot(kms−1) Mstellar(1010M�) Mgas(1010M�) a(10−11)(ms−2)

UGC 2885 300 30.8 5 4.19
NGC 2841 287 32.3 1.7 3.70
NGC 5533 250 19 3 3.29
NGC 6674 242 18 3.9 2.90
NGC 3992 242 15.3 0.92 3.92
NGC 7331 232 13.3 1.1 3.73
NGC 3953 223 7.9 0.27 5.61
NGC 5907 214 9.7 1.1 3.60
NGC 2998 213 8.3 3 3.37
NGC 801 208 10 2.9 2.69
NGC 5371 208 11.5 1 2.77
NGC 5033 195 8.8 0.93 2.75
NGC 3893 188 4.2 0.56 4.86
NGC 4157 185 4.83 0.79 3.86
NGC 2903 185 5.5 0.31 3.73
NGC 4217 178 4.25 0.25 4.13
NGC 4013 177 4.55 0.29 3.76
NGC 3521 175 6.5 0.63 2.44
NGC 4088 173 3.3 0.79 4.06
NGC 3877 167 3.35 0.14 4.13
NGC 4100 164 4.32 0.3 2.90
NGC 3949 164 1.39 0.33 7.79
NGC 3726 162 2.62 0.62 3.94
NGC 6946 160 2.7 2.7 2.25
NGC 4051 159 3.03 0.26 3.60
NGC 3198 156 2.3 0.63 3.74
NGC 2683 155 3.5 0.05 3.01
NGC 3917 135 1.4 0.18 3.89
NGC 4085 134 1 0.13 5.28
NGC 2403 134 1.1 0.47 3.80
NGC 3972 134 1 0.12 5.33
UGC 128 131 0.57 0.91 3.68
NGC 4010 128 0.86 0.27 4.40
F568-V1 124 0.66 0.34 4.38

NGC 3769 122 0.8 0.53 3.08
NGC 6503 121 0.83 0.24 3.71

F568-3 120 0.44 0.39 4.63
NGC 4183 112 0.59 0.34 3.13
F563-V2 111 0.55 0.32 3.23
F563-1 111 0.4 0.39 3.56

NGC 1003 110 0.3 0.82 2.42
UGC 6917 110 0.54 0.2 3.66
UGC 6930 110 0.42 0.31 3.71

M 33 107 0.48 0.13 3.98
UGC 6983 107 0.57 0.29 2.82
NGC 247 107 0.4 0.13 4.58
NGC 7793 100 0.41 0.1 3.63
NGC 300 90 0.22 0.13 3.47
NGC 5585 90 0.12 0.25 3.28
NGC 55 86 0.1 0.13 4.40

UGC 6667 86 0.25 0.08 3.07
UGC 2259 86 0.22 0.05 3.75
UGC 6446 82 0.12 0.3 1.99
UGC 6818 73 0.04 0.1 3.76
NGC 1560 72 0.034 0.098 3.77

IC 2574 66 0.01 0.067 4.56
DDO 170 64 0.024 0.061 3.66
NGC 3109 62 0.005 0.068 3.75
DDO 154 56 0.004 0.045 3.72
DDO 168 54 0.005 0.032 4.26
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Figure 6.2: Frequency distribution of estimated Rindler acceleration parame-
ter.

6.4 Discussion and conclusion

The Rindler parameter was estimated in [243] by fitting rotation curves of eight

galaxies of The HI Nearby Galaxy Survey (THINGS) and the fitted mean value

of the Rindler acceleration parameter was found a ∼ 3 × 10−11 ms−2. However,

when a larger sample of galaxies were considered for analysis the spread in the

value of acceleration parameter becomes quite large and thereby the validity of

the Grumiller model is questioned [247]. In contrast the Rindler acceleration

parameter as estimated in the present chapter using the rotation velocity versus

total baryonic mass data of a sample of sixty galaxies exhibits relatively small

spread. The mean value is, however, nearly the same to that obtained by fitting

rotation curves [247]. As stated already the rotation velocity in Grumiller’s theory

(equation (6.7)) is not flat but slowly diverges asymptotically which is not in

accordance with the observed behaviour in typical rotation curves where rotation

velocity is found to decrease slowly at large radial distances [237]. This seems

the main reason of poor description of rotation velocity curves by the Grumiller’s

model. While describing the observed rotation velocity versus baryoinc mass data
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we have considered extrema values of rotation velocity thereby taking out the

radial dependence of rotation velocity.

It was found in [247] that the goodness of fits of rotation curves are better in the

generalized Rindler acceleration model than that of the standard Rindler accel-

eration model. However, the power law index n was found to vary substantially

(from 0.2 to 3.3) to describe the observer rotation curves [247], which is against

the universality of the baryonic Tully-Fisher relation as may be noted from equa-

tion (6.10). The power law generalization is thus not suitable for Tully-Fisher

feature unless power law index is kept fixed and universal for all galaxies. Since

the form of the Grumiller’s solution (equation (6.3) and (6.5)) is the same to

the vacuum (static spherically symmetric) solution of Weyl gravity [30], [117] the

present findings are also applicable to Weyl gravity.

The criterion of the stability of orbits in Grumiller’s modified gravity/conformal

gravity leads to testable upper limit on the size of the galaxies [143]. Future

observations on last stable orbit in galaxies is expected to provide an important

test of the Grumiller’s model/conformal gravity prediction.

In conclusion we demonstrate that Grumiller’s modified gravity model correctly

reproduces the baryonic Tully-Fisher relation at theoretical level. We fit the ob-

served total baryonic mass versus rotation velocity data for a sample of sixty

galaxies by Grumiller’s model and estimate the value of Rindler acceleration pa-

rameter. The mean value of so obtained Rindler parameter is found consistent

with that estimated from fitting of rotation velocity curves of disk galaxies.
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