
Chapter 5

Space-time geometry of spiral

galaxy halo

5.1 Introduction:

The astrophysical observations reveal that after the termination of luminous disk

the expected Keplerian fall-off is absent in rotation curves (variation of angular

velocity of test particles with distance from the galactic center) of spiral galaxies

[181–185]. The frequency shift of the 21 cm HI emission line from neutral hydrogen

cloud at large distances from the galactic center rotating in circular orbits allow to

construct rotation curve of galaxies involving distances up to a few tens of kpc or

even few hundreds of kpc in few cases. The observed flatness of galactic rotation

curves implies that either the Galaxy contains far more matter than contributed

by the luminous matters such as stars, planets and the gas or the laws of gravity

is different at large distances. The velocity dispersion of galaxies in the galactic

clusters [186, 187], gravitational lensing by galaxies [187–192, 192] also support

the existence of invisible matter which is commonly referred as dark matter.

The dark matter hypothesis has also received support from the cosmological ob-

servations. The ΛCDM model, where Λ is the cosmological constant and CDM

stands for cold dark matter, fits the cosmological observations well and is quite

successful in describing the formation and evolution of the large scale structure

in the Universe (see for instance [193, 194]). In cosmology the cold dark matter

hypothesis draws from two phenomena - inflation and big-bang nucleosynthesis.
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The inflationary idea suggests that the Universe is nearly flat with matter density

equals to critical density which receives support from the observed anisotropy fea-

tures in the cosmic microwave background radiation (CMBR) [195]. The baryon

density inferred from nucleosynthesis suggests that ordinary matter can contribute

at most 15% of the critical density [196]. Hence if the inflationary picture is cor-

rect, then most of the matter in the Universe must be nonbaryonic. The ΛCDM

model interprets that the gravitational attraction of cold dark matters leads to

formation of cosmic structures and it also plays important role in holding the

structures together.

The space time geometry of galactic halo in presence of dark matter is a very rele-

vant issue. Besides study of the effects of gravitational interactions in the galactic

halo region it also offers possibility of cross-verification of existence of dark matter

itself through different local gravitational phenomena such as gravitational lensing,

gravitational time delay [137], time advancement [127, 140, 197] etc. A naive New-

tonian analysis suggests that the tangential velocity (vϕ) of rotation βϕ =
√

GM
c2r

,

where βϕ = vϕ/c, c is the speed of light, G is the gravitational constant(CMBR),

M is the total mass inside the radius r of the galaxy and r is the distance from the

galactic center. The observed flatness of galactic rotation curves implies that M

is a function of r that increases linearly with r. In Newtonian analysis the galactic

gravitational potential is expressed accordingly as GM(r)
r

. Newtonian treatment is,

however, inadequate to describe the true and complete gravitational field of galac-

tic halo as required for gravitational lensing and similar other local gravitational

phenomena.

Several attempts were made to model dark matter halos in the general relativistic

framework. In the Newtonian approach gravitational field is solely represented

by gravitational potential. In Newtonian concept the matter density solely plays

the role of generation of the gravitational potential which can be completely de-

termined by the observed rotation curve in the galactic halo region. In contrast,

even in the spherically symmetric situation general relativistic analysis requires

knowledge of two metric coefficients (gtt and grr), to completely describe the grav-

itational field of galactic halo. One of the underlying reasons for such a difference

is that in the general relativistic framework pressure also contributes to gravita-

tional field unlike in the Newtonian approach. While the gtt can be obtained from

the features of rotation curve, additional input about the equation of state of dark

matter is required to determine grr. Applying general relativistic prescription and
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invoking observed flat rotation curve feature, several researchers proposed space

time geometry of galactic halo considering dark matter as minimally coupled scalar

field with potential [150, 152, 198, 199], as scalar field in Brans-Dicke theory [200],

as perfect fluid [201], as quintessential matter [202], in Brane world scenario [203]

etc. The metric coefficient grr in the mentioned works [150, 152, 198–203] are

different, depending on the choice of the equation of state of dark matter, but gtt

is the same in all the cases, proportional to rβ
2
ϕ as obtained from the flat rotation

curve feature. In all the stated works, a non-zero pressure of dark matter particles

was considered for deriving the gravitational field.

Under the context the objective of this chapter is to explore for a general relativistic

solution of space time geometry of galactic halo in presence of CDM which will

be consistent with the observed flatness of rotation curve and will respect the

basic principles of general relativity. Note that our objective is not to model the

dark matter of galaxy, rather we shall derive the space time metric in the galactic

halo region taking the observed feature of galactic rotation curve as an input and

assuming the presence of cold dark matter in galaxy. The gravitational lensing

observations provide another compelling evidence for existence of dark matter in

galactic halo. We shall study the gravitational lensing due to the space time metric

of galactic halo as derived in this chapter.

The organization of the chapter is as the following. In the next section (5.2) we

shall evaluate the gravitational potential at galactic halo exploiting observed flat

rotation curve feature and considering the presence of cold dark matter. We shall

discuss other relevant issues like stability of circular geodesics in the same section.

In section 5.3 we shall study gravitational lensing due to the derived space time

metric. We shall discuss our results in section 5.4 and finally conclude in the same

section.

5.2 Galactic potential in presence of cold dark

matter invoking observed flat rotation curve

feature:

In Newtonian gravity the tangential velocity of a test particle in circular orbits

around the central mass distribution is obtained simply by equating the centripetal
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acceleration with the gravitational acceleration due to central mass that leads to

vϕ =
√

GM
r

, The determination of tangential velocity in GR framework is slightly

complex. Assuming that the galactic halo is spherically symmetric, the general

static space time metric of the halo can be written in curvature coordinates as

[204]

ds2 = −e2λ(r)dt2 +
dr2

1− 2m(r)
r

+ r2(dθ2 + sin2θdφ2), (5.1)

where λ(r) and m(r) are functions of r only. We are expressing quantities in

natural units i.e. c and G are taken as 1. The function λ(r) is known as the

“potential” and m(r) is the shape function which essentially reflects the effective

gravitational mass. Assuming that test particles move on the equatorial plane

(θ = π/2) the tangential velocity of a non-relativistic test particle in a circular

orbit can be obtained from the study of geodesics for the above space-time metric

which is given by [198, 199, 201]

β2
ϕ = rλ′(r) (5.2)

where prime denotes the derivative with respect to r. Since observations suggests

that βϕ is nearly constant at large galactic distances, the above equation immedi-

ately gives at halo region e2λ(r) ∝ r2β2
ϕ . This form of gtt is adopted in the several

previous works [150, 152, 198–203] for galactic halo.

Here we look for a form of gtt that can be recast as perturbation of Minkowski

metric as expected in the weak gravitational field regime. Since the gravitational

field is weak in the halo region we consider the metric in the halo region can be

written as gµν = ηµν+hµν , where hµν is the small perturbation over the Minkowski

metric ηµν . Accordingly we write gtt of equation (5.1) as

e2λ(r) = 1− 2MB

r
+ f(r) , (5.3)

where f(r)(≡ htt) is a function of r that arises due to presence of dark matter and

MB is the total baryonic matter of the galaxy within radius r. The observations

suggest that after the galactic bulge the density of baryonic matter is very small

and MB may be taken as a constant. When r is small, f(r) is smaller than
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2MB

r
and vice versa for large r. In the galactic halo region we may approximate

e2λ(r) ' 1 + f(r). Since the magnitude of β2
ϕ is very small we shall keep only

the leading order terms in β2
ϕ in the solution of halo metric ignoring higher order

terms. When flat rotation curve feature is invoked, the equation (5.2) leads to the

following solution

f(r) ' 2β2
ϕlnr + C1 (5.4)

where C1 is an integration constant which may be fixed from the boundary con-

ditions. Note that the above solution does not necessarily require the presence of

dark matter; it follows from the observed flatness feature of galactic rotation curve

at outskirt of spiral galaxies. At present one cannot rule out the possibility that

some modification of general relativity could be the origin of the logarithmic form

in the potential.

5.2.1 Space time geometry of halo for cold dark matter

For complete understanding of space-time geometry in the halo region the knowl-

edge about grr is also required. Additional input in the form of dark matter

equation of state is needed to determine grr. The nature of dark matter is an

unanswered issue of contemporary astrophysics. The only information available

about dark matter is that it has not shown any interaction with the baryonic

matter except the gravitational interaction.

Numerical simulations of structure growth suggests that dominant part of the dark

matter in the universe is preferably ”cold” i.e. velocity of dominant part of the

dark matter particles is much less than the speed of light. Though the ΛCDM

model receives an indisputable success on large scales, validity of the CDM scenario

on galactic scales has been questioned in several works. It is found from N-body

numerical simulations that CDM halos and sub-halos should have a high density

(cuspy) profile at the centre [205–207]. The CDM model also gives overabundance

of dwarf galaxies in the Milky Way and other similar galaxies/local groups against

the observations, which is the so called missing satellites problem [208–210]. There

are other issues like the so called too-big-to-fail problem [211, 212]. However, re-

cent studies claim that except the core-cusp problem, other discrepancies between

observations and CDM based simulations are removed when baryonic effects are

properly taken into consideration in the simulation [213]. The warm cold matter
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(WDM) has been proposed in the literature as an alternative to CDM [214, 215]

but the WDM model also shares the core-cusp problem in galactic scale [216]. Be-

sides, high redshift Lyman-α forest data disfavors the WDM model [217]. There

is also a possibility that the core-cusp problem originated due to our poor under-

standing of galaxy formation or due to improper underlying assumptions in the

N-body simulations [218, 219]. Theoretically weakly-interacting massive particles

is the most attractive dark-matter candidates from particle physics point of view

which falls under the cold dark matter category. Considering all the aspects and

the overall performance over large scales and galactic scales CDM model still re-

mains the most favored dark matter model. We shall, therefore, derive grr from

Einstein field equation considering that the pressure of dark matter is negligibly

small i.e. considering essentially the energy momentum tensor of cold dark matter.

Considering that the dark matter as a fluid with energy density ρ(r), radial pres-

sure pr(r), and tangential pressure pT (r), the Einstein field equations for dark

matter halo read (we shall take c = 1 through out the manuscript) :

2m′(r)

r2
= 8πρ (5.5)

2

r2

[
rλ′(r)

(
1− 2m(r)

r

)
− m(r)

r

]
= 8πpr (5.6)

(
1− 2m(r)

r

)(
λ′′(r) + λ′ 2(r) +

λ′(r)

r

)
− 1

r3
[m′(r)−m(r)] [1 + rλ′(r)] = 8πpT . (5.7)

Now we consider the followings: In the galactic halo region m(r) >> MB. For cold

dark matter pr = pT = 0. Inserting the flat rotation curve led metric coefficient eλ

i.e. expression given in equation (5.4) in equations (5.6) and (5.7) we get to the

accuracy of β2
ϕ

m(r) ' β2
ϕr (5.8)

The above equation together with equation (5.4) completely specify the halo space

time geometry.



Chapter 5. Space-time geometry of spiral galaxy halo 92

5.2.2 Matching with the exterior Schwarzschild space time

In general relativity the Schwarzschild metric is the unique static vacuum solution

and thus represents the exterior space time of galaxies with mass parameter equals

to total mass MT content of the galaxy. The solution derived above must match

the exterior Schwarzschild metric at galactic boundary. We consider the junction

conditions given by given by O’brien and Synge [220, 221] i.e. the metric tensor

and all the first order partial derivatives ∂gµν
∂xζ

except possibly ∂grν
∂r

should be con-

tinuous at the junction. Note that a solution satisfying the junction conditions of

O’brien and Synge always can be transformed to one satisfying the conditions of

Lichnerowicz [222] and vice versa [223, 224].

The matching of metric tensor gtt, gii (i=1,3) and ∂gtt
∂r

at galactic boundary (r =

RG, where RG is the radius of the galaxy) consistently suggest that C1 = 2β2
ϕ(1−

lnRG) and

MT = MB + β2
ϕRG. (5.9)

The matching of ∂grr
∂r

at galactic boundary can be achieved by a coordinate trans-

formation as demonstrated in [224] for general class of solutions.

5.2.3 The space time geometry of galactic halo

Thus finally the space-time metric of galactic halo(CMBR) appears as

ds2 = −
(

1− 2β2
ϕ −

2MB

r
+ 2β2

ϕln(r/RG)

)
dt2

+
dr2

1− 2β2
ϕ − 2MB

r

+ r2(dθ2 + sin2θdφ2) . (5.10)

For the metric given in equation (5.1) circular orbits will exist when 0 < rλ′ < 1

which is indeed the case for the solution given in equation (5.10). The time-like

circular geodesics has to be stable for a viable space time geometry of the galactic

halo. The condition for stable circular orbit for the metric given in equation (5.1)
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is [225]

3λ′ + rλ′′ > 2rλ′ 2 (5.11)

As β < 1, the above condition satisfies for the derived metric.

Inserting the solution of m(r) in equation (5.5), the density of dark matter is

readily obtained as

ρ ' 1

4π

β2
ϕ

r2
(5.12)

At least in the outer parts of galaxies dark matter has a mass density profile closely

resembling that of an isothermal sphere.

The total gravitational energy EG between two fixed radii, say ri and ro in the

halo region can be estimated for the metric (5.10) following [226] which is given

by

EG = MDM − EM = 4π

∫ ro

ri

[
1−

(
1− 2m(r)

r

)−1/2
]
ρr2dr (5.13)

where MDM is the dark matter mass (we have ignored the contribution of luminous

matter) which is given by

MDM = 4π

∫ ro

ri

ρr2dr ' β2
ϕ (ro − ri) (5.14)

The gravitational energy EG is, therefore, given by

EG ' −β4
ϕ (ro − ri) (5.15)

which is negative as expected owing to positive ρ and the gravitational field of the

halo is, thereby, attractive.
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5.3 Gravitational lensing due to gravitational field

of galactic halo

It is often argued that combined observations of galaxy rotation curves and gravi-

tational lensing can provide better insight of the gravitational field of the galactic

halo [227, 228]. In [228] it was shown that the form of gravitational potential ex-

tracted from rotation curve λRC(r) and lensing observations λLens(r) are not the

same in general:

λRC(r) = λ(r),

λLens(r) =
1

2
λ(r) +

1

2

∫
m(r)

r2
dr (5.16)

For the halo metric given in (5.10), λRC(r) = λLens(r) = λ(r) owing to pressure

less fluid.

In gravitational lensing scenarios when photon trajectories are outside the galaxy,

which is the case in most of the observations involving external galaxies/galaxy

clusters as lens, the gravitational deflection will be that due to Schwarzschild

geometry with total mass as given by equation (5.9). In such cases the gravita-

tional lensing phenomenon can provide information about the total mass of the

galaxy, check the validity of equation (5.9) and thereby the halo metric. When the

null geodesics are through galactic halo the lensing phenomenon may additionally

probe the space time geometry of halo.

When source and observer are at large distance away compare to the distance

of closest approach (ro), for the metric given in equation (5.1) the gravitational

bending angle over the journey from ro to infinity may be written as

φ(ro)− φ(r∞) =

∫ ∞
ro

dr

√(
1− 2m(r)

r

)−1

r

√[
r2

r2
o

(
e2λ(ro)

e2λ(r) − 1
)
− 1
] (5.17)
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For the halo metric given in equation (5.10), the total bending angle to the leading

order in m/r and βϕ will be

α ' 4MB

ro
+ 2β2

ϕπ . (5.18)

Therefore, the deflection angle will be enhanced by a constant factor 2β2
ϕ over the

Schwarzschild value for light trajectory from source to observer. Note that the

conventional dark matter model (Newtonian) also gives constant bending angle

when distance of closest approach of photon trajectories are within the galaxy.

Usually Schwarzschild deflection angle is employed to interpret lensing observa-

tions. The Schwarzschild deflection angle (4M(r)
ro

) becomes a constant when (dark

matter) mass increases linearly with halo radius. Here a point to be noted: the

expression for Schwarzschild deflection angle is evaluated under the assumption

that mass parameter MT is a constant, independent of radial coordinate. So ap-

plication of Schwarzschild deflection angle for dark matter radial dependent mass

is not proper if distance of closest approach is within the galaxy.

The angular position of the images (ζ) can be obtained from the lens equation in

the weak lensing scenario is given by [229]

ζ = β +
dls
dos

α (5.19)

where β denotes the angular source position, dls and dos are the distances between

lens and source and observer and source respectively. The image positions can

be obtained from the above equation after inserting the expression for bending

angle either from equation (5.18) or the Schwarzschild deflection angle depending

on whether the distance of closest approach is inside or outside the galaxy.

If mass of baryonic matter in galaxy is known independently by some other method

such as through photometry, the prediction of halo space time metric can be tested

observationally through lensing observations.

The expression of image position in weak field Schwarzschild lensing is given by

ζ± =
1

2

(
β ±

√
4α0 + β2

)
(5.20)

where the indices ± denote the parities of the images, and
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α0 ≡
√

dls
doldos

4MT . (5.21)

An important question at this stage is that whether the halo space time geometry

can be verified from observational lensing data or not. Since the presence of dark

matter is clearly revealed in galaxy clusters, here we have considered the case of

gravitational lensing by cluster Abell 370 in which the ‘giant luminous arcs’were

first observed [172, 173]. Our objective is to first estimate MT from the lensing

observation and subsequently we shall compare the so evaluated MT with that

given by equation (5.9).

Galaxy clusters have complex matter distributions in general and cannot be con-

sidered to be either point masses or spherically symmetric mass distribution. How-

ever, a spherically symmetric lens model can be employed as a first approximation

to extract the same order of magnitude results as the more realistic case analyzing

the large arcs that are observed in clusters [177, 178]. We have considered the

luminous arc, A0, which has a radius of curvature of about 25′′ [176] and treat the

arc as an Einstein ring [174, 176]. The observed redshift (zs) of A0 is 0.724 which

gives the distance of the background galaxy and the lens distance is obtained from

the redshift 0.374 of Abell 370. A concordance cosmological model of (Ωm,ΩΛ,Ωk)

= (0.3; 0.7; 0) is applied for distance estimation from redshifts of lens and source.

Our estimated total mass from lensing observations is given in Table 5.1.

The estimated mass of the luminous matter in Abell 370 from photometric mea-

surement is found at least two orders smaller than the total mass of Abell 370

[176]. We use βϕ as velocity of dispersion for Abell 370 which is 1367 km s−1

[176, 230]. The radius of the galaxy is an unknown parameter which we have

taken equal to Einstein radius as a first approximation i.e. about 200 kpc which

is consistent with the findings from Hubble imaging observations [180]. The total

mass obtained from equation (5.9) is also given in Table 5.1. We find that the mass

obtained from equation (5.9) agrees reasonably well with the lensing observations.

Interestingly the lensing results also can be utilized to check the validity of baryonic

Tull-Fisher relation [231]. Tully & Fisher first demonstrated that an empirical

power law relation exists between luminosity and rotation velocity of galaxies [232].

However, the optical Tully-Fisher relation exhibits a break; the power law index

differs for fainter and brighter galaxies [231]. The rotational velocity of galaxies is

found to exhibit a single power law relation with total baryonic disk mass, which is
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Table 5.1: Estimated baryonic mass of Abell 370

Object zl zs rE MT /M� × 10−11 MB/M� × 10−11

in arcsecs from lensing data from equation (5.9)

Abel370 0.374 0.724 25 923.06 873.3

the sum of stellar mass and gas mass of galaxy, instead of luminosity. The baryonic

Tully-Fisher relation is given by MB ∝ β4
ϕ. We would like to replace rotational

velocity by baryonic mass. A sample of rotational velocity data for galaxies with

large variation in mass are shown in Table 2 which are taken from [233–235]. The

variation of β4
ϕ with MB from the observed data is shown in Fig. (5.1). Expressing

the rotational velocity as β4
ϕ = a2

tfMB where a2
tf is a proportionality constant, we

get by the least square fitting of the data a2
tf = 2.43 × 10−24 M−1

� . Accordingly

the equation (5.9) reduces to

MT = MB + atfRGM
1/2
B . (5.22)

Using MT as obtained from gravitational lensing observation of Abell 370 we can

estimate MB which turns out to be ∼ 2 × 1014 which is not consistent with the

estimated baryonic mass of Abell 370 from photometric study. It seems that

baryonic mass in baryonic Tully-Fisher relation should be replace by total mass

that contains both luminous and dark matter mass.

5.4 Discussion and Conclusion

In this chapter the form of gravitational potential of galactic halo led by the flat

rotation curve features is derived. The mass function is obtained considering the

presence of cold dark matter in galaxy. The mass function will alter from that

derived here if any other form of dark matter such as perfect fluid, or scalar field

inspired dark matter state is considered. However, gravitational potential derived

from lensing observations for a different choice of dark matter state instead of cold

dark matter in general does not consistently match with that obtained from the

flat rotation curve feature [228].
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Table 5.2: Rotational velocity and baryonic mass data of different galaxies

Galaxy v(kms−1) Mstellar(1010M�) Mgas(1010M�)

UGC 2885 300 30.8 5
NGC 2841 287 32.3 1.7
NGC 5533 250 19 3
NGC 6674 242 18 3.9
NGC 3992 242 15.3 0.92
NGC 7331 232 13.3 1.1
NGC 3953 223 7.9 0.27
NGC 5907 214 9.7 1.1
NGC 2998 213 8.3 3
NGC 801 208 10 2.9
NGC 5371 208 11.5 1
NGC 5033 195 8.8 0.93
NGC 3893 188 4.2 0.56
NGC 4157 185 4.83 0.79
NGC 2903 185 5.5 0.31
NGC 4217 178 4.25 0.25
NGC 4013 177 4.55 0.29
NGC 3521 175 6.5 0.63
NGC 4088 173 3.3 0.79
NGC 3877 167 3.35 0.14
NGC 4100 164 4.32 0.3
NGC 3949 164 1.39 0.33
NGC 3726 162 2.62 0.62
NGC 6946 160 2.7 2.7
NGC 4051 159 3.03 0.26
NGC 3198 156 2.3 0.63
NGC 2683 155 3.5 0.05
NGC 3917 135 1.4 0.18
NGC 4085 134 1 0.13
NGC 2403 134 1.1 0.47
NGC 3972 134 1 0.12
UGC 128 131 0.57 0.91
NGC 4010 128 0.86 0.27
F568-V1 124 0.66 0.34

NGC 3769 122 0.8 0.53
NGC 6503 121 0.83 0.24

F568-3 120 0.44 0.39
NGC 4183 112 0.59 0.34
F563-V2 111 0.55 0.32
F563-1 111 0.4 0.39

NGC 1003 110 0.3 0.82
UGC 6917 110 0.54 0.2
UGC 6930 110 0.42 0.31

M 33 107 0.48 0.13
UGC 6983 107 0.57 0.29
NGC 247 107 0.4 0.13
NGC 7793 100 0.41 0.1
NGC 300 90 0.22 0.13
NGC 5585 90 0.12 0.25
NGC 55 86 0.1 0.13

UGC 6667 86 0.25 0.08
UGC 2259 86 0.22 0.05
UGC 6446 82 0.12 0.3
UGC 6818 73 0.04 0.1
NGC 1560 72 0.034 0.098

IC 2574 66 0.01 0.067
DDO 170 64 0.024 0.061
NGC 3109 62 0.005 0.068
DDO 154 56 0.004 0.045
DDO 168 54 0.005 0.032
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Figure 5.1: The variation of β4
ϕ with MB for several galaxies. The dotted line

represents the least squared fit of the data.

Instead of exactly flat rotation curve i.e. instead of constant βϕ if we use universal

halo velocity profile as given below [236, 237]

β2
ϕ = k

r2
a

r2
a + r2

(5.23)

where ρo
4π

, ρo is the central density and ra is a constant, the potential f(r) will

become

f(r) ' kln[(r2
a + r2)/R2] (5.24)

which reduces to Eq.(5.4) when r >> ra, with k = β2
ϕ.

Numerical simulations suggest an approximate universality for the density profile

of cold dark matter halos [238]. The density profile of dark matter prescribed by

Navarro, Frenk and White (NFW) is widely used which is given by [238]

ρ(r) =
ρs

r/rs(1 + r/rs)2
(5.25)

The mass function corresponds to the NFW density profile will be

mNFW (r) = 4πr3
sρs

(
rs

r + rs
+ Log(r + rs)

)
(5.26)
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However, for mNFW (r) (together with λ) the radial and transverse pressure of dark

matter fluid do not vanish as expected for cold dark matter. The assumption of

exactly flat rotation curve in deriving metric potential can be the reason for such

an inconsistency.

The radial extension of a galaxy i.e. dark matter is so far not known which

is one of the unanswered questions of modern astrophysics. Some alternative

theories to GR, particularly conformal gravity can explain the galactic rotation

curve without invoking any dark matter component [131]. However, the radial

extent of galaxies in conformal theory [143] are not the same to the GR prediction

and hence this feature is also a testable observable to differentiate the two models.

In the present model the total mass of dark matter is proportional to the radius of

galaxy. So if total mass is obtained say from lensing measurements and if baryonic

mass is estimated from say photometric study, one can readily estimate the radial

extension of a galaxy from equation (5.9) under the present framework and hence

is an important testable parameter for the model.

In summary, we have derived gravitational field at halo of spiral galaxies in pres-

ence of cold dark matter considering observed flat rotation curve feature as an

input. The gravitational lensing formulation have been derived for the halo met-

ric. The lensing observation of Abell 370 is found to validate the derived halo

space time. As a corollary the baryonic mass in baryonic Tully-Fisher relation

seems to be replaced by total mass of a galaxy for consistent explanation of Abell

370 lensing observation.

In recent years few studies on dark matter distribution in galaxies have been made

from lensing observations particularly using the Sloan Digital Sky Survey (SDSS)

Data [239] and the Hubble Space Telescope observations [171]. However, the weak

lensing signal in SDSS survey imaging is very noisy [154] and interpreted dark

matter distribution in galaxies suffer from significant uncertainties. Future precise

measurements of dark matter content within galactic halo independently from

gravitational lensing and other methods should provide opportunity to further

validate the derived halo metric.
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