
Chapter 4

Gravitational lensing by global

monopole

4.1 Introduction:

Some quantum field theories admit formation of topological defects of different

kinds during phase transitions in the early universe as a consequence of sponta-

neous breaking of symmetry. The topological defects are classified depending on

the topology of vacuum manifold. A monopole may form when manifold contains

surfaces those cannot be continuously shrunk to a point. When monopole is formed

through spontaneous breaking of a gauge symmetry the resultant configuration has

finite energy and its mass is condensed in a very tiny core. The produced monopole

configuration thereby behaves like an elementary particle. Instead if monopole is

resulted from breakdown of a global symmetry, the produced configuration has

linearly divergent mass owing to the long range Nambu-Goldstone field. The typ-

ical distance between global monopole and anti-monopoles will be of the horizon

size if such global monopole formed in the early universe and that gives a natural

cut-off of the energy density of global monopole system.

The gravitational field due to a global monopole can be quite strong because

of large energy density associated with Nambu-Goldstone field surrounding the

monopole. The exterior space time metric due to global monopole is asymptoti-

cally non flat due to the long range Nambu-Goldstone field with energy density

decreasing with the distance as r−2 [149]. Interestingly such kind of variation
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(as r−2) of energy density of global monopole configuration has been exploited

to explain the flatness of rotation curves of stars and gases at the outer part of

several galaxies [150]. An important feature of the global monopole configuration

is that for minimally coupled to gravity system the effective mass in the tiny core

of the system is negative that leads to a repulsive potential. As a result no bound

orbits exist for the global monopole configuration those are minimally coupled to

gravity [149, 151]. Such lack of bound orbits feature can be avoided by consider-

ing some nonminimal couplings of global monopole configuration to gravity [152].

Alternatively if a global monopole is swallowed by a black hole at the centre of a

galaxy, the resultant configuration admits bound orbit as the effective mass of the

system becomes positive and it also can describe the observed flat rotation curve

of galaxies.

Gravitational lensing studies provide important clue about mass distribution of the

universe including the presence of dark matter [153, 154]. It is also an important

tool to probe the nature of space-time geometry of gravitational lenses [153, 155].

The theory of lensing has been developed in stages by many authors including

Einstein himself [156]. The deflection angle is weak field regime is usually evalu-

ated exploiting post-parametrized Newtonian formalism that incorporate General

Relativity and many other modified theories [153, 155]. The observational conse-

quences of weak lensing were primarily suggested by Chwolson [158] and Zwicky

[157]. The lensing theory in strong field regime of Schwarzschild space time was

mainly developed by Virbhadra and Ellis [159] and Frittelli and Newman [160].

The lens equation without weak-field or small angle approximations was first intro-

duced in [159, 161] and the observational features of the strong lensing phenomena

was explored in [159] by treating the massive black hole of the galactic Centre as

Schwarzschild lens. A few interesting works (not exhausted) considering other

static spherical symmetric lens in strong field can be found in Refs. [162–164].

The light propagation in space time of a global monopole is well studied in the

chapter both weak field [164–166] and strong field [167] regime. In [165] the deflec-

tion angle is obtained from the geodesic equations exploiting standard integration

method. The strong gravitational lensing of a Schwarzschild black hole with a

solid deficit angle owing to a global monopole is studied in [167] applying Bozza’s

analytical technique [168].

Conventionally the quantum of bending of light rays due to a lens (massive de-

flector) is derived from null geodesic equations in the neighborhood of the lens
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describing it (the lens) by an appropriate space time metric. Recently Rindler and

Ishak [54] have claimed that the conventional prescription does not yield complete

result of deflection angle in general, particularly when the space-time metric is

asymptotically non flat. Working with the Schwarzschild-de Sitter (SDS) geom-

etry [130], they demonstrated that contrary to the conventional result there is

a small contribution of cosmological constant Λ in the bending though the or-

bital equation for light in SDS space-time is free from Λ. In their prescription

(for obtaining bending angle) the contribution of Λ to the bending angle comes

from the space-time metric itself. Note that according to Rindler and Ishak [54]

null geodesic equation and its integral are only the ‘half story ’in estimating the

bending angle, the space-time metric itself constitutes the remaining part of the

story.

While estimating gravitational bending due to global monopole the effect of asymp-

totically non-flat geometry of global monopole space-time is usually not consid-

ered in the chapter, which is precisely our objective of the present study. In this

target we shall apply the Rindler-Ishak method for estimation of bending angle

and thereby the influence of asymptotically non-flat geometry, if any, on gravita-

tional lensing by global monopole space-time will be examined. Consequently we

shall look for proper detectable signature of global monopole through gravitational

lensing studies. We shall employ our findings to examine the consistency of global

monopole hypothesis as an alternative to dark matter in galaxies.

The plan of the chapter is the following. In the next section(4.2) we would present

the exterior Barriola-Vilenkin space-time due to a global monopole. In section 4.3

we briefly describe the technique to be adopted for estimation of bending angles. In

section 4.4 we would estimate gravitational bending due to global monopole metric.

In section 4.5 we shall investigate gravitational bending for space-time due to a

Schwarzschild black hole that swallowed a global monopole. The image position

and magnification of images in weak gravitational lensing due to a Schwarzschild

black hole that swallowed a global monopole will be described in section 4.6. We

shall discuss our findings in section 4.7 and we shall conclude in the same section.
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4.2 The space-time metric due to global monopole

A simplest model that gives rise to a global monopole consists of a self-coupling

scalar field triplet ϕa (a = 1, 2, 3 the internal O(3) index) whose original global

O(3) symmetry is spontaneously broken to U(1). The Lagrangian of the model is

described by (we are working in units such that G = c = ~ = 1)

L =
1

2
∂µϕ

a∂µϕa − λ

4

(
ϕaϕa − η2

)2
(4.1)

where η represents the scale of symmetry breaking and λ is a constant of the

model. The configuration describing a monopole is given by the ansatz

ϕa = ηf(r)
xa

r
(4.2)

with xaxa = r2. In flat space f(r) = 1 − (λη2r2)
−1

. Hence outside the core of

a global monopole f(r) ≈ 1. Accordingly the energy momentum tensor can be

approximated as T tt ≈ T rr ≈ η2/r2 and T θθ ≈ T φφ ≈ 0. Barriola and Vilenkin [149]

derive the gravitational field for the configuration from the Einstein equations

which is given by

ds2 = −
(

1− 8πη2 − 2M

r

)
dt2 +(

1− 8πη2 − 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
(4.3)

with M = MGM , MGM ∼ −16π
3
λ−1/2η denotes the effective mass of the global

monopole.

Interestingly for M = 0 (in equation (4.3)), the curvature tensor components are

R0
0 = R1

1 = R01 = 0, R2
2 = 1−8πη2

r2 and hence the curvature of the space time

remains non-zero.

Since the effective mass M is negative, the gravitational potential due to global

monopole is repulsive. Consequently the space-time does not admit any bound

orbit for test particles [149, 151]. For reasonable values of λ and η, M is very small
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on the astrophysical scale. Thus neglecting the tiny negative mass at the core the

global monopole metric reads as

ds2 = −
(
1− 8πη2

)
dt2 +

(
1− 8πη2

)−1
dr2

+r2
(
dθ2 + sin2 θdφ2

)
(4.4)

that can be recast as

ds2 = −dt2 + dr2 +
(
1− 8πη2

)
r2
(
dθ2 + sin2 θdφ2

)
(4.5)

which describes a space with a deficit angle ∆ = 8πη2; in this configuration the

surface area of a sphere of radius r is 4π∆r2 instead of 4πr2.

If we restrict to the equatorial plan (θ = π/2), the metric (4.5) reduces to ds2 =

−dt2 +dr2 +(1−∆) r2dφ2 which becomes locally Minkowskian under a coordinate

transformation φ′ =
√

1−∆φ. Thus light path should remain unperturbed by

the presence of global monopole space time. The space time geometry around

global monopole in equatorial plan, however, is not globally Minkowskian because

φ′ changes from 0 to
√

1−∆2π. Therefore, light rays while propagating in the

equatorial plan of the metric 4.4 would suffer a bending by ∼ ∆π/2.

The spherically symmetric gravitational collapse of the matter around a global

monopole leads to formation of a black hole [165] (alternatively a black hole can

swallow a global monopole) and thereby a black hole can possess ’hair’ in the form

of topological charge.

4.3 Methodology for estimation of bending angle

Before addressing the deflection of light rays in the case of asymptotically non-flat

space-time let us first quickly review the basic approach of calculating bending of

light due to gravity in asymptotically flat space-time.

The geometrical configuration for the phenomenon of gravitational bending of light

is given in Figure (4.1). The light emitted by the distant source S is deviated by the
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gravitational source (Lens) L and reaches the observer O. The angle of deflection

(α) is the difference between the angle of emission (from the source) and the angle

of reception (by the observer) minus π. The angles are to be measured with respect

to a common polar axis which is usually taken as the line joining the observer and

the center of the lens (OL), the so called optic axis or a line perpendicular to it

that passes through the Centre of the lens. If both the observer and the source

are situated in the flat space-time region and if tangents are drawn to the null

geodesic at the source and image positions, which are represented by SQ and IO

in Figure (4.1)(considering the space-time away from the lens is flat), and if C is

their point of intersection (if there were no lensing object present) then ∠OCJ

will be the angle of deflection (α) by the lens.

Figure 4.1: Lensing diagram - the source S emits light rays which reach the
observer O after being gravitationally deflected by the lens L.

The null geodesic equation of light in flat space time is d2u
dφ2 +u = 0, where u = 1/r.

Hence the orbit equation of undeflected (straight line) light ray in flat space not

containing the pole (the centre of the lens in the lensing configuration) is given by

u = uosin(φ− φo), where ro = 1/uo is the perpendicular distance from the Centre

of the lens to the path of the light rays and φo is the angle that the light rays made

with the polar axis at the point of intersection. For simplicity of calculations the

direction of the polar axis is normally taken either parallel or perpendicular to the

undeflected light rays which corresponds to φo = 0 or −π/2 respectively. In the
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case of weak gravitational field one expects that the light path will be deviated by

a small amount from the straight line path and one explores for a solution of the

orbit on that (perturbation) basis [56].

For asymptotically flat space-time and when the source and observers are far away

(in compare to the length scale of the impact parameter which is the perpendicular

distance from the center of the lens to the tangent to the null geodesic at the source)

from the lens, the direction of light orbit at source position (observer) may be taken

as the same to the direction of asymptotic light rays in the source (observer) region.

Exploiting this feature one conventionally estimates the emission (reception) angle

from the null geodesic equation by letting the radial distance to be infinitely large.

For asymptotically non-flat space time letting r → ∞ to obtain the asymptotes

of the orbit is not proper. This is because the direction of light rays at the source

(observer) position may not be the same to the direction of asymptotic light rays.

For instance, in the case of Schwarzschild-de Sitter space time the direction of

light rays at the source (observer) position will not be the same to that at any

other (distant) points owing to the non-flat character of the asymptotic space time.

Hence the conventional approach is not strictly applicable for estimating bending

angle in such a situation.

Rindler and Ishak prescribe a method for obtaining bending angle in asymptoti-

cally non-flat space time [54]. Their method is based on the invariant formula for

the cosine of the angle between two coordinate directions P and Q

cos(ψ) =
gijP

iQj

(gijP iP j)1/2(gijQiQj)1/2
(4.6)

If P is taken as the direction of the orbit and Q is taken as that of the coordinate

line φ = constant (Figure (4.1)), then one may write P ≡ (dr, dφ) = (dr/dφ, 1)dφ,

(dφ < 0) and Q ≡ (dr, 0) = (1, 0)dr. Consequently for the general spherically

symmetric space time metric ds2 = −f(r)dt2 + f(r)−1dr2 + r2
(
dθ2 + sin2 θdφ2

)
the angle between P and Q directions becomes [55]

tan(ψ) =
rf(r)1/2

|dr/dφ| (4.7)

The one-sided bending angle is then given by ε = ψ − φ.
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4.4 Gravitational deflection of light due to global

monopole

First we follow the conventional approach of calculating the bending angle. In the

equatorial plane (θ = π/2) the orbital equation for photon in monopole space-time

(4.4) as obtained from the null geodesic equations is

d2u

dφ2
+ (1−∆)u = 0 (4.8)

where u = 1/r. The exact solution of the above equation reads

u = uo sin
[
(1−∆)1/2φ

]
(4.9)

where uo is a constant, related to the closest distance parameter (ro) through the

relation uo = 1/ro. The asymptotes of the orbit can be obtained letting r → ∞
which gives φ1

∞ = 0 and φ2
∞ = π(1 − ∆)−1/2. Hence the total bending (angle

between the two asymptotes) is given by

δφ =
[
(1−∆)−1/2 − 1

]
π (4.10)

For small ∆, the deflection angle becomes ∆π/2, which was expected in view of

the other form of the monopole metric (4.5).

Because of the asymptotically non-flat nature of global monopole space time we

will now follow the prescription of Rindler and Ishak [54].

For the metric given by equation (4.4) we get from equation (4.9)

dr

dφ
= −uor2(1−∆)1/2 cos

[
(1−∆)1/2φ

]
(4.11)

Let us consider the situation that the source, lens and observer are perfectly

aligned. So first we take φ = 0 (corresponding to the source) as prescribed by

Rindler and Ishak [54]. The equation (4.9) immediately implies r → ∞ which

means that the source has to be at infinity for an admissible photon trajectory
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from the source with non-zero distance of closest approach. Because of asymptot-

ically non-flat behavior of the space time geometry we don’t prefer the choice of

source at infinity. Let for the time being we consider that the source is at infinity.

Consequently ψo = 0 as follows from the equation (4.7). Next consider φ = π

for the observer which leads to r = R/ sin
[
(1−∆)1/2π

]
where R = 1/uo. The

equation (4.7) then gives ψπ = (1−∆)1/2π. Thus the total bending angle is

δε = ψo − φo + ψπ − φπ
=
[
(1−∆)1/2 − 1

]
π

' −∆π/2 (4.12)

which clearly differs from what we obtained in equation (4.10) using the con-

ventional method. More importantly the deflection angle is negative. For small

∆ the difference of deflection angle between two approaches becomes ∆π. The

difference in bending angle in two approaches appears to be due to asymptotic

non-flat characteristics of the space time. The observer position differs in the two

cases; in the conventional case the source and observers (asymptotes) are placed

at (r = ∞, φ = 0) and (r = ∞, φ = π(1 − ∆)−1/2) (otherwise the observer can-

not see the deflected ray) respectively whereas the points (r = ∞, φ = 0) and

(r = R/ sin((1 − ∆)1/2)π), φ = π) are chosen in the Rindler-Ishak approach as

coordinates of the source and observer. The tangent to the light orbit at the ob-

server point, which is at finite distance away from the lens, makes a finite angle

that leads the difference in the two estimates. Since the position of source and

observer are pre-fixed in any real observations, it is rational to apply Rindler-Ishak

method over the conventional method for estimation of deflection angle.

Now we shall estimate the bending angle also considering general position of source

(φs, ds) and observer (φo, do) [55, 169] without demanding a perfect alignment of

the source, lens and observer. In such a case, we get from equation (4.7) through

equations (4.9) and (4.11)
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δεk = ψk − φk
=
[
(1−∆)1/2 − 1

]
φk

' −∆φk/2 (4.13)

where k stands for s and o (denoting respectively source and observer), so that

the total deflection angle becomes

δε = εs + εo

=
[
(1−∆)1/2 − 1

]
(φs + φo)

' −∆/2 (φs + φo) (4.14)

The expression for equation (4.12) can be retrieved from the above equation by

putting φs = 0 and φo = π.

In view of the negative bending angle the lensing diagram for an isolated global

monopole essentially looks like that given in the figure (4.2) below:

O
L

S

I

Q

Figure 4.2: Lensing diagram - the source S emits light rays which reach the
observer O after being gravitationally deflected by the lens L which is an isolated

global monopole. The image position is denoted as I.
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4.5 Bending of light due to a Schwarzschild black

hole that swallowed a global monopole

The space time described by the global monopole metric does not have any event

horizon around the monopole. It also does not admit any bound orbit [149, 151].

However, there will be an event horizon if a Schwarzschild black hole of mass

greater than the effective (negative) mass of a global monopole swallows the

monopole. This configuration also allows bound orbits. The metric that rep-

resents the configuration is that given by equation (4.3) with M = Mbh−MGM is

the difference of the mass (Mbh) of the Schwarzschild black hole and the effective

(negative) mass (MGM) of the monopole. We will now consider bending of light

exploiting both the conventional and the Rindler-Ishak methods [54].

Proceeding exactly the same way as in the preceding section the orbital equation

for photon in this case is given by

d2u

dφ2
+ (1−∆)u = 3Mu2 (4.15)

Adopting usual perturbation approach, the solution of the above equation to the

first order in M reads

u = uo sin
[
(1−∆)1/2φ

]
+

3Mu2
o

2(1−∆)

(
1 +

1

3
cos
[
2(1−∆)1/2φ

])
(4.16)

At the distance of closest approach ro, dr/dφ vanishes which gives the relation

1

ro
=

1

R

(
1 +

M

R(1−∆)

)
(4.17)

For the asymptotes of the orbit we let r →∞ and consequently the above equation

gives φ1
∞ ≈ −2M

R
(1−∆)−3/2 and φ2

∞ ≈ π(1−∆)−1/2 − 2M
R

(1−∆)−3/2. Hence the

total bending in the first of M
R

is given by
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δφ =
[
(1−∆)−1/2 − 1

]
π +

4M

R
(1−∆)−3/2

' ∆π/2 +
4M

R(1−∆)3/2

' ∆π/2 +
4M

R
+

6∆M

R
(4.18)

which is what obtained in [165]. Now we will estimate the bending following the

prescription of Rindler and Ishak i.e. vide equation (4.7). Differentiating equation

(4.16) we get

dr

dφ
= −uor2(1−∆)1/2 cos(1−∆)1/2φ−

Mr2u2
o(1−∆)−1/2 sin

[
2(1−∆)1/2φ

]
(4.19)

When φ = 0, the equation (4.16) suggests that it occurs when r = R2

2M
(1 − ∆).

Consequently the equation (4.7) gives that to the first order in M, ψo = 2M
R(1−∆)

.

On the other hand when φ = π, 1/r ≈ 1
R

sin((1−∆)1/2)π) + 2M
R2(1−∆)

. When ∆ is

small, the equation (4.7) gives ψpi = π −∆π/2 + 2M
R(1−∆)

. Thus the total bending

angle is

δε = ψo + ψπ − π = −∆π/2 +
4M

R(1−∆)
(4.20)

One can recover the usual bending expression for the Schwarzschild space time

from the above equation for ∆ = 0. Again it has been noted that the above

expression of bending is not equal to that obtained by the conventional approach

as given by equation (4.18).

4.6 Image position and magnification in weak

lensing by global monopole space time

The angular position of the images (ζ) can be obtained from the lens equation as

given below [159]
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tan ζ − tan β =
dls
dos

[tan ζ + tan(δε− ζ)] (4.21)

where β denotes the angular source position, α is the deflection angle, dls and dos

are the distances between lens and source and observer and source respectively.

For positive β, the above relation only gives images on the same side (ζ > 0) of

the source. Images on the other side can be obtained by taking negative values of

β.

When the source, lens and observer are aligned i.e. when β is small, the lens

equation in the weak lensing scenario (δεsmall) reduces to

β = ζ − dls
dos

δε (4.22)

The image positions can be obtained from the above equation after inserting the

expression for bending angle from equation (4.20) which leads to

ζ± =
1

2

(
β′ ±

√
4α′0 + β′ 2

)
(4.23)

where the indices ± denote the parities of the images, where

β′ = β − dls
dos

∆
π

2
, (4.24)

and

α′0 ≡
√

dls
doldos

4M

1−∆
. (4.25)

The form of the equation (4.23) is exactly same to the expression of image position

in lensing by Schwarzschild black hole. When ∆ = 0, the equation (4.23) reduces

to the expression of the image positions due to Schwarzschild lens. It appears that

the role of the second term in the right side of equation (4.24) is just of an off-set

angle. A point to be noted that for formation of Einstein-Chwolson ring in the

present case the source has to be at β = dls
dos

∆π
2

instead of β = 0.

The magnification of the image (the ratio of the flux of the image to the flux of

the unlensed source) when the lens is a Schwarzschild black hole that swallowed a

global monopole is given by
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µ± =
1

(β/ζ±)∂β/∂ζ±
(4.26)

=
1

4

[
β′√

β′ 2 + 4α′ 20

+

√
β′ 2 + 4α′ 20

β′
± 2

]

The form of the above expression is again the same to that of Schwarzschild

lensing case. In figure (4.3) the image magnifications are shown as a function

of normalized source position in gravitational lensing by a Schwarzschild black

hole that swallowed a global monopole considering dls
dos

= 0.9. The results are

compared with magnification in lensing by a Schwarzschild black hole.

Figure 4.3: Magnification in weak gravitational lensing - the solid line and
dotted line respectively denote µ+ and µ− due to lensing by a Schwarzschild
black hole that swallowed a global monopole, the dashed line and long dashed
line respectively denote µ+ and µ− due to lensing by a Schwarzschild black hole.

The ratio of magnifications of two images is given by

µ+

µ−
=

[√
β′ 2 + 4α′ 20 + β′√
β′ 2 + 4α′ 20 − β′

]2

(4.27)

4.7 Discussion & Conclusion

We have estimated gravitational deflection angle due to a global monopole and

a Schwarzschild black hole that swallowed a global monopole using Rindler-Ishak

prescription. The signatures of gravitational bending due to global monopoles
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as obtained from the present analysis include i) the deflection angle is negative,

ii) the magnitude of the angle is nearly constant iii) it is independent of impact

parameter.

Clearly for the stated space time geometries the quantum of bending angles ob-

tained with Rindler-Ishak method differ significantly from those obtained with

conventional technique owing to asymptotic non-flat characteristics of the stated

space times. The Rindler-Ishak method appears to be more flexible; it reproduces

the results obtained in conventional approach when source and observer are placed

at large distances when the space time metrics are asymptotically flat. However,

when source and/or observer are at finite distance away from the lens or if the

space time is not flat asymptotically, Rindler-Ishak technique offers a way to esti-

mate the true bending angle and consequently to obtain the image positions.

Global monopole or rather a Schwarzschild black hole that swallowed a global

monopole at the center of a galaxy has been proposed in the chapter as an al-

ternative to dark matter hypothesis owing to inverse square of distance variation

of the energy density of the global monopole configuration that correctly describe

the observed flat rotation curve of galaxies. Interestingly for a symmetry breaking

scale of η ∼ 1016 GeV the equivalent Newtonian mass contained within typical

galactic radius of rgal ∼ 15 kpc turns out to be ∆rgal ∼ 1069 GeV which is an

order higher than the luminous mass of the galaxy [150]. The presence of dark

matter is already indicated by several gravitational lensing measurements; several

lensing observations such as the Sloan Digital Sky Survey [170], the Hubble Space

Telescope [171] missions indicate the presence of an order larger extra mass over

the luminous mass of the lensing object particularly when galaxy clusters are con-

sidered as lenses. The dark matter candidature of global monopole system is not

consistent with such lensing observations as is explained below citing the case of

Abell 370 cluster.

The ‘giant luminous arcs’were first observed in rich galaxy cluster Abell 370

[172, 173] at redshift 0.374. The details analysis of the observed luminous arcs

suggested that they were gravitationally lensed images of background galaxies

[174–178]. Here our objective is to estimate the mass of the lensing galaxy Abell

370 from a giant luminous arc using equation (4.23) and compare the estimated

mass with the luminous mass obtained independently from photometric study
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Table 4.1: Estimated mass of Abell 370

Object zl zs rE M/M� × 10−11 M/M� × 10−11

in arcsecs Global monopole Schwarzschild

Abel370 0.374 0.724 25 923.06 923.07

[172, 173]. Generally galaxy clusters have complex matter distributions and can-

not be considered to be either point masses or spherically symmetric but a spher-

ically symmetric lens model can be employed as a first approximation to extract

the same order of magnitude results as the more realistic case analyzing the large

arcs that are observed in clusters [177, 178]. We have considered the longest arc,

A0, which has a radius of curvature of about 25′′ [174] and treat it as an Einstein

ring. The observed redshift (zs) of A0 is 0.724 which gives the distance of the back-

ground galaxy. A concordance cosmological model of (Ωm,ΩΛ,Ωk) = (0.3; 0.7; 0)

is applied for distance estimation from redshifts of lens and source. Our findings

are given in Table (4.1).

It is found that estimated mass of Abell 370 from the above stated simplified model

is consistent, of the same order of magnitude, with Subaru weak-lensing measure-

ments [179] and Hubble Space Telescope (HST) observations [180]. The estimated

mass by treating the lens Abell 370 as a Schwarzschild space time that swallowed

a global monopole does not differ significantly from that obtained by modeling the

lens as pure a Schwarzschild space time. But when the global monopole system is

considered as an alternative to dark matter, the estimated total mass of the lens

Abell 370 will represent the mass of only the luminous matter in the cluster. This

is in contrast to the GR case (pure Schwarzschild geometry) where the estimated

total mass of Abell 370 is the sum of the luminous and presumed dark matter.

The photometric measurement suggests that mass of the luminous matter in Abell

370 is at least two orders smaller than the total mass of Abell 370 [174]. Thus

the lensing observations of Abell 370 does not support the alternative dark matter

hypothesis of global monopole system.

It is worthwhile to mention that for lensing galaxy system of smaller luminous mass

the contribution of global monopole (∆) can be significant as may be seen from

the figure (4.4) below where the variation of deflection angle with luminous mass
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is shown for both pure Schwarzschild geometry and global monopole swallowed

Schwarzschild geometry taking the closest distance parameter 100 kpc.
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Figure 4.4: Variation of deflection angle with mass due to a pure Schwarzschild
model (dotted line) and a global monopole swallowed Schwarzschild model (solid

line). The closest distance parameter is taken 100 kpc.

The global monopole is an interesting class of topological defects and to look for

possible observable effects of global monopole is important irrespective of its suc-

cess/failure as an alternative to dark matter. In this chapter we have investigated

about gravitational lensing signature of global monopole space time and improve

the prevailing theoretical formulation of gravitational lensing by global monopole

space time. The present findings should be useful in the search for global monopole

through gravitational lensing observations.


	4 Gravitational lensing by global monopole
	4.1 Introduction:
	4.2 The space-time metric due to global monopole
	4.3 Methodology for estimation of bending angle
	4.4 Gravitational deflection of light due to global monopole
	4.5 Bending of light due to a Schwarzschild black hole that swallowed a global monopole
	4.6 Image position and magnification in weak lensing by global monopole space time
	4.7 Discussion & Conclusion


