
Chapter 3

Probing dark matter and dark

energy through gravitational time

advancement

3.1 Introduction:

Light propagation in gravitational field leads to an extra time delay over the time

required for light transmission between two points in Euclidean space, which is the

well known gravitational or Shapiro time delay effect [83], [135]. The observation

of the time delay effect in the solar system constitutes one of the classical tests

of general relativity. The difference in gravitational time delay between photon/-

gravitational waves and neutrinos or any other neutral particle with non-zero mass

also has been used as a probe to examine the Principle of Equivalence [136] and

dark sector of the universe [84], [137]. Presently the gravitational time delay effect

is often employed to measure the masses of pulsars in binary systems [138], [139].

Gravitational time delay is generally estimated by evaluating the additional coor-

dinate time needed by a photon or a particle in a round trip journey in a gravi-

tational field of a massive object over the coordinate time required in the absence

of the gravitating object. However, the coordinate time difference is not a mea-

surable quantity in a gravitational field; one needs to convert the coordinate time

difference in to proper time difference which is a real measurable quantity. When

such conversion is considered an opposite kind of effect, the so called gravitational
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time advancement (GTA) (negative time delay), is taken place if the observer is

situated at stronger gravitational field in respect to the gravitational field encoun-

tered by the photon during its journey [127]. The GTA effect is essentially caused

by the fact that clock runs differently in gravitational field depending on the cur-

vature. The GTA of photons has been found to be affected by dark matter and

dark energy [140] and therefore, at least in principle, the measurements of GTA

at large distances can verify the dark matter and a few dark energy models or put

upper limit on the dark matter/energy parameters. The measurement of GTA

also can be employed to discriminate the Gravity Rainbow (photons of different

energies experience different gravity levels) from pure General Relativity [141].

Like photons, particles having non-zero masses should also suffer GTA when the

observer is at stronger gravitational field. In this chapter, we like to derive ex-

pression of GTA for particles with non-zero mass in Schwarzschild geometry. We

further wish to examine the effect of the gravitational field that describes the ob-

served rotation curve of spiral galaxies (in this chapter we denote it as dark matter

field) and the dark energy in the form of Cosmological constant on gravitational

time advancement. The importance of the present investigation is many fold: It

offers, at least in principle, to probe the presence of dark matter and dark energy,

it constitutes a possible test of the GTA and it allows to estimate mass of a particle

of unknown mass.

The plan of the chapter is the following. In the next section(3.2) we shall present

the basic formulation for calculating gravitational time advancement for a particle.

In section 3.3 we shall estimate the GTA in a round trip journey by a particles

under the influence of Schwarzschild geometry. In section 3.4 we shall study the

effect of cosmological constant and dark matter gravitational field on GTA. We

shall discuss the results in section 3.5 and conclude our findings in the same section.

3.2 Methodology

Consider the following scenario: An electromagnetic/gravitational wave or a par-

ticle is moving between the points A and B in a gravitational field due to a static

spherically symmetric matter distribution as depicted in figure 3.1.

We consider that the gravitational field is described by a general static spherically

symmetric metric,
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Figure 3.1: Geometrical configuration of time delay/advancement of photon/-
particle in gravitational field. O is the Centre of the spherically symmetric mass
distribution, A and B are two arbitrary points. rA and rB are radial distances

of X and Y from O respectively.

ds2 = −κ(r)c2dt2 + σ(r)dr2 + r2dΩ2 . (3.1)

The geodesic equations for a test particle motion in equatorial plane under the

influence of the space time given by equation (3.1) leads to the following relation

σ(r)

κ(r)2

(
dr

dt

)2

+
α1

r2
− c2

κ(r)
= −α2c

2 , (3.2)

where α1 (≡ r4
(
dφ
dp

)2

, p is an affine parameter obeying the relation dτ 2 = κ(r)dp2

for particles with non-zero mass and p = τ for photon) and α2 (≡
(
κ(r)d(ct)

dτ

)−2

)

are associated with the constants of motion, α1 is related to the angular momentum

of the particle and α2 is related to the energy ε of the particle. At the distance of

closest approach ro,
dr
dt

must vanish, which gives
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α1 = c2

[
−α2 +

1

κ(ro)

]
r2
o , (3.3)

and α2 = m2c4

κ(ro)ε2
, m and ε (≡ mc

√
B d(ct)

dτ
) are the mass and energy of the particle.

Hence the time required by a particle to traverse a distance from ro to r is given

by

∆t (r, ro) =
1

c

∫ r

ro

√
P (r, α2) dr , (3.4)

where,

P (r, α2) =
σ(r)/κ(r)[

1− α2 κ(r) + ro2

r2

(
α2 κ(r)− κ(r)

κ(ro)

)] . (3.5)

Therefore the difference in proper time between transmission and reception in a

round trip journey of the signal to be measured by the observer at ro is

∆τ = 2
√
κ(ro)∆t (r, ro), (3.6)

Since the expression in equation (3.6) through equation (3.4) involves integration of

the function P (r, α2) which involves the metric coefficients σ(r) and κ(r), explicit

expressions for σ(r) and κ(r) are required to proceed further. In the following

sections we shall evaluate the proper time between transmission and reception for

three different physically viable choices of σ(r) and κ(r).
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3.3 GTA of a particle with non-zero mass in Schw-

arzschild geometry

In the Schwarzschild geometry i.e. when κ(r) = σ(r)−1 = 1− 2µ
r

where µ = GM/c2,

G is the gravitational constant and c is the speed of light, the coordinate time delay

in round trip journey by a particle of mass m between A and B up to the first

order accuracy of µ is given by

∆tSchm =
2

c
√

1− α2

[√
r2
A − r2

o +
√
r2
B − r2

o

+
µ (2− 3α2)

(1− α2)
ln

(
rA +

√
r2
A − r2

o

)(
rB +

√
r2
B − r2

o

)
r2
o

+
µ

(1− α2)

(√
rA − ro
rA + ro

+

√
rB − ro
rB + ro

)]
, (3.7)

For a particle of mass m and energy ε, α2 = m2c4

(1−2µ/ro)ε2
. Hence the difference in

proper time between transmission and reception of a particle of mass m from A

to B and back to be measured by the observer at A reads

∆τSchm =
√
B(rA)∆tSchm ' 2

c
√

1− α2

[(√
r2
A − r2

o +
√
r2
B − r2

o

)(
1− µ

rA

)
+

µ (2− 3α2)

(1− α2)
ln

(
rA +

√
r2
A − r2

o

)(
rB +

√
r2
B − r2

o

)
r2
o

+
µ

(1− α2)

(√
rA − ro
rA + ro

+

√
rB − ro
rB + ro

)]
. (3.8)

Since both µ
rA

and Shapiro delay terms are small compare to special relativistic

term, here we have ignored their higher order and cross terms. In the absence of

the gravitating object (i.e. in flat space time) the time required by a particle of

mass m and energy ε to travel between A and B is(√
r2
A − r2

o +
√
r2
B − r2

o

)
/
(
c
√

1−m2c4/ε2
)
.
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Due to gravitational effect this time is shorten by a factor (1 − µ/rA) (first term

in the right hand side of the above expression). The observed time will be smaller

than the special relativistic time of propagation when the distance between A and

B exceeds a certain value so that µ/rA factor overcomes the Shapiro delay. The

above expression thus gives the GTA for particles with mass m. The GTA for

massless particles such as photon can be readily obtained from the above equation

by putting α2 = 0 (corresponding to m = 0).

If rB is much larger than rA and ro, the expression for GTA of particle with mass

m can be approximated as

∆τSchm ≈ 2

c
√

1− α2

rB

(
1− µ

rA

)
, (3.9)

For relativistic particles (ε >> m) and when ro ∼ rA the equation (3.9) reduces

to

∆τSchm ≈ 2rB
c

[(
1− µ

rA

)(
1 +

m2

2ε2
(1 + 2µ/rA)

)]
. (3.10)

Therefore, the difference in arrival times after a round trip journey between particle

with mass m and energy ε and photon those emitted at the same time reads

∆τSchm −∆τSchγ ≈ m2c3rB
ε2

(1 + µ/rA) , (3.11)

The first part in the right hand side of the above expression is the special relativistic

effect whereas the second part is the GR correction.

Under the same conditions the difference in arrival times between particles with

the same mass but different energies ε1 and ε2 with ε2 > ε1 is given by

∆τSchm (ε2)−∆τSchm (ε1) ≈ m2c3rB

(
1

ε22
− 1

ε21

)
(1 + µ/rA) , (3.12)

Here an important point to be noted by examining the equation (3.7) that the

sign of the expression of Shapiro time delay does not change for traveling from

a stronger field to a weaker one and back again instead of traveling from a weak

gravitational field to a stronger one and return back (the Shapiro delay is the same
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in both the situation). Rather a new effect, owing to the fact that that clock runs

differently in gravitational field depending on the curvature, comes into play that

leads to negative time delay or GTA in all the cases. The Shapiro delay mainly

varies logarithmically with distance while the GTA varies linearly with distance.

For a particle traveling from a weak gravitational field to a stronger one and return

back magnitude of the negative time delay effect is much smaller than that of the

Shapiro time delay, the resulting delay thus is a positive one. But when a particle

travels from a stronger field to a weaker one and back again, the negative delay

component starts dominating after a certain (small) distance, leading to a net

GTA.

We have not mentioned any particular particle so far, our results are very general,

applicable to any particle with non-zero mass and even with zero mass. However,

charged particles also suffer electromagnetic interaction and therefore, only stable

neutral particles can be exploit to examine the GTA/Shapiro time delay effect in

a realistic situation. Neutrons with life time around 15 minutes in its rest frame,

can be utilized to test GTA/Shapiro delay in certain astrophysical situations not

involving very large distances. Neutrinos are stable but their mass is not definitely

known yet. Moreover the upper limit of their mass is too small so that the mass

effect on GTA of neutrinos is very small.

We would estimate the magnitude of the GTA effect for a simple situation as

follows: Consider that photon and thermal neutron are simultaneously sent from

the top of the Earth’s atmosphere towards the Moon where they (photon and

neutron) are reflected back at the originating point. To survive without decay,

the kinetic energy of the neutron has to be at least around 1 MeV. The Shapiro

delay of photon and 1 MeV neutron in the mentioned case are 0.07 ns and 0.07

µs respectively whereas the GTA of photon and 1 MeV neutron will be ∼ 0.9 ns

and 1.8 µs respectively. The difference in arrival times between two neutrons, one

with kinetic energy 1 MeV and other having kinetic energy 10 MeV will be about

1.6 µs. The magnitude of the GTA effect in the mentioned situation is thus well

within the reach of the modern experiments. .

The future astrometric missions Beyond Einstein Advanced Coherent Optical Net-

work (BEACON) [132] or the GRACE Follow-On (GRACE-FO) [133] are expected

to detect the GTA effect employing laser beam from space craft. The mission BEA-

CON will put six numbers of small spacecraft in a circular orbit of radius 80000

km and each spacecraft will be equipped with laser transceivers. Introduction of
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thermal neutron transceivers along with laser transceivers in such a future mission

will lead to detect the GTA effect of particles.

3.4 Effect of Dark sector on GTA of a relativistic

particle

A wide variety astrophysical observations suggest that ordinary baryonic matter

composes only 4.9% of the matter in the Universe [107]. The rest is mainly com-

posed of dark energy (68.3%) and dark matter (26.8%) components of unknown

nature [107]. In this section we shall examine the effect of dark matter and dark

energy on GTA. We shall consider the same physical scenario as depicted in figure

3.1.

The presence of dark energy and dark matter lead to some modification of the

Schwarzschild metric as the exterior space-time of a spherically symmetric mass

distribution. Let us consider the following functional form of σ(r) and κ(r) in

equation (3.1)

κ(r) = 1− 2µ/r − β1r
n (3.13)

and

σ(r) = 1 + 2µ/r + β2r
n (3.14)

where n, β1 and β2 are constants. We shall consider the following cases:

case 1: The choice n = 1, and β1 = β2 = −β = −
(

5.42× 10−39MB

M�
+ 3.06× 10−28

)
m−1 (i.e. a linear potential), where MB is mass of baryonic matter in galaxy, has

been found to describe well the observed flat rotation curves (with maximum ex-

tension upto extending around 100 kpc) of a sample of 111 spiral galaxies [131],
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[142]. Since the radial extension of dark matter in a galaxy is not known, maxi-

mum radial distance of validity of the model can not be stated with certainty. But

in general the model should not be extended to intergalactic scale.

case 2: When n = 2, β1 = β2 = Λ/3 the above metric represents the Schwarzschild-

de Sitter (SDS) or Kotler space-time which is the exterior space time due to a static

spherically symmetric mass distribution in presence of the cosmological constant

Λ with Λ ∼ 10−52m−2 [130].

The coordinate time required by a particle to traverse a round trip distance from

rA, which coincides with the distance of closest approach, to rB under the influence

of space time geometry defined by equation (3.1), (3.12) and (3.13) is given by

[137]

∆tn(rB, rA) ≈ ∆tSchm (rB, rA) +
1

c
√

1− α2

{[β1 + β2

− β1α2

(1− α2)
]I1
n −

β1

(1− α2)
I2
n}, (3.15)

where, I1
n and I2

n are integrals defined by

I1
n =

∫ rB

rA

rB
n+1 dr√

(rB2 − r2
A)

and

I2
n = r2

A

∫ rB

rA

rB (rB
n − rnA) dr

(rB2 − r2
A)
√

(rB2 − r2
A)
.

In the above equation α2 = m2

(1−2µ/ro−β1rn)ε2
which is also to be used here in ∆tSchm .

For n = 1 and n = 2 corresponding to DM and DE model respectively, we have

analytical solutions of I1
1 , I2

1 and I1
2 , I2

2 which are given below

I1
1 =

rB
2

√
r2
B − r2

A +
r2
A

2
ln
rB +

√
r2
B − r2

A

rA
,

I2
1 = −r2

A

√
rB − rA
rB + rA

+ r2
A ln

rB +
√
r2
B − r2

A

rA
. (3.16)
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I1
2 =

1

3

√
r2
B − r2

A

(
r2
B + 2r2

A

)
,

I2
2 = r2

A

√
r2
B − r2

A . (3.17)

Thus for the dark matter model i.e. when n = 1, β1 = β2 = −β the proper time

required for the travel by a particle with mass m and energy ε for the round trip

travel between A to B as measured by an observer at A is given by

∆τβm ' ∆τSchm − 1

c
√

1− α2

[(
β − βα2

2(1− α2)

)(
rB

√
r2
B − r2

A

+r2
A ln

rB +
√
r2
B − r2

A

rA

)
− βr2

A

(1− α2)

(√
rB − rA
rB + rA

+ ln
rB +

√
r2
B − r2

A

rA

)

+βrA

√
r2
B − r2

A

]
(3.18)

In the above expression we have ignored the cross terms between M and β and

higher order terms in β. It is noted from the above equation that β reduces the

net time advancement.

In the presence of the cosmological constant (n = 2, β1 = β2 = Λ/3), the proper

time required for the travel by a particle with mass m and energy ε for the round

trip journey between A to B as measured by an observer at A reads

∆τΛ
m ' ∆τSchm +

1

3 c
√

1− α2

[(
2Λ− Λα2

1− α2

)(
1

3

√
r2
B − r2

A

(
r2
B + 2r2

A

))
− Λ

1− α2

(
r2
A

√
r2
B − r2

A

)
− Λr2

A

√
r2
B − r2

A

]
(3.19)

When rB >> rA, considering only the leading order terms, for relativistic particles

the equation (3.18) and (3.19) respectively reduce to

∆τβm ≈
rB
c

[(
1− µ

rA
− βrB/2

)(
1 +

m2

2ε2
(1 + 2µ/rA − βrA)

)]
. (3.20)

and
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∆τΛ
m ≈

rB
c

[(
1− µ

rA
+ Λr2

B/9

)(
1 +

m2

2ε2
(1 + 2µ/rA + Λr2

A/3)

)]
. (3.21)

The GTA of photons/GW can be obtained from the above expressions by putting

m = 0. Therefore, the difference in arrival times after one way journey (half of

the round trip travel time) from B to A between particle with mass m and energy

ε and photon/GW those emitted at the same time reads

∆τβm −∆τβγ ≈
m2rB
2cε2

(1 + µ/rA − βrB/2) , (3.22)

∆τΛ
m −∆τΛ

γ ≈
m2rB
2cε2

(
1 + µ/rA + Λr2

B/9
)
, (3.23)

In the expressions for GTA of particles the first order effects of flat rotation

curve and cosmological constant appear separately from the contribution of mass

(Schwarzschild term) as revealed from equation (3.18) to (3.21). Since the con-

tribution of dark matter and dark energy are visible only at large distance scales,

neutrons are not suitable for probing the dark matter/energy through GTA effect

of particles. Neutrinos seem the only option in this regards.

Another pertinent issue is that getting reflecting back a particle at the Earth from

a large distance away is not a realistic idea. So instead of two way motion, we need

to consider just one way motion. Measurement of GTA through one way motion

can be performed, at least in principle, by sending light/particle from artificial

satellite/space station to the Earth. Since the time of emission from a distant

source is not known, measurement of GTA or Shapiro delay from one way travel is

not possible in such cases. Instead the measurement of difference of arrival times

of two particles (or a particle and a photon or two same kind of particles but

with different energies) gives an opportunity to test GR and dark matter/energy

models provided the relative time of emission of the particles is known within a

small uncertainty.

In the next section we shall see how the GTA effect alters the prevailing result

of Shapiro time delay of the neutrinos from SN-1987. We shall also estimate the

magnitude of dark matter contribution on the GTA of neutrinos from SN 1987.
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3.5 Discussion and conclusion:

In Schwarzschild space time particles with non-zero mass suffers GTA when the

observer is at higher gravitational potential compare to the gravitational field

encounter by the particle during its journey. The net GTA of particles with non-

zero mass is found smaller than that of photons/GW. Due to lower speed, particles

with non-zero mass should arrive later than the photon/GW if both were departed

at the same instant from the source and the delay of particles with respect to

photons can easily be estimated using special relativity. The gravitational time

delay enhances the delay for particles with non-zero mass. The net delay in arrival

time of relativistic particles, however, reduces to half of the gravitational time delay

when proper time of the observer is taken into account.

The dark matter field leads to larger GTA. More importantly the GTA is influ-

enced by the dark matter gravitational field at the source position. Thus if the

source is located at large distance away (at the outskirt of the galaxy), the dark

matter contribution to GTA can be quite large. Interestingly in the presence of

dark matter field the prevailing condition for GTA that the observer has to be in

stronger gravitational field is no more required. In the dark matter field the net

GTA of particles with non-zero mass is found larger than that of photons/GW.

In contrast to dark matter field effect the cosmological constant (dark energy)

is found to reduce the magnitude of GTA which could be due to the repulsive

nature of cosmological constant. Similar to dark matter case the contribution of

cosmological constant to time delay can be large because the gravitational field

due to cosmological constant at the source position contributes in the net delay.

When the distance of the source is quite large compare to the observer distance

from the gravitational object the GTA for particles with non zero mass is propor-

tional to square of particle mass and goes inversely with the square of the energy

of the particles. So measurement of GTA can be exploit to evaluate mass or put

limit on the mass of particles with unknown mass, at least in principle. Another

relevant issue is that how far the dark matter halo extends to? The stability crite-

rion can severely constrain the extent of the H1 gas in a galaxy and thereby leads

to some testable upper limit on the size of a galaxy [143]. The GTA effect can in

principle be exploit to probe the extension of our galaxy.
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To exemplify the points stated above we consider the case of photons and neutri-

nos from the well known supernovae 1987A in the Large Magellanic Cloud. The

neutrinos from SN ‘1987A arrived about four hours earlier than the appearance of

the optical counterpart. Since the observer at the Earth is at higher gravitational

field of the galaxy for the propagation of photons and neutrinos from the super-

novae 1987A to the Earth, one needs to consider the proper time for evaluating

the true time delay.

The SN1987A is located at a distance about 50 Kpc [144] and the travel time of

a photon from SN1987a to the Earth is about 1.62× 105 years. Considering that

the total mass of the galaxy inside 60 kpc is about 6× 1011 M� and the distance

between the Earth and Center of the galaxy is about 12 kpc, the gravitational time

delay (without considering proper time) experienced a photon while traveling from

SN1987a to the Earth is about 1.2 × 107 seconds [136], [145]. After considering

the proper time interval and treating the galactic gravitational field as purely

Schwarzschild in nature, the net delay will be nearly 2.85×106 seconds (here rB is

not much larger than ro and hence the full expression as given in Eq. (3.9) needs

to apply). So there is no time advancement in this case but the net gravitational

delay is nearly an order less than that reported earlier [136], [145]. If we consider

the dark matter model described by case 1 of equation (3.13) and (3.14), and

assuming baryonic mass of the galaxy is about 16% of the total galactic mass the

net delay for a photon will be −6.2 × 106 seconds i.e. there will be nearly half

an year time advancement instead of time delay. At the distance of SN1987a, the

effect of cosmological constant is quite small and its contribution (∼ 240 s) to the

net gravitational time delay thus can be ignored.

If we turn to SN1987a neutrinos, a major issue is that despite a huge progress

in neutrino physics over the last three decades or so, the definite mass of the

three neutrinos: electron, muon and tau neutrinos (and antineutrinos) are still

unknown though experimental evidence of neutrino oscillations suggest that they

are not massless. The cosmological observations give an upper bound on the sum

of the active neutrinos
∑
mi
ν < 0.23 eV, [107] here the superscript i denotes the

mass eigenstate of neurinos. The Lyman alpha forest power spectrum suggests

more stringent limits
∑
mi
ν < 0.12 eV [146]. The energy of the detected neutrinos

from SN1987a is of the order of 10 MeV. Therefore, there will be no significant

difference in time of arrival between photon and neutrinos emitted at same point
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of time, the correction term due to mass is less than a nano-second; much less

than the intrinsic error .

In the above analysis we assumed that metric parameters are identical for all the

particles following the Einstein equivalence principle. To examine a possible viola-

tion of Einstein equivalence principle one usually employ the post-parameterized

Newtonian (PPN) metric i.e. κ(r) = 1− 2µ
r

and σ(r) = 1 + 2γiµ
r

, (up to the accu-

racy of µ) where γi is the first PPN parameter that can be different for different

particles, the subscript i denotes species of the particle. γ is unity in general rel-

ativity, zero in the Newtonian theory. The observations suggests γ is very close

to 1 [87]. For the PPN metric the difference in proper time between transmission

and reception of a particle of mass m from A to B and back to be measured by

the observer at A reads

∆τPPNm ' 2

c
√

1− α2

[(√
r2
A − r2

o +
√
r2
B − r2

o

)(
1− µ

rA

)
+

µ (1 + γi − (2 + γi)α2)

(1− α2)
ln

(
rA +

√
r2
A − r2

o

)(
rB +

√
r2
B − r2

o

)
r2
o

+
µ

(1− α2)

(√
rA − ro
rA + ro

+

√
rB − ro
rB + ro

)]
. (3.24)

and therefore, when rA ' ro the difference in arrival times after a round trip

journey between a relativistic particle with mass m and energy ε and a photon

those emitted at the same time reads

∆τPPNm −∆τPPNγ ' 2

c

[√
r2
B − r2

A

(
1− µ

rA

)
m2c4

2ε2

+µln
rB +

√
r2
B − r2

A

rA
(γµ − γγ) + 3µ

√
rB − rA
rB + rA

m2c4

2ε2

]
, (3.25)

Since neutrino mass is very small, the middle term of the right hand side of the

above equation will dominate and hence effectively one gets the same expression

that was used in [136] to examine the Einstein equivalence principle using SN

1987A data considering neutrinos are massless particle.
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The recent detection of a few gravitational wave transients from sources at large

distances creates better opportunity to examine the gravitational time advance-

ment and its consequences. The gravitational waves and neutrinos are expected to

emit within a short period (few seconds at most) of time from such binary black

hole/neutron star coalescence or from supernova explosions. The observation of

arrival time difference between gravitational wave and neutrinos from such large

distance sources may provide an independent way to constrain on the mass of the

neutrinos.

In conclusion of the chapter, we have obtained expressions for GTA of particles

in Schwarzschild geometry for the first time by considering proper time interval of

propagation of a particle with non-zero mass between two points in a gravitational

field. Out findings suggest that the gravitational time advancement may take

place when the observer is situated at stronger gravitational field compare to the

gravitational field encountered by the particle during its journey. Subsequently we

study the effect of dark matter and dark energy on gravitational time advancement.

It is found that dark matter leads to larger gravitational time advancement whereas

dark energy always produces time delay. We have demonstrated how the present

findings can be tested in a real observational situation. Finally after applying

our findings to neutrinos (and photons) from SN 1987, we have shown that the

net time delay of a photon/gravitational wave is much smaller than quoted in the

prevailing chapter due to GTA effect.

Very recently ICECUBE experiment and Fermi telescope detected neutrinos and

photons within a short time period from BLAZER TXS 0506+056 [147], [148].

More such kind of detection from various sources are expected in near future. The

present findings will have direct application to test various underlying physics re-

lated issues of GR and particle physics from the measurement of the difference in

time of arrivals of photons/gravitational wave and neutrinos from such astrophys-

ical sources.
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