
Chapter 1

Introduction and Review

1.1 Introduction

General Relativity (GR) is arguably considered as the most elegant theory in

physics. GR pronounces gravitation as the manifestation of space-time geome-

try. GR has been extremely successful at describing observations and passed all

experimental tests conducted so far. GR based cosmology is the cornerstone of

the current hot Big Bang description of our Universe. However, some unexpected

components turn out to make up most of the Universe’s mass-energy budget in

the GR description of the observations at large scales.

Recent cosmological observations suggest that the Universe is undergoing a phase

of accelerated expansion. The explanation of such accelerated expansion in the

purview of general relativity requires the presence of a large amount of some

exotic form of energy density with negative pressure, the so-called dark energy.

On the other hand, the amount of luminous matter in galaxies is found insuffi-

cient to explain the observed galactic rotation curves and thereby the existence of

non-luminous or dark matter, that neither interacts with radiation nor with the

conventional matter except through the gravitational field or through some feeble

interaction, has to be assumed. This dark matter component is also required to

be non-relativistic (i.e. cold) in view of structure formation. It appears from a

wide variety of astrophysical observations that ordinary baryonic matter consti-

tutes just 4.9% of the energy density in the Universe while dark matter composes

about 26.8% and the dark energy contributes most – about 68.3% of the energy

density in the Universe [1].
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Dark energy models in the framework of general relativity suffer from fine-tuned,

unnatural properties as will be elaborated in the subsequent sections. On the

other hand, despite extensive efforts, dark matter is still undetected. The nature

of dark matter is also not clear. Dark energy and dark matter are two of the major

outstanding issues in physics and cosmology today.

1.2 General Relativity:

The journey of exploring the laws of nature had crossed a milestone when Nicolus

Copernicus predicted the actual planetary motion and his student Galileo Galilei

proved his teacher’s prediction by his revolutionary discovery of Telescope. The

laws of planetary motion by Johannes Kepler, created a perception about motion

inside the solar system which was given a proper and generalized dimension by

Isac Newton with his revolutionary Theory of Gravitation [2]. The invention of the

telescope and the theory of Gravitation explored the gateway of gathering knowl-

edge about the phenomena not only beyond the Earth but beyond the solar system

also. Newton’s law of gravitation (F = Gm1m2

r2 , where F stands for gravitational

force, G is the gravitational constant (= 6.674× 10−11Nm2Kg−2), m1 and m2 are

the masses of the particles and r is the distance between these two particles) was

highly successful in explaining planetary dynamics. Transforming the Newton’s

equation into the form of gravitational field using Poisson’s equation, one finds:

∇2φ(r, t) = 4πGρ(r, t)

where, ∇ is the spatial Laplace operator, φ(r, t) is the gravitational scalar po-

tential, and ρ(r, t) is the density of the gravitating object. The above expression

shows that the gravitational potential varies only with spatial derivatives, not with

time derivative, i.e. if the matter distribution varies, the gravitational potential

changes instantaneously with the infinite speed which was considered as a prime

drawback of Newton’s theory of gravitation.

Newton’s law of dynamics is based on Galilean transformation, but the constancy

of speed (c = 1/
√
µ0ε0) of an electromagnetic wave in Maxwell’s theory can-

not be explained by the Galilean transformation. If we consider that Galilean
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transformation and Maxwell’s equation both are correct, an absolute frame of ref-

erence (called ’ether’) had to be introduced where the electromagnetic waves can

be propagated at speed c = 1/
√
µ0ε0. But Michelson-Morley experiment using

optical interferometer, invented by Michelson himself, didn’t find any evidence of

the existence of an absolute reference frame, rather the experiment showed the

constancy of speed of light irrespective of the motion of the observer.

In the beginning of the twentieth century, Albert Einstein formulated the Spacial

Theory of Relativity (STR) [3] based on two simple postulates: (a) the laws of

physics are same in all inertial frames and (b) the speed of light in free space

has same value c in all inertial frame. Probably the most revolutionary effect of

these two postulates is that space and time are intertwined leading to a single

continuum known as space-time. A point to be noted that the special theory of

relativity rests on Euclidean geometry and is valid only for inertial observers.

Based on the Principle of Equivalence, Principle of General Covariance and gen-

eralizing the Euclidean space-time continuum of special relativity to curved (Rie-

mannian) space-time geometry, Einstein formulated General Theory of Relativ-

ity (GR) [4] during the period 1907-15. The curved geometry is essentially de-

scribed through metric tensor (gµν) which is related to incremental line element as

ds2 = gµνdx
µdxν . GR describes gravity not as a force but as a geometric property

of space-time. Gravity is a warping of space-time as per GR.

The field equations of GR are given by:

Gµν = −8πGTµν
c4

, (1.1)

where Gµν = Rµν − 1
2
gµνR is the Einstein tensor, Rµν is the Ricci tensor, gµν is

the metric tensor and Tµν is the energy-momentum tensor for matter.

Ricci tensor Rµν can be expressed in terms of metric tensor gµν via Riemannian

connection Γλµν as,

Rµν =
δΓλλµ
δxν

− δΓλµν
δxλ

+ ΓλµσΓσνλ − ΓλµνΓ
σ
λσ (1.2)

where

Γλµν =
1

2
gλσ
(
δgσµ
δxν
− δgµν
δxσ
− δgνσ
δxµ

)
(1.3)
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For a given energy-momentum tensor, one would look for solution of the Einstein

field equations in terms of metrics that determine the space time geometry for the

given source.

A simple but important case when an observer is at a location outside the source.

All the components of energy momentum tensor are zero (Tµν = 0) outside the

source. The Einstein field equations in such a situation turn into

Rµν = 0 (1.4)

The general static spherically symmetric metric is given by [5];

ds2 = B(r)dt2 − A(r)dr2 − r2(dθ2 + sin2θdφ2) (1.5)

where B(r) and A(r) are two unknown metric coefficients which are the function

of r only.

The well known static spherically symmetric vacuum (Tµν = 0) solution of the

above Einstein’s field equation (1.1), is the Schwarzschild solution

ds2 = [1− 2m

r
]dt2 − [1− 2m

r
]−1dr2 − r2(dθ2 + sin2θdφ2) (1.6)

where m = MG
c2

and M stands for the mass of the gravitating object, G is the

gravitational constant and c is the speed of light.

The predictions of GR have been tested by a variety of experiments with increas-

ingly high precision and the theory has passed all such tests conducted till now.

1.3 Dark Energy

Einstein studied the nature of the Universe by using his field equations. On the

apparent observational basis, it was thought that the astronomical objects like

stars, galaxies are static, i.e. these are not moving at all. He found from his

theory that the nature of the Universe is dynamic. The same conclusion was also

reached by Friedmann [6] and Lemaitre [7] by studying the nature of the Universe
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using Einstein’s field equation and employing Robertson-Walker metric. To tally

with the contemporary thought of static Universe, Einstein introduced a constant

in his field equations, called Einstein’s Cosmological constant.

The Friedmann-Lemaitre-Robertson-Walker (FLRW) model of the Universe is out-

lined below. If one considers that the Universe is homogeneous and isotropic, it

can be described by the following generic metric :

dτ 2 = dt2 − a2(t)[
dr2

1− kr2
+ r2dΩ2] (1.7)

where a(t) is the cosmological scale factor, and k signifies the curvature of the

Universe. The above metric is known after Robertson and Walker.

Solving the equation (1.7) using Einstein’s field equations the following expressions

are found,

ä(t)

a(t)
= −4

3
πG(ρ+ 3p) (1.8)

and

ȧ2(t) + k

a2(t)
=

8πGρ

3
(1.9)

Where ρ is the effective mass density and p is the pressure.

In 1929, Hubble collected the red-shift versus luminosity distance data of different

Galaxies. During the experimental observation of the measurement of the redshift

of nearer Galaxies by Hubble and his team,, distance vs redshift relation was found

linear when the value of redshift is less than 0.1. The mathematical base of the

Hubble experiment is as follows [8]:

The expression of apparent luminosity (l) is given by,

l =
L

4πdL
2 (1.10)

where L is the absolute luminosity of a source at a distance of dL.
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At large distance, especially in cosmological distances, the expression needs to be

modified for the following reasons:

1. If light from a distant luminous object reaches the Earth at time t0, then the

effective area of the sphere drawn around the luminous object and passing through

the Earth will be equal to 4πr2a2(t0), where r is the coordinate distance between

the earth and the luminous light source.

2. The rate of arrival of the photons is lower than the rate at which they are

emitted by the redshift factor a(t1)/a(t0) = 1/(1 + z).

3. the energy hν0 of a received photon in the Earth is less than the energy hν1 of

the emitted photon from the light source by the same redshift factor 1/(z + 1).

Therefore the effective apparent luminosity on the Earth can be expressed by,

l =
L

4πr2a2(t0)(1 + z)2
(1.11)

Comparing with the equation (1.10) and (1.11), one can express,

dL = a(t0)r(1 + z) (1.12)

When z << 1, the relation between luminosity distance and redshift can be ex-

pressed as power series in the form of the redshift 1 + z = a(t0)/a(t1) and the

look-back time t0 − t1, is given by,

z = H0(t0 − t1) +
1

2
(q0 + 2)H0

2(t0 − t1)2 + .... (1.13)

where H0 is the Hubble constant (H0 = ȧ0/a0), and q0 is the deceleration param-

eter, expressed by,

q0 =
−1

H0
2a(t0)

d2a(t)

dt2
(1.14)

The expression (1.13) can be inverted to express the Hubble constant (H0) in the

form of redshift,
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H0(t0 − t1) = z − 1

2
(q0 + 2)z2 + .... (1.15)

The coordinate distance r can be expressed from the relation [
∫ t0
t1

dt
a(t)

=
∫ r

0
dx√

1−kx2 ],

t0 − t1
a(t0)

+
H0(t0 − t1)2

2a(t0)
+ .... = r + ... (1.16)

dots in the right hand side denotes the third and higher order terms of r. Using

the equation (1.15), the solution is found,

ra(t0)H0 = z − 1

2
(1 + q0)z2 + ... (1.17)

Which gives the expression of luminosity distance,

dL = H−1
0 [z +

1

2
(1− q0)z2 + ....] (1.18)

For small z, the higher-order terms in z can be neglected and the above equation

turns to Hubble’s relation. For higher red-shifts, the higher-order terms as well as

the deceleration parameter q0 = −ä(t0) at0
ȧ2(t0)

will come in consideration. Determi-

nation of the value H0 and q0 is a big challenge in astronomy because it will help

us to know the dynamic nature of the Universe. The expression of luminosity dis-

tance is not useful for the redshifts of the order of unity as power series expansion

will not be a smart approach in such a scenario. In that case, we have to adopt

the measurement technique through the dynamic theory of expansion. To achieve

this, the approach of FLRW model has been adopted using Einstein’s field equa-

tion and Robertson-Walker metric as mentioned earlier through equations (1.7),

(1.8) and (1.9):

Critical density plays an important role to define the state of Universe and the

critical density (ρ0) is defined by the density of the Universe which makes the

curvature of the Universe flat, i,e. k = 0. The Universe is considered as closed if

ρ > ρ0 and open if ρ < ρ0.

From equation (1.9), one can get the expression of critical density,
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ρ0 =
3H0

8πG
(1.19)

The expressions of proper energy density for different states of Universe is given

by the relation ρ∝a−3−3w, where ω is the constant of the equation of state(= p/ρ):

Considering non-relativistic matter: p = 0

ρ = ρ0(a(t)/a0)−3 (1.20)

For relativistic matter: p = ρ/3

ρ = ρ0(a(t)/a0)−4 (1.21)

Considering vacuum energy: p = −ρ

ρ = ρ0 (1.22)

Recent measurements indicate that the Universe is flat, i.e., k ' 0. Therefore the

expression of effective energy density considering the mixture of non-relativistic

matter, relativistic matter and vacuum energy, given by,

ρ =
3H0

2

8πG
[ΩΛ + ΩM(

a0

a
)3 + ΩR(

a0

a
)4] (1.23)

where present epoch energy densities of vacuum (ρΛ0), non-relativistic matter

(ρM0) and relativistic matter (ρR0) are given by,

ρΛ0 =
3H0

2ΩΛ

8πG
(1.24)

ρM0 =
3H0

2ΩM

8πG
(1.25)

ρR0 =
3H0

2ΩR

8πG
(1.26)
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The equation (1.9) suggests,

ΩΛ + ΩM + ΩR = 1 (1.27)

Now using equation (1.9) and (1.23), one may write:

dt =
dx

H0x
√

ΩΛ + ΩMx−3 + ΩRx−4

=
−dz

H0(1 + z)
√

ΩΛ + ΩM(1 + z)3 + ΩR(1 + z)4
(1.28)

where x = a/a0 = 1/(1 + z) and z signifies the redshift. From the above equation

the expression of the co-ordinate distance (r(z)) of the source can be deduced and

employing the relation of co-ordinate distance and luminosity distance ( dL(z) =

a0r(z)(1 + z)), the expression of luminosity distance can be found,

dL(z) =
1 + z

H0

∫ 1

1/(1+z)

dx

x2
√

ΩΛ + ΩMx−3 + ΩRx−4
(1.29)

From the above relation, it is quite clear that if the variation of luminosity dis-

tance with redshift can be determined experimentally, the value of ΩΛ0 , ΩM0 and

ΩR0 can be deduced analytically. In the late 1990s, this job was done by two

independent Supernovae search teams led by Riess(1998) and Perlmutter(1999)

[9]. They explored the evidence of accelerating Universe by the survey of type Ia

Supernovae as shown in figure (1.1). As the peak brightness of Supernovae is quite

uniform, the object was selected as a standard candle. Considering higher red-shift

Supernovas, each of the observatory teams found that distance vs redshift relation

is not linear as demonstrated in the equation, whereas the relation found about

to linear for the observed Supernovas of redshift less than 0.1. From the high

red-shift Ia-SNa, it was found that the earlier expansion rate was slower than that

is today and with the measurement of luminosity distance of low redshift Super-

novae observation and statistical data analysis of density parameters showed that

the present era is dark energy dominated era with flat curvature. Observations on

Cosmic Microwave Background radiation also support the geometrical nature of

the Universe. The search for the biggest mystery of physics begins from there, the
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source of the energy behind this accelerating Universe is still unrevealed and the

energy is known as Dark Energy.

Figure 1.1: Luminosity distance vs. cosmological redshift variation curve for
type Ia Supernovae

1.4 Dark matter

In 1919, during the observation of Solar Eclipse near the Hyades star cluster, the

gravitational deflection angle of the light from the stars indicated the existence of

extra mass. Dutch astronomer Jacobus Kapteyn predicted the existence of extra

mass by using stellar velocities [10]. In 1930s the concept became stronger when

F. Zwicky was calculating the stellar velocities of the Coma cluster by using Virial

theorem and he found the evidence of extra unseen mass, addressed as dark matter

[11].
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After few decades, the strong evidence of Dark Matter was provided by Vera Rubin

and Kent Ford [12] with an observation by spectrograph measuring the radius vs

velocity curve of the edge of Andromeda Galaxy (a spiral galaxy) and they found

that the rotation curve is almost flat.

Figure 1.2: Flat rotation curve of a spiral galaxy

The dotted line in figure (1.2) was the desired rotation curve without any existence

of Dark Matter but Rubin and Ford found the continuous lined flat curve which

indicates the presence of extra masses(Dark Matter) in spiral galaxies.

Gravitational lensing of light by massive objects coming from a distance source

(like as quasar) is considered as the strong evidence of the presence of Dark Matter.

Measuring the distortion geometry due to gravitational lensing, the total mass of

the lensing object can be deduced [13]. The Dark Matter distribution has been

deduced using the gravitational lensing phenomenon.

Several probable explanations have been provided to theorize the entities, Dark

Energy and Dark Matter.
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1.5 Candidates to explain Dark Energy:

The FLRW model (equations (1.8) and (1.9)) suggests for expansion of the Uni-

verse with time. Any deceleration of the Universe can easily be explained in terms

of the deceleration parameter. The effective density of Universe (ρ) and pres-

sure (p) are positive quantities considering that it is composed of normal matters

and radiation and the expansion should not be accelerated with time as dictate by

equation (1.8). But after the discovery of the accelerating Universe, the perception

was changed and it has led inclusion of a new component of the energy-momentum

tensor of the Universe having negative pressure, addressed as a dark energy com-

ponent.

A significant candidate of dark energy component is Cosmological Constant (Λ)

which was first-time introduced by Einstein himself to balance the dynamic nature

of the Universe. The Einstein’s field equations can be expressed as,

Rµν −
1

2
gµνR

λ
λ = −8πGTµν (1.30)

With the introduction of Λ the energy-momentum tensor Tµν can be replaced by

effective energy momentum tensor Tµν+Λgµν and consequently equation (1.8) and

(1.9) will be re-written as,

ä(t)

a(t)
= −4

3
πG(ρ+ 3p) +

Λ

3
(1.31)

and

ȧ2(t) +K

a2(t)
=

8πGρ

3
+

Λ

3
(1.32)

Equation (1.31) shows the contribution of Λ is negative to the pressure term and

hence it exhibits repulsive nature. The energy which causes the repulsion is greater

than the gravitational energy, resulting the cosmological expansion with accelera-

tion.

The energy associated with Λ can be explained by the vacuum energy in particle

physics. But the problem is that the value of Cosmological Constant (10−120m−2)
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in quantum physics is many order smaller than the cosmologically observed value

(10−52m−2). Considering the perfect fluid equation of state, the value of the con-

stant of the equation of state(ω = p/ρ, where p and ρ stand for pressure and energy

density respectively) is found -1 for cosmological constant whereas the energy and

matter densities vary in different rates throughout the history of Universe. The

variable constant of the equation of state can not be explained by the cosmological

constant model of dark energy. The problem is known as the coincidence problem.

The coincidence problem of cosmological constant model has been attended by

using Scalar-field models of dark energy. Instead of a fix constant of equation

of state which arises considering cosmological constant model of dark energy, the

periphery can be widen by considering the situation that equation of state can vary

with time as mentioned in inflationary cosmology. There are several approaches

of scalar-field dark energy models which includes Quintessence [14]; [15]; [16],

Phantom [17]; [18], K-essence [19]; [20]; [21]; [22], Chaplygin gas [23]; [24], modified

f(r) gravity models [25]; [26] etc.

In Quintessence model of dark energy, the constant of equation of state(ω) is

represented as,

ω =
p

ρ
=
φ̇2/2− V (φ)

φ̇2/2 + V (φ)
(1.33)

where φ represents the scalar-field and V (φ) stands for the potential energy.

In this model the equation (1.33) shows that the value of ω evolves from 1/3 to

-1. For matter dominating era ω = 0, for radiation dominating era ω = 1/3 and

for −1 < ω ≤ −1/3, the accelerating universe expansion reflects.

On the other hand, for negative kinetic energy, the ω evolves ω < −1 region which

is known as the Phantom model of dark energy. In this scenario, the expansion

rate will be increased with time and once the expansion rate will exceed the limit

of the speed of light, the observable objects of the Universe will unable to interact

with each other. This hypothetical condition of the Universe is known as Big Rip.

In the quintessence model of dark energy, the potential energy of the scalar field is

used to explain the acceleration of the Universe, whereas it is also possible to arise

the condition of accelerating Universe by altering the kinetic energy of the scalar

field. This kinetic energy dependent scalar-field explanation of the accelerating
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expansion is known K-essence model of dark energy. But all these scalar field

theories have their own periphery and limitations. Therefore, some alternative

concepts of dark energy models have also been proposed.

DGP (Dvali-Gabadadze-Porrati) theory, based on brane-world model, has given

an alternative proposal of acceleration of Universe [27]. In the brane-world model,

an extra 5th dimension has been introduced where (3+1) Minkowskian dimension

is embedded till a certain distance (r∗ = (r2
0rg)

1/3). The general relativistic effects

can be successfully explained within the threshold distance r∗ but beyond that

distance, the 5th dimension is introduced where large distance phenomena like

the cosmological expansion with acceleration can be explained without taking the

non-zero vacuum energy in consideration. But the stability of this concept has

been questioned by the critics [28].

1.6 Candidates to explain Dark Matter:

Basically two kinds of explanations are there to be represented as the candidates

of dark matter. One is matter contributions that are not detected yet and another

one is the alternative theories to explain the dark matter phenomena like flat

rotation curve of spiral galaxies and gravitational lensing etc without the need of

any dark matter.

1.6.1 Matter representation of dark matter:

The cosmic baryonic density can be derived by CMBR (Cosmic Microwave Back-

ground Radiation) temperature anisotropies, which suggests Ωbar = 0.045 whereas

Ωm = 0.3. This signifies that most of the matters are non-baryonic dark matter.

In fact, the density of luminous matter (Ωlum) less than the Ωbar, i.e., Ωlum < Ωbar,

that means, some baryonic dark matters also exist which is yet to be revealed.

This implies that both baryonic and non-baryonic matters contribute to dark

matter. Further, the study of structure formation in the Universe demands that

dark matter particles should be non-relativistic (cold dark matter).

In baryonic components, like faint stars, cold gas clouds, Rydberg matter etc, have

been predicted as dark matter components. The constitutes of non-baryonic dark

matter candidates include neutrinos, axions, mirror matters, black hole, etc.
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Dark matter in the form of Massive Compact Halo Objects (MACHOs) is pro-

posed in the literature. Low mass stars like brown and red dwarfs may constitute

the baryonic dark matter if they located at large distances or at the dark halo of

galaxies. Having low mass, Brown dwarfs cannot initiate the thermonuclear reac-

tion, and red dwarfs are massive enough to burn hydrogen in their cores. These

can contribute as dark matter but the quantity is too less than the total estimated

dark matter. Molecular hydrogen gas, which is treated as cold gas, is also diffi-

cult to detect and considered as dark matter candidate. Rydberg matter, a dark

matter candidate, is low density condensed phase of matter which is highly trans-

parent of light due to highly excited state and extremely long lifetime. Because of

their invisibility, black holes are also proposed as viable MACHOs. Microlensing

surveys, however, suggest that the mass density of MACHOs is not sufficient to

explain the required amount of dark matter.

Weak interacting particles are considered for dark matter particles as they can-

not be detectable by telescopes. Neutrinos are only known dark matters which

contribute significantly to cosmic energy density and are detected in nature. How-

ever, the mass density of neutrinos is not large enough to explain the dark matter

fraction of the cosmic average density. Axions, which are introduced to solve

the problem of CP violation in particle physics and are interact weakly, are also

proposed as a candidate for dark matter.

Among the weakly interacting particles WIMP or Weakly Interacting Massive

Particles are the most favored candidate for dark matter. Beyond the Standard

Models, several theories predict the existence of WIMP. For instance, the lightest

supersymmetric particle in supersymmetric theories may act as WIMP. Other pos-

sible WIMPs include the lightest particle in Little Higgs models, lightest Kaluza-

Klein particle, etc.

1.6.2 Alternative models to explain dark matter effects

Among the alternative approaches to explain the dark matter consequences include

MOND (Modified Newtonian Dynamics) [29], Conformal theory based on Weyl

gravity [30], modified f(r) gravity [31] etc. These models explain dark matter

effects without invoking any dark matter.
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MOND is a modification of Newtonian dynamics to explains the flat rotation curve

which is considered as a dark matter effect as earlier discussed. This concept was

proposed by M. Milgrom in 1983. The base of this modification is to segregate

into two sections based on of high and low acceleration. As per this proposal, The

dynamics of an object under a gravitating object follow the Newtonian behavior

at high acceleration, whereas it shows deep-MOND behavior at low acceleration.

The MOND equation of force is given by,

F = mµ(x)(
a

a0

)a (1.34)

where F is the Newtonian force, m is the mass of the object, a is the acceleration,

µ(x) is known as interpolating function, a0 is the constant which denotes the

transition between Newtonian and MOND domain. To synch with Newtonian

mechanics, the condition will be as followed,

µ(x)→ 1 for x� 1

whereas, the following condition will be obeyed to be consistent with the dark

matter observation,

µ(x)→ x for x� 1

If an object of mass m moving around a gravitating object of mass M in a circular

orbit with linear velocity v, then we get,

GMm

r2
=
m(v

2

r
)2

a0

⇒ v4 = GMa0

The above expression from MOND describes the flat rotation curve of dark matter

effect but it can not construct a satisfactory cosmological model and other observed

property of galaxy clusters.

Mannheim and Kazanas [30] proposed an alternative model of dark matter effect

based on conformal invariant Weyl gravity. They have found the following metric

which explain the flat rotation curve of spiral galaxies:
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ds2 = −B(r)dt2 +
dr2

B(r)
+ r2(dθ2 + sin2θdφ2) (1.35)

where,

B(r) = 1− β(2− 3βγ)

r
− 3βγ + γr − κr2 (1.36)

β, γ, and k stand for the integration constants. Putting the value of k = γ = 0,

the metric provides the Schwarzschild metric, and when γ = 0, it will give SDS

metric. γ is the parameter in the above metric which represents the dark matter

effects, and the value of γ was found 10−26m−1 based on the observational data of

several galaxies.

Grumiller also proposed a model for gravity at large distances based on modified

general relativity and proposed a metric to define large distance phenomena like

dark energy and dark matter [31].

Another proposal to explain dark matter is based on f(r) gravity, which was pro-

posed by H. A. Buchdahl in 1970 [32]. This is basically modified general relativity,

which is a family of theories based on several circumstances. An arbitrary function

has been introduced which gives the freedom to explain the dark sector effects.

1.7 Objectives of the present work

Does dark sector really exist or the observations pertaining to dark sector simply

hint a problem with general relativity? What are the nature of dark sector ?

The dark sector is still dark despite a long effort. If exists, dark energy/matter

is likely to affect the gravitational phenomena in all distance scales including the

local scales. As the evidences of dark sector so far are found only in large distance

scale observations, the study of effects of dark energy/matter on local gravitational

phenomena are important not only to confirm their presence but it may also help

to understand the nature of the dark sector. Already several analysis have been

performed so far in this direction, as will be reviewed in the next section, but

certain aspects have not been addressed adequately.



Chapter 1. Introduction and Review 18

In this thesis work we have examined the influences of dark energy and dark

matter on different local gravitational phenomena critically considering different

models of dark energy and dark matter. Emphasis will be given to discriminate the

models of dark energy and dark matter by comparing theoretical predictions with

the observations. We shall particularly investigate the influence of dark sector

on several gravitational phenomena like gravitational time delay, gravitational

time advancement, gravitational lensing etc. We shall construct static spherically

symmetric metric for galactic halos based on flat rotation curve and cold dark

matter approximation and shall examine whether such model is consistent with

gravitational lensing observations. We shall also check whether some alternative

dark matter models are consistent with Tully-Fisher relation or not.

1.8 Current status of studies on local gravita-

tional influences of dark sector

The observation of gravitational influences on a few observables, namely perihelion

shift of planets, bending of light by gravitating object, the time delay due to

gravitating object and red-shift of photons, in the Solar System neighborhood

provide the classical evidences in favor of the theory of GR. The influences of

dark sector have been studied so far on all such classical gravitational observables

which impose some constraints on dark sector parameters. However, solar system

experiments put only upper bound on the dark sector parameters compared to the

value obtained in cosmological observations.

The parametrized post-Newtonian (PPN) formalism is usually employed to de-

scribe the gravitational theories in a weak gravitational field equation (1.6) [5].

The PPN description provides the advantage of comparing predictions of GR with

those from several alternative metric theory of gravity. However, the PPN formal-

ism cannot, in general, accommodate the effect of the dark sector.

The geodesic equations for general static spherically symmetric metric as given in

equation (1.5) give

A(r)(
dr

dp
)2 +

J2

r2
− 1

B(r)
= −E (1.37)
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where p is a parameter describing the trajectory and proportional to the proper

time(τ),

J = r2dφ

dp

and E is a constant which is equal to zero for photons and greater than zero for

the material particles. Replacing the dp by the expression dφ, we get,

A(r)

r4
(
dr

dφ
)2 +

1

r2
− 1

J2B(r)
= − E

J2
(1.38)

If the external space time geometry due to the gravitating object is described by

Schwarzschild metric equation (1.6), the above equation can be expressed as,

1

r4
(
dr

dφ
)2 +

B(r)

r2
− 1

b2
= 0 (1.39)

where, E = 0 for light trajectory and b = r2 dφ
dp

, addressed as impact parameter.

Expressing u = 1/r and differentiating equation (1.39) with respect to φ, we get

the second order differential equation,

d2u

dφ2
+ u = 3mu2 (1.40)

The general solution of the above equation is given by,

u =
sinφ

R
+

3m

2R2
(1 +

1

3
cos2φ) (1.41)

where, R is related with the closest distance(r0) of light trajectory from the centre

of the gravitating object by the expression,

1

r0

=
1

R
+
m

R2
(1.42)

The above equations are crucial to examine the influences of Schwarzschild geom-

etry on different gravitational phenomena.
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In the presence of cosmological constant (Λ), the exterior space-time due to a

static spherically symmetric mass distribution is Schwarzschild-de Sitter (SDS)

metric which is described by equation (1.5) with

BΛ(r) = 1− 2m

r
− 1

3
Λr2 (1.43)

and

AΛ(r) = [1− 2m

r
− 1

3
Λr2]−1 (1.44)

B(r) and A(r) are replaced by BΛ(r) and AΛ(r) respectively in equation (1.5).

For SDS geometry, ignoring higher order terms in Λ, the orbit equation reads,

d2u

dφ2
=
m

L2
− u+ 3mu2 − Λ

3L2u2
(1.45)

The above equation is employed to determine the effect of Λ on various gravita-

tional phenomena.

1.8.1 Influences of Dark sectors on perihelion shift of plan-

ets

The ability to explain perihelion shift of planets is a prominent success of general

theory of relativity. At perihelia(r−) and aphelia (r+) of the orbit, r reaches at

minimum and maximum with respect to the angular displacement and thus the

dr/dφ vanishes at these two points. Applying this condition in equation (1.38) [5],

we get,

1

r±
− 1

J2B(r±)
= − E

J2
(1.46)

For the Schwarzschild metric in equation (1.6), the expression of precession of

perihelia shift of planets becomes [33],
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∆φSch = π
6m

L
(1.47)

where L(= l(1− e2)) is the semi-latus rectum of the elliptical orbit, e and l stand

for the eccentricity and length of the semi-major axis of the orbit respectively.

The PPN metric is essentially an expansion about the Minkowski metric (gij ) in

terms of some dimensionless small gravitational (Newtonian) potential ( U, ψ, ϕ)

so that in isotropic coordinates

g00 = −1 + 2U − 2βU2 + ..... (1.48)

gij = δij (1 + 2γU + ....) (1.49)

Where,

U(x, t) =

∫
ρ(x

′
, t)

|x− x′|d
3x′ (1.50)

where γ and β are first PPN parameters.

For the PPN metric, the expression of perihelion shift is given by [34],

δφ =
6mπ

L
(
1

3
(2 + 2γ − β) +

1

6
(2α1 − α2 + α3 + 2κ)η +

JR2

2mL
) (1.51)

where m is the mass of two-body system, i.e., m1 and m2 are the masses of two

objects then m ≡ m1 +m2 and η = m1m2/m
2, R and J are the mean radius of the

oblate body and dimensionless measure of its quadrupole moment respectively, γ

and β are the PPN parameters and α1, α2, α3 and κ parameters are dependent on

the ratio of masses of two-body system. The parameters α1, α2, α3 and κ will be

negligible for the mass of Mercury.

The contribution of Λ leads an additional shift over the Schwarzschild expression

[35], [36], [37], [38], [39], [40].

∆φΛ = ∆φSch +
πc2Λl3

m
(1− e2)3 (1.52)
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Where ∆φSch is the perihelion shift due to Schwarzschild geometry as given in

equation (1.47).

Several elaborated works on the effect of the cosmological constant on perihelion

shift are discussed in the literature. Kerr et. al. found the general expression for

effect of Λ on pericentre precession considering the arbitrary orbital eccentricity

[41]. Iorio investigated the effect of the cosmological constant on perihelion pre-

cession for several solar planets in the frame-work of SDS space-time. Miraghaei

and Nouri-Zonoz studied the perihelion shift of Mercury on the Newtonian limit

of SDS metric and found the effect of Λ on perihelion shift [40].

Arakida studied the effect of the cosmological constant on the perihelion shift of

planets and found a general expression for all orbital eccentricity [42].

The perihelion shift of planets due to alternative dark matter and dark energy

models have been addressed by several authors.

One of the significant alternatives of Einstein’s theory of general relativity is pro-

vided by Weyl gravity where conformal invariance of space-time has been used.

The static spherically symmetric metric solution of Weyl gravity was obtained by

Mannhein and Kazanas [30] which is found consistent with the experimental tests

of gravitation in a weak gravitational field. As mentioned in equation (1.35) and

(1.36), the static spherically symmetric vacuum solution of conformal gravity is

given by:

ds2 = −B(r)dt2 +
dr2

B(r)
+ r2(dθ2 + sin2θdφ2) (1.53)

where,

B(r) = 1− β(2− 3βγ)

r
− 3βγ + γr − κr2 (1.54)

β, γ, and k stand for the integration constants. Putting the value of k = γ = 0, the

metric provides the Schwarzschild metric and when γ = 0, it will give SDS metric.

An explanation of the flat rotation curve of spiral galaxies has been provided

by this metric solution of Weyl Conformal gravity which can be presented as an

alternate solution of Dark matter problem.
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The Precession of perihelion shift of planets was investigated using the above

metric [43] and the expression of perihelion shift found for Weyl gravity is:

δφ≈ 6πβ

l(1− e2)
+

3π

β
κl3(1− e2)3 − π

β
γl2(1− e2)2 (1.55)

where, β stands for MG/c2(≡ m) and κ is equivalent to the cosmological constant

(Λ/3). If the equation (1.55) can be investigated minutely, it can be observed that

the first term of right-hand side denotes the Schwarzschild term of perihelion pre-

cession of planets whereas the second term is the contribution for the cosmological

constant and third term has been appeared due to the effect of γr term in the

equation (1.54).

The perihelion shift has also been studied for quintessence model [44], MOND [45];

[46], f(r) gravity models [47]; [48].

Using the solar quadruple moment J = (2.2 ± 0.1) × 10−7 [49] and substituting

the orbital elements and constants for Mercury in solar orbit, the expression of

perihelion shift is found,

δφ = 42.”98(
1

3
(2 + 2γ − β) + 3× 10−4 J

10−7
) (1.56)

Messenger spacecraft provided a significantly improved knowledge about orbital

motion. Adopting the Cassini boundary limit of γ, the bound of β is given by

β − 1 = (−4.1± 7.8)× 10−5.

To detect the influence of Cosmological constant comparing with the Schwarzschild

term, the perihelion shift of Mercury of 43” per century, is in full agreement

of Einstein’s theory of General Relativity with the accuracy of 430µas and the

cosmological constant was constrained up to 10−41 order approximately [50]; [37]

and achieved up to 10−42 order with −0.0036± 0.005 arc-secs accuracy level [51].

Including Sun’s angular momentum and uncertainty of solar quadrupole moment,

the Λ was constrained up to 10−43 order [52], i.e., 10−9 more precession level

need to achieve to get the effect of dark energy. And to detect the dark matter

effect, the ratio between Schwarzschild term and dark matter contribution (i.e. γ

contribution) is very important and it is approximately in the order of 10−11 [43].
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1.8.2 Influences of dark sectors on gravitational deflection

of light:

Gravitational deflection of electromagnetic wave provides a prime evidence in favor

of general relativity. The expression for deflection angle of electromagnetic wave

due to a gravitating object (lens), coming from a source to an observer situated

at r distance from the centre of the gravitating object, can be deduced from the

geodesic equations (from the general equation of motion as mentioned in equation

(1.38), considering E = 0 for electro-magnetic wave) which is given by,

φ(r)− φ∞ =

∫ ∞
r

A1/2(r)[(
r

r0

)2(
B(r0)

B(r)
)− 1]−1/2dr

r
(1.57)

Implementing several metric solutions on the above expression, the gravitational

deflection angle for the different gravitational models can be obtained.

For Schwarzschild metric the above expression of gravitational deflection becomes:

∆φsch =
4m

r0

(1.58)

where the closest approach of the e.m. wave trajectory is denoted as r0.

1.8.2.1 Approaches to deduce gravitational deflection angle on several

dark sector models:

The early studies concluded that there should not be any effect of Λ on gravita-

tional bending of light [35], [53], [37]. The motion of electromagnetic wave in SDS

space-time can be described through the Lagrangian L of the space-time:

2L = BΛ(r)ṫ2 −B−1
Λ (r)ṙ2 − r2φ̇2 (1.59)

where BΛ(r) = 1− 2m
r
− 1

3
Λr2 and dot stands for the differentiation with respect

to the affine parameter (λ). The motion is restricted to the θ = π/2 plane.

The conserved quantities, E (energy) and angular momentum (l′), can thus be

expressed as
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E≡BΛ(r)
dt

dλ
(1.60)

l′≡r2dφ

dλ
(1.61)

The null geodesic equation for the space time is given by,

dφ

dr
= ± 1

r2
[
1

b2
− BΛ(r)

r2
]−1/2 (1.62)

where, b≡l′/E which denotes impact factor in Schwarzschild space-time expression

(1.39) as dt
dp

= − 1
B(r)

can be deduced from the Lagrangian. The second order

differentiation leads,

d2u

dφ2
+ u = 3mu2 (1.63)

That is exactly the same as the path equation in Schwarzschild geometry as equa-

tion (1.40). Note that the path equation does not involve Λ. Consequently the

orbit equation will be same to the orbit equation for Schwarzschild metric in equa-

tion (1.41),

u =
sinφ

R
+

3m

2R2
(1 +

1

3
cos2φ) (1.64)

Absence of Λ in the above expression apparently suggests that there should not be

any effect of the cosmological constant on the deflection of light. The bending angle

in Schwarzschild space-time is estimated considering the limit r →∞ in the light

orbital equation, and the angle between the two asymptotic directions gives the

total deflection angle. For SDS space-time, however, r →∞ makes no sense. The

de-Sitter horizon is rΛ =
√

3/Λ as may be obtained from the SDS metric. Rindler

and Ishak thus proposed an alternative solution in which the angle is evaluated

through the tangent on the light trajectory with the co-ordinate direction at a

given arbitrary point. Subsequently, they obtained the expression for deflection

angle in de-Sitter geometry as follows:
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∆φΛRindler = 2[
2m

R
− 4m3

R3
− ΛR3

12m
] (1.65)

In SDS geometry expressed in equation (1.43) and (1.44), the tangent of the angle

(ψ) of the light trajectory made with the coordinate point at a given point, is

given by [54], [55],

tanψ = rBΛ(r)1/2|dφ
dr
| (1.66)

The above equation can be written for the null geodesics [56],

tanψ = [
BΛ(r0)

BΛ(r)

r2

r2
0

− 1]−1/2 (1.67)

Avoiding the higher order of m and Λ,

tanψ =
r0

r
+
m

r
− mr0

r2
− Λr0r

6
+

Λr3
0

6r
(1.68)

When r >> r0 and the angles ψ and φ are very small and avoiding the higher

order terms of m, Λ and r0/r, the expression of deflection angle will be,

∆φΛ = 2[
2m

r0

− mr0

r2
− Λr0r

6
+

Λr3
0

6r
] (1.69)

Generalizing the results of Rindler and Ishak [54], Bhadra et. al. [55] calculated the

angle between the lensed light trajectory at the source and the observer location

as follows,

∆φΛ =
4m

r0

−mr0(
1

d2
LS

+
1

d2
LO

)− Λr0

6
(dLO + dLS) +

Λr3
0

6
(

1

dLO
+

1

dLS
) (1.70)

where, dLO and dLS is the coordinate distances of gravitating object from observer

and source respectively. For a small angle, R can be replaced as r0.

Additionally, Bhadra et. al. [55] have given importance to a reference object to

study the bending of a light trajectory by a gravitating object. Considering the
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reference object, it has been found that the contribution of cosmological constant

(Λ) is dependent on the distance between the source and the reference object.

Sereno [57], [58] has also supported the local coupling between the mass of the

lens and the Λ in the expression of deflection angle in SDS metric. As per Sereno

the gravitational deflection angle is expressed by as follows:

∆φSereno≈π − 4m
b

+ b( 1
rLS

+ 1
rLO

)− 15m2π
4b2
− 128m3

3b3
+ b3

6
( 1
rLS3 + 1

rLO3 )

−3465m4π
64b4

− 3584m5

5b5
− 2mb

rΛ2 − mb3

4
( 1
rLS4 + 1

rLO4 )

+3b5

40
( 1
rLS5 + 1

rLO5 )− b3

2rΛ
( 1
rLS

+ 1
rLO

) (1.71)

b stands for impact parameter and can be replaced by r0 for a small deflection

angle.

Schucker supported the approach of Rindler and Ishak and found the effect of

cosmological constant due to isolated spherical mass without using lens equation

[59]. Lake also supported the work and showed the effect of the cosmological

constant using two opposite sources [60]. Bhattacharya et. al. used the Rindler-

Ishak procedure to analyze the gravitational deflection of light using the Einstein-

Strauss vacuole model with cosmological constant [61].

In the contrary, some authors questioned the contribution of Λ on the gravitational

deflection of light. Khriplovich and Pomeransky demonstrated that it doesn’t

affect practically on gravitational lensing using Friedmann-Robertson-Walker co-

ordinates [62]. Park also concluded that no correction was needed involving cos-

mological constant by solving null geodesic equations [63].

Ishak derived the contribution of the cosmological constant on gravitational de-

flection from the gravitational potential and Fermat’s principle [64]. He further

found the Λ contribution on geometrical time delay term for the bending of light.

Miraghaei and Nouri-Zonoz studied the gravitational deflection on the Newtonian

limit of SDS metric and found the effect of Λ on general relativistic approach [40].

Arakida and Kasai re-examined the effect of the cosmological constant on gravi-

tational deflection of light and showed that the Λ appears in the orbital equation
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of light [65]. Aghili et. al. studied the effect of cosmological constant for time

varying cosmological expansion, i.e. when Hubble constant varies with time[66].

Biressa et. al. studied the effect of cosmological constant on gravitational lensing

to calculate projected mass of lens including cosmological constant [67].

Butcher argued accepting the cosmological constant correction on gravitational

lensing of light that the effect is negligible in the practical way as it is smaller

than the uncertainty from unlensed distances [68].

Guenouche and Zouzou investigated the gravitational lensing in the framework of

the Einstein-Straus solution with positive cosmological constant considering closed

Universe [69].

The local influence of gravitational deflection has been studied in scaler field model

of dark energy [70], where a spherically symmetric static metric was developed in

quintessence model of dark energy and studied the effect on gravitational deflec-

tion. The metric they have developed is as follows:

ds2 = (1− 2m

r
− α

r3w+1
)dt2 − (1− 2m

r
− α

r3w+1
)−1dr2 − r2(dθ2 + sin2θφ2) (1.72)

where α is a constant of integration and w is the constant of the equation of

state which varies −1 ≤ w < 0 where−1 ≤ w < −1/3 shows the nature of dark

energy dominating accelerating universe and w = 0 signifies matter-domination

and w = 1/3 radiation domination.

Using the quintessence based metric, the second order equation of motion is given

by:

d2u

dφ2
+ u = 3mu2 +

3α(w + 1)u2w+2

2
(1.73)

Solving the equation analytically, they have found the solution of the above second

order equation for different values of the constant of equation of state w, for

example, for w = −1/3,

∆φquintessence =
4m

r0

+
4m

r0(1− α)3/2
(1.74)
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and for w = −1, which is equivalent to the cosmological constant model, no

influence of cosmological constant is noticed, i.e. at w = −1, the gravitational

deflection angle term turns into a pre-Rindler-Ishak expression of gravitational

deflection in SDS space-time.

∆φquintessence = ∆φΛ =
4m

r0

(1.75)

Rectifying the evaluation process by applying Rindler-Ishak [54] approach, the

influence of dark energy in the quintessence metric has been deduced [71].

On the other hand, the gravitational deflection is the prime evidence of dark mat-

ter. This phenomenon has been used as a tool to verify different approaches of

dark matter effect associated models. As mentioned earlier Modified Newtonian

Dynamics(MOND) is a significant model to represent dark matter effects. Gravi-

tational bending in MOND, has been studied by several physicists [72], [73], [74].

The gravitational deflection angle in MOND, is given by:

For r0 > rc,

∆φMOND = π

√
Ga0M

c2
(1.76)

For r0 ≤ rc,

∆φMOND =
2GM

c2r0

√
rc − r0

rc + r0

+
2GM

c2rc

√
rc − r0

rc + r0

+
2
√
Ga0M

c2
sin−1 r0

rc
(1.77)

For rc →∞, the above expression turns into Newtonian expression of gravitational

deflection angle,

∆φNewtonian =
2GM

c2r0

(1.78)

where r0 is the impact parameter of light trajectory and rc is the critical radius

of Newtonian mechanic and MOND in flat rotation curve, expressed by rc =√
GM(rc)/a0, a0 is a constant called critical accelerating parameter, (M is the

effective mass of gravitating object) [75].
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It should be mentioned that the general relativistic correction of factor ’2’ has also

been adopted in MOND expression for the expression of the deflection angle.

Now considering the conformal Weyl gravity metric as mentioned in equations

(1.35) and (1.36) [30], the expression of gravitational deflection angle was studied

[76] and then further reexamined by Sultana and Kazanas [77], based on the

approach by Rindler and Ishak [54].

∆φWeyl =
4m

b
− 2m2γ

b
− κb3

2m
(1.79)

where b stands for the impact parameter and can be replaced by closest approach(r0)

of light trajectory from the centre of the gravitating object and γ represents the

dark matter effect and κ is equivalent to cosmological constant (Λ/3). But ob-

jection raised by Cattani et. al. [78] due to negative contribution of dark matter

effect which is represented by γ, where the contribution should be enhancement

effect on Schwarzschild term of lensing angle. They analyzed the issue and ex-

plained that the actual conformal metric as mentioned in equation (1.36) is given

as follows:

B(r) = α− 2m

r
+ γr − κr2 (1.80)

where α = (1 − 6mγ)1/2 and α = 1 approximated for the distances neither too

large nor too small. But no such approximation is made in this work. As per

this work, negative contribution of γ was appeared due to avoiding the first order

terms associated with α 6= 1 and the expression of gravitational deflection for Weyl

gravity considering all the first order terms of γ, is given by,

∆φweyl =
4m

r0

− κr2
0

2m
+

15m2γ

r0

(1.81)

The above expression of the deflection angle shows the positive contribution of γ

term which holds the practical dark matter influence.

Sultana reexamined the gravitational deflection of light on conformal Weyl grav-

ity to get the 2nd order contribution of γr and found that the contribution is

insignificant [79].
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Lim and Wang derived an exact solution for gravitational lensing using static

spherically symmetric metric for SDS and Mannhein-Kazanas metric of Weyl grav-

ity both [80].

The gravitational lensing effect was also studied in f(r) gravity model [81], [47],

[48].

Starting from Eddington and his co-workers, several attempts have been made to

measure gravitational deflection angle. For the PPN metric, the of gravitational

deflection is given by [34],

δφ =
1

2
(1 + γ)

4m

r0

(
1 + cosψ

2
) (1.82)

where m is the mass of the gravitating object, ψ is the angle between observer

to lens line and incoming direction of photon to the observer and γ is the first

PPN parameter that varies from theory to theory. For example, for Schwarzschild

metric γ = 1.

Eddington and his co-workers first time attempted the experimental observation

[82] and they found the deflection angle with 30 percent accuracy and the result

was scattered between one half and twice the Einstein value of lensing angle. How-

ever, the scenario has been changed after the development of radio interferometry

measurements. The very long baseline radio interferometer (VLBI) provided im-

proved precession level of the deflection angle. The modern techniques have the

capability to produce the accuracy more than 100 micro-second.

The solar system gravitational bending observations do not put stringent con-

straint on Λ; to detect the influence of cosmological constant the precession level

of measuring bending angle needs to be approximately 10−18 times higher than

the precision level of detecting contribution of Schwarzschild term (from equation

(1.70)) if the source is situated at kpc distance [55]. However, the contribution of

Λ to the deflection angle can be larger than the second-order term in the deflection

angle lensed by pure Schwarzschild geometry for several cluster lens systems [64].

The effect of Weyl model of dark matter (equation (1.81)), is negligibly small [77].
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1.8.3 The influences of dark sector on gravitational time

delay:

The gravitational time delay is a phenomenon where the object under gravity

suffers time delay when it moves under the influence of gravitating object, if we

compare the total traveling time of the object, required in absence of the gravitat-

ing object. Shapiro first proposed the phenomenon of gravitational time delay and

carried out a measurement with Lincoln Laboratory collaboration using a radar

signal that traveled to a planet and reflected back to earth [83]. To derive the

theoretical expression of gravitational time delay, again the general equation of

motion, equation (1.37), is used. Replacing dp by dt using the relation dt
dp

= 1
B(r)

,

one obtains

A(r)

B2(r)
(
dr

dt
)2 +

J2

r2
− 1

B(r)
= −E (1.83)

For light trajectory, E = 0 and dr
dt

must be vanished at the closest approach of

light trajectory (at r = r0), so equation (1.83) gives,

J2 =
r2

0

B(r0)
(1.84)

Therefore, the equation of motion for light trajectory, is given by,

A(r)

B2(r)
(
dr

dt
)2 + (

r0

r
)2 1

B(r0

− 1

B(r)
= 0 (1.85)

From the above equation, the time required to travel for a light beam from r0 to

r or vice-versa is given by,

t(r, r0) =

∫
r0

r

(
A(r)/B(r)

1− B(r)
B(r0)

( r0
r

)2
)1/2dr (1.86)

For Schwarzschild metric, we get

tSch(r, r0) '
√
r2 − r2

0 + 2mln(
r +

√
r2 − r2

0

r0

) +m(
r − r0

r + r0

)1/2 (1.87)
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The first term in the above expression denotes the time required for light to travel

in a straight line with unit velocity of light. Second and third terms reflect the

gravitational contribution of traveled time, and positive term expresses the time

delay effect.

1.8.3.1 Approaches to deduce gravitational time delay on several dark

sector models:

The influences of dark energy and dark matter have been studied in several works.

Kagramanova et al [37] studied the influence of dark energy in SDS metric as

mentioned in equation (1.43) and (1.44). As per the study, the expression of

gravitational time delay is

tΛ(r, r0) '
√
r2 − r2

0 + 2mln(
r +

√
r2 − r2

0

r0

) +m(
r − r0

r + r0

)1/2

+
Λ

18
[(
√
r2 − r2

0)(2r2 + r2
0) + 3m(4r

√
r2 − r2

0 + r2
0(2 +

√
r2 − r2

0

r + r0

))] (1.88)

where Cosmological constant(Λ) associated term reflects the dark energy contri-

bution on gravitational time delay in SDS space-time.

On the other hand, Asada examined the gravitational time delay of light in several

modified gravity models [84]. He introduced a general static spherically symmetric

metric, represented as,

A(r) ≈ 1− 2m

r
+ Amr

m (1.89)

and

B(r) ≈ 1 +
2m

r
+Bnr

n (1.90)

where m = GM/c2, M is the mass of gravitating object and Am, Bn, m and n

are varies with dark energy model to model. For example, when n = 2, An =

−Bm = −Λ/3, the metric represents Schwarzschild-De-Sitter(SDS) metric and for

n = 1/2, An = −2Bn = ±2
√
m/r2

c , it shows the DGP model of dark energy.
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Asada deduced the expression of gravitational time by considering the radio signal

transmitted from earth (situated at rE co-ordinate distance), reflected back from

a reflector, situated at rR co-ordinate distance and ro is the closest approach of

the signal’s trajectory from the centre of the gravitating object and the expression

is given by:

δt = 2(
√
r2
E − r2

o +
√
r2
R − r2

0) + 2m(2ln
rE +

√
r2
E − r2

0

r0

+2ln
rR +

√
r2
R − r2

0

r0

+

√
rE − r0

rE + r0

+

√
rR − r0

rR + r0

) + δtDE (1.91)

where δtDE denotes dark energy effect contribution in time delay expression, ex-

pressed as (for n = m > 0),

δtDE = rn+1
0 (

∫ RE

1

+

∫ RR

1

)dR× (−An
Rn+3 − 2Rn+1 +R

(R2 − 1)3/2
+Bn

Rn+1

√
R2 − 1

) (1.92)

where R ≡ r/r0, R ≡ rE/r0 and RR ≡ rR/r0. And taking rR >> r0 and n 6= 0,

the following expression was obtained by Asada,

δtDE =
Bn − An
n+ 1

(rn+1
E + rn+1

R ) +
Bn + An
2(n− 1)

(rn−1
E + rn−1

R − 2rn−1
0 )r2

0 +O(r4
0) (1.93)

The above equation is a generalized expression of dark energy effect in gravitational

time delay for different models with different values of An, m and n as mentioned

earlier.

Schucker and Zaimen studied the effect of cosmological constant on gravitational

time delay for an isolated spherical mass [85].

Ishak derived the contribution of the cosmological constant on gravitational time

delay from the gravitational potential and Fermat’s principle [64]. He also found

the Λ contribution on geometrical time delay term.
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Guenouche and Zouzou investigated the gravitational time delay in the framework

of the Einstein-Straus solution with positive cosmological constant considering

closed Universe [69].

Effect of dark energy on Gravitational time delay was also studied in quintessence

model of dark energy [86]. Considering the quintessence metric as mentioned in

equation (1.72), the quintessence model based expression of gravitational time

delay is given by,

tQuintessence(r, r0) = tSch +

∫ r

r0

(1− r2
0

r2
)−1/2[

r3ω+1 − r3ω+1
0

r3ω−1
0 r3ω+1(r2 − r2

0)
+

2

r3ω+1
]
α

2
(1.94)

The quintessence term in the above equation was solved for different values of ω.

For example, if ω = −1/3, the quintessence associated term will be αr

√
1− r2

0

r2

and for w = −1, which is actually signifies the cosmological constant model, that

will be αr
6

(2r2 + r2
0)

√
1− r2

0

r2 which supports the cosmological constant associated

expression of gravitational time delay when α ≡ Λ/3 and avoiding higher-order

and multiplication terms of Λ and m.

The gravitational time delay was also studied under the influence of dark matter

environment which is provided in Weyl gravity by Mannhein and Kazanas [30] and

the metric represented by the equation (1.35) and (1.36). The effect of dark matter

on gravitational time delay was studied using the conformal metric by Ederly and

Paranjape [76] and found the expression of time delay, to travel for a radar signal

from r0 to r distance considering the centre of the gravitating object(of mass M)

as co-ordinate centre, as follows,

tweyl(r, r0) '
√
r2 − r2

0 + 2βln
r +

√
r2 − r2

0

r0

+ β

√
r − r0

r + r0

−γ
2

(
r3 − r3

0√
r2 − r2

0

) +
κ

6
(2r2 − r2

0)
√
r2 − r2

0 (1.95)

As mentioned earlier, β in above equation (1.95) stands for GM/c2(≡ m), γ rep-

resents the dark matter effect and κ is equivalent to cosmological constant(Λ/3).

The above equation (1.95) reflects the dark matter effect associated term as well
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as the Schwarzschild metric related term as mentioned in equation (1.87) and dark

energy associated Λ term as shown earlier in equation (1.88).

Farrugia et. al. studied the gravitational time delay in f(r) gravity model [48].

If a radar signal is sent to a planet or satellite from Earth and passes through the

vicinity of the Sun, the expression of gravitational time delay under PPN metric

is given by [34],

t(r, r0) =
1

2
(1 + γ)[240− 20ln(

r2
0

r
)]µs, (1.96)

Several high precession measurements were made using radar signal passing near

the conjunction of a gravitating object after the discovery of the significant con-

sequence of general relativity by Irwin Shapiro in 1964. A round trip travel time,

through the vicinity of the gravitating object, is to be measured to get the gravi-

tational time delay value and fit the value of γ can be found based on least square

fit method, which depends on which space-time metric has been adopted, by using

equation (1.96). To measure the gravitational time delay by Sun as a gravitating

object for a radar signal, few artificial satellites like Voyager-2, Mariners 6 and 7,

Viking Mars landers and orbiters, Cassini spacecraft, were used as re-transmitters

of the radar signal and Mercury, Venus or Saturn was used as reflectors.

The gravitational time delay measurements restrict up to (γ−1 = (2.1±2.3)×10−5)

γ by Cassini spacecraft taking Saturn as a re-transmitter and reflector [87].

The gravitational time delay relates with frequency shift. The relative change of

frequency,

y =
ν(t)− ν0

ν0

where ν0 is the emitted frequency of the wave and ν(t) is the received frequency

at the Earth. The Schwarzschild contribution to the change of frequency (y) is in

the order of 10−10 order and the Cassini spacecraft measured in the order of 10−13.

The time delay measurements though provide most stringent constraint on the

PPN parameter γ but restrict Λ loosely; the Cassini observations suggest Λ ≤
10−24 m−2 [37]. The dark matter parameter in equation (1.89) is constrained upto
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10−23cm−1 order using the Shapiro time delay [76] where the value of γ is in the

order of 10−28cm−1.

1.8.4 The influences of dark sector on gravitational frequency-

shift:

The concept of gravitational frequency-shift arises theoretically from the concept

of proper time(dτ) which is defined by the time interval measured by the clock of

an observer in rest, i.e. spatial co-ordinate interval dxi = 0. The expression of

proper time is given by,

dτ =
√
g00dx

0 (1.97)

√
g00 = B(r) in equation (1.5).

If we compare the proper time interval at two distinct point of space but both

correspond to the same interval of co-ordinate time, then the ratio of proper time

interval is given by,

dτ1

dτ2

=

√
g00(x1)

g00(x2)
(1.98)

where the dτ1 and dτ2 are the proper time interval at x1 and x2 position respec-

tively. And considering ν1 and ν2 are the frequencies of a photon at x1 and x2

points respectively, then the above equation can be expressed as,

ν2

√
g00(x2) = ν1

√
g00(x1) (1.99)

The above equation expresses the frequency shift under the gravitational influence.

Using Schwarzschild metric (g00 = B(r) = 1 − 2m
r

) as mentioned equation-(1.6),

the expression of gravitational frequency shift will be as follows:

ν2

ν1

' 1− m

r2

+
m

r1

(1.100)
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The higher order terms of m/r1 and m/r2 are avoided, where m = GM/c2 and

ν1 and ν2 are the frequencies of same photon traveling from r1 and r2 co-ordinate

distance respectively.

1.8.4.1 Approaches to deduce gravitational frequency-shift on several

dark sector models:

The gravitational frequency shift has been also studied in several models of dark

sectors. Kagramanova.et.al. [37] and Sereno. et.al. [38] have studied the gravi-

tational frequency shift in Cosmological constant model of dark energy by using

SDS metric as shown in equation (1.43) and (1.44).

The expression of gravitational shift in SDS metric is given by,

ν2

ν1

' 1− m

r2

+
m

r1

− Λ

6
(r2

2 − r2
1) (1.101)

The higher order terms of m/r1 and m/r2 are avoided,, where m = GM/c2 and

ν1 and ν2 are the frequencies of same photon traveling from r1 and r2 co-ordinate

distance respectively and Λ stands for the cosmological constant.

The gravitational frequency shift was also studied in Quintessence model dark

energy using the metric as mentioned earlier in equation (1.72) and expression of

gravitational frequency shift was found by [70], [88],

ν2

ν1

' 1− m

r2

+
m

r1

+ ∆νquintessence (1.102)

where,

∆νquintessence =
α

2
(

1

r3ω+1
2

− 1

r3ω+1
1

) (1.103)

The significance of ω, α are mentioned earlier in equation (70).

Farrugia et. al. investigated the gravitational frequency shift in f(r) gravity model

[48].

The gravitational frequency shift under the PPN metric is expressed by,
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∆ν = (1 + β)
∆U

c2
(1.104)

where β is the PPN parameter. The first time the gravitational frequency shift

was successfully measured in Pound-Rebka-Snider experiment of 1960-1965 using

gamma-ray photon at Harvard University.

In recent times, an advanced hydrogen maser clock, placed on International Space

Station and an atomic clock based on Cesium called PHARAO (Project D’Horloge

Atomique par Refroidissement d’Atomes en Orbit) are used to measure the gravita-

tional frequency shift under the Atomic Clock Ensemble in Space(ACES) project.

The precession level has been achieved so far up to 10−15 order using clock com-

parison and 10−15 H-maser in GP-A redshift measurement [89]. But to sense the

effect of dark energy, the accuracy must be reached at least 10−38 order [37].

1.8.5 Gravitational wave and a wider aspect to detect the

influences of dark sector:

The theory of general relativity suggests that the ripple of space-time perturbation

will travel in the form of a wave in the transverse direction of propagation, which

can be expressed as follows:

(− δ2

δt2
+ c2∆2)hµν = 0 (1.105)

where, hµν is a very weak perturbation of space-time metric, nearly Minkowsky

metric in Spacial Relativity, c stands for speed of light, ∆ = ( δ2

δx2 + δ2

δy2 + δ2

δz2 ), the

spatial second order differential operator. No component of the metric perturba-

tion (hµν) is found in direction of wave propagation.

Gravitational effects have been tested so far in different distance scales and gravity

strength areas (like weak and strong gravity regions). Gravitational wave astron-

omy has been explored the possibilities to test the gravitation in large scale and

strong field regime as it can travel a large distance without any interruption, un-

like electromagnetic wave. The recent detection of gravitational wave by LIGO,

has opened up the window to explore the reality of dark sector and many other
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unresolved astronomical problems. Total five binary black-hole [90], [91], [92], [93],

[94], [95] and a binary neutron star [96] sourcing GW have been detected so far.

A recent observation by advanced LIGO and Virgo detectors, a strong signal of

gravitational wave event GW170817 has been detected from a merger of binary

neutron stars [97] and a gamma-ray(GRB170817A) was also detected from the

same region of gravitational wave source by the same LIGO-Virgo detectors. The

detection of GW170817 was the first multi-messenger astronomical observation

from where both gravitational wave and electromagnetic wave have been detected.

These observations enable to be used as the sources of standard siren which able

to measure the astronomical distances of the sources using gravitational waves.

Measuring distances of the source by siren and red-shift of the electromagnetic

wave, the Hubble constant can be measured and using this way, the dynamic

nature of the Universe can be analyzed with high precision and existence and

effect of dark energy will be re-verified. On the other hand, dark matter, in the

form of axions or ultra-light bosons, form clouds around a black-hole, which is

observable with gravitational waves [97].
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