List of Figures

1.1 Energy spectrum of cosmic rays obtained from different experiments (figure is taken from [4]). .. 3

1.2 The schematic diagram of an EAS progeny (figure is taken from [26]). .. 6

2.1 The electron size vs muon size distribution from simulated data for vertical showers at KASCADE level. Regions shown by contour lines meaning an inclusion of 90% of the showers (figure is taken from [5]). .. 18

2.2 Simulation results of the depth of shower maximum vs. calorimetric energy. Regions shown by contour lines meaning an inclusion of 90% of the showers. The inset presents a complete view around 5×10^{20} eV (figure is taken from [6]). 19

2.3 Distribution of the shower size vs muon size as measured by KASCADE-Grande (figure is taken from [27]). .. 22

2.4 The mean logarithmic atomic mass as a function of the CR energy are derived from some experiment. Overlaid is the development of the mean logarithmic mass (grey, quadratic marks) computed based on QGSJET-II-02 and FLUKA 2002.4 (figure is taken from [30]). .. 23

2.5 Top: Compilation of several experimental results for the estimation of X_{max} by measuring the air Cherenkov light (Yakutsk [41], BLANKA [42], HEGRA [43], TUNKA-25 [44], SPASE [45], CACTI [46], DICE [47]). Monte Carlo simulations for two different models are also shown; Bottom: Same as above but LOPES and Auger results were derived from radio and fluorescence data. .. 25

3.1 Comparison of the NKG fitted lateral distribution of electrons with the simulated data for showers generated at 5×10^{14} eV energy. .. 43

3.2 Variation of shower age parameter (s_\perp) with atmospheric slant depth ($\sec \Theta$) for three N_e ranges: (a) $(1.8 - 3.0) \times 10^3$; (b) $(5.7 - 9.5) \times 10^2$ and (c) $(2.0 - 5.0) \times 10^4$ at NBU level. In (c) NBU data are provided. .. 45

3.3 Variation of s_\perp with $\sec \Theta$ for two different interaction models, QGSJet and SIBYLL corresponding to the N_e interval $(1.8 - 3.0) \times 10^5$ at NBU level. .. 46

3.4 Variation of s_\perp with $\sec \Theta$ for two muon size intervals using two high-energy hadronic interaction models at NBU level. .. 47

3.5 Distributions of differences between s_\parallel and s_\perp at NBU level. .. 48

3.6 Distributions of s_\perp for vertically incident showers at the NBU level for the energy range $E = 3 \times 10^{14} - 3 \times 10^{16}$ with the QGSJet model: (a) proton and (b) iron. Fits are made by the EVD function. For (a) $\mu \approx 1.38$ and $\sigma s_\perp \approx 0.1$ and (b) $\mu \approx 1.495$ and $\sigma s_\perp \approx 0.07$. .. 50

3.7 In (a) the distributions of s_\perp are shown for proton and iron showers at the NBU level (sea level) with EVD fits. In (b) the distributions are shown at ARGO-YBJ level (mountain level) with Gaussian fits. The QGSJet model is used entirely. .. 51
3.8 Fluctuations in s_\perp and their variation with N_e at the NBU level. The lines are only a guide for the eye. .. 52

3.9 3-Dimensional plot using shower size, muon size and lateral shower age parameters at NBU level: (a) Pure proton and (b) Pure iron showers, generated using the QGSJet model. NBU data are given in (c). Muons are considered from 4–35 m core distance with $E_{\mu}^{\text{Th.}} \geq 2.5$ GeV. Projection on the X–Y plane showing the corresponding N_e–N_μ curve. .. 53

3.10 3-Dimensional plot using shower size, muon size and lateral shower age parameters at KASCADE level: (a) Pure proton and (b) Pure iron showers, generated using the QGSJet model. KASCADE data are given in (c). Projection on the X–Y plane showing N_e–N_μ curve. .. 55

4.1 Variation of the LAP with radial distance at the KASCADE site for different shower (or electron) size and muon size (truncated) intervals. Figure (a) and (b) for proton and iron showers using simulated LDD data of electrons. Figure (c) and (d) show the similar variations but with the LDD data of muons. 68

4.2 Variation of the SSP with radial distance at the KASCADE site for different muon size intervals. Figure (a) and (b), for proton and iron showers using simulated LDD data of muons only. .. 69

4.3 Variations of the LAP and SSP with radial distance at the KASCADE site for different muon size intervals, for simulated iron showers. Figure (a) and (b) show the radial variation for the LAP and SSP independently with the Molière radius - 420 m. Figure (c) and (d) show the similar variations for the LAP and SSP independently with two different values of the Molière and Greisen radii. EPOS model is used for high energy hadronic interactions. 71

4.4 Variations of the LAP and SSP with radial distance at the KASCADE site for different muon size intervals, for simulated iron showers. Figure (a) and (b) show the radial variation for the LAP and SSP independently with the Molière radius - 320 m. Figure (c) and (d) show the similar variations for the LAP and SSP independently with the Molière/Greisen radius - 420 m each. QGSJet model is used for high energy hadronic interactions. 73

4.5 Distribution of the mean minimum LAP from simulated muon LDD data initiated by iron primaries for two different Molière radii. Figure (a) - iron; Figure (b) - proton. .. 74

4.6 Variation of the mean minimum LAP with shower size for proton and iron primaries for (a) EPOS and (b) QGSJet models at the KASCADE site along with the experimental data. The lines are drawn for the purpose of guidance to our eyes. .. 78

4.7 Variation of the mean minimum LAP with muon size for proton and iron primaries for (a) EPOS and (b) QGSJet models taking $r_m = 320$ m at the KASCADE site along with the experimental data. Figure (c) shows the similar variation but with $r_m = 420$ m. The lines are drawn for the purpose of guidance to our eyes. .. 79

4.8 Variation of the mean maximum SSP with muon size for proton and iron primaries for (a) EPOS and (b) QGSJet models taking $r_G = 320$ m at the KASCADE site. Figure (c) shows the similar variation but with $r_G = 420$ m. The lines are drawn for the purpose of guidance to our eyes. .. 80
5.1 Structure of equi-density ellipses in three different angles of incidence and the corresponding variation of the gap length between the EAS core and the center of the equi-density ellipse. ... 86
5.2 Sketch of the geometry of the ground plane and shower front plane of an inclined shower. ... 89
5.3 Longitudinal distribution of average electrons and muons for proton and iron induced showers at KASCADE level. ... 95
5.4 Polar distribution of electrons from the simulated data. Top: \(r \equiv r_g = 50 \) m, Bottom: \(r \equiv r_g = 75 \) m. ... 99
5.5 Electron lateral density from simulated data for proton and iron initiated showers in the ground plane. Density data are fitted by the characteristic function (CF). ... 100
5.6 Formation of the GL from the equi-density ellipse of the simulated electron density. ... 100
5.7 Variation of the GL \((x_C) \) with \(y_R \) for the electron component. Predicted values for \(x_C \) are shown by the dotted and short dotted lines. ... 102
5.8 Variation of \(x_C \) with \(y_R \) for the electron densities for two energies, 10 and 100 PeV. The lines are only a guide for the eye. ... 103
5.9 Variation between \(x_C \) and \(y_R \) at two zenith angles. The lines are only a guide for the eye. ... 104
5.10 Mass sensitivity of the gap length parameter \(x_C \) from its variation with \(N_e \) (top). Same but with \(\Theta \) (bottom). ... 105
5.11 Variation of the LAP (estimated from the simulated data using SLDF (NKG) and ELDF) with radial distance at KASCADE level. ... 106

6.1 Comparison of the NKG fitted lateral density distribution of electrons with the simulated data for proton and gamma ray showers generated at \(5 \times 10^{14} \) eV energy. ... 117
6.2 Mean number of muons and hadrons as a function of mean electron numbers for simulated proton, iron, mixed and gamma ray showers: (a) simulation and NBU data for muon-electron correlations; (b) same as Fig. (a) but at KASCADE level. In (c), simulation and KASCADE data for hadron-electron correlations. ... 119
6.3 Variation of the ratio between the two electron densities estimated at two distance bands \(5 - 15 \) m and \(35 - 45 \) m with the muon number to electron number ratio at KASCADE level: (a) 100 - 800 TeV; (b) 3.1 - 10 PeV ... 121
6.4 Frequency distributions of \(N_{\mu}^{Max} \); (a) for proton; (b) iron; (c) gamma ray showers. We have considered showers in the primary energy range 200 - 800 TeV with \(\Theta = 20^\circ - 40^\circ \). Models used are EPOS 1.99 and GHEISHA. ... 125
6.5 Correlations between the simulated primary energy and the produced muon number for (a) proton, (b) iron and (c) gamma ray induced showers. The red patch in each figure shows the reconstructed energy obtained from the energy parametrization according to the equation 6.3. The solid blue curves show the variation of the primary energy with number of muons according to the best-fit with polynomial functions in the 200–800 TeV energy range. Models used are EPOS 1.99 and GHEISHA. ... 127
6.6 Frequency distributions of \(\ln \left(\frac{E_{\text{rec}}}{E_{\text{sim}}} \right) \) with \(E = 200 - 800 \) TeV for (a) iron, (b) proton and (c) gamma ray primaries. Gaussian fits are made. ... 128

7.1 The separation of \(\mu^+ \) and \(\mu^- \) generated from a parent particle in an EAS by the geomagnetic field in two different situations. ... 135
7.2 Sketch of the geometry of the ground plane and shower front plane used for the geometric correction in an inclined shower. .. 139
7.3 The ratios of the accurate (projection+attenuation - corrected) to the inaccurate (projection - corrected) densities for showers coming from the North with core distance in the shower front plane. Densities are taken from the core to the late part of showers. ... 141
7.4 Average longitudinal distribution of electrons and muons for proton and iron induced showers. ... 141
7.5 Distribution of the azimuth angle Φ for all simulated events (pre-selected). Events are selected from two smaller bins with size $\Delta \Phi \sim 10^\circ$ around two arrow heads vertical lines for further consideration in the analysis. 143
7.6 In Fig. 7.6a and Fig. 7.6b, we have used our two selected Φ ranges but keeping the mean Θ at 65.44$^\circ$ for the mean polar variations of μ^+ and μ^- for iron primary. The mean polar variations of μ^+ and μ^- and their corresponding scattered plots, are also shown independently in Fig. 7.6c, Fig. 7.6d, Fig. 7.6e, Fig. 7.6f, Fig. 7.6g and Fig. 7.6h when showers arriving from the very restrictive North direction. For Fig. 7.6a, the x-label represents both the polar angles; β_s and ϕ_g while for Figs. 7.6b, 7.6c, and 7.6d, X-axis represents β_s only. 148
7.7 Scanning of μ^+ and μ^- particles by rotating IQS in anti-clockwise sense from 0° to 180°. ... 149
7.8 Polar variation of the mean TMBS for p and Fe showers arriving from two average arbitrary directions. ... 150
7.9 Comparison of the polar variations of TMBS for p and Fe showers arriving at different zenith angles of incidence for $\langle \Phi \rangle \sim 52.5^\circ$ and $\langle \Phi \rangle \sim 245^\circ$. 152
7.10 Variation of the mean MTMBS with Θ and dependence on the high-energy hadronic interaction models. Model dependence is shown through the figure (c). The lines are only a guide for the eye. 153
7.11 Combined elliptic contour resulting from a pair of smaller iso-density contours of μ^+ and μ^- with increasing Θ for $\Phi \sim 0^\circ$. At Θ_3 the overall ellipse gets 8-shaped pattern. ... 155
7.12 Variation of mean MTMBS with primary energy for p and Fe initiated showers coming the two arbitrarily selected directions: figure (a) and (b) correspond $\langle \Phi \rangle = 52.5^\circ$ while figure (c) and (d) for $\langle \Phi \rangle = 245^\circ$. 158
7.13 Variation of MTMBS parameter with longitude and different GF components. 161
7.14 Variation of MTMBS parameter with latitude and different GF components. 163
7.15 Sketch of a possible array layout containing number of scintillation detectors and two muon detecting systems for practical realization of the proposed EAS method. ... 167