List of Tables

2.1 EAS experiments done so far ... 27

3.1 Parameters from the variation of s_{\perp} with $\sec \Theta$ for three different N_e intervals. The NBU data are shown for one N_e interval only. .. 46

4.1 Analysis showing the dependence of mean minimum local age parameter with electron size at 44 m from shower core. ... 75

4.2 Analysis showing the dependence of mean local age($s_{\text{local}}^{\text{min}}$) with truncated muon size at 44 m from shower core. ... 76

4.3 Analysis showing the dependence of mean segmented slope parameter (β_{max}^{ss}) with electron size at 71 m from shower core. ... 76

4.4 Analysis showing the dependence of mean segmented slope parameter (β_{max}^{ss}) with truncated muon size at 71 m from shower core ... 76

7.1 Analysis showing an implementation of the selection of best possible muon detection regions in opposite sides keeping several factors in mind. Here, we have used Fe showers with $E = 98 - 102$ PeV, $\Theta = 63^\circ - 68^\circ$ and $\Phi = 47.5^\circ - 57.5^\circ$. The selection is made for charged muons with $p_\mu = 10^2 - 10^3$ GeV/c. Highlighted figures correspond qualified (Q) data from the selection - Y: Yes; N:No. ... 143

7.2 Analysis showing an implementation of the selection of muons momenta in selected detection regions obtained from Table 7.1. Here, we have used Fe showers with $E = 1 - 3$, $8 - 12$, and $98 - 102$ PeV, and $\Theta = 63^\circ - 68^\circ$, and $\Phi = 47.5^\circ - 57.5^\circ$. Highlighted figures correspond qualified data from the selection. ... 144

7.3 The eccentricity parameters for showers initiated by proton and iron primaries and coming from the North direction: QGSJet model (Upper) and EPOS model (Lower). ... 156

7.4 Details of the geomagnetic field components of some geographical locations with nearly constant latitude. ... 159

7.5 Details of the geomagnetic field components of some geographical locations with nearly constant longitude. ... 159

7.6 Details of latitude, longitude and GF components for two geographical locations. ... 161

7.7 Latitude and GF components for the geographical location A, obtained from Fig. 7.14 ... 163

7.8 Longitude and GF components for the geographical location B, obtained from Fig. 7.13 ... 163

7.9 Simulation results at KASCADE level with reduced magnetic field. ... 164

7.10 Simulation results at a nearby level of KASCADE experiment with reduced magnetic field. ... 164
7.11 Analysis showing azimuthal dependence of MTMBS parameter for $\theta = 55^\circ$ and $E = 100$ PeV. Column 2 and 3 for proton initiated showers while column 4 and 5 for iron initiated showers. 169

7.12 Analysis showing zenith angle dependence of MTMBS parameter for $\Phi = 52.5^\circ$ and $E = 100$ PeV. Column 2 and 3 for proton initiated showers while column 4 and 5 for iron initiated showers. 169