LIST OF FIGURES

Figure no.	Caption	Page no.
	INTRODUCTION	
Figure 1	Molecular structure of monolaurin.	2
Figure 2	Molecular structure of 1,2-dilauroyl-sn-glycerol.	3
Figure 3	Molecular structure of tristearine.	3
Figure 4	Molecular structure of cetyl palmitate.	4
Figure 5	Molecular structure of glycerophospholipids.	4
Figure 6	Molecular structure of phosphatidylcholine.	5
Figure 7	Molecular structure of phosphatidylethanolamine.	5
Figure 8	Molecular structure of phosphatidylserine.	6
Figure 9	Molecular structure of phosphatidylinositol:	6
Figure 10	Molecular structure of phosphatidylglycerol.	6
Figure 11	Molecular structure of phosphatidylethanolamine.	7
Figure 12	Molecular structure of sphing ophospholipids.	7
Figure 13	Molecular structure of glycolipids.	8
Figure 14	Molecular structure of cholesterol.	9
Figure 15	Molecular structure of curcumin.	10
Figure 16	Molecular structure of chrysin.	10
Figure 17	Molecular structure of oleanolic acid.	11
Figure 18	Molecular structure of pyrazinamide.	11
Figure 19	A schematic diagram of nanoemulsion.	14
Figure 20	A schematic diagram of liposome	15
Figure 21	Schematic diagram of the drug loaded SLN (left) and NLC (right)	16
Figure 22	Schematic representations and TEM images of different types of	18
	NLC formulation (a), imperfect type; (b), amorphous type and (c),	
	multiple type.	
Figure 23	Schematic diagram of different type of drug incorporation models	19
	for NLC formulations. A, drug enriched core model; B, solid	

	solution model and C, drug enriched shell model.	
Figure 24	Flow diagram for the preparation of NLC using Hot homogenization	24
	followed by ultrasonication technique.	
Figure 25	Aggregation method in reducing intensified dispersions and pearl	25
	like network in the NLC dispersion with stabilizing effect.	
Figure 26	Representative size distribution of NLC (SLC + TS + PA, 2:2:1,	27
	M/M/M) formulation obtained in the DLS measurements.	
Figure 27	Representative TEM image of NLC (CP+TO+PA, 2:2:1, M/M/M)	28
	formulation.	
Figure 28	Representative AFM images of the NLC formulations comprising	28
	TB + HSPC + BA, 2:2:1, M/M/M (I) and TE + HSPC + OA, 2:2:1,	
	M/M/M (2).	
Figure 29	DSC thermograms of the physical mixture of lipids (solid line) and	30
	NLC (SLC + TS + PA, 2:2:1, M/M/M) formulations (dotted line).	
Figure 30	Representative release profiles of incorporated procaine	32
	hydrochloride from NLC (Span 65 + SLC + SA, 2:2:1, M/M/M)	
	formulations.	
	CHAPTER 1	
Figure 1	Surface pressure (π) – area (A) isotherm of SLC (1), TS (2), PA (3)	45
	and curcumin (4, panel A) and mixed monolayer of SLC+TS (1:1)	
	and PA (panel B and C). Panel D describes the π -A isotherms of	
	mixed monolayer of (SLC+TS+ PA, component 1) and curcumin	
	(component 2). While pure water was used for A & B, 10 mM	
	aqueous Tween 60 solution was used as subphase in C and D. Mole	
	% of PA (B and C): 5 &10, 0; 6 &11, 10; 7 &12, 20; 9 &13, 80 and	
	8 &14, 100. Mole% of curcumin (Panel D): 15, 0;16, 80; 17, 40; 18,	
	50; 19, 60 and 20, 100. Temperature 25 °C.	
Figure 2	Dependence of compression moduli (C _s ⁻¹) of (SLC+TS+FA, 2:2:1,	47
	M/M/M) monolayer with percentage of area compressed and surface	

	as subphase. FAs are mentioned inside the figure.	
Figure 3	Variation of excess molecular area (Aex) and excess free energy	48
	change (ΔG_{ex}^0) with PA and curcumin mole%. For panel A, B:	
	Component 1: SLC+TS (1:1, M/M), Component 2: PA. For panel C,	
	D: Component 1: SLC+TS+PA (2:2:1, M/M/M), Component 2:	
	curcumin.Surface pressure (mNm $^{-1}$): O, 5; Δ , 10; \Box , 15; ∇ , 20; \Diamond , 25	
	and \triangleleft , 30. Temperature: 25 °C.	
Figure 4	Variation in hydrodynamic diameter (dh) and polydispersity index	50
	(PDI) with time for SLNs (SLC+TS+FA, 2:2:1, M/M/M). Samples	
	were stored at 25 °C. FAs are mentioned inside the figure.	
Figure 5	Hydrodynamic size (diameter, dh) distribution of SLNs comprising	50
	different fatty acids. 1 mM SLN formulation of SLC+TS+FA	
	(2:2:1, M/M/M) dispersed in 10 mM aqueous Tween 60 solution	
	were studied. FAs are mentioned inside the figure. Temperature: 25	
	$^{\circ}\mathrm{C}$	
Figure 6	FF-TEM images of SLN (SLC+TS+ PA, 2:2:1, M/M/M) in the	52
	absence (A) and presence (B) of curcumin. Scale bar: 500 nm.	
Figure 7	DSC thermogram of a 5 mM SLN formulation (SLC+TS+PA, 2:2:1,	54
	M/M/M). Scan rate: 2 °C / min.	
Figure 8	DSC cooling thermograms of 5mM SLNs (SLC+TS+FA, 2:2:1,	55
	M/M/M, stabilized by 10 mM aqueous Tween 60) with different	
	fatty acids (1, LA; 2, MA; 3, PA and 4, SA). Scan rate: 2 °C /min.	
Figure 9	Absorption (A) and emission (B) spectra of 5 µM curcumin in	57
	different solvents (A1, B1) and SLNs (SLC+TS+FA, 2:2:1, M/M/M)	
	(A2, B2) at 25 °C. Systems: 1&9, n-hexane; 2& 10, aqueous 10 mM	
	Tween 60; 3 & 12, acetonitrile; 4 & 11, ethanol; 5 & 13, SA; 6 &	
	14, PA; 7 & 15, MA and 8 & 16, LA. λ_{ex} = 419 nm.	
Figure 10	Dependence of the absorption maxima (λ_{max}) of curcumin on	58
	dielectric constant (ε) of the medium at 25 °C. Red and the blue line	
	correspond to the aprotic and protic solvents respectively. Solvents:	

pressure (π) at 25 °C. 10 mM aqueous Tween 60 solution was used

	 , hexane; ▲, chloroform; ■, acetonitrile; ▼, DMSO; ○, pentanol, 	
	Δ , propanol; \Box , ethanol and ∇ , methanol. 5 μM curcumin was used	
	in recording the spectra.	
Figure 11	Variation in the fluorescence anisotropy (r) with time for curcumin	59
	loaded SLNs comprising four different fatty acids. Fatty acids: O,	
	LA; Δ , MA; \Box , PA and ∇ , SA. The concentration of curcumin was	
	5 μM. Excitation wavelength and emission wavelength were set at	
	419 and 458 nm respectively. Temperature, 25 °C.	
Figure 12	Dependence of entrapment efficiency (EE) and in vitro release	60
	profile of curcumin loaded SLN (SLC+TS+FA, 2:2:1, M/M/M) on	
	the fatty acid chain length (C _n) at 25 °C. Systems for right panel: ●,	
	control; O, LA; Δ , MA; \Box , PA and ∇ , SA.	
Figure 13	Inhibitory effect of curcumin loaded SLNs (B) on the growth of	63
	Bacillus amyloliquefaciens. SLNs without curcumin were used as	
	control (A). Panel C represent the activity of curcumin alone using	
	Tween 60 as control. Fatty acid chain lengths are mentioned inside	
	the figure.	
	CHAPTER 2	
Figure 1	Surface pressure (π) - area (A) isotherms of pure lipids using water	73
	(panel A) and 2mM aqueous Tween 60 solution (panel B) as the	
	subphase at 25°C. Systems: 1 & 4, TS; 2 & 5, OA; 3 & 6, CP.	
Figure 2	Surface pressure (π) – area (A) isotherm of CHR 10 (blue) and CHR	74
	16 (red) using water (dotted line) and 2 mM aqueous Tween 60	
	solution (solid line) as subphase (panel A). Panel B represented the	
	π – A isotherms of mixed lipidic system (CP+TP+OA, 2:2:1,	
	M/M/M) in absence (black) and presence of 50 mole% CHR 10	
	(blue) & CHR 16 (red) using 2mM aqueous Tween 60 as subphase.	
	Temperature 25 °C.	
Figure 3	Variation of elasticity moduli (Cs-1) with % compressed area upon	75
	addition of 50 mole% different LCDs of chrysin on the mixed lipidic	

	used as subphase. Different systems have been mentioned inside the	
	figure.	
Figure 4	Variation of excess molecular area (Aex) and changes in excess free	76
	energy (ΔG_{ex}^0) of the mixed lipidic system with the mole% OA	
	(panel A, B) and chrysin, LCDs of chrysin (panel C, D). For panel	
	A, B: Component 1: CP+TP (1:1, M/M), Component 2: OA. For	
	panel C, D: Component 1: CP+TP+OA (2:2:1, M/M/M),	
	Component 2: chrysin and LCDs of chrysin. Surface pressure for	
	panel A & B (mNm ⁻¹): O, 5; Δ , 10; \Box , 15; ∇ , 20; \Diamond , 25 and \triangleleft , 30.	
	Systems for panel C & D: O, CHR; Δ , CHR 8; \Box , CHR 10; ∇ , CHR	
	16 and♦, CHR 18. Temperature: 25 °C.	
Figure 5	Variation of hydrodynamic diameter, PDI and zeta potential with	79
	time for 1 mM NLC formulation (CP+TP+OA, 2:2:1, M/M/M)	
	stabilized by 2 mM aqueous Tween 60 solution in the absence and	
	presence of chrysin and LCDs of chrysin at 25 °C. Individual	
	systems are mentioned inside the figure. [Chrysin] & [LCDs of	
	chrysin]: 10 μM.	
Figure 6	TEM (panel A, B) amd FF-TEM (panel C, D) images for NLC	82
	(CP+TP+OA, 2:2:1, M/M/M) formulations in the absence (panel A,	
	C) and presence (panel B, D) of chrysin. The scale bars are	
	mentioned inside the figure.	
Figure 7	AFM image of NLC (CP+TP+OA, 2:2:1, M/M/M) formulation	83
	where panel A and B represented the two and three dimensionalview	
	respectively. Panel C represented the roughness profile for the NLC	
	formulation. Height scale is given inside the figure. Scan area:	
	(1X1) μm.	
Figure 8	DSC thermogram of a 5 mM NLC formulation (CP+TP+OA, 2:2:1,	85
	M/M/M, stabilized with 2 mM aqueous Tween 60 solution). Inset	
	represented the DSC thermogram of the corresponding physical	
	mixture.	

system (CP+TP+OA, 2:2:1 M/M/M). 2mM aqueous Tween 60 was

Figure 9	Change in the thermodynamic parameters for NLC formulations in	86
	the presence of different mole % of OA (panel A). Panel B	
	represents the change in the thermodynamic parameters for the NLC	
	(CP+TP+OA, 2:2:1, M/M/M) formulation with the incorporation of	
	chrysin and LCDs of chrysin. The systems are mentioned in the	
	figure.	
Figure 10	Crystallinity index (CI%) of the NLC formulations (CP+TP+OA,	87
	2:2:1, M/M/M) in the absence (panel A) and the presence (panel B)	
	of chrysin and LCDs of chrysin. The individual systems are	
	mentioned in the figure.	
Figure 11	Entrapment efficiency (EE%), drug loading (DL%) capacity (panel	89
	A) and release profile (panel B) of chrysin and different LCDs of	
	chrysin form NLC formulation at 25 °C . systems (panel B): O,	
	CHR; Δ , CHR 8; \Box , CHR 10; ∇ , CHR 16 and \Diamond , CHR 18.	
Figure 12	Simple diffusion of chrysin and LCDs of chrysin in 2 mM aqueous	90
	Tween 60 solution through dialysis membrane (12kD) at 25 °C.	
	Systems, \circ , CHR, Δ , CHR8; \Box , CHR10; ∇ , CHR16 and \diamond , CHR 18	
	10 μM chrysin and the LCDs were used for the experiment.	
Figure 13	Percentage cytotoxicity at three different concentration of chrysin	93
	and LCDs of chrysin loaded in the NLC formulation (CP+TP+OA,	
	2:2:1, M/M/M) against human neuro blastoma cell lines (SHSY5Y).	
	Blank NLC formulation is taken as control. The individual systems	
	are mentioned inside the figure	
	CHAPTER 3	
Figure 1	Surface pressure (π) – area (A) isotherm of pure lipidic components	102
1 Iguil 1	and OLA using water as subphase at 25 °C. The different systems	102
	were mentioned in the figure.	
Figure 2	Surface pressure (π) – area (A) isotherm of mixed lipidic system	102
- 1941 0 2	(SLC/IPA+TS+PA, 2:2:1, M/M/M) in the absence (red) and	102
	presence (black) of IPA using water as subphase. Corresponding C_s^{-1}	
	F (order), or many many many as propriating Og	

	Temperature 25 °C	
Figure 3	Variation in A_{ex} (panel A & C) and ΔG_{ex}^0 (panel B & D) of the	104
	mixed lipidic system with mole % of IPA (panel A, B) and OLA	
	(panel C, D). For panel A, B: Component 1: SLC & Component 2:	
	IPA. For panel C, D: Component 1: SLC/IPA (30:70)+TS+PA	
	(2:2:1, M/M/M) & Component 2: OLA. Surface pressures (mNm ⁻¹):	
	O, 5; Δ , 10; \Box , 15; ∇ , 20; \diamond , 25 and \triangleleft , 30. Temperature: 25 °C.	
Figure 4	Variation in size (dh), PDI and zeta potential (Z.P.) with time for 1	107
	mM NLC _{IPA} (SLC/IPA+TS+PA, 2:2:1, M/M/M) stabilized by 2 mM	
	aqueous Tween 60 solution in the absence (panel A) and presence	
	(panel B) of OLA at 25 °C. SLC/IPA ratios for different systems	
	have been mentioned inside the figure. [OA]: 10 μM.	
Figure 5	TEM (panel A, B & C) and FF-TEM (panel A1, B1 & C1) images	109
	for (A) conventional NLC (SLC+TS+PA, 2:2:1, M/M/M); (B)	
	NLC_{IPA} (SLC/IPA+TS+PA, 2:2:1, M/M/M) and (C) NLC_{IPA} in	
	presence of OLA. SLC/IPA ratio is 30: 70 (M/M) in NLC _{IPA} . The	
	scale bars are mentioned inside the figure.	
Figure 6	AFM images of (A) conventional NLC (SLC+TS+PA, 2:2:1,	110
	M/M/M); (B) NLC_{IPA} (SLC/IPA+TS+PA, 2:2:1, M/M/M) and (C)	
	NLC _{IPA} in presence of OLA. SLC/IPA ratio was 30:70 (M/M) in	
	NLC _{IPA} . Corresponding three dimensional view and roughness	
	profiles were also presented in the Figure.	
Figure 7	DSC cooling thermograms for NLC _{IPA} (SLC/IPA+TS+PA, 2:2:1,	111
	M/M/M) formulations having different SLC/IPA ratio in absence	
	(panel A) and presence (panel B) of OLA. SLC/IPA (M/M) ratios	
	(panel A & B): 1, 100:0; 2, 40:60; 3, 30:70 and 4, 20:80.	
	[NLC $_{\rm IPA}$] and [OLA] : 1 mM and 10 μM respectively. Scan rate, 2.5	
	°C min ⁻¹ .	
Figure 8	Representative heating cooling DSC thermogram for NLC_{IPA}	112
	(SLC/IPA+TS+PA, 2:2:1, M/M/M) formulations having SLC/IPA	

vs. % compressed area has been presented in the inset of the Figure.

	(M/M) ratio 30 : 70. [NLC _{IPA}] : 1 mM. Scan rate, 2.5 °C min ⁻¹ .	
Figure 9	Variation in different thermodynamic parameters with the change in	113
	SLC/IPA ratio of NLC _{IPA} (SLC/IPA+TS+PA, 2:2:1, M/M/M) in the	
	absence (black) and presence (red) of OLA. The individual systems	
	were mentioned inside the figure.	
Figure 10	Variation in entrapment efficiency (EE%), drug loading (DL%)	115
	capacity (panel A) and release profile (panel B) of OLA with the	
	variation in the SLC/IPA ration for NLC _{IPA} (SLC/IPA+TS+PA,	
	2:2:1, M/M/M) formulation at 25 °C . SLC/IPA (M/M) ratio (panel	
	B): •, controlee \circ ,100 : 0; \Box , 20 : 80; Δ , 30 : 70 and ∇ ,40 : 60.	
Figure 11	In vitro cytotoxicity of the conventional NLC (SLC/IPA+TS+PA,	119
	2:2:1, M/M/M) and NLC _{IPA} (SLC/IPA+TS+PA, 2:2:1, M/M/M) in	
	absence and presence of OLA on three different cell lines at three	
	different incubation times. The different systems, cell lines and	
	incubation times were mentioned in the figure. NLC _{IPA} having	
	SLC/IPA ratio 30: 70 was used for the cytotoxicity studies.	
Figure 12	In vitro cytotoxicity of OLA alone on three different cell lines at	120
	three different concentrations of OLA. Different cell lines and	
	incubation times were mentioned in the figure.	
	CHAPTER 4	
Figure 1	Variation in d_h and PDI with respect to time for the NLC (HSPC :	123
	$TS:OA,2:2:1,M/M/M$) and $NLC_{PEG}(HSPC:TS:OA,2:2:1,M/M/M)$	
	M/M/M) systems in the absence (panel A) and presence (panel B)	
	of PYZ at 25 °C. The different concentration of PEG 2000 was	
	mentioned inside the figure.	
Figure 2	Z.P. vs. time profile for NLC (HSPC : TS : OA, $2:2:1$, M/M/M)	131
	and NLC_{PEG} (HSPC: TS: OA, 2:2:1, M/M/M) systems in the	
	absence (panel A) and presence (panel B) of PYZ at 25 °C. The	
	different concentration of PEG 2000 was mentioned inside the	
	figure.	

Figure 3	TEM images of NLC_{PEG} (HSPC : TS : OA, 2 : 2 : 1, M/M/M)	132
	having 0.01 (W/V)% of PEG 2000 in the absence (A) and presence	
	(B) of PYZ. Scale bars are given inside the figures.	
Figure 4	AFM image (A) NLC_{PEG} (HSPC : TS : OA, 2 : 2 : 1, M/M/M)	133
	having 0.01 (W/V)% of PEG 2000. Panel B and C represented the	
	three dimensional surface morphology and corresponding roughness	
	analysis profile respectively.	
Figure 5	DSC cooling thermograms of NLC (red) and NLC _{PEG} (black)	134
	(HSPC: TS: OA, 2:2:1, M/M/M) having 0.01 (W/V)% of PEG	
	2000 in absence (panel A) and presence (panel B) of PYZ. The scan	
	rate was fixed at 2 °C min ⁻¹ .	
Figure 6	Variation in EE^ and DL% of NLC _{PEG} (HSPC: TS: OA, 2: 2: 1,	137
	M/M/M) formulations with the concentration of PEG 2000.	
Figure 7	Release profiles of the free PYZ and PYZ from NLC (HSPC: TS:	138
	OA, $2:2:1$, M/M/M) and NLC _{PEG} (HSPC : TS : OA, $2:2:1$,	
	M/M/M) having 0.01 (W/V)% of PEG 2000 at 25 °C.	