CHAPTER V OBSERVATIONS AND RESULTS

5. Observations and Results

5.1. Physico- chemical parameters

Site 1 (Baidya Fish Farm)

Results of the air temperature and physico-chemical parameters of water of Site 1 (Baidya Fish Farm) are shown in Table 5.1 and Table 5.2. Table 5.1 shows the result of air temperature and physico-chemical parameters of water of the first year (Nov. 2008 to Oct. 2009) study period. Table 5.2 shows the results of air temperature and physico-chemical parameters of water of the second year (Nov. 2009 to Oct. 2010) study period. Table 5.3 shows the correlation coefficient (r) of air temperature and different physico-chemical parameters of water at Site1. Fig.5.1 shows the monthly variations in air temperature at Site 1 in the first year and the second year study periods. The Figs.5.1 to 5.9 show histograms and Figs. 5.10-5.13 show line graphs of the monthly variations of different physico-chemical parameters of water at Site 1 in the first year (Nov. 2008 to Oct. 2009) and the second year (Nov. 2009 to Oct. 2010) study periods.

Air temperature

The minimum air temperature was recorded as $20.01 \pm 0.132^{\circ} \mathrm{C}$ during the month of December and the maximum air temperature was $33.02 \pm 0.325^{\circ} \mathrm{C}$ in the month of April during the first year study period (Table 5.1). The minimum air temperature was $19.2 \pm 0.452^{\circ} \mathrm{C}$ in the month of January and maximum air temperature was $32.5 \pm 0.497^{\circ} \mathrm{C}$ in the month of March during the second year study period (Table 5.2).

During year 1 , the air temperature showed a decreasing trend during the months of November and December and thereafter it increased January onwards up to April. The air temperature during the year 2 showed decreasing trends from November to January. Decreasing trend was also observed during the months of September to October in both years (Tables 5.1, 5.2; Figs. 5.1, 5.10).

The air temperature had positive and significant correlation with water temperature ($\mathrm{r}=0.933$, $\mathrm{P}<0.01$), $\mathrm{pH}(\mathrm{r}=0.603, \mathrm{P}<0.05$) and biological oxygen demand ($\mathrm{r}=0.645, \mathrm{P}<0.05$) but inverse and significant correlation with DO ($\mathrm{r}=-.535, \mathrm{p}<0.10$), TA ($\mathrm{r}=-0.537 \mathrm{p}<0.10$) and free carbon dioxide ($\mathrm{r}=-0.652, \mathrm{P}<0.05$) (Table 5.3).

Water temperature

The lowest surface water temperature was $17.05 \pm 0.550^{\circ} \mathrm{C}$ in the month of December and highest was $29 \pm 0.320^{\circ} \mathrm{C}$ was in the month of September during the first year (Table 5.1). The minimum temperature was $17.3 \pm 0.526^{\circ} \mathrm{C}$ in the month of January and the highest was 31.4 $\pm 0.327^{\circ} \mathrm{C}$ was in the month of September during second year study period (Table 5.2).

During year 1, the water temperature showed a decreasing trend during the months of November and December, thereafter the temperature increased (Table 5.1; Figs. 5.2, 5.11). During year 2 also it showed decreasing trend from November to January. Decreasing trend was also observed during the months of September to October in both years (Table 5.1; Figs. 5.2, 5.11).

The water temperature had positive and significant correlation with air temperature ($\mathrm{r}=$ $0.933, \mathrm{P}<0.01)$ and $\mathrm{pH}(\mathrm{r}=0.688, \mathrm{P}<0.05)$ but inverse and significant correlation with free $\mathrm{CO}_{2}(\mathrm{r}=-0.729, \mathrm{P}<0.01)$ and $\mathrm{DO}(\mathrm{r}=-0.710, \mathrm{P}<0.01)($ Table 5.3 $)$.

pH

The minimum pH was recorded 6.22 ± 0.309 in the month of April and maximum 8.3 ± 0.17 was in the month of February during the first year (Table 5.1, Fig.5.3) and minimum pH was 7.8 ± 0.221 in March and maximum 9.2 ± 0.32 was in May during the second year (Table 5.2, Fig. 5.3). pH had positive and significant correlation with total hardness ($\mathrm{r}=0.681, \mathrm{P}<0.05$), air temperature ($\mathrm{r}=0.603, \mathrm{P}<0.05$) and water temperature $(\mathrm{r}=0.688, \mathrm{P}<0.05)$ but inverse and significant correlation with $\mathrm{DO}(\mathrm{r}=-0.496, \mathrm{p}<0.1)$ and total alkalinity ($\mathrm{r}=-0.487$, $\mathrm{P}<0.1$) (Table 5.3).

Free carbon dioxide

The maximum free carbon dioxide was $174.15 \pm 0.326 \mathrm{mg} / \mathrm{L}$ in the month of June and minimum $18.48 \pm 0.287 \mathrm{mg} / \mathrm{L}$ was in the month of October during the first year study period (Table 5.1; Fig 5.4) In the second year study period maximum CO_{2} was 71.28 ± 0.326 mg / L in January and minimum $2.24 \pm 0.645 \mathrm{mg} / \mathrm{L}$ was in May (Table 5.2; Fig.5.4). Free carbon dioxide showed positive and significant correlation with BOD ($\mathrm{r}=0.679$, $\mathrm{P}<0.01$), chloride ($\mathrm{r}=0.781, \mathrm{P}<0.01$), total alkalinity ($\mathrm{r}=0.497, \mathrm{P}<0.10$) and phosphate (r $=0.523, \mathrm{P}<0.10$) but inverse and significant correlation with air temperature ($\mathrm{r}=-0.652$, $\mathrm{P}<0.05$) and water temperature ($\mathrm{r}=-0.729, \mathrm{P}<0.05$) (Table 5.3).

Dissolved oxygen

The minimum dissolved oxygen $4.80 \pm 0.335 \mathrm{mg} / \mathrm{L}$ was found in the month of November and maximum dissolved oxygen was $7.83 \pm 0.297 \mathrm{mg} / \mathrm{L}$ in April during the first year study period (Table 5.1; Fig.5.5). During the second year study period, the maximum dissolved oxygen was $10.73 \pm 0.258 \mathrm{mg} / \mathrm{L}$ in the month of October and minimum was $2.7 \pm 0.248 \mathrm{mg} / \mathrm{L}$ in the month of April (Table 5.2; Fig.5.5). The dissolved oxygen showed positive and significant correlation with air temperature $(\mathrm{r}=0.535, \mathrm{P}<0.10)$ and chloride $(\mathrm{r}=0.553, \mathrm{P}<$ 0.10) but inverse and significant correlation with pH ($\mathrm{r}=-0.496, \mathrm{p}<0.10$), water temperature ($\mathrm{r}=-0.710, \mathrm{p}<0.01$) and BOD ($\mathrm{r}=-0.634$, $\mathrm{p}<0.05$) (Table 5.3).

Biological oxygen demand

The maximum biological oxygen demand was $3.54 \pm 0.038 \mathrm{mg} / \mathrm{L}$ in the month of September and minimum $0.35 \pm 0.33 \mathrm{mg} / \mathrm{L}$ in the month of February during the first year study period (Table 5.1; Fig.5.6). It was maximum $9.28 \pm 0.063 \mathrm{mg} / \mathrm{L}$ in November and minimum 0.27 ± 0.032 mg / L in August in the second year study period (Table 5.2; Fig.5.6). It had positive and significant correlation with $\mathrm{CO}_{2}(\mathrm{r}=0.679, \mathrm{P}<0.01)$ and water temperature $(\mathrm{r}=0.685$, $\mathrm{P}<0.05$) but inverse and significant correlation with air temperature ($\mathrm{r}=-0.645, \mathrm{P}<0.05$), DO $(\mathrm{r}=-0.634, \mathrm{P}<0.05)$, chloride $(\mathrm{r}=-0.599, \mathrm{P}<0.05)$ and total alkalinity $(\mathrm{r}=-0.624, \mathrm{P}<0.05)$ (Table 5.3).

Chloride

The maximum chloride was $29.84 \pm 0.260 \mathrm{mg} / \mathrm{L}$ in the month of January and minimum $2.13 \pm 0.216 \mathrm{mg} / \mathrm{L}$ was in the month of December during the first year (Table 5.1; Fig.5.7) and maximum $10.0 \pm 0.261 \mathrm{mg} / \mathrm{L}$ in June and minimum $1.1 \pm 0.260 \mathrm{mg} / \mathrm{L}$ was in April of second year study period (Table 5.2; Fig.5.7). It had positive and significant correlation with free carbon dioxide ($\mathrm{r}=0.781, \mathrm{P}<0.01$) and total alkalinity ($\mathrm{r}=0.665, \mathrm{P}<0.05$), DO ($\mathrm{r}=0.553$, $\mathrm{P}<0.10$) and inverse and significant correlation with BOD ($\mathrm{r}=-0.599, \mathrm{P}<0.05$) (Table 5.3).

Total alkalinity

The maximum total alkalinity was $208 \pm 0.452 \mathrm{mg} / \mathrm{L}$ in the month of May and minimum was $97.76 \pm 0.721 \mathrm{mg} / \mathrm{L}$ in the month of December during the first year study period (Table 5.1 ; Fig.5.8). During the second year, maximum T.A. was $243.6 \pm 0.521 \mathrm{mg} / \mathrm{L}$ in February and minimum $83.6 \pm 0.325 \mathrm{mg} / \mathrm{L}$ was in October (Table 5.2; Fig.5.8). It had positive and
significant correlation with total hardness ($\mathrm{r}=0.799, \mathrm{P}<0.01$), DO ($\mathrm{r}=0.696, \mathrm{P}<0.05$), air temperature ($\mathrm{r}=0.637, \mathrm{P}<0.05$) and chloride $(\mathrm{r}=0.665, \mathrm{P}<0.05)$ but inverse and significant correlation with BOD ($\mathrm{r}=-0.624, \mathrm{P}<0.05$) (Table 5.3).

The total alkalinity showed a decreasing trend from the month of June, 2009 to October, 2009. The value of total alkalinity of June ($166.25 \pm 8.957 \mathrm{mg} / \mathrm{L}$) showed significant decrease ($\mathrm{P}<0.01$) compared to the value of total alkalinity of May ($208.0 \pm 0.452 \mathrm{mg} / \mathrm{L}$) in year 1 (Table 5.1; Figs.5.8, 5.12). The value of total alkalinity of June ($121.9 \pm 0.645 \mathrm{mg} / \mathrm{L}$) showed significant decrease ($\mathrm{P}<0.01$) compared to the value of total alkalinity of May (154.0 $\pm 1.062 \mathrm{mg} / \mathrm{L}$) in year 2 with slight increase during the month of August, 2010 (101.2 ± 0.443 $\mathrm{mg} / \mathrm{L})$ but it was lower than that of May $(154.0 \pm 1.062 \mathrm{mg} / \mathrm{L})$. The total alkalinity remained low from June to October for five months in both years (Table 5.2; Figs.5.8, 5.12).

Total hardness

The maximum total hardness was $144.6 \pm 0.463 \mathrm{mg} / \mathrm{L}$ in the month of March and minimum was $82.19 \pm 0.679 \mathrm{mg} / \mathrm{L}$ in the month of August during the first year study period (Table 5.1). It was maximum $132.66 \pm 0.463 \mathrm{mg} / \mathrm{L}$ in March and minimum $49.5 \pm 0.463 \mathrm{mg} / \mathrm{L}$ in December in second year study period (Table 5.2). It had positive and significant correlation with total alkalinity $(\mathrm{r}=0.799, \mathrm{P}<0.01)$ and $\mathrm{pH}(\mathrm{r}=0.681, \mathrm{P}<0.05)$ (Table 5.3).

Total hardness showed a decreasing trend from April to October in year 1. The values of May (118.3 $\pm 1.25 \mathrm{mg} / \mathrm{L}$) showed significant decrease ($\mathrm{P}<0.01$) compared to April (123.6 ± 0.657 mg / L) in the first year (Table 5.2; Figs.5.9, 5.13). It also showed a decreasing trend from June to October in year 2 . The values of June $(81.18 \pm 0.844 \mathrm{mg} / \mathrm{L})$ showed significant decrease ($\mathrm{p}<0.05$) as compared to May ($126.72 \pm 0.095 \mathrm{mg} / \mathrm{L}$) in second year (Table 5.2; Figs.5.9, 5.13). Total hardness remained low from May to October for six months in year 1 and from June to October for five months in year 2.

Table 5.1 shows air temperature, water temperature and the physico-chemical parameters of water at Site 1 (Baidya Fish farm, Tankisinwari) from Nov. 2008- October 2009(Mean \pm S.D., N=5).

Parame ters	Months											
$\begin{array}{\|l} \text { Site1 - } \\ \text { I Yr. } \end{array}$	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 25.07 \\ & \pm 0.095 \end{aligned}$	$\begin{aligned} & 20.01 \\ & \pm 0.132 \end{aligned}$	$\begin{aligned} & 22.17 \\ & \pm 0.275 \end{aligned}$	$\begin{aligned} & 25.07 \\ & \pm 0.095 \end{aligned}$	$\begin{aligned} & 29.95 \\ & \pm 0.310 \end{aligned}$	$\begin{aligned} & 33.02 \\ & \pm 0.325 \end{aligned}$	$\begin{aligned} & 31.20 \\ & \pm 0.081 \end{aligned}$	$\begin{aligned} & 29.05 \\ & \pm 0.129 \end{aligned}$	$\begin{array}{\|l\|} 26.07 \\ \pm 0.170 \end{array}$	$\begin{aligned} & 29.50 \\ & \pm 0.081 \end{aligned}$	$\begin{aligned} & 30.50 \\ & \pm 0.170 \end{aligned}$	$\begin{aligned} & 28.17 \\ & \pm 0.150 \end{aligned}$
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 21.12 \\ & \pm 0.095 \end{aligned}$	$\begin{aligned} & 17.05 \\ & \pm 0.550 \end{aligned}$	$\begin{aligned} & 18.20 \\ & \pm 0.216 \end{aligned}$	$\begin{aligned} & 22.15 \\ & \pm 0.173 \end{aligned}$	$\begin{array}{\|l\|l} 24.35 \\ \pm 0.506 \end{array}$	$\begin{aligned} & 28.99 \\ & \pm 0.216 \end{aligned}$	$\begin{aligned} & 28.52 \\ & \pm 0.170 \end{aligned}$	$\begin{aligned} & 28.17 \\ & \pm 0.150 \end{aligned}$	$\begin{aligned} & 25.07 \\ & \pm 0.170 \end{aligned}$	$\begin{aligned} & 28.17 \\ & \pm 0.150 \end{aligned}$	$\begin{aligned} & 29.0 \\ & \pm 0.320 \end{aligned}$	$\begin{aligned} & 26.07 \\ & \pm 0.170 \end{aligned}$
pH	$\begin{aligned} & 7.62 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & 8.17 \\ & \pm 0.150 \end{aligned}$	$\begin{aligned} & 8.12 \\ & \pm 0.120 \end{aligned}$	$\begin{aligned} & 8.30 \\ & \pm 0.170 \end{aligned}$	$\begin{array}{\|l\|} \hline 8.20 \\ \pm 0.170 \end{array}$	$\begin{aligned} & 6.22 \\ & \pm 0.309 \end{aligned}$	$\left\lvert\, \begin{aligned} & 6.50 \\ & \pm 0.081 \end{aligned}\right.$	$\begin{aligned} & 7.32 \\ & \pm 0.095 \end{aligned}$	$\left\lvert\, \begin{aligned} & 6.37 \\ & \pm 0.309 \end{aligned}\right.$	$\begin{aligned} & 6.72 \\ & \pm 0.095 \end{aligned}$	$\begin{aligned} & 7.25 \\ & \pm 0.129 \end{aligned}$	$\begin{aligned} & 7.82 \\ & \pm 0.098 \end{aligned}$
$\begin{array}{\|l\|} \hline \text { Free } \\ \mathrm{CO} 2 \\ \mathrm{mg} / \mathrm{L} \end{array}$	$\begin{aligned} & 20.68 \\ & \pm 0.090 \end{aligned}$	$\begin{aligned} & 37.45 \\ & \pm 0.057 \end{aligned}$	$\begin{aligned} & 79.65 \\ & \pm 0.114 \end{aligned}$	$\begin{aligned} & 101.84 \\ & \pm 0.028 \end{aligned}$	$\begin{aligned} & 120.25 \\ & \pm 0.645 \end{aligned}$	$\begin{aligned} & 79.11 \\ & \pm 0.095 \end{aligned}$	$\begin{aligned} & 70.90 \\ & \pm 0.294 \end{aligned}$	$\begin{aligned} & 174.15 \\ & \pm 0.326 \end{aligned}$	$\begin{aligned} & 147.31 \\ & \pm 0.358 \end{aligned}$	$\begin{aligned} & 48.05 \\ & \pm 0.129 \end{aligned}$	$\begin{aligned} & 55.49 \\ & \pm 0.082 \end{aligned}$	$\begin{aligned} & 18.48 \\ & \pm 0.287 \end{aligned}$
$\begin{array}{\|l\|} \hline \mathrm{DO} \\ \mathrm{mg} / \mathrm{L} \end{array}$	$\begin{aligned} & 4.80 \\ & \pm 0.335 \end{aligned}$	$\begin{aligned} & 5.88 \\ & \pm 0.078 \end{aligned}$	$\begin{aligned} & 6.27 \\ & \pm 0.170 \end{aligned}$	$\begin{aligned} & 7.28 \\ & \pm 0.022 \end{aligned}$	$\begin{aligned} & 7.16 \\ & \pm 0.035 \end{aligned}$	$\begin{aligned} & 7.83 \\ & \pm 0.297 \end{aligned}$	$\begin{aligned} & 7.04 \\ & \pm 0.009 \end{aligned}$	$\begin{aligned} & 7.47 \\ & \pm .032 \end{aligned}$	$\begin{aligned} & 7.04 \\ & \pm 0.009 \end{aligned}$	$\begin{aligned} & 5.52 \\ & \pm 0.083 \end{aligned}$	$\begin{aligned} & 6.25 \\ & \pm 0.127 \end{aligned}$	$\begin{aligned} & 6.52 \\ & \pm 0.090 \end{aligned}$
$\begin{aligned} & \mathrm{BOD} \\ & \mathrm{mg} / \mathrm{L} \end{aligned}$	$\begin{aligned} & 1.94 \\ & \pm 0.046 \end{aligned}$	$\begin{array}{\|l} 1.02 \\ \pm 0.028 \end{array}$	$\begin{aligned} & 2.32 \\ & \pm 0.095 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.35 \\ & \pm 0.33 \end{aligned}\right.$	$\begin{array}{\|l} 0.67 \\ \pm 0.049 \end{array}$	$\begin{aligned} & 1.17 \\ & \pm 0.017 \end{aligned}$	$\begin{aligned} & 1.18 \\ & \pm 0.012 \end{aligned}$	$\begin{aligned} & 0.62 \\ & \pm 0.051 \end{aligned}$	$\begin{aligned} & 0.79 \\ & \pm 0.012 \end{aligned}$	$\begin{array}{\|l} 2.98 \\ \pm 0.310 \end{array}$	$\begin{aligned} & 3.54 \\ & \pm 0.038 \end{aligned}$	$\begin{aligned} & 3.06 \\ & \pm 0.033 \end{aligned}$
Chlori de mg/L	$\begin{aligned} & 5.12 \\ & \pm 0.095 \end{aligned}$	$\begin{aligned} & 2.13 \\ & \pm 0.216 \end{aligned}$	$\begin{aligned} & 29.84 \\ & \pm 0.260 \end{aligned}$	$\begin{aligned} & 25.56 \\ & \pm 0.079 \end{aligned}$	$\begin{aligned} & 22.72 \\ & \pm 0.137 \end{aligned}$	$\begin{aligned} & 23.14 \\ & \pm 0.026 \end{aligned}$	$\begin{aligned} & 21.3 \\ & \pm 0.045 \end{aligned}$	$\begin{aligned} & 25.56 \\ & \pm 0.017 \end{aligned}$	$\begin{aligned} & 25.56 \\ & \pm 0.017 \end{aligned}$	$\begin{aligned} & 12.15 \\ & \pm 0.129 \end{aligned}$	$\begin{array}{\|l} 4.10 \\ \pm 0.083 \end{array}$	$\begin{aligned} & 6.13 \\ & \pm 0.124 \end{aligned}$
T. Alk mg/L	$\begin{aligned} & 137.25 \\ & \pm 0.208 \end{aligned}$	$\begin{aligned} & 97.76 \\ & \pm 0.721 \end{aligned}$	$\begin{aligned} & 133.12 \\ & \pm 0.095 \end{aligned}$	$\begin{aligned} & 156.0 \\ & \pm 1.173 \end{aligned}$	$\begin{array}{\|l\|} 187.2 \\ \pm 1.676 \end{array}$	$\begin{aligned} & 198.2 \\ & \pm 0.559 \end{aligned}$	$\begin{aligned} & 208.0 \\ & \pm 0.452 \end{aligned}$	$\begin{aligned} & 166.25 \\ & \pm 8.957 * \end{aligned}$	$\begin{aligned} & 158.18 \\ & \pm 0.843 \end{aligned}$	$\begin{aligned} & 110.75 \\ & \pm 0.208 \end{aligned}$	$\begin{aligned} & 101.22 \\ & \pm 0.543 \end{aligned}$	$\begin{aligned} & 128.52 \\ & \pm 0.368 \end{aligned}$
T. Hard mg/L	$\begin{aligned} & 118.37 \\ & \pm 1.25 \end{aligned}$	$\begin{aligned} & 122.4 \\ & \pm 0.573 \end{aligned}$	$\begin{aligned} & 105.2 \\ & \pm 0.08 \end{aligned}$	$\begin{aligned} & 107.6 \\ & \pm 0.660 \end{aligned}$	$\begin{aligned} & 144.6 \\ & \pm 0.463 \end{aligned}$	$\begin{aligned} & 123.6 \\ & \pm 0.657 \end{aligned}$	$\begin{aligned} & 118.3 \\ & \pm 1.25^{*} \end{aligned}$	$\begin{aligned} & 90.2 \\ & \pm 0.095 \end{aligned}$	$\begin{array}{\|l\|} 90.8 \\ \pm 0.028 \end{array}$	$\begin{aligned} & 82.19 \\ & \pm 0.679 \end{aligned}$	$\begin{aligned} & 101.52 \\ & \pm 0.164 \end{aligned}$	$\begin{aligned} & 106.08 \\ & \pm 0.121 \end{aligned}$

*Significant differences at 1% level, ** Significant differences at 5% level

Table 5.2 shows air temperature, water temperature and the physico-chemical parameters of water at Site 1 (Baidya Fish farm, Tankisinwari) from Nov. 2009- October 2010(Mean \pm S.D., $N=5$).

Paramet	Months											
Site1- II	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 24.50 \\ & \pm 0.415 \end{aligned}$	$\begin{aligned} & 21.50 \\ & \pm 0.416 \end{aligned}$	$\begin{array}{\|l\|l} 19.20 \\ \pm 0.452 \end{array}$	$\begin{aligned} & 25.10 \\ & \pm 0.81 \end{aligned}$	$\begin{aligned} & 32.50 \\ & \pm 0.497 \end{aligned}$	$\begin{aligned} & 31.30 \\ & \pm 0.359 \end{aligned}$	$\begin{aligned} & 29.40 \\ & \pm 0.359 \end{aligned}$	$\begin{array}{\|l\|l} 29.10 \\ \pm 0.374 \end{array}$	$\begin{aligned} & 28.20 \\ & \pm 0.432 \end{aligned}$	$\begin{aligned} & 31.30 \\ & \pm 0.359 \end{aligned}$	$\begin{aligned} & 29.20 \\ & \pm 0.432 \end{aligned}$	$\begin{aligned} & 31.10 \\ & \pm 0.371 \end{aligned}$
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 25.50 \\ & \pm 0.535 \end{aligned}$	$\begin{aligned} & 19.10 \\ & \pm 0.273 \end{aligned}$	$\begin{array}{\|l\|} 17.30 \\ \pm 0.526 \end{array}$	$\begin{aligned} & 22.20 \\ & \pm 0.216 \end{aligned}$	$\left\lvert\, \begin{aligned} & 28.50 \\ & \pm 0.415 \end{aligned}\right.$	$\begin{aligned} & 29.50 \\ & \pm 0.082 \end{aligned}$	$\begin{aligned} & 28.50 \\ & \pm 0.415 \end{aligned}$	$\left\lvert\, \begin{aligned} & 29.50 \\ & \pm 0.082 \end{aligned}\right.$	$\begin{aligned} & 30.20 \\ & \pm 0.216 \end{aligned}$	$\begin{aligned} & 30.30 \\ & \pm 0.051 \end{aligned}$	$\begin{aligned} & 31.40 \\ & \pm 0.327 \end{aligned}$	$\begin{aligned} & 29.20 \\ & \pm 0.216 \end{aligned}$
pH	$\begin{aligned} & 8.30 \\ & \pm 0.170 \end{aligned}$	$\begin{aligned} & 8.90 \\ & \pm 0.097 \end{aligned}$	$\begin{aligned} & 8.20 \\ & \pm 0.095 \end{aligned}$	$\begin{aligned} & 8.20 \\ & \pm 0.095 \end{aligned}$	$\begin{aligned} & 7.80 \\ & \pm 0.221 \end{aligned}$	$\begin{aligned} & 8.30 \\ & \pm 0.095 \end{aligned}$	$\begin{aligned} & 9.20 \\ & \pm 0.320 \end{aligned}$	$\begin{aligned} & 8.80 \\ & \pm 0.096 \end{aligned}$	$\begin{aligned} & 8.50 \\ & \pm 0.081 \end{aligned}$	$\begin{aligned} & 8.90 \\ & \pm 0.097 \end{aligned}$	$\begin{aligned} & 9.10 \\ & \pm 0.150 \end{aligned}$	$\begin{array}{\|l} 8.80 \\ \pm 0.096 \end{array}$
$\begin{aligned} & \hline \text { Free } \\ & \mathrm{CO}_{2} \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & 2.98 \\ & \pm 0.235 \end{aligned}$	$\begin{aligned} & 5.02 \\ & \pm 0.134 \end{aligned}$	$\begin{array}{\|l\|l} 71.28 \\ \pm 0.326 \end{array}$	$\begin{aligned} & 47.52 \\ & \pm 0.082 \end{aligned}$	$\begin{aligned} & 5.10 \\ & \pm 0.095 \end{aligned}$	$\begin{aligned} & 2.24 \\ & \pm 0.0645 \end{aligned}$	$\begin{aligned} & 2.24 \\ & \pm 0.645 \end{aligned}$	$\begin{aligned} & 2.29 \\ & \pm 0.231 \end{aligned}$	$\left\lvert\, \begin{aligned} & 4.05 \\ & \pm 0.258 \end{aligned}\right.$	$\begin{aligned} & 8.80 \\ & \pm 0.207 \end{aligned}$	$\begin{aligned} & 4.58 \\ & \pm 0.257 \end{aligned}$	$\begin{aligned} & 2.24 \\ & \pm 0.225 \end{aligned}$
$\begin{aligned} & \text { DO } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & 10.17 \\ & \pm 0.221 \end{aligned}$	$\begin{aligned} & 8.83 \\ & \pm 0.521 \end{aligned}$	$\begin{array}{\|l} 7.34 \\ \pm 0.231 \end{array}$	$\begin{aligned} & 6.67 \\ & \pm 0.452 \end{aligned}$	$\begin{aligned} & 6.71 \\ & \pm 0.145 \end{aligned}$	$\begin{aligned} & 2.70 \\ & \pm 0.248 \end{aligned}$	$\begin{aligned} & 8.64 \\ & \pm 0.215 \end{aligned}$	$\begin{array}{\|l\|} \hline 6.67 \\ \pm 0.046 \end{array}$	$\begin{array}{\|l\|} \hline 6.69 \\ \pm 0.118 \end{array}$	$\begin{aligned} & 6.61 \\ & \pm 0.340 \end{aligned}$	$\begin{aligned} & 9.31 \\ & \pm 0.561 \end{aligned}$	$\begin{aligned} & 10.73 \\ & \pm \\ & 0.258 \end{aligned}$
$\begin{aligned} & \text { BOD } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & 9.28 \\ & \pm 0.063 \end{aligned}$	$\begin{aligned} & 5.39 \\ & \pm 0.165 \end{aligned}$	$\begin{aligned} & 7.34 \\ & \pm 0.355 \end{aligned}$	$\begin{aligned} & 6.67 \\ & \pm 0.065 \end{aligned}$	$\begin{aligned} & 1.37 \\ & \pm 0.034 \end{aligned}$	$\begin{aligned} & 1.75 \\ & \pm 0.062 \end{aligned}$	$\begin{aligned} & 1.75 \\ & \pm 0.055 \end{aligned}$	$\begin{aligned} & 3.81 \\ & \pm 0.311 \end{aligned}$	$\begin{aligned} & 5.51 \\ & \pm 0.067 \end{aligned}$	$\begin{aligned} & 0.27 \\ & \pm 0.032 \end{aligned}$	$\begin{aligned} & 7.77 \\ & \pm 0.048 \end{aligned}$	$\begin{aligned} & 3.83 \\ & \pm 0.117 \end{aligned}$
Chloride (mg/L)	$\begin{aligned} & 2.0 \\ & \pm 0.124 \end{aligned}$	$\begin{aligned} & 2.0 \\ & \pm 0.091 \end{aligned}$	$\begin{array}{\|l} 9.0 \\ \pm 0.075 \end{array}$	$\begin{aligned} & 6.0 \\ & \pm 0.134 \end{aligned}$	$\begin{aligned} & 5.0 \\ & \pm 0.077 \end{aligned}$	$\begin{aligned} & 1.1 \\ & \pm 0.260 \end{aligned}$	$\begin{aligned} & 1.0 \\ & \pm 0.241 \end{aligned}$	$\left\lvert\, \begin{aligned} & 10.0 \\ & \pm 0.261 \end{aligned}\right.$	$\begin{array}{\|l} 5.0 \\ \pm 0.087 \end{array}$	$\begin{aligned} & 4.0 \\ & \pm 0.135 \end{aligned}$	$\begin{aligned} & 2.0 \\ & \pm 0.155 \end{aligned}$	$\begin{aligned} & 7.0 \\ & \pm 0.240 \end{aligned}$
Total Alk (mg/L)	$\begin{aligned} & 109.89 \\ & \pm 0.891 \end{aligned}$	$\begin{aligned} & 104.0 \\ & \pm 0.865 \end{aligned}$	$\begin{gathered} 150.0 \\ \pm 1.02 \end{gathered}$	$\begin{aligned} & 243.6 \\ & \pm 0.521 \end{aligned}$	$\begin{aligned} & 162.5 \\ & \pm 0.756 \end{aligned}$	$\begin{aligned} & 154.0 \\ & \pm 0.884 \end{aligned}$	$\begin{aligned} & 154.0 \\ & \pm 1.062 \end{aligned}$	$\left\|\begin{array}{l} 121.9 \\ \pm 0.645^{*} \end{array}\right\|$	$\begin{array}{\|l\|} \hline 92.0 \\ \pm 0.766 \end{array}$	$\begin{aligned} & 101.2 \\ & \pm 0.443 \end{aligned}$	$\begin{aligned} & 99.0 \\ & \pm 0.355 \end{aligned}$	$\begin{array}{\|l} 83.6 \\ \pm 0.325 \end{array}$
Total hard (mg/L)	$\begin{aligned} & 91.02 \\ & \pm 1.035 \end{aligned}$	$\begin{aligned} & 49.5 \\ & \pm 0.463 \end{aligned}$	$\begin{aligned} & 130.56 \\ & \pm 0.647 \end{aligned}$	$\begin{aligned} & 130.68 \\ & \pm 0.751 \end{aligned}$	$\begin{aligned} & 132.66 \\ & \pm 0.463 \end{aligned}$	$\begin{aligned} & 126.72 \\ & \pm 0.458 \end{aligned}$	$\begin{aligned} & 126.72 \\ & \pm 0.095 \end{aligned}$	$\left.\begin{array}{\|l\|} 81.18 \\ \pm 0.844 * \end{array} \right\rvert\,$	$\begin{aligned} & 75.24 \\ & \pm 0.363 \end{aligned}$	$\begin{aligned} & 77.22 \\ & \pm 0.537 \end{aligned}$	$\begin{aligned} & 79.2 \\ & \pm 0.237 \end{aligned}$	$\begin{aligned} & 73.26 \\ & \pm 0.572 \end{aligned}$

* Significant differences at 1% level, ** Significant differences at 5% level.

Table 5.3 shows Pearson's correlation coefficient (r) for air temperature and physicochemical parameters of water at Site 1 (average of the corresponding month values) during Nov. 2008 - Oct. 2010; N=12; d.f. =11.

S1- I + II		Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	pH	Free CO_{2} (mg/L)	$\begin{array}{\|l} \begin{array}{l} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \begin{array}{l} \text { BOD } \\ (\mathrm{mg} / \mathrm{L}) \end{array} \\ \hline \end{array}$	Chlorid e $(\mathrm{mg} / \mathrm{L})$	Total alkal (mg/L)	Total hard (mg/L)
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	P cor.	. $933{ }^{*}$. $603{ }^{* *}$	$-.652^{* *}$	-. 535	. $645^{* *}$. 136	-. $637 * *$. 028
	Sig. (2- t)	. 000	. 038	. 022	. 073	. 024	. 674	. 050	. 931
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	P cor.	1	. $688{ }^{* *}$	-. 729^{*}	$-.710^{* *}$. $685{ }^{* *}$. 060	. 353	-. 278
	Sig. (2- t)		. 013	. 007	. 00	. 049	. 853	. 260	. 381
pH	P cor.		1	-. 336	-. 496	. 091	-. 293	-. 487	. $681{ }^{* *}$
	Sig. (2- t)			. 285	. 101	. 779	. 355	. 108	. 015
$\begin{aligned} & \text { Free } \mathrm{CO}_{2} \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	P cor.			1	. 500	.679*	.781*	. $497 *$	-. 165
	Sig. (2- t)				. 098	. 017	. 003	. 100	. 608
DO (mg/L)	P cor.				1	$-.634^{* *}$. 653 **	. $696 * *$. 153
	Sig. (2- t)					. 029	. 049	. 012	. 635
$\begin{array}{\|l} \hline \text { BOD } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	P cor.					1	$-.599^{* *}$	-. $624^{* *}$	-. 348
	Sig. (2- t)						. 039	. 030	. 268
Chloride (mg/L)	P cor.						1	. $665^{* *}$	-. 048
	Sig. (2- t)							. 018	. 882
Total alkalinity (mg/L)	P cor.							1	.799*
	Sig. (2- t)								. 002
Total hard (mg/L)	P cor.								1
	Sig.(2-t)								

* Significant at 1% level $(\mathbf{P}<0.01)$, ** significant at 5% level $(P<0.05)$ and

Values not marked denote non-significant correlation.

Fig.5.1. Monthly variations in air temperature at Site 1 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.2. Monthly variations in water temperature at Site 1 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.3. Monthly variations in pH at Site1 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.4. Monthly variations in free CO_{2} at Site 1 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.5. Monthly variations in DO at Site 1 during the first and second year study periods (Nov.2008- Oct.2010).

Fig.5.6. Monthly variations in BOD at Site 1 during the first and second year study periods (Nov.2008- Oct.2010).

Fig.5.7. Monthly variations in chloride at Site 1 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.8. Monthly variations in total alkalinity at Site 1 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig. 5.9. Monthly variations in total hardness at Site 1 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.10. Line graph of monthly variations in air temperature at site 1 during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig.5.11. Line graph of monthly variations in water temperature at site 1 during the first and second year study periods (Nov. 2008-Oct.2010).

Fig.5.12. Line graph of monthly variations in total alkalinity at site 1 during the first and second year study periods (Nov. 2008 - Oct.2010)

Fig.5.13. Line graph of monthly variations in total hardness at site 1 during the first and second year study periods (Nov. 2008 - Oct.2010).

Site 2 (Babiya Birta Fish Farm)

Results of the air temperature and physico-chemical parameters of water of Site 2 (Baibia Birta Fish Farm) are shown in Table 5.4 and Table 5.5. Table 5.4 shows the result of air temperature and physico-chemical parameters of water of the first year (Nov. 2008 to Oct. 2009) study period. Table 5.5 shows the results of air temperature and physico-chemical parameters of water of the second year (Nov. 2009 to Oct. 2010) study period. Table 5.6 shows the correlation coefficient (r) of air temperature and different physico-chemical parameters of water at Site 2. Fig.5.14 shows the monthly variations in air temperature at Site 2 in the first year and the second year study periods. The Figs. 5.14 to 5.22 shows histogram and Figs. 5.23-5.26 show line graph of the monthly variations of different physico-chemical parameters of water at Site 2 in the first year (Nov. 2008 to Oct. 2009) and the second year (Nov. 2009 to Oct. 2010) study periods.

Air temperature

The minimum air temperature was $19.5 \pm 0.236^{\circ} \mathrm{C}$ in the month of December and maximum was $33 \pm 0.145^{\circ} \mathrm{C}$ in the month of April during the first year study period (Table 5.4).The minimum air temperature was $18.5 \pm 0.439^{\circ} \mathrm{C}$ in January and maximum was observed in March ($30 \pm 0.633^{\circ} \mathrm{C}$), April ($30 \pm 0.356^{\circ} \mathrm{C}$) and September ($30 \pm 0.214^{\circ} \mathrm{C}$) in the second year study period (Table 5.5).

The air temperature showed a decreasing trend from November to January and September to October during year 1 and year 2 both (Tables 5.4, 5.5; Figs. 5.14, 5.23). The air temperature
had positive and significant correlation with water temperature ($\mathrm{r}=0.818, \mathrm{P}<0.01$) and total alkalinity ($\mathrm{r}=0.616, \mathrm{p}<0.05$) but inverse and significant correlation with free carbon dioxide (r $=-0.759, \mathrm{P}<0.01)$ and dissolved oxygen $(\mathrm{r}=-0.647, \mathrm{P}<0.05)($ Table 5.6 $)$.

Water temperature

The lowest surface water temperature was $17.0 \pm 0.452^{\circ} \mathrm{C}$ in December and maximum was $30.0 \pm 0.526^{\circ} \mathrm{C}$ in April during the first year (Table 5.4) and the minimum water temperature was $17.5 \pm 0.315^{\circ} \mathrm{C}$ in January and maximum was $31.0 \pm 0.342^{\circ} \mathrm{C}$ in September during second year study period (Table 5.5).

The water temperature showed decreasing trend during the winter months of November to January in both year 1 and year 2. Decreasing trend was also observed during the months of September to October in both years (Tables 5.4, 5.5; Figs.5.15, 5.24).

The water temperature had positive and significant correlation with air temperature ($\mathrm{r}=0.818$, $\mathrm{P}<0.01$) and phosphate ($\mathrm{r}=0.609, \mathrm{P}<0.05$) but inverse and significant correlation with CO_{2} (r $=-0.741, \mathrm{P}<0.01) \mathrm{pH}(\mathrm{r}=-0.539, \mathrm{P}<0.10)$ and $\mathrm{DO}(\mathrm{r}=-0.747, \mathrm{P}<0.01)$ (Table 5.6).
pH

The minimum pH was 6.6 ± 0.315 in the month of April and maximum was recorded 8.8 ± 0.24 in November during the first year (Table 5.4; Fig. 5.16) and minimum 7.3 ± 0.231 was in the month of April and maximum 8.7 ± 0.211 was in February in the second year (Table 5.5; Fig.5.16). pH had positive and significant correlation with dissolved oxygen (r $=0.828, \mathrm{P}<0.01$), total alkalinity $(\mathrm{r}=0.629, \mathrm{P}<0.05)$, biological oxygen demand $(\mathrm{r}=0.728$, $\mathrm{P}<0.01$) but inverse and significant correlation with total hardness ($\mathrm{r}=-0.681, \mathrm{p}<0.05$) and free carbon dioxide $(\mathrm{r}=-0.513, \mathrm{P}<0.10)($ Table 5.6).

Free Carbon Dioxide

The minimum free CO_{2} was $1.909 \pm 0.536 \mathrm{mg} / \mathrm{L}$ in the month of November and maximum free carbon dioxide was $179.59 \pm 0.332 \mathrm{mg} / \mathrm{L}$ in the month of June during the first year (Table 5.4; Fig. 5.17). The minimum free CO_{2} was $2.24 \pm 0.105 \mathrm{mg} / \mathrm{L}$ in the month of May and maximum was $23.76 \pm 0.544 \mathrm{mg} / \mathrm{L}$ in the month of January in the second year study period (Table 5.5; Fig.5.17). Free carbon dioxide showed positive and significant correlation with chloride ($\mathrm{r}=0.648, \mathrm{P}<0.05$), total alkalinity ($\mathrm{r}=0.688, \mathrm{P}<0.05$) and phosphate ($\mathrm{r}=0.748$,
$\mathrm{P}<0.01$) but inverse and significant correlation with air temperature ($\mathrm{r}=-0.759, \mathrm{P}<0.01$) and water temperature ($\mathrm{r}=-0.741, \mathrm{P}<0.01$) (Table 5.6).

Dissolved Oxygen

The minimum dissolved oxygen was $4.96 \pm 0.089 \mathrm{mg} / \mathrm{L}$ in the month of December and maximum was $7.83 \pm 0.325 \mathrm{mg} / \mathrm{L}$ in the month of March during the first year (Table 5.4; Fig.5.18). The minimum dissolved oxygen was $3.8 \pm 0.321 \mathrm{mg} / \mathrm{L}$ in the month of April and maximum was $9.71 \pm 0.257 \mathrm{mg} / \mathrm{L}$ in the month of February during the second year study period (Table 5.5; Fig.5.18). The dissolved oxygen showed positive and significant correlation with $\mathrm{pH}(\mathrm{r}=0.828, \mathrm{P}<0.01)$ and free carbon dioxide $(\mathrm{r}=-0.647, \mathrm{P}<0.05)$ but inverse and significant correlation with air temperature ($\mathrm{r}=-0.647, \mathrm{p}<0.05$), phosphate ($\mathrm{r}=-$ $0.600, \mathrm{P}<0.05$) and water temperature ($\mathrm{r}=-0.747, \mathrm{P}<0.01$) (Table 5.6).

Biological oxygen Demand

The maximum biological oxygen demand was $4.53 \pm 0.162 \mathrm{mg} / \mathrm{L}$ in the month of September and minimum was $0.23 \pm 0.134 \mathrm{mg} / \mathrm{L}$ in the month of July during the first year (Table 5.4 ; Fig.5.19). Maximum BOD was $5.78 \pm 0.063 \mathrm{mg} / \mathrm{L}$ in January and minimum was 0.75 ± 0.416 mg / L in August during the second year study period (Table 5.5; Fig.5.19). It had positive and significant correlation with $\mathrm{pH}(\mathrm{r}=0.728, \mathrm{p}<0.01)$ and chloride ($\mathrm{r}=0.627, \mathrm{P}<0.05$). Inverse and significant correlation with total alkalinity ($\mathrm{r}=-0.648, \mathrm{P}<0.05$) (Table 5.6).

Chloride

The maximum chloride was $44.87 \pm 0.235 \mathrm{mg} / \mathrm{L}$ in the month of April and minimum was $13.0 \pm$ $0.116 \mathrm{mg} / \mathrm{L}$ in the month of December during the first year (Table 5.4 ; Fig.5.20) and maximum $25.99 \pm 0.606 \mathrm{mg} / \mathrm{L}$ was seen in June and minimum $4.0 \pm 0.224 \mathrm{mg} / \mathrm{L}$ in December of the second year study period (Table 5.5; Fig.5.20). It had positive and significant correlation with free carbon dioxide ($\mathrm{r}=0.648, \mathrm{P}<0.05$) and total alkalinity ($\mathrm{r}=0.834, \mathrm{P}<0.01$) and phosphate ($\mathrm{r}=0.592, \mathrm{P}<0.05$) (Table 5.6).

Total Alkalinity

The maximum total alkalinity was $135.3 \pm 0.453 \mathrm{mg} / \mathrm{L}$ in the month of May and minimum $67.68 \pm 0.32 \mathrm{mg} / \mathrm{L}$ in the month of December during the first year study period (Table 5.4). During the second year study period, maximum total alkalinity was $176 \pm 0.532 \mathrm{mg} / \mathrm{L}$ in May and minimum $82.5 \pm 0.486 \mathrm{mg} / \mathrm{L}$ in March (Table 5.5). It had positive and significant
correlation with free $\mathrm{CO}_{2}(\mathrm{r}=0.688, \mathrm{p}<0.05), \mathrm{pH}(\mathrm{r}=0.629, \mathrm{P}<0.05)$, phosphate ($\mathrm{r}=0.642$, $\mathrm{P}<0.05$) and biological oxygen demand $(\mathrm{r}=0.693, \mathrm{P}<0.05)$ (Table 5.6).

Total Alkalinity showed decreasing trend from July to October 2009. The values of total alkalinity in July ($114.4 \pm 0.667 \mathrm{mg} / \mathrm{L}$) showed significant decrease ($\mathrm{p}<0.01$) compared to June ($135.2 \pm 0.351 \mathrm{mg} / \mathrm{L}$) in the first year (Table 5.4; Figs.5.21, 5.25). The values of total alkalinity in the month of June $(108.1 \pm 0.459 \mathrm{mg} / \mathrm{L})$ showed significant decrease $(\mathrm{P}<0.05)$ as compared to May ($176.0 \pm 0.875 \mathrm{mg} / \mathrm{L}$) in the second year. The values increased slightly during the months of September and October 2010 but values were lower in comparison to that of the month of May ($176.0 \pm 0.875 \mathrm{mg} / \mathrm{L}$) (Table 5.5; Figs. 5.21, 5.25). Total alkalinity remained low for four months from July to October in the year 1 and for five months from June to October in the year 2.

Total Hardness

The maximum total hardness was $94.0 \pm 0.932 \mathrm{mg} / \mathrm{L}$ in the month of July and minimum was $69.36 \pm 0.736 \mathrm{mg} / \mathrm{L}$ in the month of October during the first year (Table 5.4) ; maximum was $116.82 \pm 0.996 \mathrm{mg} / \mathrm{L}$ in November and minimum was $63.36 \pm 0.765 \mathrm{mg} / \mathrm{L}$ in December during the second year study period (Table 5.5). It had inverse and significant correlation with BOD ($\mathrm{r}=-0.643, \mathrm{P}<0.05$) and $\mathrm{pH}(\mathrm{r}=-0.681, \mathrm{P}<0.05)$ (Table 5.6).

The values of total hardness in August ($86.4 \pm 0.655 \mathrm{mg} / \mathrm{L}$) showed significant decrease ($\mathrm{p}<$ $0.01)$ as compared to July ($94.0 \pm 0.932 \mathrm{mg} / \mathrm{L}$) in the first year. It remained low for three months from August to October (Table 5.4; Figs.5.22, 5.26). Likewise in the second year it showed a decreasing trend from June to August and increased slightly during September and October. The values in June ($99.0 \pm 0.330 \mathrm{mg} / \mathrm{L}$) were significantly decreased $(\mathrm{P}<0.01)$ as compared to May ($102.86 \pm 0.431 \mathrm{mg} / \mathrm{L}$) in the second year (Table 5.5 ; Figs. $5.22,5.26$). It remained low for five months from June to October in the second year.

Table 5.4 shows air temperature, water temperature and physico-chemical parameters of water at Site 2 (Babiya Birta fish pond, Morang) from Nov. 2008- October 2009. (Mean \pm S.D., $\mathbf{N}=5$).

Param	Months											
Site 2I Yr.	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 23.0 \\ & \pm 0.325 \end{aligned}$	$\begin{aligned} & 19.5 \\ & \pm 0.236 \end{aligned}$	$\begin{aligned} & 23.0 \\ & \pm 0.214 \end{aligned}$	$\begin{aligned} & 26.0 \\ & \pm 0.245 \end{aligned}$	$\begin{aligned} & 29.0 \\ & \pm 0.134 \end{aligned}$	$\begin{array}{\|l\|} 33.0 \\ \pm 0.145 \end{array}$	$\begin{aligned} & 30.0 \\ & \pm 0.221 \end{aligned}$	$\begin{aligned} & 29.5 \\ & \pm 0.095 \end{aligned}$	$\begin{aligned} & 25.5 \\ & \pm 0.437 \end{aligned}$	$\begin{aligned} & 28.0 \\ & \pm 0.342 \end{aligned}$	$\begin{aligned} & 30.0 \\ & \pm 0.3 \\ & 32 \end{aligned}$	$\left\lvert\, \begin{aligned} & 27.0 \\ & \pm 0.1 \\ & 65 \end{aligned}\right.$
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 20.0 \\ & \pm 0.374 \end{aligned}$	$\begin{array}{\|l\|} 17.0 \\ \pm 0.452 \end{array}$	$\begin{aligned} & 18.0 \\ & \pm 0.215 \end{aligned}$	$\begin{aligned} & 21.0 \\ & \pm 0.336 \end{aligned}$	$\begin{aligned} & 23.0 \\ & \pm 0.223 \end{aligned}$	$\begin{array}{\|l\|} \hline 30.0 \\ \pm 0.526 \end{array}$	$\begin{aligned} & 28.0 \\ & \pm 0.456 \end{aligned}$	$\begin{aligned} & 29.0 \\ & \pm 0.126 \end{aligned}$	$\begin{aligned} & 29.0 \\ & \pm 0.456 \end{aligned}$	$\begin{aligned} & 29.0 \\ & \pm 0.371 \end{aligned}$	$\begin{aligned} & 29.5 \\ & \pm 0.2 \\ & 17 \end{aligned}$	$\begin{aligned} & 25.0 \\ & \pm 0.2 \\ & 75 \end{aligned}$
pH	$\begin{aligned} & 8.8 \\ & \pm 0.24 \end{aligned}$	$\begin{aligned} & 8.1 \\ & \pm 0.212 \end{aligned}$	$\begin{aligned} & 8.7 \\ & \pm 0.325 \end{aligned}$	$\begin{aligned} & 7.4 \\ & \pm 0.216 \end{aligned}$	$\begin{aligned} & 6.8 \\ & \pm 0.332 \end{aligned}$	$\begin{array}{\|l\|} \hline 6.6 \\ \pm 0.315 \end{array}$	$\begin{aligned} & 7.3 \\ & \pm 0.168 \end{aligned}$	$\begin{array}{\|l} 7.2 \\ \pm 0.256 \end{array}$	$\begin{aligned} & 6.6 \\ & \pm 0.122 \end{aligned}$	$\begin{aligned} & 7.4 \\ & \pm 0.345 \end{aligned}$	$\begin{aligned} & 8.3 \\ & \pm 0.4 \\ & 70 \end{aligned}$	$\begin{aligned} & 8.7 \\ & \pm 0.3 \\ & 35 \end{aligned}$
Free CO_{2} (m g / L)	$\begin{array}{\|l\|} \hline 1.909 \\ \pm 0.536 \end{array}$	$\begin{aligned} & 56.1 \\ & \pm 0.573 \end{aligned}$	$\begin{aligned} & 65.47 \\ & \pm 0.657 \end{aligned}$	$\begin{aligned} & 87.29 \\ & \pm 0.634 \end{aligned}$	$\begin{aligned} & 60.01 \\ & \pm 0.731 \end{aligned}$	$\begin{array}{\|l\|} 78.2 \\ \pm 0.315 \end{array}$	$\begin{aligned} & 76.38 \\ & \pm 0.553 \end{aligned}$	$\begin{aligned} & 179.59 \\ & \pm 0.332 \end{aligned}$	$\begin{aligned} & 136.4 \\ & \pm 0.675 \end{aligned}$	$\begin{array}{\|l\|} 16.02 \\ \pm 0.132 \end{array}$	$\begin{array}{\|l\|} \hline 18.4 \\ 8 \\ \pm 0.4 \\ 08 \end{array}$	$\begin{aligned} & \hline 36.9 \\ & 6 \\ & \pm 0.5 \\ & 60 \end{aligned}$
$\begin{aligned} & \text { DO } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{array}{\|l\|} 7.67 \\ \pm 0.223 \end{array}$	$\begin{aligned} & 4.96 \\ & \pm 0.089 \end{aligned}$	$\begin{aligned} & 7.67 \\ & \pm 0.342 \end{aligned}$	$\begin{aligned} & 7.44 \\ & \pm 0.421 \end{aligned}$	$\begin{aligned} & 7.83 \\ & \pm 0.325 \end{aligned}$	$\begin{array}{\|l\|} \hline 6.65 \\ \pm 0.210 \end{array}$	$\begin{aligned} & 6.26 \\ & \pm 0.167 \end{aligned}$	$\begin{aligned} & 6.65 \\ & \pm 0.208 \end{aligned}$	$\begin{aligned} & 6.65 \\ & \pm 0.097 \end{aligned}$	$\begin{aligned} & 6.88 \\ & \pm 0.275 \end{aligned}$	$\begin{aligned} & 6.16 \\ & \pm 0.5 \\ & 51 \end{aligned}$	$\begin{aligned} & 7.66 \\ & \pm 0.3 \\ & 45 \end{aligned}$
$\begin{aligned} & \text { BOD } \\ & (\mathbf{m g} / \mathrm{L}) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.63 \\ \pm 0.035 \end{array}$	$\begin{aligned} & 1.95 \\ & \pm 0.057 \end{aligned}$	$\begin{aligned} & 3.84 \\ & \pm 0.076 \end{aligned}$	$\begin{aligned} & 2.74 \\ & \pm 0.015 \end{aligned}$	$\begin{aligned} & 0.39 \\ & \pm 0.041 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.78 \\ \pm 0.063 \end{array}$	$\begin{aligned} & 0.7 \\ & \pm 0.076 \end{aligned}$	$\begin{aligned} & 0.85 \\ & \pm 0.035 \end{aligned}$	$\begin{aligned} & 0.23 \\ & \pm 0.134 \end{aligned}$	$\begin{aligned} & 1.8 \\ & \pm 0.087 \end{aligned}$	$\begin{aligned} & 4.53 \\ & \pm 0.1 \\ & 62 \end{aligned}$	$\left\lvert\, \begin{aligned} & 3.81 \\ & \pm 0.1 \\ & 12 \end{aligned}\right.$
Chlori de (mg/L)	$\begin{aligned} & 16.99 \\ & \pm 0.216 \end{aligned}$	$\begin{aligned} & 13 \\ & \pm 0.116 \end{aligned}$	$\begin{aligned} & 32.09 \\ & \pm 0.217 \end{aligned}$	$\begin{aligned} & 31.38 \\ & \pm 0.237 \end{aligned}$	$\begin{aligned} & 31.24 \\ & \pm 0.216 \end{aligned}$	$\begin{array}{\|l\|} 44.87 \\ \pm 0.235 \end{array}$	$\begin{aligned} & 42.6 \\ & \pm 0.257 \end{aligned}$	$\begin{aligned} & 32.66 \\ & \pm 0.218 \end{aligned}$	$\begin{aligned} & 44.02 \\ & \pm 0.275 \end{aligned}$	$\begin{aligned} & 14 \\ & \pm 0.120 \end{aligned}$	$\begin{array}{\|l} 14 \\ \pm 0.1 \\ 39 \end{array}$	$\begin{aligned} & 15 \\ & \pm 0.4 \\ & 31 \end{aligned}$
Total Alkali nity (mg/L)	$\begin{array}{\|l} 80.36 \\ \pm 0.563 \end{array}$	$\begin{aligned} & 67.68 \\ & \pm 0.320 \end{aligned}$	$\begin{aligned} & 108.16 \\ & \pm 0.336 \end{aligned}$	$\begin{aligned} & 105.04 \\ & \pm 0.345 \end{aligned}$	$\begin{aligned} & 124.8 \\ & \pm 0.442 \end{aligned}$	$\begin{array}{\|l\|} \hline 115.4 \\ \pm 0.642 \end{array}$	$\begin{aligned} & 135.3 \\ & \pm 0.453 \end{aligned}$	$\begin{aligned} & 135.2 \\ & \pm 0.351 \end{aligned}$	$\left\lvert\, \begin{aligned} & 114.4 \\ & \pm 0.667 \\ & * * \end{aligned}\right.$	$\begin{aligned} & 95.94 \\ & \pm 0.655 \end{aligned}$	$\begin{aligned} & 69.3 \\ & \pm 0.6 \\ & 71 \end{aligned}$	$\begin{aligned} & 79.8 \\ & \pm 0.5 \\ & 39 \end{aligned}$
Total hardne ss (mg/L)	$\begin{array}{\|l\|} \hline 77.52 \\ \pm 0.661 \end{array}$	$\begin{aligned} & 91.8 \\ & \pm 0.546 \end{aligned}$	$\begin{aligned} & 82.0 \\ & \pm 0.711 \end{aligned}$	$\begin{aligned} & 80.2 \\ & \pm 0.534 \end{aligned}$	$\begin{aligned} & 90.66 \\ & \pm 0.477 \end{aligned}$	$\begin{array}{\|l\|} \hline 80.6 \\ \pm 0.576 \end{array}$	$\begin{aligned} & 76.0 \\ & \pm 0.635 \end{aligned}$	$\begin{aligned} & 92.0 \\ & \pm 0.895 \end{aligned}$	$\begin{aligned} & 94.0 \\ & \pm 0.932 \end{aligned}$	$\begin{array}{\|l} 86.4 \\ \pm 0.655 \\ * * \end{array}$	$\begin{aligned} & 84.2 \\ & 4 \\ & \pm 0.5 \\ & 63 \end{aligned}$	$\begin{aligned} & 69.3 \\ & 6 \\ & \pm 0.7 \\ & 36 \end{aligned}$

*Significant differences at 1% level, ** Significant differences at 5\% level.

Table 5.5 shows air temperature, water temperature and physico-chemical parameters of water at Site 2 (Babiya Birta fish pond, Morang) from Nov. 2009- October 2010. (Mean \pm S.D., $\mathbf{N = 5}$).

Parame ters	Months											
Site 2 II.	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 23.0 \\ & \pm 0.227 \end{aligned}$	$\begin{aligned} & 20.5 \\ & \pm 0.234 \end{aligned}$	$\begin{aligned} & 18.5 \\ & \pm 0.439 \end{aligned}$	$\begin{aligned} & 22.0 \\ & \pm 0.492 \end{aligned}$	$\begin{aligned} & 30.0 \\ & \pm 0.633 \end{aligned}$	$\begin{aligned} & 30.0 \\ & \pm 0.356 \end{aligned}$	$\begin{aligned} & 27.0 \\ & \pm 0.312 \end{aligned}$	$\begin{aligned} & 25.5 \\ & \pm 0.33 \\ & 6 \end{aligned}$	$\begin{aligned} & 28.0 \\ & \pm 0.215 \end{aligned}$	$\begin{aligned} & 29.5 \\ & \pm 0.42 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 30.0 \\ \pm 0.21 \\ 4 \end{array}$	$\begin{aligned} & 29.0 \\ & \pm 0.41 \\ & 5 \end{aligned}$
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 24.0 \\ & \pm 0.219 \end{aligned}$	$\begin{aligned} & 19.0 \\ & \pm 0.231 \end{aligned}$	$\begin{aligned} & 17.5 \\ & \pm 0.315 \end{aligned}$	$\begin{aligned} & 20.0 \\ & \pm 0.355 \end{aligned}$	$\begin{aligned} & 27.0 \\ & \pm 0.218 \end{aligned}$	$\begin{aligned} & 29.0 \\ & \pm 0.332 \end{aligned}$	$\begin{aligned} & 29.0 \\ & \pm 0.273 \end{aligned}$	$\begin{aligned} & 29.0 \\ & \pm 0.34 \\ & 4 \end{aligned}$	$\begin{aligned} & 30.0 \\ & \pm 0.265 \end{aligned}$	$\begin{array}{\|l\|} \hline 30.0 \\ \pm 0.55 \\ \hline 6 \\ \hline \end{array}$	$\begin{array}{\|l} 31.0 \\ \pm 0.34 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 28.0 \\ & \pm 0.21 \\ & \hline \end{aligned}$
pH	$\begin{array}{\|l\|} 7.5 \\ \pm 0.231 \end{array}$	$\begin{aligned} & 8.3 \\ & \pm 0.175 \end{aligned}$	$\begin{aligned} & 7.8 \\ & \pm 0.114 \end{aligned}$	$\begin{aligned} & 8.7 \\ & \pm 0.211 \end{aligned}$	$\begin{aligned} & 8.5 \\ & \pm 0.253 \end{aligned}$	$\begin{aligned} & 7.3 \\ & \pm 0.231 \end{aligned}$	$\begin{aligned} & 8.1 \\ & \pm 0.223 \end{aligned}$	$\begin{aligned} & 7.6 \\ & \pm 0.09 \\ & 8 \end{aligned}$	$\begin{array}{\|l\|} \hline 8.5 \\ \pm 0.347 \end{array}$	$\begin{array}{\|l} 7.9 \\ \pm 0.21 \\ 6 \end{array}$	$\begin{array}{\|l} 8.2 \\ \pm 0.31 \\ 0 \end{array}$	$\begin{array}{\|l} 7.5 \\ \pm 0.12 \\ 8 \end{array}$
Free CO_{2} (mg/L)	$\left\lvert\, \begin{aligned} & 9.90 \\ & \pm 0.452 \end{aligned}\right.$	$\begin{aligned} & 6.69 \\ & \pm 0.225 \end{aligned}$	$\begin{aligned} & 23.76 \\ & \pm 0.544 \end{aligned}$	$\begin{aligned} & 16.02 \\ & \pm 0.365 \end{aligned}$	$\begin{aligned} & 2.40 \\ & \pm 0.247 \end{aligned}$	$\begin{aligned} & 4.49 \\ & \pm 0.132 \end{aligned}$	$\begin{aligned} & 2.24 \\ & \pm 0.105 \end{aligned}$	$\begin{aligned} & 4.58 \\ & \pm 0.54 \\ & 5 \end{aligned}$	$\begin{aligned} & 6.07 \\ & \pm 0.634 \end{aligned}$	$\begin{array}{\|l} 8.80 \\ \pm 0.55 \\ 1 \end{array}$	$\begin{array}{\|l} 4.58 \\ \pm 0.32 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 3.78 \\ & \pm 0.16 \\ & 3 \\ & \hline \end{aligned}$
$\begin{aligned} & \mathbf{D O} \\ & (\mathbf{m g} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & 5.56 \\ & \pm 0.164 \end{aligned}$	$\begin{aligned} & 7.14 \\ & \pm 0.344 \end{aligned}$	$\begin{array}{\|l\|} 7.86 \\ \pm 0.231 \end{array}$	$\begin{aligned} & 9.71 \\ & \pm 0.257 \end{aligned}$	$\begin{array}{\|l\|l} 5.94 \\ \pm 0.221 \end{array}$	$\begin{aligned} & 3.80 \\ & \pm 0.321 \end{aligned}$	$\begin{aligned} & 5.37 \\ & \pm 0.211 \end{aligned}$	$\begin{aligned} & 4.94 \\ & \pm 0.22 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.82 \\ & \pm 0.097 \end{aligned}$	$\begin{aligned} & 6.17 \\ & \pm 0.20 \\ & 3 \end{aligned}$	$\begin{aligned} & 6.20 \\ & \pm 0.24 \\ & 2 \end{aligned}$	$\begin{aligned} & 6.30 \\ & \pm 0.31 \\ & 3 \end{aligned}$
$\left\lvert\, \begin{aligned} & \text { BOD } \\ & (\mathbf{m g} / \mathbf{L}) \end{aligned}\right.$	$\begin{aligned} & 1.47 \\ & \pm 0.067 \end{aligned}$	$\begin{aligned} & 1.67 \\ & \pm 0.055 \end{aligned}$	$\left\lvert\, \begin{aligned} & 5.78 \\ & \pm 0.063 \end{aligned}\right.$	$\begin{aligned} & 2.43 \\ & +0.052 \end{aligned}$	$\begin{aligned} & 2.27 \\ & \pm 0.043 \end{aligned}$	$\begin{aligned} & 2.39 \\ & \pm 0.079 \end{aligned}$	$\begin{aligned} & 3.54 \\ & \pm 0.088 \end{aligned}$	$\begin{aligned} & 3.87 \\ & \pm 0.09 \\ & 7 \end{aligned}$	$\begin{aligned} & 2.59 \\ & \pm 0.065 \end{aligned}$	$\begin{aligned} & 0.75 \\ & \pm 0.41 \\ & 6 \end{aligned}$	$\begin{aligned} & 4.22 \\ & \pm 0.02 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.83 \\ & \pm 0.04 \\ & 5 \end{aligned}$
Chlorid (mg/L)	$\left\lvert\, \begin{aligned} & 9.0 \\ & \pm 0.302 \end{aligned}\right.$	$\begin{aligned} & 4.0 \\ & \pm 0.224 \end{aligned}$	$\begin{aligned} & 18.99 \\ & \pm 0.442 \end{aligned}$	$\begin{aligned} & 17.99 \\ & \pm 0.345 \end{aligned}$	$\begin{aligned} & 17.99 \\ & \pm 0.341 \end{aligned}$	$\begin{aligned} & 21.99 \\ & \pm 0.433 \end{aligned}$	$\begin{aligned} & 23.99 \\ & \pm 0.552 \end{aligned}$	$\begin{aligned} & 25.99 \\ & \pm 0.60 \\ & 6 \end{aligned}$	$\begin{aligned} & 13.0 \\ & \pm 0.350 \end{aligned}$	$\begin{array}{\|l\|} \hline 14.0 \\ \pm 0.40 \\ 3 \end{array}$	$\begin{array}{\|l} 5.0 \\ \pm 0.20 \\ 3 \end{array}$	$\begin{aligned} & 15.0 \\ & \pm 0.47 \\ & 6 \end{aligned}$
Total Alkalini ty (mg/L)	$\begin{aligned} & 141.64 \\ & \pm 0.655 \end{aligned}$	$\begin{aligned} & 128.0 \\ & \pm 0.438 \end{aligned}$	$\begin{aligned} & 100.0 \\ & \pm 0.677 \end{aligned}$	$\begin{aligned} & 151.2 \\ & \pm 0.757 \end{aligned}$	$\begin{array}{\|l\|} \hline 82.5 \\ \pm 0.486 \end{array}$	$\begin{aligned} & 110.0 \\ & \pm 0.539 \end{aligned}$	$\begin{aligned} & 176.0 \\ & \pm 0.875 \end{aligned}$	$\begin{gathered} 108.1 \\ \pm 0.45 \\ 9 * * \end{gathered}$	$\begin{gathered} 101.2 \\ \pm 0.443 \end{gathered}$	$\begin{gathered} 99.0 \\ \pm 0.37 \\ 6 \end{gathered}$	$\left\lvert\, \begin{aligned} & 112.2 \\ & \pm 0.44 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & 112.2 \\ & \pm 0.55 \\ & 8 \end{aligned}$
Total hardnes (mg/L)	$\begin{aligned} & 116.82 \\ & \pm 0.996 \end{aligned}$	$\begin{aligned} & 63.36 \\ & \pm 0.765 \end{aligned}$	$\begin{aligned} & 99.96 \\ & \pm 0.457 \end{aligned}$	$\begin{aligned} & 87.12 \\ & \pm 0.540 \end{aligned}$	$\begin{array}{\|l\|} 81.18 \\ \pm 0.412 \end{array}$	$\begin{aligned} & 104.94 \\ & \pm 0.345 \end{aligned}$	$\begin{aligned} & 102.86 \\ & \pm 0.431 \end{aligned}$	$\begin{aligned} & 99.0 \\ & \pm 0.33 \\ & 0 * * \end{aligned}$	$\begin{aligned} & 85.15 \\ & \pm 0.243 \end{aligned}$	$\begin{aligned} & 83.16 \\ & \pm 0.28 \\ & 9 \end{aligned}$	$\left\lvert\, \begin{aligned} & 93.06 \\ & \pm 0.37 \\ & 6 \end{aligned}\right.$	$\begin{aligned} & 99.0 \\ & \pm 0.43 \\ & 5 \end{aligned}$

* Significant differences of t -test at 1% level, ${ }^{* *}$ Significant differences of t -test at 5% level.

Table 5.6 shows Pearson's correlation coefficient (r) for air temperature and physicochemical parameters of water at Site 2 (average of the corresponding month values) during Nov. 2008 - Oct. 2010; N=12; d. f. $=11$.

S2-I+II		Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	pH		$\begin{gathered} \text { D.O. } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { BOD } \\ (\mathbf{m g} / \mathrm{L}) \end{gathered}$	Chlorid (mg/L)	Total alkal(m g / L)	Total hardn mg / L)
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	P cor.	.818*	. 571	-. 759^{*}	$-.647^{* *}$	-. 272	. 442	. $616^{* *}$	-. 103
	Sig. (2-t)	. 001	. 052	. 004	. 023	. 393	. 150	. 046	. 751
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	P cor.	1	-. 539	-. 741^{*}	-. $747 *$	-. 251	. 277	. 330	. 071
	Sig. (2-t)		. 071	. 006	. 005	. 432	. 383	. 296	. 826
pH	P cor.		1	-. 513	. 828 *	.728*	-. 541	. $629 * *$	-681**
	Sig. (2-t)			. 088	. 001	. 007	. 069	. 029	. 102
$\underset{(\mathrm{mg} / \mathrm{L})}{\text { Free }} \quad \mathrm{CO}_{2}$	P cor.			1	. $647^{* *}$	-. 549	. $648^{* *}$. $688{ }^{* *}$. 475
	Sig. (2-t)				. 023	. 064	. 023	. 013	. 119
DO (mg/L)	P cor.				1	. 058	. 091	. 211	-. 301
	Sig. (2-t)					. 858	. 778	. 510	. 341
BOD (mg/)	P cor.					1	. $627^{* *}$. $693 *$	-.643**
	Sig. (2-t)						. 029	. 012	. 052
Chloride (mg/L)	P cor.						1	. $834 *$. 135
	Sig. (2-t)							. 001	. 675
Total alk. (mg/L)	P cor.							1	. 199
	Sig. (2-t)								. 536
Total hardness (mg/L)	P cor.								1
	Sig. (2-t)								

[^0]Values not marked denote non-significant correlation.

Fig.5.14. Monthly variations in air temperature at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.15. Monthly variations in water temperature at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.16. Monthly variations in pH at Site 2 during the first and second year study periods (Nov.2008- Oct.2010).

Fig.5.17. Monthly variations in CO_{2} at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig. 5.18. Monthly variations in DO at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.19. Monthly variations in BOD at Site 2 during the first and second year study periods (Nov.2008-Oct.2010).

Fig.5.20. Monthly variations in chloride at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.21.Monthly variations in total alkalinity at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.22. Monthly variations in total hardness at Site 2 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.23. Line graph of monthly variations in air temperature during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig.5.24. Line graph of monthly variations in water temperature during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig.5.25. Line graph of monthly variations in total alkalinity at site 2 during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig.5.26. Line graph of monthly variations in total hardness at site 2 during the first and second year study periods (Nov. 2008 - Oct.2010).

Site 3 (Tarahara Fish Farm)

Results of the air temperature and physico-chemical parameters of water of Site 3 (Tarahara Fish Farm) are shown in Table 5.7 and Table 5.8. Table 5.7 shows the result of air temperature and physico-chemical parameters of water of the first year (Nov. 2008 to Oct. 2009) study period. Table 5.8 shows the results of air temperature and physico-chemical parameters of water of the second year (Nov. 2009 to Oct. 2010) study period. Table 5.9 shows the correlation coefficient (r) of air temperature and different physico-chemical parameters of water at Site 3. Fig.5.27 shows the monthly variations in air temperature at Site 3 in the first year and the second year study periods. The Figs. 5.27 to 5.35 show histograms and Figs. 5.36 to 5.39 show line graphs of the monthly variations of different physicochemical parameters of water at Site 3 in the first year (Nov. 2008 to Oct. 2009) and the second year (Nov. 2009 to Oct. 2010) study periods.

Air temperature

The minimum air temperature was $19.75 \pm 0.645^{\circ} \mathrm{C}$ in the month of December and maximum was $31.62 \pm 0.478{ }^{\circ} \mathrm{C}$ in April during the first year study period (Table 5.7). The minimum air temperature was $17.52 \pm 0.445^{\circ} \mathrm{C}$ in the December and maximum was $30.5 \pm$ $0.386^{\circ} \mathrm{C}$ in September during the second year study period (Table 5.8).

The temperature showed a declining trend during the winter months of November to January in both the year1 and year 2. Decreasing trend was also observed during the months of September to October in both years (Tables 5.7, 5.8; Figs.5.27, 5.36). The air temperature had positive and significant correlation with water temperature ($\mathrm{r}=0.893, \mathrm{P}<0.01$) but inverse and
significant correlation with dissolved oxygen $(\mathrm{r}=-0.669 \mathrm{P}<0.05)$ and total hardness $(\mathrm{r}=-$ $0.673, \mathrm{P}<0.05$) (Table 5.9).

Water temperature

The lowest surface water temperature was $15.3 \pm 0.489^{\circ} \mathrm{C}$ in the month of December and highest $29.12 \pm 0.275^{\circ} \mathrm{C}$ in the month of April during the first year study period (Table 5.7). The maximum water temperature was $30.25 \pm 0.347^{\circ} \mathrm{C}$ in the month of September and the minimum $17.31 \pm 0.459^{\circ} \mathrm{C}$ in the month of December during the second year study period.

The temperature showed a decreasing trend during the winter months of November to January in both the years. Decreasing trend was also observed during the months of September to October in both years (Tables 5.7, 5.8; Figs.5.28, 5.37). The water temperature had positive and significant correlation with air temperature ($\mathrm{r}=0.893, \mathrm{P}<0.01$) but inverse and significant correlation with dissolved oxygen $(\mathrm{r}=-0.704, \mathrm{P}<0.05)$ and total hardness ($\mathrm{r}=-$ $0.909, \mathrm{P}<0.01$) (Table 5.9).

pH

The minimum pH was 6.67 ± 0.125 in the month of April and maximum 8.62 ± 0.095 in January, during the first year study period (Table 5.7; Fig.5.29). The minimum pH was $7.08 \pm$ 0.058 in October and maximum 10.02 ± 0.276 was in February during the second year study period (Table 5.8; Fig.5.29). pH had positive and significant correlation with dissolved oxygen ($\mathrm{r}=0.660, \mathrm{P}<0.05$), BOD ($\mathrm{r}=0.846, \mathrm{P}<0.05$) but inverse and significant correlation with temperature of air $(\mathrm{r}=-0.523, \mathrm{P}<0.10)$ and temperature of water $(\mathrm{r}=-0.671, \mathrm{P}<0.05)$ (Table 5.9).

Free carbon dioxide

The maximum free carbon dioxide was $135.6 \pm 1.356 \mathrm{mg} / \mathrm{L}$ in the month of June and minimum was $16.75 \pm 0.952 \mathrm{mg} / \mathrm{L}$ in the month of September during the first year (Table 5.7; Fig.5.30). During the second year, the maximum free CO_{2} was $114.58 \pm 1.356 \mathrm{mg} / \mathrm{L}$ in the month of June and minimum was $12.24 \pm 0.584 \mathrm{mg} / \mathrm{L}$ in May (Table 5.8; Fig.5.30). Free CO_{2} showed positive and significant correlation with DO ($\mathrm{r}=0.854, \mathrm{P}<0.01$), chloride ($\mathrm{r}=0.648, \mathrm{P}<0.05$), total alkalinity and ($\mathrm{r}=0.616, \mathrm{P}<0.05$) but had an inverse and significant with BOD (r=-0.627, $\mathrm{P}<0.05$) (Table 5.9).

Dissolved oxygen

The maximum dissolved oxygen was $8.92 \pm 0.221 \mathrm{mg} / \mathrm{L}$ in the month of January and the minimum was $4.86 \pm 0.079 \mathrm{mg} / \mathrm{L}$ in the month of August during the first year study period (Table 5.7, Fig.5.31). In the second year, the maximum dissolved oxygen was 10.16 ± 0.215 mg / L in February and minimum $2.94 \pm 0.305 \mathrm{mg} / \mathrm{L}$ was recorded in September (Table 5.8; Fig. 5.31). The dissolved oxygen showed positive and significant correlation with total alkalinity ($\mathrm{r}=0.715, \mathrm{P}<0.01$), $\mathrm{CO}_{2}(\mathrm{r}=0.854, \mathrm{P}<0.01$), chloride ($\mathrm{r}=0.625, \mathrm{P}<0.05$) and $\mathrm{pH}(\mathrm{r}$ $=0.660, \mathrm{P}<0.05$) but inverse and significant correlation with air temperature ($\mathrm{r}=-0.669$, $\mathrm{P}<0.05$), water temperature ($\mathrm{r}=-0.704, \mathrm{P}<0.05$) and biological oxygen demand ($\mathrm{r}=-0.810$, P <0.01) (Table 5.9).

Biological oxygen demand

The maximum biological oxygen demand was $5.31 \pm 0.082 \mathrm{mg} /$ in January and minimum was $0.47 \pm 0.145 \mathrm{mg} / \mathrm{L}$ in May during the first year study period (Table 5.7; Fig. 5.32). During the second year, the maximum biological oxygen demand was $7.14 \pm 0.263 \mathrm{mg} / \mathrm{L}$ in December and minimum was $0.45 \pm 0.075 \mathrm{mg} / \mathrm{L}$ in November (Table 5.8; Fig. 5.32). It had positive and significant correlation with $\mathrm{pH}(\mathrm{r}=0.846, \mathrm{P}<0.01)$ but inverse and significant correlation with dissolved oxygen $(\mathrm{r}=-0.810, \mathrm{P}<0.01)$ (Table 5.9).

Chloride

The maximum chloride was $12.98 \pm 0.416 \mathrm{mg} / \mathrm{L}$ in January and minimum was 5.2 ± 0.288 mg / L in October during the first year study period (Table 5.7; Fig.5.33). During the second year, the maximum chloride was $9.02 \pm 0.525 \mathrm{mg} / \mathrm{L}$ in the month of June and minimum was $1.06 \pm 0.035 \mathrm{mg} / \mathrm{L}$ in April (Table 5.8; Fig.5.33). It had a positive and significant correlation with DO ($\mathrm{r}=0.625, \mathrm{P}<0.05$) and $\mathrm{CO}_{2}(\mathrm{r}=0.648, \mathrm{P}<0.05)$ (Table 5.9).

Total alkalinity

The maximum total alkalinity was $202.50 \pm 5.802 \mathrm{mg} / \mathrm{L}$ in the month of January and minimum was $103.40 \pm 0.469 \mathrm{mg} / \mathrm{L}$ in the month of September during the first year study period (Table 5.7; Fig.5.29). During the second year, the maximum total alkalinity was $215.03 \pm 1.089 \mathrm{mg} / \mathrm{L}$ in the month of March and minimum was $72.74 \pm 1.092 \mathrm{mg} / \mathrm{L}$ in the month of December (Table 5.8, Fig.5.34). It had positive and significant correlation with DO $(\mathrm{r}=0.715, \mathrm{P}<0.01), \mathrm{CO}_{2}(\mathrm{r}=0.616, \mathrm{P}<0.05)$ and $\mathrm{TH}(\mathrm{r}=0.592, \mathrm{P}<0.05)($ Table 5.9 $)$.

Total alkalinity showed decreasing trend from June to September. The values in the month of June ($125.62 \pm 0.805 \mathrm{mg} / \mathrm{L}$) was significantly decreased ($\mathrm{P}<0.01$) as compared to May ($167.12 \pm 0.689 \mathrm{mg} / \mathrm{L}$) in the first year study (Table 5.7 ; Figs.5.34, 5.38). In second year, decreasing trend was seen from June to October. The value of June ($124.22 \pm 0.995 \mathrm{mg} / \mathrm{L}$) was significantly decreased ($\mathrm{P}<0.01$) as compared to May ($136.40 \pm 1.642 \mathrm{mg} / \mathrm{L}$) (Table 5.8; Figs. 5.34, 5.38). It remained low for five months from June to October in both years.

Total hardness

The maximum total hardness was $164.4 \pm 1.478 \mathrm{mg} / \mathrm{L}$ in January and minimum was $83.6 \pm$ $0.585 \mathrm{mg} / \mathrm{L}$ in the month of July during the first year study period (Table 5.7; Fig.5.35). During the second year, the maximum total hardness was recorded $163.26 \pm 1.023 \mathrm{mg} / \mathrm{L}$ in February and minimum $35.64 \pm 1.578 \mathrm{mg} / \mathrm{L}$ in the month of January (Table 5.8; Fig.5.35). It had positive and significant correlation with total alkalinity ($\mathrm{r}=0.592, \mathrm{P}<0.05$) but inverse and significant correlation with air temperature ($\mathrm{r}=-0.673, \mathrm{P}<0.05$) and water temperature ($\mathrm{r}=$ -0.909, $\mathrm{P}<0.01$) (Table 5.9).

The hardness showed a decreasing trend from the months of April to August and increased slightly during the months of September and October but the values were less than that of during the month of April. The values in April ($101.2 \pm 0.776 \mathrm{mg} / \mathrm{L}$) showed significant decrease ($\mathrm{p}<0.01$) as compared to March ($146.14 \pm 0.985 \mathrm{mg} / \mathrm{L}$) in the first year (Table 5.7; Figs. 5.35, 5.39). It also showed decreasing trend from March 2010. The values in March ($156.420 \pm 0.675 \mathrm{mg} / \mathrm{L}$) was significantly lower ($\mathrm{P}<0.01$) as compared to February (163.26 $\pm 1.023 \mathrm{mg} / \mathrm{L}$) in the second year (Table 5.8 ; Figs. $5.35,5.39$). It remained low for seven months from April to October in the first year and for eight months from March to October in the second year.

Table 5.7 shows air temperature, water temperature and physico-chemical parameters of water at Site 3 (Tarahara fish pond, Sunsari) from Nov. 2008- October 2009. (Mean \pm S.D., $\mathrm{N}=5$).

Parame ters	Months											
$\left\lvert\, \begin{aligned} & \text { Site 3-I } \\ & \text { Yr. } \end{aligned}\right.$	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 21.25 \\ \pm 0.645 \end{gathered}$	$\begin{gathered} 19.75 \\ \pm 0.645 \end{gathered}$	$\begin{gathered} 20.87 \\ \pm 1.108 \end{gathered}$	$\begin{gathered} 24.75 \\ \pm 0.645 \end{gathered}$	$\begin{gathered} 29.25 \\ \pm 0.645 \end{gathered}$	$\begin{gathered} 31.62 \\ \pm 0.478 \end{gathered}$	$\begin{gathered} 29.12 \\ \pm 0.629 \end{gathered}$	$\begin{gathered} 29.25 \\ \pm 0.288 \end{gathered}$	$\begin{gathered} 25.75 \\ \pm 0.645 \end{gathered}$	$\begin{gathered} 29.37 \\ \pm 0.47 \\ 8 \end{gathered}$	$\begin{gathered} 29.25 \\ \pm 0.28 \\ 8 \end{gathered}$	$\begin{gathered} 27.45 \\ \pm 0.42 \\ 0 \end{gathered}$
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 18.75 \\ \pm 0.228 \end{gathered}$	$\begin{gathered} 15.3 \\ \pm 0.489 \end{gathered}$	$\begin{gathered} 18.75 \\ \pm 0.288 \end{gathered}$	$\begin{gathered} 21.5 \\ \pm 0.408 \end{gathered}$	$\begin{gathered} 23.57 \\ \pm 0.434 \end{gathered}$	$\begin{gathered} 29.12 \\ \pm 0.275 \end{gathered}$	$\begin{aligned} & 27.07 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & 27.45 \\ & \pm 0.42 \end{aligned}$	$\begin{aligned} & 27.07 \\ & \pm 0.25 \end{aligned}$	$\begin{gathered} 27.12 \\ \pm 0.27 \\ 5 \end{gathered}$	$\begin{gathered} 27.25 \\ \pm 0.64 \\ 5 \end{gathered}$	$\begin{gathered} 25.27 \\ \pm 0.49 \\ 9 \end{gathered}$
pH	$\begin{gathered} 7.9 \\ \pm 0.089 \end{gathered}$	$\begin{gathered} 8.05 \\ \pm 0.129 \end{gathered}$	$\begin{gathered} 8.62 \\ \pm 0.095 \end{gathered}$	$\begin{gathered} 8.12 \\ 0.095 \pm \end{gathered}$	$\begin{gathered} 7.325 \\ \pm 0.095 \end{gathered}$	$\begin{gathered} 6.67 \\ \pm 0.125 \end{gathered}$	$\begin{gathered} 8.12 \\ \pm 0.629 \end{gathered}$	$\begin{gathered} 8.2 \\ \pm 0.081 \end{gathered}$	$\begin{gathered} 7.05 \\ \pm 0.057 \end{gathered}$	$\begin{gathered} 7.12 \\ \pm 0.27 \\ 5 \end{gathered}$	$\begin{gathered} 8.2 \\ \pm 0.21 \\ 6 \end{gathered}$	$\begin{gathered} 7.62 \\ \pm 0.47 \\ 8 \end{gathered}$
Free CO_{2} (mg/L)	$\begin{gathered} 21.63 \\ \pm 1.203 \end{gathered}$	$\begin{gathered} 55.02 \\ \pm 1.275 \end{gathered}$	$\begin{gathered} 91.05 \\ \pm 1.078 \end{gathered}$	$\begin{aligned} & 126.35 \\ & \pm 0.864 \end{aligned}$	$\begin{aligned} & 135.12 \\ & \pm 0.853 \end{aligned}$	$\begin{aligned} & 101.96 \\ & \pm 0.416 \end{aligned}$	$\begin{gathered} 93.15 \\ \pm 0.580 \end{gathered}$	$\begin{gathered} 135.6 \\ \pm 1.356 \end{gathered}$	$\begin{aligned} & 113.35 \\ & \pm 0.850 \end{aligned}$	$\begin{gathered} 49.13 \\ \pm 1.3 \end{gathered}$	$\begin{gathered} 16.75 \\ \pm 0.95 \\ 2 \end{gathered}$	$\begin{array}{\|c} 38.16 \\ \pm 0.62 \\ 3 \end{array}$
$\left\lvert\, \begin{aligned} & \mathrm{DO} \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}\right.$	$\begin{gathered} 5.71 \\ \pm 0.335 \end{gathered}$	$\begin{gathered} 5.84 \\ \pm 0.079 \end{gathered}$	$\begin{gathered} 8.92 \\ \pm 0.221 \end{gathered}$	$\begin{gathered} 8.61 \\ \pm 0.115 \end{gathered}$	$\begin{gathered} 7.86 \\ \pm 0.354 \end{gathered}$	$\begin{gathered} 8.1 \\ \pm 0.127 \end{gathered}$	$\begin{gathered} 7.04 \\ \pm 0.225 \end{gathered}$	$\begin{gathered} 7.83 \\ \pm 0.009 \end{gathered}$	$\begin{gathered} 8.90 \\ \pm 0.553 \end{gathered}$	$\begin{gathered} 4.86 \\ \pm 0.07 \\ 9 \end{gathered}$	$\begin{gathered} 5.45 \\ \pm 0.24 \\ 5 \end{gathered}$	$\begin{gathered} 5.75 \\ \pm 0.36 \\ 5 \end{gathered}$
$\begin{aligned} & \text { BOD } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} 2.91 \\ \pm 0.145 \end{gathered}$	$\begin{gathered} 2.30 \\ \pm 0.067 \end{gathered}$	$\begin{gathered} 5.31 \\ \pm 0.082 \end{gathered}$	$\begin{gathered} 3.67 \\ \pm 0.238 \end{gathered}$	$\begin{gathered} 0.65 \\ \pm 0.253 \end{gathered}$	$\begin{gathered} 1.74 \\ \pm 0.057 \end{gathered}$	$\begin{gathered} 0.47 \\ \pm 0.145 \end{gathered}$	$\begin{gathered} 0.54 \\ \pm 0.235 \end{gathered}$	$\begin{gathered} 2.35 \\ \pm 0.082 \end{gathered}$	$\begin{gathered} 2.78 \\ \pm 0.36 \\ 5 \end{gathered}$	$\begin{gathered} 3.5 \\ \pm 0.32 \\ 5 \end{gathered}$	$\begin{gathered} 3.35 \\ \pm 0.34 \\ 6 \end{gathered}$
Chlorid e (mg/L)	$\begin{gathered} 8.2 \\ \pm 0.332 \end{gathered}$	$\begin{gathered} 5.3 \\ \pm 0.082 \end{gathered}$	$\begin{gathered} 12.98 \\ \pm 0.416 \end{gathered}$	$\begin{gathered} 9.88 \\ \pm 0.334 \end{gathered}$	$\begin{gathered} 11.32 \\ \pm 0.221 \end{gathered}$	$\begin{gathered} 12.06 \\ \pm 0.132 \end{gathered}$	$\begin{gathered} 8.46 \\ \pm 0.129 \end{gathered}$	$\begin{gathered} 12.2 \\ \pm 0.629 \end{gathered}$	$\begin{gathered} 8.41 \\ \pm 0.145 \end{gathered}$	$\begin{gathered} 9.96 \\ \pm 0.54 \\ 6 \end{gathered}$	$\begin{gathered} 6.21 \\ \pm 0.22 \\ 3 \end{gathered}$	$\begin{gathered} 5.2 \\ \pm 0.28 \\ 8 \end{gathered}$
Total Alkalini t (mg/L)	$\begin{aligned} & 147.96 \\ & \pm 1.860 \end{aligned}$	$\begin{array}{\|l} 128.72 \\ \pm 1.112 \end{array}$	$\begin{gathered} 202.5 \\ \pm 5.802 \end{gathered}$	$\begin{aligned} & 194.95 \\ & \pm 1.962 \end{aligned}$	$\begin{aligned} & 176.82 \\ & \pm 1.189 \end{aligned}$	$\begin{gathered} 157.7 \\ \pm 0.877 \end{gathered}$	$\begin{aligned} & 167.12 \\ & \pm 0.689 \end{aligned}$	$\begin{aligned} & 125.62 \\ & \pm 0.805 \end{aligned}$	$\begin{gathered} 135.8 \\ \pm 0.585 \end{gathered}$	$\begin{array}{\|c} 118.0 \\ 7 \\ \pm 0.44 \\ 9 \end{array}$	$\begin{gathered} 103.4 \\ \pm 0.46 \\ 9 \end{gathered}$	$\begin{gathered} 133.0 \\ 2 \\ \pm 0.69 \\ 4 \end{gathered}$
Total Hardne SS (mg/L)	$\begin{aligned} & 138.72 \\ & \pm 2.125 \end{aligned}$	$\begin{array}{\|} 157.08 \\ \pm 1.325 \end{array}$	$\begin{gathered} 164.4 \\ \pm 1.478 \end{gathered}$	$\begin{gathered} 148.6 \\ \pm 1.036 \end{gathered}$	$\begin{aligned} & 146.14 \\ & \pm 0.985 \end{aligned}$	$\begin{gathered} 101.2 \\ \pm 0.776 \\ * \end{gathered}$	$\begin{gathered} 96.32 \\ \pm 1.745 \end{gathered}$	$\begin{gathered} 91.2 \\ \pm 1.558 \end{gathered}$	$\begin{gathered} 83.6 \\ \pm 0.998 \end{gathered}$	$\begin{gathered} 92.88 \\ \pm 0.75 \\ 6 \end{gathered}$	$\begin{gathered} 108.2 \\ 5 \\ \pm 0.95 \\ 5 \end{gathered}$	$\begin{gathered} 118.2 \\ 3 \\ \pm 0.77 \\ 9 \end{gathered}$

* Significant differences at 1% level, ** Significant differences at 5% level.

Table 5.8 shows air temperature, water temperature and physico-chemical parameters of water at Site 3 (Tarahara fish pond, Sunsari) from Nov. 2009-October 2010. (Mean \pm S.D., $\mathrm{N}=5$).

Site 3II Yr.	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 19.12 \\ \pm 0.345 \end{gathered}$	$\begin{gathered} 17.52 \\ \pm 0.445 \end{gathered}$	$\begin{array}{r} 18.37 \\ \pm .608 \end{array}$	$\begin{gathered} 21.35 \\ \pm 0.545 \end{gathered}$	$\begin{gathered} 28.25 \\ \pm 0.745 \end{gathered}$	$\begin{gathered} 28.02 \\ \pm 0.478 \end{gathered}$	$\begin{gathered} 24.13 \\ \pm 0.229 \end{gathered}$	$\begin{gathered} 25.15 \\ \pm 0.278 \end{gathered}$	$\begin{gathered} 29.5 \\ \pm 0.635 \end{gathered}$	$\begin{gathered} 29.17 \\ \pm 0.378 \end{gathered}$	$\begin{gathered} 30.5 \\ \pm 0.386 \end{gathered}$	$\begin{gathered} 27.85 \\ \pm 0.62 \\ 0 \end{gathered}$
W Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 21.26 \\ \pm 0.325 \end{gathered}$	$\begin{gathered} 17.31 \\ \pm 0.459 \end{gathered}$	$\begin{gathered} 17.45 \\ \pm 0.246 \end{gathered}$	$\begin{gathered} 19.20 \\ \pm 0.218 \end{gathered}$	$\begin{gathered} 25.26 \\ \pm 0.335 \end{gathered}$	$\begin{gathered} 27.12 \\ \pm 0.275 \end{gathered}$	$\begin{gathered} 26.57 \\ \pm 0.251 \end{gathered}$	$\begin{aligned} & 28.05 \\ & \pm 0.42 \end{aligned}$	$\begin{gathered} 28.65 \\ \pm 0.254 \end{gathered}$	$\begin{gathered} 30.12 \\ \pm 0.235 \end{gathered}$	$\begin{gathered} 30.25 \\ \pm 0.347 \end{gathered}$	$\begin{gathered} 25.87 \\ \pm 0.57 \\ 8 \end{gathered}$
pH	$\begin{gathered} 7.33 \\ \pm 0.185 \end{gathered}$	$\begin{gathered} 8.68 \\ \pm 0.426 \end{gathered}$	$\begin{gathered} 7.82 \\ \pm 0.565 \end{gathered}$	$\begin{gathered} 10.02 \\ \pm 0.276 \end{gathered}$	$\begin{gathered} 7.72 \\ \pm 0.076 \end{gathered}$	$\begin{gathered} 7.76 \\ \pm 0.325 \end{gathered}$	$\begin{gathered} 7.51 \\ \pm 0.427 \end{gathered}$	$\begin{gathered} 7.62 \\ \pm 0.281 \end{gathered}$	$\begin{gathered} 8.05 \\ \pm 0.068 \end{gathered}$	$\begin{gathered} 7.81 \\ \pm 0.078 \end{gathered}$	$\begin{gathered} 7.64 \\ \pm 0.216 \end{gathered}$	$\begin{gathered} 7.08 \\ \pm 0.05 \\ 8 \end{gathered}$
Free CO_{2} (mg/L)	$\begin{gathered} 19.52 \\ \pm 1.325 \end{gathered}$	$\begin{gathered} 15.12 \\ \pm 1.205 \end{gathered}$	$\begin{gathered} 47.52 \\ \pm 1.078 \end{gathered}$	$\begin{gathered} 16.03 \\ \pm 0.965 \end{gathered}$	$\begin{gathered} 15.12 \\ \pm 0.853 \end{gathered}$	$\begin{gathered} 14.56 \\ \pm 0.817 \end{gathered}$	$\begin{gathered} 12.24 \\ \pm 0.584 \end{gathered}$	$\begin{aligned} & 114.58 \\ & \pm 1.356 \end{aligned}$	$\begin{gathered} 18.35 \\ \pm 0.915 \end{gathered}$	$\begin{gathered} 16.14 \\ \pm 1.325 \end{gathered}$	$\begin{gathered} 16.75 \\ \pm 0.652 \end{gathered}$	$\begin{gathered} 15.68 \\ \pm 0.32 \\ 3 \end{gathered}$
$\begin{aligned} & \text { DO } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} 4.48 \\ \pm 0.215 \end{gathered}$	$\begin{gathered} 8.48 \\ \pm 0.067 \end{gathered}$	$\begin{gathered} 8.81 \\ \pm 0.229 \end{gathered}$	$\begin{gathered} 10.16 \\ \pm 0.215 \end{gathered}$	$\begin{gathered} 4.64 \\ \pm 0.308 \end{gathered}$	$\begin{gathered} 7.71 \\ \pm 0.125 \end{gathered}$	$\begin{gathered} 3.04 \\ \pm 0.232 \end{gathered}$	$\begin{gathered} 3.31 \\ \pm 0.058 \end{gathered}$	$\begin{gathered} 4.81 \\ \pm 0.373 \end{gathered}$	$\begin{gathered} 4.65 \\ \pm 0.079 \end{gathered}$	$\begin{gathered} 2.94 \\ \pm 0.305 \end{gathered}$	$\begin{gathered} 4.22 \\ \pm 0.26 \\ 5 \end{gathered}$
$\begin{aligned} & \text { BOD } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} 0.45 \\ \pm 0.075 \end{gathered}$	$\begin{gathered} 7.14 \\ \pm 0.263 \end{gathered}$	$\begin{gathered} 3.38 \\ \pm 0.172 \end{gathered}$	$\begin{gathered} 7.01 \\ \pm 0.241 \end{gathered}$	$\begin{gathered} 2.68 \\ \pm 0.158 \end{gathered}$	$\begin{gathered} 5.02 \\ \pm 0.089 \end{gathered}$	$\begin{gathered} 2.04 \\ \pm 0.165 \end{gathered}$	$\begin{gathered} 1.75 \\ \pm 0.245 \end{gathered}$	$\begin{gathered} 2.85 \\ \pm 0.064 \end{gathered}$	$\begin{gathered} 0.82 \\ \pm 0.325 \end{gathered}$	$\begin{gathered} 1.03 \\ \pm 0.227 \end{gathered}$	$\begin{gathered} 0.51 \\ \pm 0.24 \\ 3 \end{gathered}$
Chlori de (mg/L)	$\begin{gathered} 2.70 \\ \pm 0.092 \end{gathered}$	$\begin{gathered} 2.58 \\ \pm 0.184 \end{gathered}$	$\begin{gathered} 4.21 \\ \pm 0.317 \end{gathered}$	$\begin{gathered} 4.02 \\ \pm 0.314 \end{gathered}$	$\begin{gathered} 3.12 \\ \pm 0.322 \end{gathered}$	$\begin{gathered} 1.06 \\ \pm 0.035 \end{gathered}$	$\begin{gathered} 4.14 \\ \pm 0.132 \end{gathered}$	$\begin{gathered} 9.02 \\ \pm 0.525 \end{gathered}$	$\begin{gathered} 5.11 \\ \pm 0.097 \end{gathered}$	$\begin{gathered} 4.01 \\ \pm 0.374 \end{gathered}$	$\begin{gathered} 6.10 \\ \pm 0.152 \end{gathered}$	$\begin{gathered} 5.03 \\ \pm 0.23 \\ 8 \end{gathered}$
Total Alkali n (mg/L)	$\begin{aligned} & 144.08 \\ & \pm 1.663 \end{aligned}$	$\begin{gathered} 72.74 \\ \pm 1.092 \end{gathered}$	$\begin{aligned} & 180.25 \\ & \pm 4.532 \end{aligned}$	$\begin{aligned} & 117.55 \\ & \pm 1.876 \end{aligned}$	$\begin{aligned} & 215.03 \\ & \pm 1.089 \end{aligned}$	$\begin{aligned} & 195.57 \\ & \pm 1.877 \end{aligned}$	$\begin{aligned} & 136.40 \\ & \pm 1.642 \end{aligned}$	$\begin{gathered} 124.22 \\ \pm 0.995 \\ * \end{gathered}$	$\begin{gathered} 119.7 \\ \pm 0.887 \end{gathered}$	$\begin{aligned} & 101.23 \\ & \pm 0.849 \end{aligned}$	$\begin{aligned} & 118.75 \\ & \pm 0.559 \end{aligned}$	$\begin{gathered} 117.8 \\ 6 \\ \pm 0.89 \\ 3 \end{gathered}$
Total Hardn (mg/L)	$\begin{aligned} & 138.72 \\ & \pm 2.125 \end{aligned}$	$\begin{aligned} & 116.82 \\ & \pm 1.721 \end{aligned}$	$\begin{array}{\|c} 35.64 \\ \pm 1.578 \end{array}$	$\begin{aligned} & 163.26 \\ & \pm 1.023 \end{aligned}$	$\begin{aligned} & 156.42 \\ & \pm 0.675 \end{aligned}$	$\begin{aligned} & 152.32 \\ & \pm 1.445 \end{aligned}$	$\begin{gathered} 97.02 \\ \pm 1.342 \end{gathered}$	$\begin{aligned} & 102.95 \\ & \pm 0.906 \end{aligned}$	$\begin{gathered} 93.06 \\ \pm 1.097 \end{gathered}$	$\begin{gathered} 83.16 \\ \pm 0.356 \end{gathered}$	$\begin{gathered} 93.01 \\ \pm 0.978 \end{gathered}$	$\begin{gathered} 110.8 \\ 5 \\ \pm 0.71 \\ 9 \end{gathered}$

* Significant differences at 1% level, ** Significant differences at 5\% level.

Table 5.9 shows Pearson's correlation coefficient (r) for air temperature and physicochemical parameters of water at Site 3 (average of the corresponding month values) during Nov. 2008 - Oct. 2010; N=12; d. f. $=11$.

S3-I +II		Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	pH		$\begin{gathered} \text { DO } \\ (\mathbf{m g} / \mathrm{L}) \end{gathered}$	$\underset{(\mathrm{mg} / \mathrm{L})}{\mathrm{BOD}}$		Total alkalin(mg / L)	Total hardn (mg/L)
Air Temp $\left({ }^{\circ} \mathrm{C}\right)$	P corr.	.893*	-. 523	. 241	-. 669 **	-. 373	. 308	-. 199	-.673**
	Sig(2-t)	. 000	. 081	. 450	. 048	. 232	. 331	. 535	. 017
Temp.of water (${ }^{\circ} \mathrm{C}$)	P corr.	1	$-.571 * *$. 148	$-.704^{* *}$	-. 299	. 148	-. 429	-. 909^{*}
	Sig.(2-t)		. 051	. 647	. 011	. 346	. 647	. 165	. 000
pH	P corr.		1	-. 219	. 660 **	. 846 *	-. 053	. 315	. 515
	Sig.(2-t)			. 495	. 019	. 001	. 870	. 318	. 086
$\begin{aligned} & \text { Free } \mathrm{CO}_{2} \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	P corr.			1	.854*	$-.627^{* *}$. $648^{* *}$. $616^{* *}$	-. 049
	Sig.(2-t)				. 000	. 051	. 023	. 039	. 880
DO (mg/L)	P corr.					.810**	. $625^{* *}$.715*	. 155
	Sig.(2-t)					. 001	. 030	. 009	. 631
BOD (mg/L)	P corr.					1	-. 044	. 028	. 316
	Sig.(2-t)						. 892	. 930	. 317
Chloride (mg/L)	P corr.						-. $624^{* *}$. 555	. 026
	Sig.(2-t)						. 046	. 061	. 935
Total alkal(mg/L)	P corr.							1	. $592 *$
	Sig.(2-t)								. 043
Total $\operatorname{hard}(\mathrm{mg} / \mathrm{L})$	P corr.								1
	Sig. 2-t)								

* Significant at 1% level $(\mathbf{P}<0.01)$, ** Significant at 5% level $(\mathbf{P}<0.05)$ and

Values not marked denote non-significant correlation.

Fig.5.27. Monthly variations in air temperature at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.28. Monthly variations in water temperature at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.29. Monthly variations in pH at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.30. Monthly variations in Free CO_{2} at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.31. Monthly variations in DO at Site 3 during the first and second year study periods (Nov.2008- Oct.2010)

Fig.5.32. Monthly variations in BOD at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.33. Monthly variations in Chloride at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.34.Monthly variations in TA at Site 3 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.35.Monthly variations in T.H. at Site 3 during the first and second year study periods (Nov.2008- Oct. 2010).

Fig.5.36. Line graph of monthly variations in air temperature at site 3 during the first and second year study periods (Nov. 2008-Oct.2010).

Fig.5.37. Line graph of monthly variations in water temperature at site 3 during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig.5.38. Line graph of monthly variations in total alkalinity at site 3 during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig.5.39. Line graph of monthly variations in total hardness at site 3 during the first and second year study periods (Nov. 2008 - Oct.2010).

Site 4 (Betana wetland)

Betana wetland consists of an ox-bow lake with an area of 5.5 ha. It is surrounded by sal forests (Charkoshe Jhaadi) in east, north and west sides and Mahendra highway in the south. It is flooded during rainy season.

Results of the air temperature and physico-chemical parameters of water of Site 4 are shown in Table 5.10 and Table 5.11. Table 5.10 shows the results of air temperature and physicochemical parameters of water of the first year (Nov. 2008 - Oct.2009) study period. Table 5.11 shows the results of air temperature and physico-chemical parameters of water of the second year (Nov. 2009- June 2010). Table 5.12 shows the correlation coefficient (r) of air temperature and different physico-chemical parameters of water at Site 4. The Fig.5.40 shows the monthly variations in air temperature at site 4 in the first year and the second year study periods. The Figs. 5.40 to 5.48 show histograms and Figs. 5.49 to 5.52 show line graphs of the monthly variations of different physico-chemical parameters of water at Site 4 during the first year (Nov. 2008 - Oct. 2009) and the second year (Nov. 2008 - Oct. 2010) study periods.

Air temperature

The minimum air temperature was $18.03 \pm 0.347^{\circ} \mathrm{C}$ in December and maximum was $31.01 \pm$ $0.274^{\circ} \mathrm{C}$ in August during the first year study period (Table 5.10 and Fig.5.40). The maximum air temperature was $29.1 \pm 0.285^{\circ} \mathrm{C}$ in the month of March and minimum 17.10 $\pm 0.237^{\circ} \mathrm{C}$ in the month of January during the second year study period (Table 5.11 and

Fig.5.40). Air temperature showed positive and significant correlation with water temperature ($\mathrm{r}=0.947, \mathrm{P}<0.01$) but it had inverse and significant correlation with free $\mathrm{CO}_{2}(\mathrm{r}=-0.685$, $\mathrm{P}<0.05), \mathrm{pH}(\mathrm{r}=-0.653, \mathrm{P}<0.05)$ and dissolved oxygen $(\mathrm{r}=-0.582, \mathrm{P}<0.05)$ (Table 5.12).

During year 1 , the air temperature showed declining trend during the month of November. In the month of December 2008, it was lowest $\left(18.03 \pm 0.347^{\circ} \mathrm{C}\right)$ and it increased slightly $(18.10$ ± 0.523) in the month of January, 2009. Thereafter it increased February onwards up to March (Table 5.10; Figs.5.46, 5.57). The air temperature during the year 2 showed decreasing trends from November to January (Table 5.11; Figs.5.40, 5.49). Decreasing trend was also observed during the months of August to October in both years.

Water temperature

The maximum water temperature was $29.12 \pm 0.235^{\circ} \mathrm{C}$ in August and minimum $17.14 \pm$ $0.316^{\circ} \mathrm{C}$ in the month of January during the first year (Table 5.10 and Fig.5.41). During the second year study period, the maximum water temperature was $28.12 \pm 0.523^{\circ} \mathrm{C}$ in August and minimum $18.04 \pm 0.365^{\circ} \mathrm{C}$ in the January (Table 5.11 and Fig.5.41). The water temperature showed positive and significant correlation with air temperature ($\mathrm{r}=0.947$, $\mathrm{P}<0.01$) and phosphate ($\mathrm{r}=0.635, \mathrm{P}<0.05$) but it showed inverse and significant correlation with $\mathrm{pH}(\mathrm{r}=-0.692, \mathrm{P}<0.05)$, dissolved oxygen $(\mathrm{r}=-0.576, \mathrm{P}<0.05)$ and free $\mathrm{CO}_{2}(\mathrm{r}=-0.798$, $\mathrm{P}<0.01)$ (Table 5.12).

The water temperature showed decreasing trend during the winter months of November to January in both year 1 and year 2. Decreasing trend was also observed during the months of August to October in both years. It remained low during winter months (Tables 5.11, 5.12; Figs.5.41, 5.50).

pH

The maximum pH was 8.15 ± 0.365 in the month of January and minimum 6.64 ± 0.271 in September during the first year study period (Table 5.10, Fig.5.42). The maximum pH was 7.60 ± 0.327 in December and minimum was 6.61 ± 0.229 in February during second year (Table 5.11 Fig.5.48). pH showed inverse and significant correlation with air temperature $(\mathrm{r}=-0.653, \mathrm{P}<0.05)$, water temperature $(\mathrm{r}=-0.692, \mathrm{P}<0.05)$ and biological oxygen demand $(\mathrm{r}=-0.613, \mathrm{P}<0.05)($ Table 5.12 $)$.

Free carbon dioxide

The maximum free carbon dioxide was recorded $73.92 \pm 1.552 \mathrm{mg} / \mathrm{L}$ in September and minimum $3.37 \pm 0.638 \mathrm{mg} / \mathrm{L}$ in May during the first year study period (Table 5.10 and Fig. 5.43). The maximum free carbon dioxide was $23.75 \pm 0.874 \mathrm{mg} / \mathrm{L}$ in January and minimum $2.24 \pm 0.557 \mathrm{mg} / \mathrm{L}$ in April during the second year study period (Table 5.11 and Fig. 5.43). Free carbon dioxide showed inverse and significant correlation with chloride ($\mathrm{r}=-0.596$, $\mathrm{P}<0.05$), water temperature ($\mathrm{r}=-0.798, \mathrm{P}<0.01$), air temperature ($\mathrm{r}=-0.685, \mathrm{P}<0.05$) (Table 5.12).

Dissolved oxygen

The maximum dissolved oxygen was $7.31 \pm 0.185 \mathrm{mgL}$ in January and minimum $3.19 \pm$ $0.379 \mathrm{mg} / \mathrm{L}$ in August during the first year study period (Table 5.10 and Fig.5.44). The maximum dissolved oxygen was $9.74 \pm 0.235 \mathrm{mg} / \mathrm{L}$ in April and minimum 3.19 ± 0.254 mg / L in June (Table 5.11 and Fig.5.44). The dissolved oxygen showed inverse and significant correlation with water temperature ($\mathrm{r}=-0.596, \mathrm{P}<0.05$), air temperature ($\mathrm{r}=-$ $0.582, \mathrm{P}<0.05$) (Table 5.12).

Biological oxygen demand

The maximum biological oxygen demand was $4.62 \pm 0.254 \mathrm{mg} / \mathrm{L}$ in the month of September and minimum was $0.84 \pm 0.014 \mathrm{mg} / \mathrm{L}$ in the month of February during the first year study period (Table 5.10 and Fig.5.45). During the second year, the maximum biological oxygen demand $6.22 \pm 0.048 \mathrm{mg} / \mathrm{L}$ was seen in the month of April and minimum 0.26 ± 0.076 mg / L in the month of December (Table 5.11 and Fig. 5.45). BOD showed no significant positive correlation but it had inverse and significant correlation with pH ($\mathrm{r}=-0.613, \mathrm{P}<$ $0.05)$ (Table 5.12).

Chloride

The maximum chloride was $5.02 \pm 0.531 \mathrm{mg} / \mathrm{L}$ in June and minimum was $2.02 \pm 0.095 \mathrm{mg} / \mathrm{L}$ in September during the first year study period (Table 5.10 and Fig.5.46). During the second year, the maximum chloride was $7.05 \pm 0.324 \mathrm{mg} L$ in January and minimum 1.01 ± 0.093 mg / L in March (Table 5.11 and Fig.5.46). Chloride showed inverse and significant correlation with free $\mathrm{CO}_{2}(\mathrm{r}=-0.596, \mathrm{P}<0.05)$ (Table 5.12).

Total alkalinity

The maximum total alkalinity was recorded $195.33 \pm 1.776 \mathrm{mg} / \mathrm{L}$ in February and minimum $69.56 \pm 1.152 \mathrm{mg} / \mathrm{L}$ in December during the first year study period (Table 5.10 and Fig.5.47). During the second year, the maximum total alkalinity was recorded $197.43 \pm 2.756 \mathrm{mg} / \mathrm{L}$ in February and minimum $103.23 \pm 0.867 \mathrm{mg} / \mathrm{L}$ in September (Table 5.11 and Fig. 5.47). The total alkalinity showed positive and significant correlation with total hardness ($\mathrm{r}=0.580$, $\mathrm{P}<0.05)$ (Table 5.12).

Total alkalinity remained low during August, September and October in the first year study period. Total alkalinity in the month of June ($116.62 \pm 0.956 \mathrm{mg} / \mathrm{L}$) significantly ($\mathrm{p}<0.01$) decreased in comparison to that of May ($132.01 \pm 1.742 \mathrm{mg} / \mathrm{L}$) in the first year (Table 5.10; Figs.5.47, 5.51). There were fluctuations in the values of total alkalinity during March, April, May and June, 2009. Similar patterns in total alkalinity were noticed during second year study period (Table 5.11; Figs. 5.47 and 5.51).

Total hardness

The maximum hardness was $130.43 \pm 1.623 \mathrm{mg} / \mathrm{L}$ in February and minimum 97.02 ± 0.754 mg / L in August during the first year study period (Table 5.10 and Fig.5.48). During the second year, the maximum total hardness was $118.84 \pm 1.623 \mathrm{mg} / \mathrm{L}$ in February and minimum was $89.13 \pm 0.659 \mathrm{mg} / \mathrm{L}$ in September (Table 5.11 and Fig.5.48). Total hardness showed positive and significant correlation with total alkalinity ($\mathrm{r}=0.580, \mathrm{P}<0.05$) but inverse and significant correlation with water temperature ($\mathrm{r}=-0.623, \mathrm{P}<0.05$) (Table 5.12).

The values of total hardness in March ($108.91 \pm 0.745 \mathrm{mg} / \mathrm{L}$) showed significant decrease ($\mathrm{p}<$ 0.01) as compared to February ($130.43 \pm 1.623 \mathrm{mg} / \mathrm{L}$) in the first year. It remained low for six months from March to August (Table 5.10; Figs.5.48, 5.52). Likewise in the second year it showed a decreasing trend from March to September for seven months with slight fluctuation. The value in May ($106.92 \pm 1.563 \mathrm{mg} / \mathrm{L}$) was significantly decreased $(\mathrm{P}<0.05)$ as compared to April ($110.78 \pm 1.544 \mathrm{mg} / \mathrm{L}$) in the second year (Table 5.11; Figs. 5.48, 5.52). It remained low for six months from May to October in the second year.

Table 5.10 shows air temperature, water temperature and physico-chemical parameters of water at Site 4 (Betana wetland, Belbari, Morang) from November 2008- October 2009 (Mean \pm S.D., N=5).

Param eters	Months											
Site4 I Yr.	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 21.18 \\ \pm 0.259 \end{gathered}$	$\begin{gathered} 18.03 \\ \pm 0.347 \end{gathered}$	$\begin{aligned} & 18.10 \\ & \pm .523 \end{aligned}$	$\begin{array}{\|c} 24.85 \\ \pm 0.369 \end{array}$	$\begin{gathered} 29.99 \\ \pm 0.628 \end{gathered}$	$\begin{gathered} 27.78 \\ \pm 0.775 \end{gathered}$	$\begin{array}{\|c} 27.12 \\ \pm 0.322 \end{array}$	$\begin{gathered} 26.05 \\ \pm 0.731 \end{gathered}$	$\begin{gathered} 29.86 \\ \pm 0.657 \end{gathered}$	$\begin{gathered} 31.01 \\ \pm 0.27 \\ 4 \end{gathered}$	$\begin{gathered} 29.15 \\ \pm 0.36 \\ 2 \end{gathered}$	$\begin{gathered} 26.03 \\ \pm 0.55 \\ 7 \end{gathered}$
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 19.0 \\ \pm 0.125 \end{gathered}$	$\begin{gathered} 19.01 \\ \pm 0.217 \end{gathered}$	$\begin{gathered} 17.14 \\ \pm 0.316 \end{gathered}$	$\begin{gathered} 22.12 \\ \pm 0.335 \end{gathered}$	$\begin{gathered} 27.06 \\ \pm 0.523 \end{gathered}$	$\begin{gathered} 27.85 \\ \pm 0.475 \end{gathered}$	$\begin{array}{\|c\|} \hline 26.07 \\ \pm 0.351 \end{array}$	$\begin{gathered} 27.13 \\ \pm 0.328 \end{gathered}$	$\begin{gathered} 28.95 \\ \pm 0.272 \end{gathered}$	$\begin{gathered} 29.12 \\ \pm 0.23 \\ 5 \end{gathered}$	$\begin{gathered} 27.3 \\ \pm 0.53 \\ 4 \end{gathered}$	$\begin{gathered} 25.07 \\ \pm 0.47 \\ 6 \end{gathered}$
pH	$\begin{gathered} 7.82 \\ \pm 0.534 \end{gathered}$	$\begin{gathered} 7.66 \\ \pm 0.327 \end{gathered}$	$\begin{gathered} 8.15 \\ \pm 0.365 \end{gathered}$	$\begin{gathered} 7.13 \\ \pm 0.229 \end{gathered}$	$\begin{gathered} 7.61 \\ \pm 0.576 \end{gathered}$	$\begin{gathered} 6.83 \\ \pm 0.317 \end{gathered}$	$\begin{array}{\|c\|} 7.51 \\ \pm 0.733 \end{array}$	$\begin{gathered} 7.34 \\ \pm 0.256 \end{gathered}$	$\begin{gathered} 7.5 \\ \pm 0.075 \end{gathered}$	$\begin{gathered} 6.93 \\ \pm 0.17 \\ 4 \end{gathered}$	$\begin{gathered} 6.64 \\ \pm 0.27 \\ 1 \end{gathered}$	$\begin{gathered} 7.31 \\ \pm 0.07 \\ 3 \end{gathered}$
Free CO2 (mg/L)	$\begin{gathered} 41.36 \\ \pm 1.476 \end{gathered}$	$\begin{gathered} 37.42 \\ \pm 1.235 \end{gathered}$	$\begin{gathered} 12.15 \\ \pm 0.675 \end{gathered}$	$\begin{array}{\|c} 24.96 \\ \pm 0.887 \end{array}$	$\begin{gathered} 6.23 \\ \pm 0.353 \end{gathered}$	$\begin{gathered} 4.58 \\ \pm 0.567 \end{gathered}$	$\begin{array}{\|c} 3.37 \\ \pm 0.638 \end{array}$	$\begin{gathered} 5.09 \\ \pm 0.056 \end{gathered}$	$\begin{gathered} 8.03 \\ \pm 0.926 \end{gathered}$	$\begin{gathered} 12.54 \\ \pm 1.32 \\ 3 \end{gathered}$	$\begin{gathered} 73.92 \\ \pm 1.55 \\ 2 \end{gathered}$	$\begin{gathered} 55.44 \\ 8 \\ \pm 0.82 \\ 6 \\ \hline \end{gathered}$
$\begin{array}{\|l} \hline \mathrm{DO} \\ (\\ \mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{gathered} 7.08 \\ \pm 0.356 \end{gathered}$	$\begin{gathered} 5.84 \\ \pm 0.067 \end{gathered}$	$\begin{gathered} 7.31 \\ \pm 0.185 \end{gathered}$	$\begin{array}{\|c} 5.89 \\ \pm 0.124 \end{array}$	$\begin{gathered} 5.14 \\ \pm 0.068 \end{gathered}$	$\begin{gathered} 6.88 \\ \pm 0.235 \end{gathered}$	$\begin{array}{\|c} 7.17 \\ \pm 0.342 \end{array}$	$\begin{gathered} 4.92 \\ \pm 0.254 \end{gathered}$	$\begin{gathered} 4.82 \\ \pm 0.473 \end{gathered}$	$\begin{gathered} 3.19 \\ \pm 0.37 \\ 9 \end{gathered}$	$\begin{gathered} 5.41 \\ \pm 0.36 \\ 2 \end{gathered}$	$\begin{gathered} 7.16 \\ \pm 0.23 \\ 1 \end{gathered}$
$\begin{aligned} & \text { BOD } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} 2.61 \\ \pm 0.045 \end{gathered}$	$\begin{gathered} 2.25 \\ \pm 0.026 \end{gathered}$	$\begin{gathered} 1.35 \\ \pm 0.029 \end{gathered}$	$\begin{gathered} 0.84 \\ \pm 0.014 \end{gathered}$	$\begin{gathered} 1.22 \\ \pm 0.056 \end{gathered}$	$\begin{gathered} 4.32 \\ \pm 0.067 \end{gathered}$	$\begin{gathered} 3.55 \\ \pm 0.115 \end{gathered}$	$\begin{gathered} 2.81 \\ \pm 0.149 \end{gathered}$	$\begin{gathered} 1.83 \\ \pm 0.057 \end{gathered}$	$\begin{gathered} 1.02 \\ \pm 0.06 \\ 5 \end{gathered}$	$\begin{gathered} 4.62 \\ \pm 0.25 \\ 4 \end{gathered}$	$\begin{gathered} 2.11 \\ \pm 0.05 \\ 6 \end{gathered}$
Chlori de (mg/L)	$\begin{gathered} 4.10 \\ \pm 0.063 \end{gathered}$	$\begin{gathered} 2.03 \\ \pm 0.059 \end{gathered}$	$\begin{gathered} 4.5 \\ \pm 0.226 \end{gathered}$	$\begin{gathered} 3.61 \\ \pm 0.342 \end{gathered}$	$\begin{gathered} 3.01 \\ \pm 0.192 \end{gathered}$	$\begin{gathered} 4.0 \\ \pm 0.237 \end{gathered}$	$\begin{gathered} 4.01 \\ \pm 0.135 \end{gathered}$	$\begin{gathered} 5.02 \\ \pm 0.531 \end{gathered}$	$\begin{gathered} 5.01 \\ \pm 0.109 \end{gathered}$	$\begin{gathered} 4.03 \\ \pm 0.27 \\ 5 \end{gathered}$	$\begin{gathered} 2.02 \\ \pm 0.09 \\ 5 \end{gathered}$	$\begin{gathered} 3.84 \\ \pm 0.08 \\ 2 \end{gathered}$
Total Alkali n. (mg/L)	$\begin{array}{\|} 115.64 \\ \pm 1.253 \end{array}$	$\begin{gathered} 69.56 \\ \pm 1.152 \end{gathered}$	$\begin{aligned} & 122.05 \\ & \pm 2.634 \end{aligned}$	$\begin{array}{\|l} 195.33 \\ \pm 1.776 \end{array}$	$\begin{aligned} & 132.03 \\ & \pm 1.187 \end{aligned}$	$\begin{aligned} & 117.21 \\ & \pm 1.953 \end{aligned}$	$\begin{array}{\|l\|} \hline 132.01 \\ \pm 1.742 \end{array}$	$\begin{gathered} 116.62 \\ \pm 0.956 \\ * * \end{gathered}$	$\begin{aligned} & 130.02 \\ & \pm 0.987 \end{aligned}$	$\begin{gathered} 118.8 \\ 3 \\ \pm 1.74 \\ 5 \end{gathered}$	$\begin{gathered} 109.2 \\ 7 \\ \pm 0.85 \\ 7 \end{gathered}$	$\begin{gathered} 119.7 \\ 3 \\ \pm 0.99 \\ 5 \end{gathered}$
Total Hard (mg/L)	$\begin{array}{r} 116.28 \\ \pm 2.227 \end{array}$	$\begin{gathered} 112.2 \\ \pm 1.523 \end{gathered}$	$\begin{aligned} & 110.03 \\ & \pm 1.378 \end{aligned}$	$\begin{array}{\|l} 130.43 \\ \pm 1.623 \end{array}$	$\begin{aligned} & 108.91 \\ & \pm 0.745 \end{aligned}$	$\begin{aligned} & 106.92 \\ & \pm 1.544 \end{aligned}$	$\begin{array}{\|l} 110.82 \\ \pm 1.563 \end{array}$	$\begin{aligned} & 108.90 \\ & \pm 0.976 \end{aligned}$	$\begin{array}{r} 104.94 \\ \pm 1.065 \end{array}$	$\begin{gathered} 97.02 \\ \pm 0.75 \\ 4 \end{gathered}$	$\begin{gathered} 112.3 \\ 2 \\ \pm 0.95 \\ 7 \end{gathered}$	$\begin{gathered} 110.1 \\ 6 \\ \pm 0.81 \\ 7 \end{gathered}$

[^1]Table 5.11 shows air temperature, water temperature and physico-chemical parameters of water at Site 4 (Betana wetland, Belbari, Morang) from November 2009- October 2010
(Mean \pm S.D., $\mathbf{N}=5$).

Param eters	Months											
Site 4- II Yr.	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 22.03 \\ \pm 0.359 \end{gathered}$	$\begin{gathered} 20.01 \\ \pm 0.475 \end{gathered}$	$\begin{array}{r} 17.10 \\ \pm .237 \end{array}$	$\begin{gathered} 24.05 \\ \pm 0.691 \end{gathered}$	$\begin{gathered} 29.1 \\ \pm 0.285 \end{gathered}$	$\begin{gathered} 27.02 \\ \pm 0.475 \end{gathered}$	$\begin{gathered} 26.12 \\ \pm 0.229 \end{gathered}$	$\begin{gathered} 25.05 \\ \pm 0.318 \end{gathered}$	$\begin{gathered} 29.01 \\ \pm 0.537 \end{gathered}$	$\begin{gathered} 29.02 \\ \pm 0.74 \\ 2 \end{gathered}$	$\begin{gathered} 26.15 \\ \pm 0.62 \\ 4 \end{gathered}$	$\begin{array}{\|c} \hline 28.0 \\ 3 \\ \pm 0.3 \\ 55 \end{array}$
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 21.81 \\ \pm 0.225 \end{gathered}$	$\begin{gathered} 19.01 \\ \pm 0.317 \end{gathered}$	$\begin{gathered} 18.04 \\ \pm 0.365 \end{gathered}$	$\begin{gathered} 21.13 \\ \pm 0.357 \end{gathered}$	$\begin{gathered} 26.06 \\ \pm 0.523 \end{gathered}$	$\begin{gathered} 28.05 \\ \pm 0.745 \end{gathered}$	$\begin{gathered} 25.02 \\ \pm 0.351 \end{gathered}$	$\begin{gathered} 27.51 \\ \pm 0.432 \end{gathered}$	$\begin{gathered} 27.03 \\ \pm 0.372 \end{gathered}$	$\begin{gathered} 28.12 \\ \pm 0.52 \\ 3 \end{gathered}$	$\begin{array}{\|c} 27.13 \\ \pm 0.34 \\ 3 \end{array}$	$\begin{array}{\|c\|} \hline 25.0 \\ 1 \\ \pm 0.2 \\ 73 \end{array}$
pH	$\begin{gathered} 7.12 \\ \pm 0.534 \end{gathered}$	$\begin{gathered} 7.60 \\ \pm 0.327 \end{gathered}$	$\begin{gathered} 7.15 \\ \pm 0.365 \end{gathered}$	$\begin{gathered} 6.61 \\ \pm 0.229 \end{gathered}$	$\begin{gathered} 7.11 \\ \pm 0.576 \end{gathered}$	$\begin{gathered} 6.82 \\ \pm 0.317 \end{gathered}$	$\begin{gathered} 6.95 \\ \pm 0.733 \end{gathered}$	$\begin{gathered} 7.23 \\ \pm 0.256 \end{gathered}$	$\begin{gathered} 7.5 \\ \pm 0.075 \end{gathered}$	$\begin{gathered} 7.01 \\ \pm 0.17 \\ 4 \end{gathered}$	$\begin{array}{\|c} 7.14 \\ \pm 0.27 \\ 1 \end{array}$	$\begin{array}{\|c} 7.11 \\ \pm 0.0 \\ 73 \end{array}$
Free CO_{2} (mg/L)	$\begin{gathered} 17.92 \\ \pm 0.976 \end{gathered}$	$\begin{gathered} 15.05 \\ \pm 0.735 \end{gathered}$	$\begin{gathered} 23.75 \\ \pm 0.874 \end{gathered}$	$\begin{gathered} 23.54 \\ \pm 0.887 \end{gathered}$	$\begin{gathered} 5.12 \\ \pm 0.325 \end{gathered}$	$\begin{gathered} 2.24 \\ \pm 0.557 \end{gathered}$	$\begin{gathered} 3.37 \\ \pm 0.623 \end{gathered}$	$\begin{gathered} 4.59 \\ \pm 0.076 \end{gathered}$	$\begin{gathered} 8.1 \\ \pm 0.928 \end{gathered}$	$\begin{gathered} 13.2 \\ \pm 0.52 \\ 6 \end{gathered}$	$\begin{gathered} 9.15 \\ \pm 0.75 \\ 5 \end{gathered}$	$\begin{array}{\|c} 9.46 \\ \pm 0.5 \\ 23 \end{array}$
$\begin{array}{\|l} \hline \mathrm{DO} \\ (\\ \mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{gathered} 5.52 \\ \pm 0.257 \end{gathered}$	$\begin{gathered} 7.43 \\ \pm 0.067 \end{gathered}$	$\begin{gathered} 7.99 \\ \pm 0.085 \end{gathered}$	$\begin{gathered} 5.84 \\ \pm 0.224 \end{gathered}$	$\begin{gathered} 4.82 \\ \pm 0.068 \end{gathered}$	$\begin{gathered} 9.74 \\ \pm 0.235 \end{gathered}$	$\begin{gathered} 4.92 \\ \pm 0.342 \end{gathered}$	$\begin{gathered} 3.19 \\ \pm 0.254 \end{gathered}$	$\begin{gathered} 5.47 \\ \pm 0.473 \end{gathered}$	$\begin{array}{\|c} 5.16 \\ \pm 0.35 \\ 9 \end{array}$	$\begin{array}{\|c} 6.88 \\ \pm 0.46 \\ 2 \end{array}$	$\begin{array}{\|c} 5.91 \\ \pm 0.2 \\ 35 \end{array}$
$\begin{aligned} & \text { BOD } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} 0.85 \\ \pm 0.055 \end{gathered}$	$\begin{gathered} 0.26 \\ \pm 0.076 \end{gathered}$	$\begin{gathered} 3.72 \\ \pm 0.053 \end{gathered}$	$\begin{gathered} 0.84 \\ \pm 0.026 \end{gathered}$	$\begin{gathered} 1.35 \\ \pm 0.059 \end{gathered}$	$\begin{gathered} 6.22 \\ \pm 0.048 \end{gathered}$	$\begin{gathered} 3.61 \\ \pm 0.107 \end{gathered}$	$\begin{gathered} 1.82 \\ \pm 0.049 \end{gathered}$	$\begin{gathered} 1.03 \\ \pm 0.066 \end{gathered}$	$\begin{gathered} 0.44 \\ \pm 0.07 \\ 3 \end{gathered}$	$\begin{gathered} 0.71 \\ \pm 0.14 \\ 5 \end{gathered}$	$\left\lvert\, \begin{gathered} 0.28 \\ \pm 0.0 \\ 45 \end{gathered}\right.$
Chlori de (mg/L)	$\begin{gathered} 2.01 \\ \pm 0.037 \end{gathered}$	$\begin{gathered} 5.02 \\ \pm 0.065 \end{gathered}$	$\begin{gathered} 7.05 \\ \pm 0.324 \end{gathered}$	$\begin{gathered} 4.1 \\ \pm 0.352 \end{gathered}$	$\begin{gathered} 1.01 \\ \pm 0.093 \end{gathered}$	$\begin{gathered} 2.0 \\ \pm 0.257 \end{gathered}$	$\begin{gathered} 5.21 \\ \pm 0.135 \end{gathered}$	$\begin{gathered} 6.02 \\ \pm 0.537 \end{gathered}$	$\begin{gathered} 5.01 \\ \pm 0.809 \end{gathered}$	$\begin{array}{\|c} 5.03 \\ \pm 0.37 \\ 2 \end{array}$	$\begin{array}{\|c} 2.02 \\ \pm 0.06 \\ 5 \end{array}$	$\begin{array}{\|c} 5.13 \\ \pm 0.0 \\ 84 \end{array}$
Total Alkali n (mg/L)	$\begin{aligned} & 117.22 \\ & \pm 1.156 \end{aligned}$	$\begin{array}{\|l} 114.06 \\ \pm 1.654 \end{array}$	$\begin{aligned} & 110.05 \\ & \pm 1.563 \end{aligned}$	$\begin{array}{r} 197.43 \\ \pm 2.756 \end{array}$	$\begin{array}{\|l\|} 130.03 \\ \pm 1.187 \end{array}$	$\begin{aligned} & 118.81 \\ & \pm 1.753 \end{aligned}$	$\begin{array}{\|} 132.01 \\ \pm 1.342 \end{array}$	$\begin{aligned} & 115.02 \\ & \pm 0.953 \end{aligned}$	$\begin{aligned} & 126.50 \\ & \pm 0.977 \end{aligned}$	$\begin{gathered} 116.6 \\ 3 \\ \pm 1.78 \\ 5 \end{gathered}$	$\begin{gathered} 103.2 \\ 3 \\ \pm 0.86 \\ 7 \end{gathered}$	$\begin{array}{\|c} 107 . \\ 81 \\ \pm 0.9 \\ 85 \end{array}$
Total Hardn ess (mg/L)	$\begin{gathered} 95.04 \\ \pm 1.325 \end{gathered}$	$\begin{aligned} & 108.95 \\ & \pm 1.563 \end{aligned}$	$\begin{aligned} & 114.23 \\ & \pm 1.375 \end{aligned}$	$\begin{array}{r} 118.84 \\ \pm 1.623 \end{array}$	$\begin{aligned} & 110.88 \\ & \pm 0.645 \end{aligned}$	$\begin{aligned} & 110.78 \\ & \pm 1.544 \end{aligned}$	$\begin{gathered} 106.92 \\ \pm 1.563 \\ * \end{gathered}$	$\begin{aligned} & 104.94 \\ & \pm 0.976 \end{aligned}$	$\begin{aligned} & 105.10 \\ & \pm 1.067 \end{aligned}$	$\left\lvert\, \begin{gathered} 95.04 \\ \pm 0.85 \\ 4 \end{gathered}\right.$	$\begin{gathered} 89.13 \\ \pm 0.65 \\ 9 \end{gathered}$	$\begin{array}{\|c} 104 . \\ 94 \\ \pm 0.8 \\ 16 \end{array}$

[^2]Table 5.12 shows Pearson's correlation coefficient (r) for air temperature and physicochemical parameters of water at Site 4 (average of the corresponding month values) during Nov. 2008 - Oct. 2010; N=12; d. f. $=11$.

S4-I + II		Water Temp $\left({ }^{\circ} \mathrm{C}\right)$	pH	$\begin{gathered} \text { Free } \\ \mathrm{CO}_{2} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { DO } \\ (\mathbf{m g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { BOD } \\ (\mathbf{m g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { Chlorid } \\ \text { e } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { alk } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	Total hard (mg/L)
AirTemp.$\left({ }^{\circ} \mathrm{C}\right)$	P Cor.	. $947{ }^{*}$	-. $653^{* *}$	$-.685^{* *}$	$-.582^{* *}$. 106	. 114	. 290	-. 398
	Sig.(2-t)	. 000	. 021	. 014	. 047	. 742	. 725	. 360	. 200
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	P Cor.	1	$-.692^{* *}$	-.798*	$-.596^{* *}$. 260	. 145	. 082	$-.623^{* *}$
	Sig.(2-t)		. 013	. 002	. 050	. 415	. 653	. 800	. 051
pH	P Cor.		1	-. 185	. 312	-. 513	. 243	-. 143	. 092
	Sig.(2-t)			. 564	. 323	. 088	. 447	. 657	. 777
$\begin{aligned} & \text { Free } \mathrm{CO}_{2} \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	P Cor.			1	. 174	. 285	$-.596^{* *}$	-. 241	. 301
	Sig.(2-t)				. 589	. 369	. 041	. 451	. 342
DO (mg/L)	P Cor.				1	. 316	. 038	. 008	. 431
	Sig.(2-t)					. 317	. 908	. 981	. 162
$\begin{aligned} & \text { BOD } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	P Cor.					1	-. 225	-. 379	-. 081
	Sig. (2-t)						. 481	. 224	. 802
Chloride (mg/L)	P Cor.						1	. 319	-. 238
	Sig.(2-t)							. 312	. 456
Total alkalinity (mg/L)	P Cor.							1	. $580{ }^{* *}$
	Sig.(2-t)								. 048
Total hardness (mg/L)	P Cor.								1
	Sig.(2-t)								

* Significant at 1% level ($\mathbf{P}<0.01$), ** Significant at 5% level ($\mathbf{P}<0.05$) and

Values not marked denote non-significant correlation.

Fig.5.40. Monthly variations in air temperature at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.41. Monthly variations in water temperature at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.42. Monthly variations in pH at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.43. Monthly variations in CO_{2} at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.44. Monthly variations in DO at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.45. Monthly variations in BOD at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.46. Monthly variations in chloride at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.47. Monthly variations in total alkalinity at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.48.Monthly variations in total hardness at Site 4 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.49. Line graph of monthly variations in air temperature at site 4 during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig.5.50. Line graph of monthly variations in water temperature at site 4 during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig.5.51. Line graph of monthly variations in total alkalinity at site 4 during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig.5.52. Line graph of monthly variations in total hardness at site 4 during the first and second year study periods (Nov. 2008 - Oct.2010).

Site 5 (Singhia River)

Results of the air temperature and physico-chemical parameters of water of Site 5 are shown in Table 5.13 and Table 5.14. Table 5.13 shows the results of air temperature and physicochemical parameters of water of the first year (Nov. 2008 - Oct. 2009) study period. Table 5.14 shows the results of air temperature and physico-chemical parameters of water of the second year (Nov. 2009- June 2010). Table 5.15 shows the correlation coefficient (r) of air temperature and different physico-chemical parameters of water at Site 5. The Fig. 5.53 shows the monthly variations in air temperature at Site 5 in the first year and the second year study periods. The Figs. 5.53 to 5.62 show histograms and Figs. 5.63 to 5.66 show line graphs of the monthly variations of different physico-chemical parameters of water at Site 5 in the first year (Nov. 2008 - Oct. 2009) and the second year (Nov. 2008 - Oct. 2010) study periods.

Air temperature

The minimum air temperature was $19.24 \pm 0.359^{\circ} \mathrm{C}$ in the month of February and maximum $31.13 \pm 0.521^{\circ} \mathrm{C}$ was in the month of September during the first year study period (Table 5.13 , Fig.5.53). The minimum air temperature was $19.05 \pm 0.293^{\circ} \mathrm{C}$ in the month of January and maximum air temperature was $32.03 \pm 0.615^{\circ} \mathrm{C}$ in the month of April during the second year (Table 5.14, Fig.5.53). Air temperature showed positive and significant correlation with water temperature ($\mathrm{r}=0.964, \mathrm{P}<0.01$), chloride $(\mathrm{r}=0.639, \mathrm{P}<0.05)$ but it had inverse and significant correlation with $\mathrm{pH}(\mathrm{r}=-0.656, \mathrm{P}<0.05)$ and $\mathrm{DO}(\mathrm{r}=-0.608, \mathrm{P}<0.05)$ (Table 5.15).

During year 1 , the surface air temperature remained low during winter months (November 2008 to February 2009) thereafter it increased March onwards up to April (Table 5.13, Figs.5.53, 5.63). It also remained low during winter months (November 2009 to February 2010) in the second year study period (Table 5.14; Figs.5.53, 5.63).

Water temperature

The lowest surface water temperature was $18.25 \pm 0.335^{\circ} \mathrm{C}$ in the month of February and highest $29.1 \pm 0.436^{\circ} \mathrm{C}$ in the month of April during the first year (Table 5.13, Fig.5.54) and the minimum water temperature was $17.21 \pm 0.376^{\circ} \mathrm{C}$ in the month of January and the highest was $30.02 \pm 0.657{ }^{\circ} \mathrm{C}$ in the month of May during second year study period (Table 5.14, Fig. 5.54). The water temperature had positive and significant correlation with air temperature ($\mathrm{r}=$ $0.964, \mathrm{P}<0.01$), chloride ($\mathrm{r}=0.637, \mathrm{P}<0.05$) but inverse and significant correlation with pH (r $=-0.639, \mathrm{P}<0.05$) (Table 5.15).

The water temperature remained low during the winter months of November to February in both year 1 and year 2 (Tables 5.13, 5.14; Figs.5.54, 5.64). Decreasing trend was also observed during the months of August to October in year 1 and September to October in the year 2 .

pH

The minimum pH was 6.46 ± 0.254 in the month of September and maximum 8.33 ± 0.529 in the month of February in first year (Table 5.13, Fig.5.55) and minimum pH was 6.82 ± 0.275 in July and maximum 8.60 ± 0.529 in February in the second year (Table 5.14, Fig.5.55). pH had inverse and significant correlation with air temperature ($\mathrm{r}=-0.656, \mathrm{P}<0.05$) and water temperature ($\mathrm{r}=-0.639, \mathrm{P}<0.05$) (Table 5.15).

Turbidity

The turbidity was lowest 15.57 ± 1.304 NTU in January and highest $395.05 \pm 0.3 .377$ in July in the first year (Table 5.13, Fig.5.56).Turbidity was lowest 45.03 ± 0.064 NTU in November and the highest was 345.05 ± 3.579 NTU in July during second year (Table 5.14, Fig. 5.56). It showed positive and significant correlation with water temperature ($\mathrm{r}=0.604, \mathrm{P}<0.05$) and phosphate ($\mathrm{r}=0.675, \mathrm{P}<0.05$) but inverse and significant correlation with free carbon dioxide $(\mathrm{r}=-0.605, \mathrm{P}<0.05)($ Table 5.15).

Free carbon dioxide

The maximum free carbon dioxide was $39.12 \pm 0.945 \mathrm{mg} / \mathrm{L}$ in the month of January and minimum $8.36 \pm 0.923 \mathrm{mg} / \mathrm{L}$ in the month of July during the first year study period (Table 5.13; Fig.5.57). In the second year study period maximum free CO_{2} was 21.55 ± 0.569 mg / L in March and minimum $6.58 \pm 0.652 \mathrm{mg} / \mathrm{L}$ in September (Table 5.14, Fig.5.57). Free carbon dioxide showed positive and significant correlation with total alkalinity (r $=0.654, \mathrm{P}<0.05$) but inverse and significant correlation with turbidity ($\mathrm{r}=-0.605, \mathrm{P}<0.05$), DO ($\mathrm{r}=-0.721, \mathrm{P}<0.01$) and phosphate ($\mathrm{r}=-0.670, \mathrm{P}<0.05$) (Table 5.15).

Dissolved oxygen

The minimum dissolved oxygen was $4.35 \pm 0.185 \mathrm{mg} / \mathrm{L}$ in the month of January and maximum dissolved oxygen was $7.72 \pm 0.085 \mathrm{mg} / \mathrm{L}$ in the November during the first year study period (Table 5.13; Fig.5.58). In the second year study period, the maximum dissolved oxygen was $9.29 \pm 0.099 \mathrm{mg} / \mathrm{L}$ in the month of December and minimum $5.11 \pm 0.068 \mathrm{mg} / \mathrm{Lin}$ the month of March (Table 5.14; Fig.5.58). The dissolved oxygen showed inverse and significant correlation with free carbon dioxide ($\mathrm{r}=-0.721, \mathrm{P}<0.01$), biological oxygen demand $(\mathrm{r}=-0.634, \mathrm{P}<0.05)$ and temperature of air $(\mathrm{r}=-0.608, \mathrm{P}<0.05)($ Table 5.15).

Biological oxygen demand

The maximum biological oxygen demand was $5.77 \pm 0.065 \mathrm{mg} / \mathrm{L}$ in the month of August and minimum $1.36 \pm 0.075 \mathrm{mg} / \mathrm{L}$ in the month of October during the first (Table 5.13; Fig. 5.59) and maximum biological oxygen demand was $3.72 \pm 0.054 \mathrm{mg} / \mathrm{L}$ in May and minimum was $0.06 \pm 0.062 \mathrm{mg} / \mathrm{Lin}$ December during the second year study period (Table 5.14; Fig.5.59). It had positive and significant correlation with total alkalinity ($\mathrm{r}=0.729, \mathrm{P}<0.01$) but inverse and significant correlation with $\mathrm{DO}(\mathrm{r}=-0.634, \mathrm{P}<0.05)$ and total hardness $(\mathrm{r}=-0.688$, $\mathrm{P}<0.05$) (Table 5.15).

Chloride

The maximum chloride was $11.11 \pm 0.135 \mathrm{mg} / \mathrm{L}$ in the month of May and minimum 3.01 ± 0.069 mg / L was in the month of December during the first year (Table 5.13; Fig. 5.60). Maximum chloride was $15.1 \pm 0.093 \mathrm{mg} / \mathrm{L}$ in November and minimum was $4.05 \pm 0.069 \mathrm{mg} / \mathrm{L}$ in December of second year study period (Table 5.14; Fig. 5.60). It had positive and significant
correlation with air temperature ($\mathrm{r}=0.639, \mathrm{P}<0.05$), water temperature ($\mathrm{r}=0.637, \mathrm{P}<0.05$) (Table 5.15).

Total alkalinity

The maximum total alkalinity was $243.52 \pm 2.534 \mathrm{mg} / \mathrm{L}$ in the month of January and minimum $107.16 \pm 2.453 \mathrm{mg} / \mathrm{L}$ in the month of December during the first year study period (Table 5.13; Fig.5.61). In second year maximum TA was $191.11 \pm 1.742 \mathrm{mg} / \mathrm{L}$ in May and minimum was $134.26 \pm 2.857 \mathrm{mg} / \mathrm{L}$ in September (Table 5.14; Fig.5.61). It had positive and significant correlation with free $\mathrm{CO}_{2}(\mathrm{r}=0.654, \mathrm{P}<0.05)$ and $\mathrm{BOD}(\mathrm{r}=0.729, \mathrm{P}<0.01)$ (Table 5.15).

Total alkalinity of the month of July $2008(127.92 \pm 0.987 \mathrm{mg} / \mathrm{L})$ significantly $(\mathrm{P}<0.01)$ lower than that of the month of June, $2009(164.10 \pm 2.856 \mathrm{mg} / \mathrm{L})$ and it remained low in the month of August, 2009 ($110.71 \pm 1.745 \mathrm{mg} / \mathrm{L}$) during the first year study period (Table 5.13; Figs.5.61, 5.65). During second year study period, total alkalinity was found low in the month of June ($156.40 \pm 2.856 \mathrm{mg} / \mathrm{L})$ to September, $2010(134.26 \pm 2.857 \mathrm{mg} / \mathrm{L})$ for four months (Table 5.14; Figs. 5.61, 5.65).

Total hardness

The maximum total hardness was $173.22 \pm 1.795 \mathrm{mg} / \mathrm{L}$ in the month of January and minimum was $95.05 \pm 0.899 \mathrm{mg} / \mathrm{L}$ in the month of August during the first year (Table 5.13, Fig.5.62). Maximum total hardness was $173.22 \pm 1.795 \mathrm{mg} / \mathrm{L}$ in January and minimum was $85.14 \pm 1.967 \mathrm{mg} / \mathrm{L}$ in December during the second year study period (Table 5.14, Fig.5.62). It had positive and significant correlation with total alkalinity ($\mathrm{r}=0.539, \mathrm{P}<0.10$) but inverse and significant correlation with BOD ($\mathrm{r}=-0.688, \mathrm{P}<0.05$) (Table 5.15).

Total hardness was found significantly ($\mathrm{p}<0.01$) lower in the month of July, 2009 (116.62 $\pm 1.247 \mathrm{mg} / \mathrm{L})$ in comparison to that of the month of June, 2009 ($162.36 \pm 1.976 \mathrm{mg} / \mathrm{L}$) during first year. It remained low in July and August in the first year (Table 5.13; Figs.5.62, 5.66). During second year total hardness was significantly ($\mathrm{P}<0.01$) lower in May (126.5 ± 1.716 $\mathrm{mg} / \mathrm{L})$ than that of April ($151.61 \pm 1.485 \mathrm{mg} / \mathrm{L})$. It remained low in the month of May, June, July and September, 2010 ($108.93 \pm 0.875 \mathrm{mg} / \mathrm{L})$. Prior to September, 2010 fluctuations in the values of total hardness were observed (Table 5.14, Figs. 5.70, 5.66).

Table 5.13 shows air temperature, water temperature and physico-chemical parameters of water at Site 5 (Singhia river, Morang) from Nov. 2008- October 2009. (Mean \pm S.D., N=5).

Param eters	Months											
Site 5 I Yr.	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 21.01 \\ \pm 0.356 \end{gathered}$	$\begin{gathered} 20.00 \\ \pm 0.442 \end{gathered}$	$\begin{array}{r} 20.53 \\ \pm .293 \end{array}$	$\begin{gathered} 19.24 \\ \pm 0.359 \end{gathered}$	$\begin{gathered} 30.05 \\ \pm 0.347 \end{gathered}$	$\begin{gathered} 31.01 \\ \pm 0.615 \end{gathered}$	$\begin{gathered} 29.10 \\ \pm 0.432 \end{gathered}$	$\begin{gathered} 27.05 \\ \pm 0.27 \\ 6 \end{gathered}$	$\begin{gathered} 30.02 \\ \pm 0.357 \end{gathered}$	$\begin{gathered} 27.54 \\ \pm 0.52 \\ 4 \end{gathered}$	$\begin{gathered} 31.13 \\ \pm 0.52 \\ 1 \end{gathered}$	$\begin{gathered} 28.02 \\ \pm 0.57 \\ 6 \\ \hline \end{gathered}$
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 20.03 \\ \pm 0.325 \end{gathered}$	$\begin{gathered} 19.31 \\ \pm 0.217 \end{gathered}$	$\begin{gathered} 19.01 \\ \pm 0.316 \end{gathered}$	$\begin{gathered} 18.25 \\ \pm 0.335 \end{gathered}$	$\begin{gathered} 25.03 \\ \pm 0.523 \end{gathered}$	$\begin{gathered} 29.10 \\ \pm 0.436 \end{gathered}$	$\begin{gathered} 28.02 \\ \pm 0.354 \end{gathered}$	$\begin{gathered} 26.10 \\ \pm 0.32 \\ 7 \end{gathered}$	$\begin{gathered} 29.03 \\ \pm 0.572 \end{gathered}$	$\begin{gathered} 26.82 \\ \pm 0.43 \\ 5 \end{gathered}$	$\begin{gathered} 28.01 \\ \pm 0.34 \\ 5 \end{gathered}$	$\begin{gathered} 26.04 \\ \pm 0.34 \\ 7 \end{gathered}$
pH	$\begin{gathered} 7.5 \\ \pm 0.254 \end{gathered}$	$\begin{gathered} 7.87 \\ \pm 0.377 \end{gathered}$	$\begin{gathered} 8.31 \\ \pm 0.395 \end{gathered}$	$\begin{gathered} 8.33 \\ \pm 0.529 \end{gathered}$	$\begin{gathered} 8.11 \\ \pm 0.446 \end{gathered}$	$\begin{gathered} 8.23 \\ \pm 0.357 \end{gathered}$	$\begin{gathered} 7.81 \\ \pm 0.433 \end{gathered}$	$\begin{gathered} 7.19 \\ \pm 0.35 \\ 6 \end{gathered}$	$\begin{gathered} 7.32 \\ \pm 0.275 \end{gathered}$	$\begin{gathered} 6.81 \\ \pm 0.27 \\ 8 \end{gathered}$	$\begin{gathered} 6.46 \\ \pm 0.25 \\ 4 \end{gathered}$	$\begin{gathered} 6.92 \\ \pm 0.17 \\ 8 \end{gathered}$
Turbid ity (NTU)	$\begin{gathered} 74.05 \\ \pm 0.075 \end{gathered}$	$\begin{gathered} 25.91 \\ \pm 0.089 \end{gathered}$	$\begin{gathered} 15.57 \\ \pm 1.304 \end{gathered}$	$\begin{gathered} 67.03 \\ \pm 0.926 \end{gathered}$	$\begin{aligned} & 215.04 \\ & \pm 3.578 \end{aligned}$	$\begin{gathered} 55.12 \\ \pm 0.865 \end{gathered}$	$\begin{gathered} 58.12 \\ \pm 0.935 \end{gathered}$	$\begin{gathered} 225 \\ \pm 1.76 \\ 3 \end{gathered}$	$\begin{aligned} & 395.05 \\ & \pm 3.377 \end{aligned}$	$\begin{gathered} 256.0 \\ \pm 0.46 \\ 5 \end{gathered}$	$\begin{gathered} 98.45 \\ \pm 0.33 \\ 5 \end{gathered}$	$\begin{gathered} 76.55 \\ \pm 0.81 \\ 5 \end{gathered}$
Free CO_{2} (mg/L)	$\begin{gathered} 15.42 \\ \pm 1.645 \end{gathered}$	$\begin{gathered} 37.45 \\ \pm 1.265 \end{gathered}$	$\begin{gathered} 39.12 \\ \pm 0.945 \end{gathered}$	$\begin{gathered} 21.53 \\ \pm 0.687 \end{gathered}$	$\begin{gathered} 20.28 \\ \pm 0.569 \end{gathered}$	$\begin{gathered} 23.23 \\ \pm 0.765 \end{gathered}$	$\begin{gathered} 25.53 \\ \pm 0.839 \end{gathered}$	$\begin{gathered} 28.13 \\ \pm 0.45 \\ 6 \end{gathered}$	$\begin{gathered} 8.36 \\ \pm 0.923 \end{gathered}$	$\begin{gathered} 16.54 \\ \pm 1.35 \\ 7 \end{gathered}$	$\begin{gathered} 14.20 \\ \pm 1.45 \\ 2 \end{gathered}$	$\begin{gathered} 38.11 \\ \pm 0.62 \\ 8 \end{gathered}$
$\begin{aligned} & \text { DO } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} 7.72 \\ \pm 0.085 \end{gathered}$	$\begin{gathered} 4.91 \\ \pm 0.087 \end{gathered}$	$\begin{gathered} 4.35 \\ \pm 0.185 \end{gathered}$	$\begin{gathered} 7.4 \\ \pm 0.224 \end{gathered}$	$\begin{gathered} 7.18 \\ \pm 0.068 \end{gathered}$	$\begin{gathered} 6.65 \\ \pm 0.125 \end{gathered}$	$\begin{gathered} 6.23 \\ \pm 0.078 \end{gathered}$	$\begin{gathered} 5.75 \\ \pm 0.09 \\ 5 \end{gathered}$	$\begin{gathered} 5.77 \\ \pm 0.273 \end{gathered}$	$\begin{gathered} 6.92 \\ \pm 0.09 \\ 7 \end{gathered}$	$\begin{gathered} 5.11 \\ \pm 0.08 \\ 6 \end{gathered}$	$\begin{gathered} 6.61 \\ \pm 0.23 \\ 7 \end{gathered}$
$\begin{aligned} & \mathrm{BOD} \\ & \mathrm{mg} / \mathrm{L} \end{aligned}$	$\begin{gathered} 2.69 \\ \pm 0.067 \end{gathered}$	$\begin{gathered} 3.53 \\ \pm 0.029 \end{gathered}$	$\begin{gathered} 3.12 \\ \pm 0.037 \end{gathered}$	$\begin{gathered} 2.86 \\ \pm 0.025 \end{gathered}$	$\begin{gathered} 2.42 \\ \pm 0.065 \end{gathered}$	$\begin{gathered} 2.05 \\ \pm 0.061 \end{gathered}$	$\begin{gathered} 2.42 \\ \pm 0.015 \end{gathered}$	$\begin{gathered} 3.21 \\ \pm 0.06 \\ 9 \end{gathered}$	$\begin{gathered} 3.07 \\ \pm 0.057 \end{gathered}$	$\begin{gathered} 5.77 \\ \pm 0.06 \\ 5 \end{gathered}$	$\begin{gathered} 1.58 \\ \pm 0.05 \\ 4 \end{gathered}$	$\begin{gathered} 1.36 \\ \pm 0.07 \\ 5 \end{gathered}$
Chlori de (mg/L)	$\begin{gathered} 6.07 \\ \pm 0.093 \end{gathered}$	$\begin{gathered} 3.01 \\ \pm 0.069 \end{gathered}$	$\begin{gathered} 4.04 \\ \pm 0.096 \end{gathered}$	$\begin{gathered} 6.01 \\ \pm 0.142 \end{gathered}$	$\begin{gathered} 9.0 \\ \pm 0.192 \end{gathered}$	$\begin{gathered} 8.02 \\ \pm 0.127 \end{gathered}$	$\begin{gathered} 11.11 \\ \pm 0.135 \end{gathered}$	$\begin{gathered} 8.08 \\ \pm 0.03 \\ 1 \end{gathered}$	$\begin{gathered} 6.05 \\ \pm 0.459 \end{gathered}$	$\begin{gathered} 9.10 \\ \pm 0.64 \\ 5 \end{gathered}$	$\begin{gathered} 9.02 \\ \pm 0.07 \\ 5 \end{gathered}$	$\begin{gathered} 8.06 \\ \pm 0.08 \\ 4 \end{gathered}$
Total Alkali n. (mg/L)	$\begin{array}{r} 192.16 \\ \pm 2.175 \end{array}$	$\begin{aligned} & 107.16 \\ & \pm 2.453 \end{aligned}$	$\begin{aligned} & 243.52 \\ & \pm 2.534 \end{aligned}$	$\begin{aligned} & 232.03 \\ & \pm 1.857 \end{aligned}$	$\begin{aligned} & 185.50 \\ & \pm 1.887 \end{aligned}$	$\begin{aligned} & 162.02 \\ & \pm 2.956 \end{aligned}$	$\begin{aligned} & 156.05 \\ & \pm 1.742 \end{aligned}$	$\begin{gathered} 164.1 \\ 0 \\ \pm 2.85 \\ 6 \end{gathered}$	$\begin{gathered} 127.92 \\ \pm 0.987 \\ * \end{gathered}$	$\begin{gathered} 110.7 \\ 1 \\ \pm 1.74 \\ 5 \end{gathered}$	$\begin{gathered} 186.9 \\ 6 \\ \pm 2.85 \\ 7 \end{gathered}$	$\begin{gathered} 188.0 \\ 7 \\ \pm 1.99 \\ 5 \end{gathered}$
Total Hardn ess (mg/L)	$\begin{array}{r} 168.05 \\ \pm 2.267 \end{array}$	$\begin{aligned} & 144.84 \\ & \pm 1.967 \end{aligned}$	$\begin{aligned} & 173.22 \\ & \pm 1.795 \end{aligned}$	$\begin{aligned} & 126.54 \\ & \pm 1.623 \end{aligned}$	$\begin{aligned} & 162.36 \\ & \pm 1.845 \end{aligned}$	$\begin{aligned} & 157.61 \\ & \pm 1.485 \end{aligned}$	$\begin{aligned} & 151.66 \\ & \pm 1.716 \end{aligned}$	$\begin{gathered} 162.3 \\ 6 \\ \pm 1.97 \\ 6 \end{gathered}$	$\begin{gathered} 116.62 \\ \pm 1.247 \\ * \end{gathered}$	$\begin{gathered} 95.05 \\ \pm 0.89 \\ 9 \end{gathered}$	$\begin{gathered} 159.8 \\ 4 \\ \pm 0.87 \\ 5 \end{gathered}$	$\begin{gathered} 160.4 \\ 5 \\ \pm 0.58 \\ 3 \end{gathered}$

[^3]Table 5.14 shows air temperature, water temperature and physico-chemical parameters of water at Site 5 (Singhia River, Morang) from Nov. 2009- October 2010. (Mean \pm S.D., N=5).

Param eters	Months											
Site 5II Yr.	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 22.0 \\ \pm 0.275 \end{gathered}$	$\begin{gathered} 21.20 \\ \pm 0.442 \end{gathered}$	$\begin{array}{r} 19.05 \\ \pm .293 \end{array}$	$\begin{gathered} 20.06 \\ \pm 0.359 \end{gathered}$	$\begin{gathered} 31.10 \\ \pm 0.347 \end{gathered}$	$\begin{gathered} 32.03 \\ \pm 0.615 \end{gathered}$	$\begin{gathered} 31.5 \\ \pm 0.432 \end{gathered}$	$\begin{gathered} 29.05 \\ \pm 0.276 \end{gathered}$	$\begin{gathered} 30.02 \\ \pm 0.35 \\ 7 \end{gathered}$	$\begin{gathered} 30.5 \\ \pm 0.524 \end{gathered}$	$\begin{array}{\|c} 30.12 \\ \pm 0.52 \\ 1 \end{array}$	$\begin{gathered} 27.04 \\ \pm 0.57 \\ 6 \end{gathered}$
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 22.5 \\ \pm 0.523 \end{gathered}$	$\begin{gathered} 19.01 \\ \pm 0.437 \end{gathered}$	$\begin{gathered} 17.21 \\ \pm 0.376 \end{gathered}$	$\begin{gathered} 18.52 \\ \pm 0.435 \end{gathered}$	$\begin{gathered} 29.03 \\ \pm 0.546 \end{gathered}$	$\begin{gathered} 29.5 \\ \pm 0.439 \end{gathered}$	$\begin{gathered} 30.02 \\ \pm 0.657 \end{gathered}$	$\begin{gathered} 28.50 \\ \pm 0.427 \end{gathered}$	$\begin{gathered} 29.03 \\ \pm 0.67 \\ 2 \end{gathered}$	$\begin{gathered} 29.12 \\ \pm 0.635 \end{gathered}$	$\begin{gathered} 29.01 \\ \pm 0.63 \\ 4 \end{gathered}$	$\begin{gathered} 25.56 \\ \pm 0.53 \\ 4 \end{gathered}$
pH	$\begin{gathered} 7.68 \\ \pm 0.254 \end{gathered}$	$\begin{gathered} 8.02 \\ \pm 0.377 \end{gathered}$	$\begin{gathered} 8.4 \\ \pm 0.395 \end{gathered}$	$\begin{gathered} 8.6 \\ \pm 0.529 \end{gathered}$	$\begin{gathered} 8.5 \\ \pm 0.446 \end{gathered}$	$\begin{gathered} 7.23 \\ \pm 0.357 \end{gathered}$	$\begin{gathered} 7.12 \\ \pm 0.433 \end{gathered}$	$\begin{gathered} 8.02 \\ \pm 0.356 \end{gathered}$	$\begin{gathered} 6.82 \\ \pm 0.27 \\ 5 \end{gathered}$	$\begin{gathered} 7.41 \\ \pm 0.278 \end{gathered}$	$\begin{array}{\|c} 7.53 \\ \pm 0.25 \\ 4 \end{array}$	$\begin{gathered} 7.31 \\ \pm 0.17 \\ 8 \end{gathered}$
Turbid ity (NTU)	$\begin{gathered} 45.03 \\ \pm 0.064 \end{gathered}$	$\begin{gathered} 53.11 \\ \pm 0.068 \end{gathered}$	$\begin{gathered} 56.00 \\ \pm 1.967 \end{gathered}$	$\begin{gathered} 49.02 \\ \pm 0.926 \end{gathered}$	$\begin{gathered} 213.05 \\ 3 \pm 0.57 \\ 8 \end{gathered}$	$\begin{gathered} 47.52 \\ \pm 0.865 \end{gathered}$	$\begin{gathered} 47.15 \\ \pm 0.735 \end{gathered}$	$\begin{gathered} 227 \\ \pm 1.864 \end{gathered}$	$\begin{gathered} 345.0 \\ 5 \\ \pm 3.57 \\ 9 \end{gathered}$	$\begin{aligned} & 332.05 \\ & \pm 3.465 \end{aligned}$	$\begin{array}{\|c} 330.0 \\ 1 \\ \pm 3.33 \\ 5 \end{array}$	$\begin{gathered} 49.23 \\ \pm 0.57 \\ 8 \end{gathered}$
Free CO_{2} (m g / L)	$\begin{gathered} 16.72 \\ \pm 0.645 \end{gathered}$	$\begin{gathered} 18.36 \\ \pm 0.265 \end{gathered}$	$\begin{gathered} 19.81 \\ \pm 0.945 \end{gathered}$	$\begin{gathered} 19.53 \\ \pm 0.687 \end{gathered}$	$\begin{gathered} 21.55 \\ \pm 0.569 \end{gathered}$	$\begin{gathered} 19.82 \\ \pm 0.765 \end{gathered}$	$\begin{gathered} 21.15 \\ \pm 0.839 \end{gathered}$	$\begin{gathered} 12.29 \\ \pm 0.456 \end{gathered}$	$\begin{gathered} 13.5 \\ \pm 0.92 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 8.84 \\ \pm 0.557 \end{gathered}$	$\begin{array}{\|c} 6.58 \\ \pm 0.65 \\ 2 \\ \hline \end{array}$	$\begin{gathered} 7.53 \\ \pm 0.42 \\ 7 \\ \hline \end{gathered}$
$\begin{aligned} & \text { DO } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} 8.26 \\ \pm 0.095 \end{gathered}$	$\begin{gathered} 9.29 \\ \pm 0.099 \end{gathered}$	$\begin{gathered} 7.15 \\ \pm 0.265 \end{gathered}$	$\begin{gathered} 6.68 \\ \pm 0.424 \end{gathered}$	$\begin{gathered} 5.11 \\ \pm 0.068 \end{gathered}$	$\begin{gathered} 5.75 \\ \pm 0.165 \end{gathered}$	$\begin{gathered} 6.81 \\ \pm 0.178 \end{gathered}$	$\begin{gathered} 6.77 \\ \pm 0.105 \end{gathered}$	$\begin{gathered} 5.55 \\ \pm 0.28 \\ 9 \end{gathered}$	$\begin{gathered} 6.81 \\ \pm 0.115 \end{gathered}$	$\begin{gathered} 6.77 \\ \pm 0.12 \\ 4 \end{gathered}$	$\begin{gathered} 7.35 \\ \pm 0.34 \\ 2 \end{gathered}$
$\begin{aligned} & \text { BOD } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} 1.9 \\ \pm 0.078 \end{gathered}$	$\begin{gathered} 0.06 \\ \pm 0.062 \end{gathered}$	$\begin{gathered} 1.5 \\ \pm 0.037 \end{gathered}$	$\begin{gathered} 1.75 \\ \pm 0.045 \end{gathered}$	$\begin{gathered} 3.41 \\ \pm 0.065 \end{gathered}$	$\begin{gathered} 3.10 \\ \pm 0.061 \end{gathered}$	$\begin{gathered} 3.72 \\ \pm 0.054 \end{gathered}$	$\begin{gathered} 2.31 \\ \pm 0.053 \end{gathered}$	$\begin{gathered} 2.30 \\ \pm 0.05 \\ 9 \end{gathered}$	$\begin{gathered} 1.73 \\ \pm 0.057 \end{gathered}$	$\begin{gathered} 1.42 \\ \pm 0.04 \\ 4 \end{gathered}$	$\begin{gathered} 1.8 \\ \pm 0.06 \\ 5 \end{gathered}$
Chlori de (mg/L)	$\begin{gathered} 15.10 \\ \pm 0.093 \end{gathered}$	$\begin{gathered} 4.05 \\ \pm 0.069 \end{gathered}$	$\begin{gathered} 8.00 \\ \pm 0.096 \end{gathered}$	$\begin{gathered} 6.01 \\ \pm 0.142 \end{gathered}$	$\begin{gathered} 10.0 \\ \pm 0.192 \end{gathered}$	$\begin{gathered} 9.82 \\ \pm 0.127 \end{gathered}$	$\begin{gathered} 10.01 \\ \pm 0.135 \end{gathered}$	$\begin{gathered} 11.06 \\ \pm 0.031 \end{gathered}$	$\begin{gathered} 10.55 \\ \pm 0.45 \\ 9 \end{gathered}$	$\begin{gathered} 10.45 \\ \pm 0.645 \end{gathered}$	$\begin{gathered} 10.42 \\ \pm 0.07 \\ 5 \end{gathered}$	$\begin{gathered} 14.54 \\ \pm 0.08 \\ 4 \end{gathered}$
Total Alkali (mg/L)	$\begin{aligned} & 167.20 \\ & \pm 2.175 \end{aligned}$	$\begin{array}{r} 164.03 \\ \pm 2.453 \end{array}$	$\begin{aligned} & 171.15 \\ & \pm 2.534 \end{aligned}$	$\begin{aligned} & 173.53 \\ & \pm 1.857 \end{aligned}$	$\begin{gathered} 187.5 \\ \pm 1.887 \end{gathered}$	$\begin{aligned} & 190.50 \\ & \pm 2.956 \end{aligned}$	$\begin{array}{r} 191.11 \\ \pm 1.742 \end{array}$	$\begin{gathered} 156.40 \\ \pm 2.856 \\ * \end{gathered}$	$\begin{gathered} 166.1 \\ 2 \\ \pm 0.98 \\ 7 \end{gathered}$	$\begin{aligned} & 169.91 \\ & \pm 1.745 \end{aligned}$	$\begin{gathered} 134.2 \\ 6 \\ \pm 2.85 \\ 7 \end{gathered}$	$\begin{gathered} 178.2 \\ \pm 2.85 \\ 7 \end{gathered}$
Total Hardn ess (mg/L)	$\begin{aligned} & 169.23 \\ & \pm 2.267 \end{aligned}$	$\begin{array}{\|c\|} 85.14 \\ \pm 1.967 \end{array}$	$\begin{aligned} & 173.22 \\ & \pm 1.795 \end{aligned}$	$\begin{aligned} & 165.24 \\ & \pm 1.623 \end{aligned}$	$\begin{aligned} & 121.34 \\ & \pm 1.845 \end{aligned}$	$\begin{aligned} & 151.61 \\ & \pm 1.485 \end{aligned}$	$\begin{gathered} 126.5 \\ \pm 1.716 \end{gathered}$	$\begin{aligned} & 146.56 \\ & \pm 1.976 \end{aligned}$	$\begin{gathered} 144.4 \\ 2 \\ \pm 1.24 \\ 7 \end{gathered}$	$\begin{aligned} & 156.75 \\ & \pm 0.899 \end{aligned}$	$\begin{gathered} 108.9 \\ 3 \\ \pm 0.87 \\ 5 \end{gathered}$	$\begin{gathered} 165.2 \\ 5 \\ \pm 0.58 \\ 3 \end{gathered}$

[^4]Table 5.15 shows Pearson's correlation coefficient (r) for air temperature and physicochemical parameters of water at Site 5 (average of the corresponding month values) during Nov. 2008 - Oct. 2010; N=12; d. f. $=11$.

S5-I + II		Water T. $\left({ }^{\circ} \mathrm{C}\right)$	pH	Turbid ity (NTU)	Free CO_{2} (mg/L)	DO (mg/L)	BOD (mg/L)	Chlori de (mg/L)	Total alkalin. (mg/L)	Total hard (mg/L)
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	P cor.	. $964{ }^{*}$	-. $656^{* *}$. 484	-. 249	$-.608^{* *}$	-. 314	. $639^{* *}$	-. 360	-. 076
	Sig.(2-t)	. 000	. 020	. 111	. 434	. 036	. 321	. 025	. 250	. 816
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	P cor.	1	-.639**	. $604{ }^{* *}$	-. 257	. 024	-. 214	. $637^{* *}$	-. 446	-. 201
	Sig.(2-t)		. 025	. 046	. 420	. 940	. 505	. 026	. 147	. 531
pH	P cor.		1	-. 427	. 079	. 242	0.000	-. 247	. 200	. 201
	Sig.(2-t)			. 166	. 806	. 449	1.000	. 439	. 533	. 532
Turbidity (NTU)	P cor.			1	-. $605^{* *}$. 228	. 294	. 261	-. 452	-. 557
	Sig.(2-t)				. 037	. 475	. 353	. 412	. 140	. 060
Free $\mathbf{C O}_{2}$ (mg/L)	P cor.				1	-.721*	-. 127	-. 205	. $654{ }^{* *}$	-. 022
	Sig.(2-t)					. 008	. 694	. 522	. 021	. 947
$\begin{aligned} & \mathrm{DO} \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	P cor.					1	-. $634^{* *}$. 362	-. 095	-. 244
	Sig.(2-t)						. 027	. 247	. 769	. 445
$\begin{aligned} & \text { BOD } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	P cor.						1	-. 206	. 729^{*}	-.688**
	Sig.(2-t)							. 520	. 007	. 013
Chloride (mg/L)	P cor.							1	. 034	-. 343
	Sig.(2-t)								. 917	. 276
Total alkalinity (mg/L)	P cor.								1	. 539
	Sig.(2-t)									. 071
Total hard (mg/L)	P cor.									1
	Sig.(2-t)									

* Significant at 1% level ($\mathbf{P}<0.01$), ** significant at 5% level $(\mathbf{P}<0.05)$ and

Values not marked denote non-significant correlation.

Fig.5.53. Monthly variations in air temperature at Site 5 during the first and second year study Periods (Nov. 2008- Oct. 2010).

Fig.5.54. Monthly variations in water temperature at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.55. Monthly variations in pH at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.56. Monthly variations in turbidity at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.57. Monthly variations in CO_{2} at Site 5 during the first and second year study periods (Nov.2008- Oct.2010).

Fig.5.58. Monthly variations in DO at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.59. Monthly variations in BOD at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.60. Monthly variations in chloride at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.61. Monthly variations in total alkalinity at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.62. Monthly variations in total hardness at Site 5 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.63. Line graph of monthly variations in air temperature at site 5 during the first and second year study periods (Nov. 2008 - Oct. 2010).

Fig.5.64. Line graph of monthly variations in water temperature at site 5 during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig.5.65. Line graph of monthly variations in total alkalinity at site 5 during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig.5.66. Line graph of monthly variations in total hardness at site 5 during the first and second year study periods (Nov. 2008-Oct.2010).

Site 6 (Budhi River)

Results of the air temperature and physico-chemical parameters of water of Site 6 are shown in Table 5.16 and Table 5.17. Table 5.16 shows the results of air temperature and physicochemical parameters of water of the first year (Nov. 2008 - Oct. 2009) study period. Table 5.17 shows the results of air temperature and physico-chemical parameters of water of the second year (Nov. 2009- June 2010). Table 5.18 shows the correlation coefficient (r) of air temperature and different physico-chemical parameters of water at Site 6. The Fig. 5.67 shows the monthly variations in air temperature at Site 6 in the first year and the second year study periods. The Figs. 5.67 to 5.76 show histograms and Figs. 5.77 to 5.80 show line graphs of the
monthly variations of different physico-chemical parameters of water at Site 6 in the first year (Nov. 2008 - Oct. 2009) and the second year (Nov. 2008 - Oct. 2010) study periods.

Air temperature

The minimum air temperature was $18.55 \pm 0.469^{\circ} \mathrm{C}$ in the month of February and maximum $32.14 \pm 0.524{ }^{\circ} \mathrm{C}$ was in the month of August during the first year study period (Table 5.16; Fig.5.67). The minimum air temperature was $18.14 \pm 0.287^{\circ} \mathrm{C}$ in the month of January and maximum air temperature was $32.13 \pm 0.448^{\circ} \mathrm{C}$ in the month of May during the second year (Table 5.17; Fig.5.67). Air temperature showed positive and significant correlation with water temperature ($\mathrm{r}=0.982, \mathrm{P}<0.01$) and it had inverse and significant correlation with dissolved oxygen $(\mathrm{r}=-0.893, \mathrm{P}<0.01)$ (Table 5.18).

The surface temperature remained low during winter (December to February) in both the years (Table 5.16, 5.17; Figs.5.67, 5.77).

Water temperature

The lowest surface water temperature was $17.01 \pm 0.217^{\circ} \mathrm{C}$ in the month of December and highest $30.12 \pm 0.235^{\circ} \mathrm{C}$ in the month of August during the first year (Table 5.16, Fig.5.68) and the minimum temperature was $17.15 \pm 0.335^{\circ} \mathrm{C}$ in the month of January and the highest $29.12 \pm 0.635{ }^{\circ} \mathrm{C}$ in the month of August during second year study period (Table 5.17, Fig.5.68). The water temperature had positive and significant correlation with air temperature ($\mathrm{r}=0.982, \mathrm{P}<0.01$) but inverse and significant correlation with dissolved oxygen $(\mathrm{r}=-0.869$, $\mathrm{P}<0.01$) (Table 5.18).

The water temperature remained low during winter months (December to February in both the years. Decreasing trend was also observed during the months of September to October in both years (Tables 5.16, 5.17; Figs.5.68, 5.78).

pH

The minimum pH was 6.67 ± 0.271 in the month of September and maximum 8.5 ± 0.365 in the month of January in first year (Table 5.16; Fig.5.79) and minimum pH was 6.78 ± 0.271 in September and maximum 8.3 ± 0.236 in January in the second year (Table 5.17; Fig. 5.69). pH had no significant positive correlation inverse and significant correlation with turbidity $(r=-0.924, \mathrm{p}<0.01)$ (Table 5.18).

Turbidity

The turbidity was lowest 42.30 ± 0.565 NTU in December and highest 1065.0 ± 3.335 NTU in September in the first year (Table 5.16; Fig.5.70). Turbidity was lowest 48.01 ± 1.435 NTU in January and was highest 1071.0 ± 2.359 NTU in September during second year (Table 5.17; Fig.5.80).The turbidity had positive and significant correlation with $\mathrm{CO}_{2}(\mathrm{r}=0.700, \mathrm{P}<0.05)$ and phosphate $(\mathrm{r}=0.615, \mathrm{P}<0.05)$ but inverse and significant correlation with $\mathrm{pH}(\mathrm{r}=-0.924$, $\mathrm{P}<0.01)$ (Table 5.18).

Free carbon dioxide

The maximum free CO_{2} was $80.08 \pm 1.352 \mathrm{mg} / \mathrm{L}$ in month of September and minimum was $14.56 \pm 0.359 \mathrm{mg} / \mathrm{L}$ in the month of March during the first year study period (Table 5.16; Fig.5.71). In the second year study period, maximum free CO_{2} was $17.5 \pm 0.687 \mathrm{mg} / \mathrm{L}$ in February and minimum was $10.45 \pm 0.625 \mathrm{mg} / \mathrm{L}$ in July (Table 5.17; Fig.5.71). Free carbon dioxide showed positive and significant correlation with turbidity $(\mathrm{r}=0.700, \mathrm{P}<0.05)$ (Table 5.18).

Dissolved oxygen

Minimum dissolved oxygen was measured $5.16 \pm 0.095 \mathrm{mg} / \mathrm{L}$ in the month of June and maximum was $8.26 \pm 0.185 \mathrm{mg} / \mathrm{L}$ in January during the first year study period (Table 5.16; Fig.5.72). In the second year study period, the maximum dissolved oxygen was 8.4 ± 0.285 mg / L in the month of January and minimum $4.59 \pm 0.097 \mathrm{mg} / \mathrm{Lin}$ the month of August (Table 5.17 and Fig.5.72). The dissolved oxygen showed inverse and significant correlation with air temperature ($\mathrm{r}=-0.893, \mathrm{p}<0.01$), water temperature $(\mathrm{r}=-0.869, \mathrm{P}<0.01$) (Table 5.18).

Biological oxygen demand

The maximum biological oxygen demand was $4.95 \pm 0.061 \mathrm{mg} / \mathrm{L}$ in the month of April and minimum $2.34 \pm 0.025 \mathrm{mg} / \mathrm{L}$ in the month of February during the first (Table 5.16 and Fig. 5.73). It was maximum $4.15 \pm 0.045 \mathrm{mg} / \mathrm{Lin}$ May and minimum $0.26 \pm 0.087 \mathrm{mg} / \mathrm{Lin}$ December in the second year study period (Table 5.17 and Fig.5.73). It had positive and significant correlation with air temperature ($\mathrm{r}=0.768, \mathrm{P}<0.01$), water temperature ($\mathrm{r}=0.496, \mathrm{P}<0.05$) and inverse and significant correlation with DO ($\mathrm{r}=-0.469, \mathrm{P}<0.05$) (Table 5.18).

Chloride

The maximum chloride was $10.2 \pm 0.086 \mathrm{mg} / \mathrm{L}$ in the month of October and minimum was $3.01 \pm 0.069 \mathrm{mg} / \mathrm{L}$ in the month of December during the first (Table 5.16 and Fig.5.74); maximum chloride was $13.35 \pm 0.097 \mathrm{mg} / \mathrm{L}$ in August and minimum was $2.5 \pm 0.069 \mathrm{mg} / \mathrm{L}$ in December of second year study period (Table 5.17 and Fig.5.74). It had inverse and significant correlation with $\mathrm{CO}_{2}(\mathrm{r}=-0.656, \mathrm{P}<0.05)$ (Table 5.18).

Total alkalinity

The maximum total alkalinity was $240.03 \pm 2.74 \mathrm{mg} / \mathrm{L}$ in the month of January and minimum $111.6 \pm 0.815 \mathrm{mg} / \mathrm{L}$ in the month of July during the first year study period (Table 5.16 and Fig. 5.75). In second year, maximum total alkalinity was $238.6 \pm 2.534 \mathrm{mg} / \mathrm{L}$ in January and minimum $127.92 \pm 0.987 \mathrm{mg} / \mathrm{L}$ in July (Table 5.17 and Fig.5.75). It had positive and significant correlation with $\mathrm{BOD}(\mathrm{r}=0.805, \mathrm{P}<0.05)$ (Table 5.18).

Total alkalinity was significantly ($\mathrm{p}<0.01$) lower in the month of July, 2009 (111.6.62 $\pm 0.815 \mathrm{mg} / \mathrm{L}$) as compared to the month of June ($192.4 \pm 2.735 \mathrm{mg} / \mathrm{L}$) during first year (Table 5.16; Figs.5.75, 5.79). The values of total alkalinity were found significantly ($\mathrm{P}<0.05$) lower in July ($127.92 \pm 0.987 \mathrm{mg} / \mathrm{L}$) than that of June ($211.60 \pm 2.856 \mathrm{mg} / \mathrm{L}$)during second year study period. It was slightly increased in August and remained low in September and October (Table 5.17; Figs. 5.75, 5.79).

Total hardness

The maximum total hardness was $190.0 \pm 1.845 \mathrm{mg} / \mathrm{L}$ in the month of March and minimum $89.01 \pm 0.875 \mathrm{mg} / \mathrm{L}$ in the month of August during the first year (Table 5.16 and Fig.5.76) and in the second year study period, maximum $196.02 \pm 1.976 \mathrm{mg} / \mathrm{L}$ was seen in June and minimum $85.14 \pm 1.956 \mathrm{mg} / \mathrm{L}$ in December (Table 5.17 and Fig.5.76). It had positive and significant correlation with chloride ($\mathrm{r}=0.644, \mathrm{P}<0.05$) (Table 5.18).

The values of total hardness were significantly $(\mathrm{P}<0.01)$ lower in the month of July (150.04 $\pm 1.206 \mathrm{mg} / \mathrm{L}$) than that of June ($180.12 \pm 1.976 \mathrm{mg} / \mathrm{L}$) during first year study period (Table 5.16; Figs.5.76, 5.80). During second year total hardness was found to be significantly ($\mathrm{P}<0.05$) lower in the month of July, $2010(132.6 \pm 1.206 \mathrm{mg} / \mathrm{L})$ compared to that of the month of June, $2010(196.02 \pm 1.976 \mathrm{mg} / \mathrm{L})$ and it remained low in August,September and October (Table 5.17; Figs. 5.76, 5.80).

Table 5.16 shows air temperature, water temperature and physico-chemical parameters of water at Site 6 (Budhi River, Sunsari) from Nov. 2008- October 2009 (Mean \pm S.D., N=5).

Para	Months											
$\begin{array}{\|c\|} \hline \text { Site 6-I } \\ \text { Yr. } \end{array}$	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 25.15 \\ & \pm 0.158 \end{aligned}$	$\begin{gathered} 20.02 \\ \pm 0.342 \end{gathered}$	$\begin{gathered} 19.17 \\ \pm .293 \end{gathered}$	$\begin{gathered} 18.55 \\ \pm 0.469 \end{gathered}$	$\begin{gathered} 29.08 \\ \pm 0.328 \end{gathered}$	$\begin{gathered} 30.07 \\ \pm 0.517 \end{gathered}$	$\begin{gathered} 31.5 \\ \pm 0.432 \end{gathered}$	$\begin{aligned} & 27.15 \\ & \pm 0.373 \end{aligned}$	$\begin{gathered} 30.02 \\ \pm 0.457 \end{gathered}$	$\begin{gathered} 32.14 \\ \pm 0.524 \end{gathered}$	$\begin{aligned} & 28.15 \\ & \pm 0.621 \end{aligned}$	$\begin{gathered} 27.01 \\ \pm 0.577 \end{gathered}$
Water Temp. ${ }^{\circ} \mathrm{C}$)	$\begin{gathered} 22.05 \\ \pm 0.125 \end{gathered}$	$\begin{array}{\|c\|} \hline 17.01 \\ \pm 0.217 \end{array}$	$\begin{gathered} 18.14 \\ \pm 0.316 \end{gathered}$	$\begin{aligned} & 17.52 \\ & \pm 0.335 \end{aligned}$	$\begin{gathered} 24.06 \\ \pm 0.523 \end{gathered}$	$\begin{gathered} 28.13 \\ \pm 0.475 \end{gathered}$	$\begin{array}{r} 29.05 \\ \pm 0.351 \end{array}$	$\begin{gathered} 26.13 \\ \pm 0.328 \end{gathered}$	$\begin{gathered} 28.15 \\ \pm 0.272 \end{gathered}$	$\begin{gathered} 30.12 \\ \pm 0.235 \end{gathered}$	$\begin{gathered} 27.03 \\ \pm 0.534 \end{gathered}$	$\left.\begin{gathered} 24.11 \\ \pm 0.476 \end{gathered} \right\rvert\,$
pH	$\begin{array}{c\|} 7.9 \\ \pm 0.234 \end{array}$	$\begin{array}{\|c\|} \hline 8.17 \\ \pm 0.327 \\ \hline \end{array}$	$\begin{gathered} 8.5 \\ \pm 0.365 \end{gathered}$	$\begin{gathered} 8.32 \\ \pm 0.229 \end{gathered}$	7.9 ± 0.576	$\begin{gathered} 7.65 \\ \pm 0.317 \end{gathered}$	$\begin{gathered} 7.77 \\ \pm 0.733 \end{gathered}$	$\begin{gathered} 7.47 \\ \pm 0.256 \end{gathered}$	$\begin{gathered} 7.72 \\ \pm 0.075 \end{gathered}$	$\begin{gathered} \hline 6.91 \\ \pm 0.174 \end{gathered}$	$\begin{gathered} \hline 6.67 \\ \pm 0.271 \end{gathered}$	$\left\|\begin{array}{c} 7.83 \\ \pm 0.073 \end{array}\right\|$
$\begin{array}{\|c\|} \hline \text { Turbidi } \\ \text { ty } \\ \text { (NTU) } \end{array}$	$\begin{aligned} & 80.15 \\ & \pm 0.615 \end{aligned}$	$\begin{aligned} & 42.30 \\ & \pm 0.565 \end{aligned}$	$\begin{gathered} 45.21 \\ \pm 1.245 \end{gathered}$	$\begin{aligned} & 99.03 \\ & \pm 0.623 \end{aligned}$	$\left\|\begin{array}{c} 135.04 \\ 3 \pm 0.398 \end{array}\right\|$	$\begin{aligned} & 83.20 \\ & \pm 0.667 \end{aligned}$	85.14 ± 0.735	140.00 ± 1.566	$\begin{gathered} 235.15 \\ \pm 1.275 \end{gathered}$	$\begin{aligned} & 800.00 \\ & \pm 2.465 \end{aligned}$	$\begin{array}{\|c\|} \hline 1065.0 \\ 0 \\ \pm 3.335 \\ \hline \end{array}$	$\left\|\begin{array}{c} 125.00 \\ \pm 0.518 \end{array}\right\|$
	$\begin{gathered} 29.80 \\ \pm 1.477 \end{gathered}$	$\begin{array}{\|c\|} \hline 37.42 \\ \pm 1.365 \end{array}$	$\begin{gathered} 27.5 \\ \pm 0.745 \end{gathered}$	$\begin{gathered} 25.84 \\ \pm 0.687 \end{gathered}$	$\begin{gathered} 14.56 \\ \pm 0.359 \end{gathered}$	$\begin{gathered} 22.33 \\ \pm 0.567 \end{gathered}$	28.72 ± 0.836	28.13 ± 0.156	$\begin{gathered} 29.85 \\ \pm 0.926 \end{gathered}$	$\begin{array}{r} 27.46 \\ \pm 1.327 \end{array}$	$\begin{array}{\|c\|} \hline 80.08 \\ \pm 1.352 \end{array}$	$\begin{array}{\|} \hline 30.91 \\ \pm 0.526 \end{array}$
$\underset{(\mathrm{mg} / \mathrm{L})}{\mathrm{DO}}$	7.43 ± 0.265	$\begin{gathered} 6.42 \\ \pm 0.087 \end{gathered}$	$\begin{gathered} 8.26 \\ \pm 0.185 \end{gathered}$	$\begin{gathered} 7.33 \\ \pm 0.224 \end{gathered}$	5.72 ± 0.068	$\begin{gathered} 6.65 \\ \pm 0.125 \end{gathered}$	$\begin{gathered} 5.52 \\ \pm 0.078 \end{gathered}$	$\begin{array}{\|c\|} \hline 5.16 \\ \pm 0.095 \end{array}$	5.35 ± 0.273	$\begin{gathered} 5.84 \\ \pm 0.097 \end{gathered}$	$\begin{array}{\|c\|} \hline 5.63 \\ \pm 0.086 \end{array}$	$\begin{gathered} 7.22 \\ \pm 0.237 \end{gathered}$
$\underset{(\mathrm{mg} / \mathrm{L})}{\mathrm{BOD}}$	$\begin{gathered} 4.10 \\ \pm 0.067 \end{gathered}$	$\begin{array}{\|c\|} \hline 2.66 \\ \pm 0.029 \end{array}$	$\begin{gathered} 3.77 \\ \pm 0.037 \end{gathered}$	$\begin{gathered} 2.34 \\ \pm 0.025 \end{gathered}$	$\begin{gathered} 2.45 \\ \pm 0.065 \end{gathered}$	$\begin{gathered} 4.95 \\ \pm 0.061 \end{gathered}$	$\begin{gathered} 2.62 \\ \pm 0.015 \end{gathered}$	$\begin{gathered} 3.38 \\ \pm 0.069 \end{gathered}$	$\begin{gathered} 3.45 \\ \pm 0.057 \end{gathered}$	$\begin{gathered} 3.12 \\ \pm 0.065 \end{gathered}$	$\begin{gathered} 2.72 \\ \pm 0.054 \end{gathered}$	$\begin{gathered} 4.15 \\ \pm 0.075 \end{gathered}$
Chlorid e $(\mathrm{mg} / \mathrm{L})$	$\begin{array}{r} 9.07 \\ \pm 0.093 \end{array}$	$\begin{array}{r} 3.01 \\ \pm 0.069 \end{array}$	$\begin{gathered} 6.04 \\ \pm 0.096 \end{gathered}$	$\begin{gathered} 6.51 \\ \pm 0.142 \end{gathered}$	$\begin{gathered} 6.00 \\ \pm 0.192 \end{gathered}$	$\begin{array}{r} 7.70 \\ \pm 0.127 \end{array}$	$\begin{gathered} 6.16 \\ \pm 0.135 \end{gathered}$	$\begin{gathered} 5.02 \\ \pm 0.031 \end{gathered}$	$\begin{gathered} 8.50 \\ \pm 0.109 \end{gathered}$	$\begin{array}{r} 9.45 \\ \pm 0.175 \end{array}$	$\begin{gathered} 10.02 \\ \pm 0.075 \end{gathered}$	$\begin{aligned} & 10.20 \\ & \pm 0.086 \end{aligned}$
Total Alkalini $(\mathrm{mg} / \mathrm{L})$	$\begin{aligned} & 163.56 \\ & \pm 2.345 \end{aligned}$	$\begin{aligned} & 144.76 \\ & \pm 2.384 \end{aligned}$	$\begin{aligned} & 240.03 \\ & \pm 2.74 \end{aligned}$	$\begin{gathered} 192 \\ \pm 1.747 \end{gathered}$	$\begin{aligned} & 220.53 \\ & \pm 2.656 \end{aligned}$	$\begin{aligned} & 222.01 \\ & \pm 2.476 \end{aligned}$	$\begin{aligned} & 197.01 \\ & \pm 1.561 \end{aligned}$	$\begin{gathered} 192.4 \\ \pm 2.735 \end{gathered}$	$\left\|\begin{array}{c} 111.6 \\ \\ \pm 0.815^{*} \end{array}\right\|$	$\begin{aligned} & 129.63 \\ & \pm 1.475 \end{aligned}$	$\begin{aligned} & 216.48 \\ & \pm 2.752 \end{aligned}$	$\begin{gathered} 197.17 \\ \pm 1.892 \end{gathered}$
Total Hardne s $(\mathrm{mg} / \mathrm{L})$	$\begin{aligned} & 176.55 \\ & \pm 2.347 \end{aligned}$	$\begin{gathered} 159.12 \\ \pm 1.925 \end{gathered}$	$\begin{gathered} 142.03 \\ \pm 1.798 \end{gathered}$	$\begin{aligned} & 166.53 \\ & \pm 1.623 \end{aligned}$	$\begin{gathered} 190 \\ \pm 1.845 \end{gathered}$	$\begin{aligned} & 164.34 \\ & \pm 1.485 \end{aligned}$	$\begin{aligned} & 176.02 \\ & \pm 1.716 \end{aligned}$	$\begin{aligned} & 180.12 \\ & \pm 1.976 \end{aligned}$	$\begin{gathered} 150.04 \\ \pm 1.206^{*} \end{gathered}$	$\begin{aligned} & 89.01 \\ & \pm 0.875 \end{aligned}$	151.22 ± 0.975	105.01 ± 0.587

*Significant differences at 1% level, ** Significant differences at 5\% level.

Table 5.17 shows air temperature, water temperature and physico-chemical parameters of water at Site 6 (Budhi River, Sunsari) from Nov. 2009- October 2010 (Mean \pm S.D., N=5).

Para meter Site 6II Yr.	Months											
	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct
$\begin{aligned} & \text { Air } \\ & \text { Temp. } . \\ & \left({ }^{\circ} \mathbf{C}\right) \end{aligned}$	$\begin{gathered} 24.12 \\ \pm 0.256 \end{gathered}$	$\begin{gathered} 21.02 \\ \pm 0.362 \end{gathered}$	$\begin{array}{r} 18.14 \\ \pm .287 \end{array}$	$\begin{gathered} 19.25 \\ \pm 0.396 \end{gathered}$	$\begin{gathered} 30.08 \\ \pm 0.354 \end{gathered}$	$\begin{gathered} 31.07 \\ \pm 0.567 \end{gathered}$	$\begin{gathered} 32.13 \\ \pm 0.448 \end{gathered}$	$\begin{gathered} 28.15 \\ \pm 0.573 \end{gathered}$	$\begin{gathered} 30.02 \\ \pm 0.657 \end{gathered}$	$\begin{gathered} 31.04 \\ \pm 0.588 \end{gathered}$	$\begin{gathered} 29.05 \\ \pm 0.53 \\ 2 \end{gathered}$	$\begin{gathered} 28.2 \\ 1 \\ \pm 0.4 \\ 98 \end{gathered}$
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 21.52 \\ \pm 0.237 \end{gathered}$	$\begin{gathered} 19.03 \\ \pm 0.521 \end{gathered}$	$\begin{gathered} 17.15 \\ \pm 0.335 \end{gathered}$	$\begin{gathered} 17.51 \\ \pm 0.354 \end{gathered}$	$\begin{gathered} 27.03 \\ \pm 0.632 \end{gathered}$	$\begin{gathered} 28.01 \\ \pm 0.445 \end{gathered}$	$\begin{gathered} 29.02 \\ \pm 0.537 \end{gathered}$	$\begin{gathered} 27.15 \\ \pm 0.524 \end{gathered}$	$\begin{gathered} 28.5 \\ \pm 0.473 \end{gathered}$	$\begin{gathered} 29.12 \\ \pm 0.635 \end{gathered}$	$\begin{gathered} 29.03 \\ \pm 0.56 \\ 5 \end{gathered}$	$\begin{gathered} 26.5 \\ 1 \\ \pm 0.4 \\ 76 \end{gathered}$
pH	$\begin{gathered} 7.98 \\ \pm 0.324 \end{gathered}$	$\begin{gathered} 8.26 \\ \pm 0.287 \end{gathered}$	$\begin{gathered} 8.3 \\ \pm 0.236 \end{gathered}$	$\begin{gathered} 8.1 \\ \pm 0.245 \end{gathered}$	$\begin{gathered} 7.95 \\ \pm 0.375 \end{gathered}$	$\begin{gathered} 7.77 \\ \pm 0.314 \end{gathered}$	$\begin{gathered} 7.8 \\ \pm 0.347 \end{gathered}$	$\begin{gathered} 8.11 \\ \pm 0.653 \end{gathered}$	$\begin{gathered} 7.9 \\ \pm 0.275 \end{gathered}$	$\begin{gathered} 7.08 \\ \pm 0.174 \end{gathered}$	$\begin{gathered} 6.78 \\ \pm 0.27 \\ 1 \end{gathered}$	$\begin{gathered} 7.98 \\ \pm 0.2 \\ 75 \end{gathered}$
Turbidi ty (NTU)	$\begin{gathered} 215.2 \\ \pm 1.354 \end{gathered}$	$\begin{gathered} 81.05 \\ \pm 0.059 \end{gathered}$	$\begin{gathered} 48.01 \\ \pm 1.435 \end{gathered}$	$\begin{gathered} 97.03 \\ \pm 0.562 \end{gathered}$	$\begin{gathered} 129.01 \\ \pm 0.579 \end{gathered}$	$\begin{gathered} 94.05 \\ \pm 0.467 \end{gathered}$	$\begin{gathered} 98.04 \\ \pm 0.753 \end{gathered}$	$\begin{aligned} & 131.05 \\ & \pm 1.256 \end{aligned}$	$\begin{aligned} & 225.12 \\ & \pm 1.375 \end{aligned}$	$\begin{gathered} 782 \\ \pm 2.765 \end{gathered}$	$\begin{gathered} 1078 \\ \pm 2.35 \\ 9 \end{gathered}$	$\begin{gathered} 455 \\ \pm 0.7 \\ 17 \end{gathered}$
Free CO_{2} (mg/L)	$\begin{aligned} & 12.55 \\ & 0.085 \end{aligned}$	$\begin{gathered} 16.69 \\ \pm 0.568 \end{gathered}$	$\begin{gathered} 14.5 \\ \pm 0.749 \end{gathered}$	$\begin{gathered} 17.5 \\ \pm 0.687 \end{gathered}$	$\begin{gathered} 12.55 \\ \pm 0.563 \end{gathered}$	$\begin{gathered} 11.6 \\ \pm 0.656 \end{gathered}$	$\begin{gathered} 16.32 \\ \pm 0.736 \end{gathered}$	$\begin{gathered} 14.58 \\ \pm 0.516 \end{gathered}$	$\begin{gathered} 10.45 \\ \pm 0.625 \end{gathered}$	$\begin{gathered} 13.24 \\ \pm 0.736 \end{gathered}$	$\begin{gathered} 16.86 \\ \pm 0.75 \\ 5 \end{gathered}$	$\begin{gathered} 15.9 \\ 6 \\ \pm 0.5 \\ 29 \end{gathered}$
$\begin{aligned} & \text { DO } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} 6.35 \\ \pm 0.335 \end{gathered}$	$\begin{gathered} 8.31 \\ \pm 0.076 \end{gathered}$	$\begin{gathered} 8.4 \\ \pm 0.285 \end{gathered}$	$\begin{gathered} 6.65 \\ \pm 0.207 \end{gathered}$	$\begin{gathered} 5.16 \\ \pm 0.079 \end{gathered}$	$\begin{array}{c\|} 5.84 \\ \pm 0.096 \end{array}$	$\begin{gathered} 4.71 \\ \pm 0.075 \end{gathered}$	$\begin{gathered} 6.36 \\ \pm 0.098 \end{gathered}$	$\begin{gathered} 5.05 \\ \pm 0.073 \end{gathered}$	$\begin{gathered} 4.59 \\ \pm 0.097 \end{gathered}$	$\begin{gathered} 5.72 \\ \pm 0.07 \\ 8 \end{gathered}$	$\begin{gathered} 6.20 \\ \pm 0.0 \\ 86 \end{gathered}$
$\begin{aligned} & \text { BOD } \\ & (\mathbf{m g} / \mathrm{L}) \end{aligned}$	$\begin{gathered} 3.74 \\ \pm 0.056 \end{gathered}$	$\begin{gathered} 0.26 \\ \pm 0.087 \end{gathered}$	$\begin{gathered} 2.35 \\ \pm 0.074 \end{gathered}$	$\begin{gathered} 3.75 \\ \pm 0.025 \end{gathered}$	$\begin{gathered} 4.12 \\ \pm 0.056 \end{gathered}$	$\begin{gathered} 2.45 \\ \pm 0.063 \end{gathered}$	$\begin{gathered} 4.15 \\ \pm 0.045 \end{gathered}$	$\begin{gathered} 2.27 \\ \pm 0.069 \end{gathered}$	$\begin{gathered} 2.13 \\ \pm 0.077 \end{gathered}$	$\begin{gathered} 3.23 \\ \pm 0.068 \end{gathered}$	$\begin{gathered} 0.72 \\ \pm 0.07 \\ 8 \end{gathered}$	$\begin{gathered} 3.66 \\ \pm 0.0 \\ 97 \end{gathered}$
Chlorid (mg/L)	$\begin{gathered} 11.63 \\ \pm 0.993 \end{gathered}$	$\begin{gathered} 2.5 \\ \pm 0.069 \end{gathered}$	$\begin{gathered} 9.01 \\ \pm 0.096 \end{gathered}$	$\begin{gathered} 6.32 \\ \pm 0.142 \end{gathered}$	$\begin{gathered} 6.1 \\ \pm 0.192 \end{gathered}$	$\begin{gathered} 11.10 \\ \pm 0.127 \end{gathered}$	$\begin{gathered} 10.32 \\ \pm 0.135 \end{gathered}$	$\begin{gathered} 11.2 \\ \pm 0.231 \end{gathered}$	$\begin{gathered} 9.14 \\ \pm 0.109 \end{gathered}$	$\begin{gathered} 13.35 \\ \pm 0.097 \end{gathered}$	$\begin{gathered} 5.24 \\ \pm 0.07 \\ 5 \end{gathered}$	$\begin{gathered} 8.06 \\ \pm 0.0 \\ 87 \end{gathered}$
Total Alkalini ty (mg/L)	$\begin{aligned} & 208.01 \\ & \pm 2.175 \end{aligned}$	$\begin{array}{r} 196.12 \\ \pm 2.453 \end{array}$	$\begin{aligned} & 238.60 \\ & \pm 2.534 \end{aligned}$	$\begin{aligned} & 194.04 \\ & \pm 1.857 \end{aligned}$	$\begin{aligned} & 227.53 \\ & \pm 2.887 \end{aligned}$	$\begin{array}{l\|l} 208.01 \\ \pm 2.956 \end{array}$	$\begin{array}{r} 198.05 \\ \pm 1.742 \end{array}$	$\begin{aligned} & 211.60 \\ & \pm 2.856 \end{aligned}$	$\begin{aligned} & 127.92 \\ & \pm 0.987 \end{aligned}$	$\begin{array}{\|l} 221.02 \\ \pm 1.745 \end{array}$	$\begin{gathered} 202.4 \\ \pm 2.85 \\ 7 \end{gathered}$	$\begin{gathered} 219 . \\ 53 \\ \pm 1.8 \\ 92 \end{gathered}$
Total Hardne (mg/L)	$\begin{aligned} & 188.05 \\ & \pm 2.645 \end{aligned}$	$\begin{aligned} & 85.141 \\ & \pm 1.956 \end{aligned}$	$\begin{aligned} & 157.62 \\ & \pm 1.579 \end{aligned}$	$\begin{aligned} & 151.61 \\ & \pm 1.862 \end{aligned}$	$\begin{aligned} & 140.58 \\ & \pm 1.845 \end{aligned}$	$\begin{aligned} & 144.04 \\ & \pm 1.587 \end{aligned}$	$\begin{gathered} 179.5 \\ \pm 1.786 \end{gathered}$	$\begin{aligned} & 196.02 \\ & \pm 1.976 \end{aligned}$	$\begin{gathered} 132.60 \\ \pm 1.206 \\ * \end{gathered}$	$\begin{array}{\|l} 116.61 \\ \pm 0.975 \end{array}$	$\begin{gathered} 178.2 \\ \pm 0.97 \\ 5 \end{gathered}$	$\begin{gathered} 162 . \\ 05 \\ \pm 0.8 \\ 79 \end{gathered}$

[^5]Table 5.18 shows Pearson's correlation coefficient (r) for air temperature and physicochemical parameters of water at Site 6 (average of the corresponding month values) during Nov. 2008 - Oct. 2010; $\mathbf{N}=\mathbf{1 2}$; d.f. =11.

S6- I+II		Water Temp. $\left({ }^{\circ} \mathbf{C}\right)$	pH	Turbi dity (NTU)	$\begin{gathered} \text { Free } \\ \mathrm{CO}_{2} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { DO } \\ (\mathbf{m g} / \mathrm{L}) \end{gathered}$	$\begin{aligned} & \text { BOD } \\ & (\mathbf{m g} / \mathrm{L}) \end{aligned}$	$\begin{gathered} \text { Chlori } \\ \text { de } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	T.Alkal inity (mg/L)	T.Hard ness (mg/L)
Air Temp.$\left({ }^{\circ} \mathbf{C}\right)$	P Corr.	. 982^{*}	-. 306	. 356	-. 410	$-.893^{*}$.768*	. 394	-. 185	-. 167
	Sig.(2-t)	. 000	. 333	. 256	. 186	. 000	. 001	. 230	. 564	. 623
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	P Corr.	1	-. 403	. 484	-. 336	$-.869^{* *}$. $496{ }^{* *}$. 375	-. 183	-. 107
	Sig.(2-t)		. 194	. 111	. 285	. 000	. 023	. 256	. 569	. 754
pH	P Corr.		1	$-.924^{* *}$	-. 098	. 251	. 227	-. 066	-. 118	. 231
	Sig.(2-t)			. 000	. 763	. 430	. 478	. 846	. 714	. 494
Turbidity (NTU)	P Corr.			1	. $700^{* *}$	-. 300	-. 155	. 010	. 045	-. 099
	Sig.(2-t)				0.011	. 343	. 632	. 976	. 890	. 772
Free CO_{2} (mg/L)	P Corr.				1	. 473	-. 055	-. 656 **	. 283	. 478
	Sig.(2-t)					. 120	. 864	. 049	. 373	. 137
DO (mg/L)	P Corr.					1	-.469**	-. 482	. 256	. 241
	Sig.(2-t)						. 014	. 133	. 421	. 475
BOD (mg/L)	P Corr.						1	. 447	. $809{ }^{* *}$	-. 018
	Sig.(2-t)							. 168	. 025	. 958
Chloride (mg/L)	P Corr.							1	. 119	. $644^{* *}$
	Sig.(2-t)								. 727	. 026
Total Alkalinity (mg/L)	P Corr.								1	. 155
	Sig.(2-t)									. 649
Total Hardness (mg/L)	P Corr.									1
	Sig.(2-t)									

* Significant at 1\% level ($\mathbf{P}<0.01$), ** significant at 5\% level ($\mathrm{P}<0.05$)

Values not marked denote non-significant correlation.

Fig.5.67. Monthly variations in air temperature at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.68. Monthly variations in water temperature at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.69. Monthly variations in pH at Site 6 during the first and second year study periods (Nov.2008- Oct.2010).

Fig.5.70. Monthly variations in turbidity at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.71. Monthly variations in free carbon dioxide at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.72. Monthly variations in dissolved oxygen at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010)

Fig.5.73. Monthly variations in Biological oxygen demand at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.74. Monthly variations in chloride at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.75. Monthly variations in total alkalinity at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.76. Monthly variations in total hardness at Site 6 during the first and second year study periods (Nov. 2008- Oct. 2010).

Fig.5.77. Line graph of monthly variations in air temperature at site 6 during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig. 5.78. Line graph of monthly variations in water temperature at site 6 during the first and second year study periods (Nov. 2008 - Oct.2010).

Fig.5.79. Line graph of monthly variations in total alkalinity at site 6 during the first and second year study periods (Nov. 2008-Oct.2010).

Fig.5.80. Line graph of monthly variations in total hardness at site 6 during the first and second year study periods (Nov. 2008 - Oct.2010).

Seasonal variations of air temperature and physico-chemical parameters of Site 1 (Baidya Fish Farm)

The seasonal variation in air temperature and physicochemical parameters of Site 1 is shown in table 5.19.

The air temperature was higher in summer than that of in rainy season in the first and second year study periods and the lowest temperature was recorded in winter of both the years. The water temperature of Site 1 was highest in summer in the first year and in rainy season during the second year. In the first year, the highest pH was recorded in winter whereas the lowest
was in rainy season. In second year, pH was highest in rainy season and lowest was in winter season. The CO_{2} was highest in summer in the first year and in winter in the second year. DO was maximum in summer in the first year and in rainy season in the second year. BOD was highest in rainy season during first year and lowest in summer in the first year. Total hardness was maximum in summer in both the years. Total alkalinity was highest in summer in the first year but it was highest in winter in the second year. Chloride content was recorded maximum in summer in the first year and in winter in the second year (Table 5.19).

Table 5.19 Seasonal variations in air temperature and physico-chemical parameters of water at Site 1 during the whole study period (Nov. 2008 - Oct.2010).

Parameters of Site 1.	Year I			Year II		
	Winter	Summer	Rainy	Winter	Summer	Rainy
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 23 \\ \pm 2.449 \end{gathered}$	$\begin{gathered} 30.75 \\ \pm 1.707 \end{gathered}$	$\begin{gathered} 28.5 \\ \pm 1.957 \end{gathered}$	$\begin{gathered} 22.35 \\ \pm 2.688 \end{gathered}$	$\begin{gathered} \hline 30.37 \\ \pm 1.701 \end{gathered}$	$\begin{gathered} 29.75 \\ \pm 1.5 \end{gathered}$
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 19.5 \\ \pm 2.380 \end{gathered}$	$\begin{gathered} \hline 27.37 \\ \pm 2.286 \end{gathered}$	$\begin{gathered} 27 \\ \pm 1.825 \end{gathered}$	$\begin{aligned} & 20.75 \\ & \pm 3.50 \end{aligned}$	$\begin{gathered} 29 \\ \pm 0.577 \end{gathered}$	$\begin{gathered} 30 \\ \pm 0.816 \end{gathered}$
pH	$\begin{gathered} 8.07 \\ \pm 0.330 \end{gathered}$	$\begin{gathered} 7.07 \\ \pm 0.865 \end{gathered}$	$\begin{gathered} 7 \\ \pm 0.648 \end{gathered}$	$\begin{gathered} 8.4 \\ \pm 0.336 \end{gathered}$	$\begin{gathered} 8.52 \\ \pm 0.607 \end{gathered}$	$\begin{gathered} \hline 8.82 \\ \pm 0.02 \end{gathered}$
$\begin{aligned} & \hline \text { Free } \\ & \mathrm{CO}_{2}(\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} 59.89 \\ \pm 37.387 \end{gathered}$	$\begin{gathered} 111.15 \\ \pm 47.427 \end{gathered}$	$\begin{gathered} 67.32 \\ \pm 55.666 \end{gathered}$	$\begin{gathered} 31.45 \\ \pm 33.722 \end{gathered}$	$\begin{gathered} \hline 2.97 \\ \pm 1.420 \end{gathered}$	$\begin{gathered} 4.91 \\ \pm 2.775 \end{gathered}$
DO (mg/L)	$\begin{gathered} 6.04 \\ \pm 1.012 \end{gathered}$	$\begin{gathered} 7.36 \\ \pm 0.537 \end{gathered}$	$\begin{gathered} \hline 6.32 \\ \pm 0.635 \end{gathered}$	$\begin{gathered} 8.25 \\ \pm 1.564 \end{gathered}$	$\begin{gathered} \hline 6.18 \\ \pm 2.495 \end{gathered}$	$\begin{gathered} 8.33 \\ \pm 2.030 \end{gathered}$
BOD (mg/L)	$\begin{gathered} 1.4 \\ \pm 0.900 \end{gathered}$	$\begin{gathered} 0.91 \\ \pm 0.306 \end{gathered}$	$\begin{gathered} \hline 2.58 \\ \pm 1.217 \end{gathered}$	$\begin{gathered} 4.87 \\ \pm 1.686 \end{gathered}$	$\begin{aligned} & 1.655 \\ & \pm 0.19 \end{aligned}$	$\begin{gathered} 4.34 \\ \pm 3.160 \end{gathered}$
Chloride (mg/L)	$\begin{gathered} 15.59 \\ \pm 14.127 \end{gathered}$	$\begin{gathered} \hline 23.18 \\ \pm 1.771 \end{gathered}$	$\begin{gathered} 11.89 \\ \pm 9.726 \end{gathered}$	$\begin{gathered} 4.75 \\ \pm 3.403 \end{gathered}$	$\begin{gathered} 4.25 \\ \pm 4.272 \end{gathered}$	$\begin{gathered} 4.5 \\ \pm 2.081 \end{gathered}$
Total alkalinity (mg/L)	$\begin{gathered} 131.02 \\ \pm 24.309 \end{gathered}$	$\begin{gathered} 189.95 \\ \pm 18.090 \end{gathered}$	$\begin{gathered} 124.42 \\ \pm 25.117 \end{gathered}$	$\begin{gathered} 151.87 \\ \pm 64.476 \end{gathered}$	$\begin{gathered} 148.1 \\ \pm 17.920 \end{gathered}$	$\begin{gathered} 93.95 \\ \pm 17.937 \end{gathered}$
Total hardness (mg/L)	$\begin{aligned} & 113.39 \\ & \pm 8.298 \end{aligned}$	$\begin{gathered} 119.05 \\ \pm 22.498 \end{gathered}$	$\begin{gathered} 95.12 \\ \pm 10.797 \end{gathered}$	$\begin{gathered} 100.44 \\ \pm 38.752 \end{gathered}$	$\begin{gathered} 128.5 \\ \pm 3 \end{gathered}$	$\begin{gathered} 76.23 \\ \pm 2.556 \end{gathered}$

Seasonal variations of air temperature and physico-chemical parameters of Site 2 (Babiya Birta Fish Farm)

The seasonal variation in air temperature and physicochemical parameters of Site 2 is shown in table 5.20.

The air temperature of Site 2 was highest in summer in the first year but in the rainy season in the second year. The lowest temperature was recorded in winter in the second year. The water temperature was highest in rainy season in both the years. The highest pH was recorded in winter and lowest in the summer in both years. The free CO_{2} was highest in summer in the first year whereas in winter during the second year. The DO was recorded higher in winter in both years. The BOD was highest in winter in the first year and in summer during the second year.

Total hardness was highest in summer in both the years. Total alkalinity was highest in summer in the first year and in winter during the second year. Chloride was maximum during summer in both the years (Table 5.20).

Table 5.20 Seasonal variations in air temperature and physico-chemical parameters of water at Site 2 during the whole study period (Nov. 2008 - Oct.2010).

Parameters of Site 2	Year- I			Year- II		
	Winter	Summer	Rainy	Winter	Summer	Rainy
Air temperature $\left({ }^{\circ} \mathbf{C}\right)$	23.87	30.37	27.625	21.0	28.12	29.12
	± 2.954	± 1.796	± 1.887	± 1.957	± 2.250	± 0.853
Water temperature $\left({ }^{\circ} \mathbf{C}\right)$	19.0	27.5	28.12	20.12	28.5	29.75
$\mathbf{p H}$	± 1.825	± 1.732	± 2.096	± 2.780	± 1	± 1.258
	8.25	6.97	7.77	8.07	7.87	8.04
	± 0.645	± 0.330	± 0.944	± 0.548	± 0.507	± 0.405
DO (mg/L)	56.98	101.38	51.96	14.09	3.45	5.8
	± 28.442	± 60.272	± 57.060	± 7.517	± 1.255	± 2.209

BOD (mg/L)	3.29	0.68	2.59	2.83	3.017	
± 1.735	± 0.202	± 1.953	± 2.004	± 0.806	± 1.650	
Chloride (mg/L)	23.36	37.84	21.75	12.49	22.49	11.75
	± 4.805	± 6.891	± 14.850	± 7.228	± 3.415	± 4.573
Total	90.31	127.65	89.86	130.21	119.15	106.15
alkalinity (mg/L)	± 19.550	± 9.525	± 19.690	± 22.276	± 39.920	± 7.043
Total hardness $(\mathbf{m g} / \mathbf{L})$	82.88	84.81	83.5	91.81	96.995	90.09
	± 6.225	± 7.773	± 10.314	± 22.533	± 10.826	± 7.317

Seasonal variations in air temperature and physico-chemical parameters of Site 3 (Tarahara Fish Farm)

The seasonal variation in air temperature and physicochemical parameters of Site 3 is shown in table 5.21.

The air temperature was minimum in winter in both the years but it was maximum in summer of the first year and in rainy season during second year. Water temperature was minimum in winter and maximum in rainy season in both the years. pH was lowest in rainy season and was highest in winter in both the years. DO was lowest in the rainy season of both the years, whereas it was the highest in summer of first year and in winter of second year. Lowest BOD was recorded in summer of first year and in rainy season of the second year.

In both years, alkalinity was found to be lowest in the rainy season; but it was maximum in the winter of first year and in summer of the second year. The total hardness was lowest in the rainy season of second year and the highest in the winter season of first year. Free CO_{2} level was highest in the summer of first year and lowest in the rainy season of second year. Chloride content was highest in the summer of first year and lowest in the winter of second year (Table 5.21).

Table 5.21 Seasonal variations in air temperature and physico-chemical parameters of water at site 3 during the whole study period (Nov. 2008 - Oct.2010).

Parameters of Site 3	Year-I			Year- II		
	Winter	Summer	Rainy	Winter	Summer	Rainy
Air temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{array}{r} 21.717 \\ \pm 2.159 \\ \hline \end{array}$	$\begin{array}{r} 29.81 \\ \pm 1.208 \\ \hline \end{array}$	$\begin{array}{r} 27.955 \\ \pm 1.712 \\ \hline \end{array}$	$\begin{array}{r} 19.09 \\ \pm 1.642 \\ \hline \end{array}$	$\begin{array}{r} 26.387 \\ \pm 2.062 \end{array}$	$\begin{array}{r} 29.255 \\ \pm 1.094 \\ \hline \end{array}$
Water temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{array}{r} 18.805 \\ \pm 2.539 \\ \hline \end{array}$	$\begin{array}{r} 26.75 \\ \pm 2.331 \end{array}$	$\begin{gathered} 28.723 \\ \pm .941 \\ \hline \end{gathered}$	$\begin{array}{r} 18.805 \\ \pm 5.965 \\ \hline \end{array}$	$\begin{array}{r} 26.75 \\ \pm 8.298 \\ \hline \end{array}$	$\begin{array}{r} 28.722 \\ \pm 9.409 \\ \hline \end{array}$
pH	$\begin{aligned} & 8.1725 \\ & \pm 0.312 \end{aligned}$	$\begin{gathered} 7.578 \\ \pm 0.723 \end{gathered}$	$\begin{gathered} 7.497 \\ \pm 0.532 \end{gathered}$	$\begin{gathered} 8.462 \\ \pm 1.178 \end{gathered}$	$\begin{gathered} 7.652 \\ \pm 0.112 \end{gathered}$	$\begin{gathered} 7.645 \\ \pm 0.412 \end{gathered}$
Free $\mathrm{CO}_{2}(\mathrm{mg} / \mathrm{L})$	$\begin{aligned} & 73.512 \\ & \pm 45.214 \\ & \hline \end{aligned}$	$\begin{array}{r} 116.457 \\ \pm 22.121 \\ \hline \end{array}$	$\begin{array}{\|l\|} 54.347 \\ \pm 41.569 \\ \hline \end{array}$	$\begin{aligned} & 24.547 \\ & \pm 15.431 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 39.125 \\ \pm 50.381 \\ \hline \end{array}$	$\begin{array}{\|l} 16.73 \\ \pm 1.165 \\ \hline \end{array}$
DO (mg/L)	$\begin{array}{r} 7.27 \\ \pm 1.731 \\ \hline \end{array}$	$\begin{array}{r} 7.707 \\ \pm 0.461 \\ \hline \end{array}$	$\begin{gathered} 6.247 \\ \pm 1.826 \end{gathered}$	$\begin{gathered} 7.982 \\ \pm 2.445 \end{gathered}$	$\begin{gathered} 4.675 \\ \pm 2.140 \end{gathered}$	$\begin{gathered} 4.155 \\ \pm 0.847 \end{gathered}$
BOD (mg/L)	$\begin{array}{r} 3.547 \\ \pm 1.301 \\ \hline \end{array}$	$\begin{gathered} 0.85 \\ \pm 0.597 \end{gathered}$	$\begin{array}{r} 2.995 \\ \pm 0.53 \end{array}$	$\begin{array}{r} 4.495 \\ \pm 3.21 \end{array}$	$\begin{array}{r} 2.872 \\ \pm 1.483 \\ \hline \end{array}$	$\begin{array}{r} 1.302 \\ \pm 1.053 \\ \hline \end{array}$
Chloride (mg/L)	$\begin{array}{r} 9.09 \\ \pm 3.21 \\ \hline \end{array}$	$\begin{array}{r} 11.01 \\ \pm 1.743 \\ \hline \end{array}$	$\begin{array}{r} 7.445 \\ \pm 2.146 \\ \hline \end{array}$	$\begin{array}{r} 3.377 \\ \pm .856 \\ \hline \end{array}$	$\begin{array}{r} 4.335 \\ \pm 3.375 \\ \hline \end{array}$	$\begin{gathered} 5.062 \\ \pm 0.853 \\ \hline \end{gathered}$
Total Alkalinity (mg/L)	$\begin{array}{r} 168.532 \\ \pm 35.869 \\ \hline \end{array}$	$\begin{aligned} & 156.815 \\ & \pm 22.213 \end{aligned}$	$\begin{array}{r} 122.572 \\ \pm 14.966 \\ \hline \end{array}$	$\begin{array}{r} 128.655 \\ \pm 45.276 \end{array}$	$\begin{array}{r} 167.805 \\ \pm 44.298 \\ \hline \end{array}$	$\begin{gathered} 114.382 \\ \pm 8.802 \end{gathered}$
Total Hardness (mg/L)	$\begin{gathered} 152.2 \\ \pm 11.065 \end{gathered}$	$\begin{aligned} & 108.715 \\ & \pm 25.281 \end{aligned}$	$\begin{gathered} 100.74 \\ \pm 15.468 \end{gathered}$	$\begin{array}{r} \hline 113.61 \\ \pm 55.333 \end{array}$	$\begin{array}{r} 127.177 \\ \pm 31.536 \end{array}$	$\begin{gathered} 95.02 \\ \pm 11.534 \end{gathered}$

Seasonal variation in air temperature and physico-chemical parameters of Site 4 (Betana Wetland)

The seasonal variation in air temperature and physicochemical parameters of Site 4 is shown in table 5.22.

Air temperature as well as water temperature was highest in rainy season and lowest during winter in both years of study. pH was lowest in rainy season and highest in summer of the
first year and was minimum in summer and maximum in rainy season of second year. DO was maximum in winter season of both the years, but minimum in rainy season of the first year and in summer of second year. BOD was maximum in summer of both the years, but minimum in winter of first year and rainy season of second year. Free CO_{2} level was lowest in summers of both the years, but highest in rainy season of first and in winter of second year. Maximum chloride was recorded in winter season of second year and minimum in winter of first year as well as summer of second year during the entire study period (Table 5.22).

Table 5.22 Seasonal variations in air temperature and physico-chemical parameters of water at Site 4 during the whole study period (Nov. 2008-Oct.2010).

Parameters of Site 4	Year-I			Year-II		
	Winter	Summer	Rainy	Winter	Summer	Rainy
Air Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 20.54 \\ \pm 3.226 \\ \hline \end{gathered}$	$\begin{aligned} & 27.735 \\ & \pm 1.663 \\ & \hline \end{aligned}$	$\begin{array}{r} 28.346 \\ \pm 2.130 \\ \hline \end{array}$	$\begin{array}{r} 20.797 \\ \pm 2.965 \\ \hline \end{array}$	$\begin{array}{r} 26.822 \\ \pm 1.718 \\ \hline \end{array}$	$\begin{array}{r} 28.052 \\ \pm 1.350 \\ \hline \end{array}$
Water temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{array}{r} 19.317 \\ \pm 2.064 \\ \hline \end{array}$	$\begin{gathered} 27.027 \\ \pm 0.7314 \\ \hline \end{gathered}$	$\begin{gathered} 27.61 \\ \pm 1.8817 \\ \hline \end{gathered}$	$\begin{array}{r} 19.997 \\ \pm 1.767 \\ \hline \end{array}$	$\begin{array}{r} 26.66 \\ \pm 1.378 \\ \hline \end{array}$	$\begin{array}{r} 26.822 \\ \pm 1.304 \\ \hline \end{array}$
pH	$\begin{gathered} 7.13 \\ \pm 0.425 \\ \hline \end{gathered}$	$\begin{gathered} 7.322 \\ \pm 0.346 \\ \hline \end{gathered}$	$\begin{gathered} 7.095 \\ \pm 0.384 \end{gathered}$	$\begin{gathered} 7.12 \\ \pm 0.404 \end{gathered}$	$\begin{array}{r} 7.027 \\ \pm 0.179 \\ \hline \end{array}$	$\begin{gathered} 7.19 \\ \pm 0.214 \end{gathered}$
Free carbon dioxide (mg / L)	$\begin{array}{r} 28.972 \\ \pm 13.241 \\ \hline \end{array}$	$\begin{array}{r} 4.817 \\ \pm 1.186 \\ \hline \end{array}$	$\begin{gathered} 37.484 \\ \pm 32.352 \\ \hline \end{gathered}$	$\begin{array}{r} 20.065 \\ \pm 4.297 \\ \hline \end{array}$	$\begin{array}{r} 3.83 \\ \pm 1.288 \\ \hline \end{array}$	$\begin{gathered} 9.977 \\ \pm 2.225 \\ \hline \end{gathered}$
Dissolved Oxygen (mg/L)	$\begin{gathered} 6.53 \\ \pm 0.773 \\ \hline \end{gathered}$	$\begin{gathered} 6.027 \\ \pm 1.161 \\ \hline \end{gathered}$	$\begin{array}{r} 5.145 \\ \pm 1.638 \\ \hline \end{array}$	$\begin{array}{r} 6.695 \\ \pm 1.201 \\ \hline \end{array}$	$\begin{gathered} 5.667 \\ \pm 2.828 \\ \hline \end{gathered}$	$\begin{array}{r} 5.855 \\ \pm 0.749 \\ \hline \end{array}$
BOD (mg/L)	$\begin{array}{r} 1.762 \\ \pm .811 \\ \hline \end{array}$	$\begin{array}{r} 2.976 \\ \pm 1.322 \\ \hline \end{array}$	$\begin{gathered} 2.395 \\ \pm 1.553 \\ \hline \end{gathered}$	$\begin{array}{r} 1.417 \\ \pm 1.559 \\ \hline \end{array}$	$\begin{array}{r} 3.25 \\ \pm 2.206 \\ \hline \end{array}$	$\begin{array}{r} 0.615 \\ \pm 0.328 \\ \hline \end{array}$
Chloride (mg / L)	$\begin{gathered} 3.56 \\ \pm 1.082 \\ \hline \end{gathered}$	$\begin{gathered} 4.01 \\ \pm 0.820 \\ \hline \end{gathered}$	$\begin{gathered} 3.725 \\ \pm 1.246 \\ \hline \end{gathered}$	$\begin{gathered} 4.545 \\ \pm 2.091 \end{gathered}$	$\begin{gathered} 3.56 \\ \pm 2.429 \\ \hline \end{gathered}$	$\begin{gathered} 4.297 \\ \pm 1.519 \\ \hline \end{gathered}$
Total alkalinity (mg/L)	$\begin{array}{r} 125.645 \\ \pm 52.008 \\ \hline \end{array}$	$\begin{array}{r} 124.467 \\ \pm 8.724 \\ \hline \end{array}$	$\begin{gathered} 119.462 \\ \pm 8.481 \\ \hline \end{gathered}$	$\begin{gathered} 134.69 \\ \pm 41.929 \\ \hline \end{gathered}$	$\begin{array}{r} 123.967 \\ \pm 8.328 \\ \hline \end{array}$	$\begin{array}{r} 113.542 \\ \pm 10.273 \\ \hline \end{array}$
Total hardness (mg/L)	$\begin{gathered} 117.235 \\ \pm 9.17 \\ \hline \end{gathered}$	$\begin{array}{r} 108.887 \\ \pm 1.592 \\ \hline \end{array}$	$\begin{array}{r} 106.11 \\ \pm 6.805 \\ \hline \end{array}$	$\begin{array}{r} 109.265 \\ \pm 10.308 \\ \hline \end{array}$	$\begin{array}{r} 108.38 \\ \pm 2.942 \\ \hline \end{array}$	$\begin{array}{r} 98.552 \\ \pm 7.848 \\ \hline \end{array}$

Seasonal variations in air temperature and physico-chemical parameters of Site 5 (Singhia River)

The seasonal variation in air temperature and physicochemical parameters of Site 5 is shown in table 5.23.

The air temperature of Site 5 was highest in summer of both the years. The lowest temperature was recorded in winter in both the years. The water temperature was higher in rainy season in the first year and in summer in the second year. Lowest temperature was recorded in winter of both the year. Turbidity was highest in rainy season and lowest in winter of both the years. The highest pH was recorded in winter in the first as well as during the second year. Lowest pH was found in rainy season of first year and summer in second year. The CO_{2} was highest in winter season in the first year and in summer in the second year. Lowest CO_{2} was recorded in rainy season of both years. DO was highest in winter in both the years and lowest in rainy season of both years.

Total hardness was highest in summer in the first year but in winter in the second year. It was lowest in rainy season in first year and in summer in second year. Chloride content was recorded maximum in summer in the first year and in rainy season in the second year, but minimum in winter of both the years. Total alkalinity was highest in winter season in the first year but in summer in the second year and lowest in rainy season. BOD was highest in winter during first year and in summer in the second year (Table 5.23).

Table 5.23 Seasonal variations in air temperature and physico-chemical parameters of water at Site 5 during the whole study period (Nov. 2008 - Oct.2010).

Parameters of Site 5	Year I (2008-09)			Year II (2009-10)		
	Winter	Summer	Rainy	Winter	Summer	Rainy
Air Temp. $\left({ }^{\circ} \mathbf{C}\right)$	20.1 ± 0.758	29.30 ± 1.692	29.22 ± 1.719	20.57 ± 1.292	30.92 ± 1.303	29.42 ± 1.600
Water temp. $\left({ }^{\circ} \mathbf{C}\right)$	18.65 ± 0.608	27.05 ± 1.853	27.47 ± 1.315	19.56 ± 2.734	29.26 ± 0.649	28.18 ± 1.747
$\mathbf{p H}$	8.002 ± 0.396	7.83 ± 0.464	6.87 ± 0.354	8.17 ± 0.408	7.71 ± 0.657	7.26 ± 0.311

Turbidity (NTU)	45.64 ± 29.201	138.32 ± 94.434	206.51 ± 148.95	50.79 ± 4.790	133.68 ± 99.836	264.08 ± 143.39
Free CO (mg/L)	28.38 ± 11.725	24.29 ± 3.341	19.30 ± 13.001	18.60 ± 1.404	18.70 ± 4.338	9.11 ± 3.070
DO (mg/L)	6.095 ± 1.712	6.04 ± 0.608	6.02 ± 0.820	7.84 ± 1.169	6.11 ± 0.827	6.62 ± 0.760
BOD (mg/L)	3.05 ± 0.365	2.23 ± 0.231	2.945 ± 2.030	1.302 ± 0.844	3.13 ± 0.605	1.81 ± 0.364
Chloride (mg/L)	4.94 ± 1.710	9.05 ± 1.443	8.05 ± 1.447	8.29 ± 4.817	10.22 ± 0.565	11.49 ± 2.034
Total alkalinity (mg/L)	193.71 ± 61.759	166.91 ± 12.849	153.15 ± 39.999	168.97 ± 4.206	181.37 ± 16.726	162.12 ± 19.247
Total hardness $(m g / L)$	153.16 ± 21.617	158.49 ± 5.078	132.99 ± 32.569	148.20 ± 42.171	135.50 ± 14.034	143.83 ± 24.799

Seasonal variations in air temperature and physico-chemical parameters of Site 6 (Budhi River)

The seasonal variation in air temperature and physicochemical parameters of Site 6 is shown in table 5.24.

The air temperature of Site 6 was highest in rainy season in the first year but in summer season in the second year. The lowest temperature was recorded in winter in both the years. The water temperature was highest in rainy season and lowest was in winter in the first as well as the second year. The highest pH was recorded in winter and lowest in the rainy season in both years. The free CO_{2} was highest in rainy season in the first year but in winter in the second year. Lowest free CO_{2} was in summer season in both the years.

The study revealed that turbidity was highest in rainy season and lowest in winter. The DO was recorded highest in winter in both years. Lowest DO was found in summer in both years. BOD was highest in winter during first year and during summer in the second year. Lowest BOD was in summer season in the first year and rainy in second year. Chloride content was maximum in rainy season in the first year and during summer in the second year and lowest
value was recorded in winter of both years. Total alkalinity was highest in summer in both the years and lowest was in rainy season of both years. Total hardness had higher value in summer in both the years and lowest was rainy season in the first but in winter of second year (Table 5.24).

Table 5.24 Seasonal variations in air temperature and physico-chemical parameters of water at Site 6 during the whole study period (Nov. 2008 - Oct.2010).

Parameters	Year-I			Year -II		
Site 6, Budhi	Winter	Summer	Rainy	Winter	Summer	Rainy
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 20.72 \\ \pm 3.012 \end{gathered}$	$\begin{aligned} & 27.95 \\ & \pm 4.64 \end{aligned}$	$\begin{array}{r} 29.33 \\ \pm 2.34 \end{array}$	$\begin{array}{r} 20.63 \\ \pm 2.61 \end{array}$	$\begin{gathered} 30.35 \\ \pm 1.693 \end{gathered}$	$\begin{gathered} 29.58 \\ \pm 1.222 \end{gathered}$
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} 18.68 \\ \pm 2.293 \end{gathered}$	$\begin{aligned} & 26.84 \\ & \pm 2.21 \end{aligned}$	$\begin{array}{r} 27.35 \\ \pm 2.51 \end{array}$	$\begin{gathered} 18.8 \\ \pm 1.986 \end{gathered}$	$\begin{gathered} 27.80 \\ \pm 0.921 \end{gathered}$	$\begin{gathered} 28.29 \\ \pm 1.217 \end{gathered}$
pH	$\begin{gathered} 8.22 \\ \pm 0.253 \end{gathered}$	$\begin{gathered} 7.69 \\ \pm 0.182 \end{gathered}$	$\begin{gathered} 7.28 \\ \pm 0.578 \end{gathered}$	$\begin{gathered} 8.16 \\ \pm 0.147 \end{gathered}$	$\begin{gathered} 7.90 \\ \pm 0.156 \end{gathered}$	$\begin{gathered} 7.71 \\ \pm 0.422 \end{gathered}$
Turbidity (NTU)	$\begin{gathered} 66.67 \\ \pm 27.58 \end{gathered}$	$\begin{gathered} 110.8 \\ \pm 30.93 \end{gathered}$	$\begin{gathered} 556.28 \\ \pm 449.93 \end{gathered}$	$\begin{aligned} & 110.32 \\ & \pm 72.83 \end{aligned}$	$\begin{gathered} 113.06 \\ \pm 1.73 \end{gathered}$	$\begin{gathered} 635.03 \\ \pm 373.389 \end{gathered}$
$\begin{aligned} & \text { Free } \\ & \mathrm{CO}_{2}(\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{gathered} 30.14 \\ \pm 5.117 \end{gathered}$	$\begin{gathered} 23.43 \\ \pm 6.581 \end{gathered}$	$\begin{gathered} 42.07 \\ \pm 9.37 \end{gathered}$	$\begin{gathered} 15.31 \\ \pm 2.234 \end{gathered}$	$\begin{aligned} & 13.762 \\ & \pm 2.109 \end{aligned}$	$\begin{gathered} 14.12 \\ \pm 2.894 \end{gathered}$
DO (mg/L)	$\begin{gathered} 7.36 \\ \pm 0.752 \end{gathered}$	$\begin{gathered} 5.76 \\ \pm 0.635 \end{gathered}$	$\begin{gathered} 6.01 \\ \pm 0.831 \end{gathered}$	$\begin{gathered} 7.42 \\ \pm 1.078 \end{gathered}$	$\begin{gathered} 5.51 \\ \pm 0.728 \end{gathered}$	$\begin{gathered} 5.39 \\ \pm 0.711 \end{gathered}$
BOD (mg/L)	$\begin{gathered} 3.967 \\ \pm 2.176 \end{gathered}$	$\begin{gathered} 3.35 \\ \pm 1.140 \end{gathered}$	$\begin{gathered} 3.36 \\ \pm 0.605 \end{gathered}$	$\begin{gathered} 2.525 \\ \pm 1.644 \end{gathered}$	$\begin{gathered} 3.24 \\ \pm 1.027 \end{gathered}$	$\begin{gathered} 2.43 \\ \pm 1.312 \end{gathered}$
Chloride (mg/L)	$\begin{gathered} 6.157 \\ \pm 2.485 \end{gathered}$	$\begin{gathered} 6.22 \\ \pm 1.107 \end{gathered}$	$\begin{gathered} 9.49 \\ \pm 0.717 \end{gathered}$	$\begin{gathered} 7.36 \\ \pm 3.901 \end{gathered}$	$\begin{gathered} 9.68 \\ \pm 2.418 \end{gathered}$	$\begin{gathered} 8.94 \\ \pm 3.364 \end{gathered}$
Total alkalini (mg/L)	$\begin{gathered} 185.08 \\ \pm 41.457 \end{gathered}$	$\begin{gathered} 207.98 \\ \pm 15.506 \end{gathered}$	$\begin{gathered} 163.72 \\ \pm 50.928 \end{gathered}$	$\begin{gathered} 209.19 \\ \pm 20.548 \end{gathered}$	$\begin{gathered} 211.29 \\ \pm 12.245 \end{gathered}$	$\begin{gathered} 192.71 \\ \pm 44.016 \end{gathered}$
Total hardness (mg/L)	$\begin{gathered} 161.05 \\ \pm 14.563 \end{gathered}$	$\begin{array}{r} 177.62 \\ \pm 10.621 \end{array}$	$\begin{gathered} 123.82 \\ \pm 31.642 \end{gathered}$	$\begin{gathered} 145.60 \\ \pm 43.351 \end{gathered}$	$\begin{gathered} 165.03 \\ \pm 27.130 \end{gathered}$	$\begin{gathered} 147.36 \\ \pm 27.870 \end{gathered}$

Seasonal variations in air temperature and physico-chemical parameters of water at six sites during the whole study period (Nov. 2008 - Oct. 2010).

Monthly data on air temperature and physico-chemical parameters of water of six sites of the whole study period (Nov.2008-Oct. 2010) were interpolated as seasonal values and were shown in Table 5.25. The maximum air temperature was recorded in summer followed by rainy season and winter at the Sites $1,2,3,4,5$ and 6 . The maximum air temperature was recorded $30.56^{\circ} \mathrm{C}$ at Site 1 in summer and minimum was $20.38^{\circ} \mathrm{C}$ at Site 5 in winter. The maximum water temperature was recorded in rainy season followed by summer and winter at most of the sites. The maximum water temperature was recorded $28.935^{\circ} \mathrm{C}$ at Site 2 and minimum was $18.74^{\circ} \mathrm{C}$ at Site 6 .

The maximum turbidity was recorded 595.655 NTU at Site 6 and minimum 48.215 NTU at Site 5. The maximum pH was recorded in winter followed by rainy season and summer at sites 1-6. The maximum pH was recorded 8.317 at Site 3 and minimum 7.065 was at Site 5 . The maximum dissolved oxygen was recorded in winter season followed by summer and rainy season at all sites except Site 2 . The maximum dissolved oxygen occurred in winter followed by rainy season and summer at Site 2 .The maximum dissolved oxygen was recorded $7.626 \mathrm{mg} / \mathrm{L}$ at Site 3 and minimum $5.201 \mathrm{mg} / \mathrm{L}$ at Site 3 in rainy season.

The maximum free carbon dioxide was recorded in summer season followed by rainy season and winter at Site 1, Site 2 and Site 3, the maximum free carbon dioxide was recorded in winter followed by rainy season and summer at Site 4 and Site 6 but at Site 5, maximum free carbon dioxide was found winter followed by summer and rainy season. The maximum free carbon dioxide was recorded $77.791 \mathrm{mg} / \mathrm{L}$ at Site 3 and minimum $4.3235 \mathrm{mg} / \mathrm{L}$ at Site 4 . The biological oxygen demand was recorded maximum in summer season followed by rainy and winter seasons at Site 4, Site 5 and Site 6 but at Site 1, Site 2 and Site 3 maximum values of BOD were in winter followed by rainy season and summer. The maximum biological oxygen demand was recorded $4.87 \mathrm{mg} / \mathrm{L}$ and minimum was $1.282 \mathrm{mg} / \mathrm{L}$ at Site 1 .

The total alkalinity was recorded maximum in winter season followed by summer and rainy seasons at almost all the sites. It was recorded maximum $209.635 \mathrm{mg} / \mathrm{L}$ in summer at Site 6 and minimum $98.005 \mathrm{mg} / \mathrm{L}$ at Site 2 in rainy season. The maximum total hardness was recorded in winter season followed by summer and rainy season at all the sites and it was recorded maximum $153.325 \mathrm{mg} / \mathrm{L}$ at Site 6 and minimum $85.675 \mathrm{mg} / \mathrm{L}$ at Site 1. The maximum chloride was found in summer season followed by winter and rainy season at Site

1, Site 2 and Site 3 but maximum chloride was found in rainy season followed by summer and winter season at Site 5 and Site 6 but at Site 4 maximum was in winter, followed by rainy season and summer. The maximum chloride was recorded $30.165 \mathrm{mg} / \mathrm{L}$ at Site 2 and minimum $3.785 \mathrm{mg} / \mathrm{L}$ was at Site 4.

Table 5.25 Seasonal variations in air temperature and physico-chemical parameters of water at all sites during the whole study period (Nov. 2008 - Oct. 2010).

Parameters	Site 1 Average			Site 2 Average			Site 3 Average			Site 4 Average			Site 5 Average			Site 6 Average		
	Winter	Summer	Rainy															
Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	22.675	30.56	29.125	22.435	29.245	28.372	20.403	28.098	28.605	20.668	27.278	28.199	20.38	30.11	29.32	20.675	29.15	29.455
Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	20.125	28.185	28.5	19.56	28.00	28.935	18.805	26.75	28.722	19.657	26.843	27.216	19.105	28.155	27.825	18.74	27.32	28.125
pH	8.235	7.795	7.91	8.16	7.42	7.905	8.317	7.615	7.571	7.125	7.174	7.142	8.086	7.77	7.065	8.19	7.795	7.495
Turbidity (NTU)	-	-	-	-	-	-	-	-	-	-	-	-	48.215	136	235.295	88.495	111.93	595.655
Free CO2 (mg/L)	45.67	57.06	36.115	35.535	52.415	28.88	49.029	77.791	35.538	24.518	4.323	23.730	23.49	21.495	14.205	22.725	18.596	28.095
DO (mg/L)	7.145	6.77	7.325	7.248	5.928	6.475	7.626	6.191	5.201	6.612	5.847	5.50	6.967	6.28	6.361	7.39	5.635	5.70
BOD (mg/L)	4.135	1.2825	3.46	3.06	1.848	2.34	4.021	1.861	2.148	1.589	3.113	1.505	2.176	2.68	2.377	3.246	3.295	2.895
Chloride (mg/L)	10.17	13.715	8.195	17.925	30.165	16.75	6.233	7.672	6.253	4.052	3.785	4.011	6.615	9.635	9.77	6.758	7.95	9.215
Total alkali (mg/L)	141.445	169.025	109.185	110.26	123.4	98.005	148.594	162.31	118.477	130.167	124.217	116.502	181.34	174.14	157.635	197.135	209.635	178.215
Total hardn (mg/L)	106.915	123.775	85.675	87.345	90.902	86.795	132.905	117.946	97.88	113.25	108.633	102.331	150.68	146.995	138.41	153.325	121.325	135.59

Test for significant and insignificant differences in air temperature and physico-chemical parameters of water among sites and seasons.

Tables 5.26 to 5.38 show the significant and insignificant differences in air temperature and physico-chemical parameters of water among sites and seasons.

Table 5.26 shows air temperature is significantly different at 1% level among seasons since $\mathrm{F}-$ value (calculated value) is greater than F critical (tabulated value) but differences in air temperature were insignificant among sites since F - value is less than F -critical.

Table 5.26 Variations in air temperature in different sites and seasons.

Seasons (A.T.)	S1	S2	S3	S4	S5	S6
\mathbf{W}	22.675	22.43	20.4	20.66	20.38	20.67
\mathbf{S}	30.56	29.24	28.09	27.27	30.11	29.15
\mathbf{R}	29.13	28.37	28.6	28.19	29.32	29.45
ANOVA						
	Source of Variation	F	P-value	F crit		
	Among Seasons	195.1408399^{*}	$9.73131 \mathrm{E}-09$	$4.102(\alpha=0.05)$	$7.559(\alpha=0.01)$	
	Among Sites	2.702376281	0.084951348	$3.325(\alpha=0.05)$	$5.636(\alpha=0.01)$	

[^6]Table 5.27 shows differences of water temperature are significant at 1% level among seasons since F -value (calculated value) is greater than F critical (tabulated value) but insignificant among sites since F - value is less than F -critical.

Table 5.27 Variations in water temperature in different sites and seasons.

*indicates significance at $\mathbf{1 \%}$ level ($\mathbf{P}<0.01$), ** indicates significance at 5\% level ($\mathrm{P}<0.05$)

Table 5.28 shows pH is significantly different at 1% level among seasons since F -value (calculated) is greater than F critical (tabulated value) but differences of pH are insignificant among sites since F - value is less than F -crit.

Table 5.28 Variations in $\mathbf{p H}$ in different sites and seasons.

Seasons $(\mathbf{p H})$	S1	S2	S3	S4	S5	S6
\mathbf{W}	8.235	8.15	8.32	7.125	8.08	8.19
\mathbf{S}	7.79	7.42	7.61	7.17	7.77	7.79
\mathbf{R}	7.19	7.9	7.56	7.14	7.06	7.49
ANOVA	Source of Variation	F	P-value	Fcrit		
	Among Seasons	8.15135781^{*}	0.007943228	$4.102(\alpha=0.05)$	$7.559(\alpha=0.01)$	
	Among Sites	2.819258626	0.076625552	$3.325(\alpha=0.05)$	$5.636(\alpha=0.01)$	

[^7]Table 5.29 shows CO_{2} has significant differences at 5% level among sites since F -value is greater than F critical but insignificant differences among seasons since F - value is less than F critical.

Table 5.29 Variations in free carbon dioxide in different sites and seasons.

Seasons (Free CO_{2})	S1	S2	S3	S4	S5	S6
W	45.67	35.54	48.87	24.51	23.49	22.73
S	57.06	52.41	77.78	4.32	21.49	18.6
R	36.11	28.88	35.53	23.72	14.2	28.09
ANOVA	Source of Variation	F	P-value	F crit		
	Among Seasons	1.221780957	0.335178718	$4.102(\alpha=0.05)$	$7.559(\alpha=0.01)$	
	Among Sites	4.83937653**	0.016516315	3.325 ($\alpha=0.05$)	$5.636(\alpha=0.01)$	

*indicates significance at $\mathbf{1 \%}$ level ($\mathbf{P}<\mathbf{0} .01$), ** indicates significance at 5% level ($\mathbf{P}<0.05$)
Table 5.30 shows DO has significant differences at 1% level among seasons since F -value is greater than F critical but insignificant differences among sites since F - value is less than F critical.

Table 5.30 Variations in dissolved oxygen in different sites and seasons.

Seasons (DO)	S1	S2	S3	S4	S5	S6
\mathbf{W}	7.145	7.248	7.625	6.61	6.965	7.39
\mathbf{S}	6.77	5.928	6.185	5.84	6.28	5.635
\mathbf{R}	7.325	6.475	5.197	5.495	6.361	5.7
ANOVA				F crit		
	Source of Variation	F	P-value			
	Among Seasons	$9.446575087 *$	0.004966215	$4.102(\alpha=0.05)$	$7.559(\alpha=0.01)$	
	Among Sites	1.725048788	0.216454949	$3.325(\alpha=0.05)$	$5.636(\alpha=0.01)$	

*indicates significance at $\mathbf{1 \%}$ level $(\mathbf{P}<0.01), \quad * *$ indicates significance at 5\% level $(\mathbf{P}<0.05)$

Table 5.31 shows insignificant differences of BOD among seasons and sites since F - value is less than F-critical.

Table 5.31 Variations in biological oxygen demand in different sites and seasons.

Seasons (BOD)	S1	S2	S3	S4	S5	S6
\mathbf{W}	4.14	3.06	4.02	1.58	2.18	3.24
\mathbf{S}	1.28	1.755	1.86	3.11	2.68	3.29
ANOVA	3.46	2.34	2.146	1.6	2.38	2.89
	Source of Variation	F	P-value	Fcrit		
	Among Seasons	1.033159789	0.3909542	$4.102(\alpha=0.05)$	$7.559(\alpha=0.01)$	
	Among Sites	0.559821389	0.729000902	$3.325(\alpha=0.05)$	$5.636(\alpha=0.01)$	

*indicates significance at $\mathbf{1 \%}$ level ($\mathbf{P}<\mathbf{0 . 0 1}$),
** indicates significance at 5\% level ($\mathbf{P}<\mathbf{0 . 0 5}$)
Table 5.32 shows TA has significant difference at 1% level among sites and seasons since F value is greater than F critical.

Table 5.32 Variations in total alkalinity in different sites and seasons.

Seasons (TA)	S1	S2	S3	S4	S5	S6
\mathbf{W}	141.45	110.26	168.53	130.17	181.34	197.14
\mathbf{S}	169.03	123.4	156.82	124.22	174.14	209.64
R	109.19	98.005	122.58	116.5	157.63	178.22
				F crit		
	Source of Variation	F	P-value	Among Seasons		
	12.2537379^{*}	0.00204378	$4.102(\alpha=0.05)$	$7.559(\alpha=0.01)$		
	Among Sites	23.97949889	$2.87171 \mathrm{E}-05$	$3.325(\alpha=0.05)$	$5.636(\alpha=0.01)$	

[^8]Table 5.33 shows TH has significant difference at 1% level among sites and 5\% level among seasons since F -value is greater than F - critical.

Table 5.33 Variations in total hardness in different sites and seasons.

Seasons (TH)	S1	S2	S3	S4	S5	S6
\mathbf{W}	106.92	87.35	132.905	113.25	150.68	153.32
\mathbf{S}	123.78	90.9	117.95	108.64	146.99	171.32
\mathbf{R}	85.68	86.79	97.88	102.34	138.41	135.59
ANOVA						
	Source of Variation	F	P-value	F crit		
	Among Seasons	$7.08781108^{* *}$	0.012109095	$4.102(\alpha=0.05)$	$7.559(\alpha=0.01)$	
	Among Sites	21.25500753^{*}	$4.93702 \mathrm{E}-05$	$3.325(\alpha=0.05)$	$5.636(\alpha=0.01)$	

*indicates significance at 1% level ($\mathrm{P}<0.01$), ** indicates significance at 5% level $(\mathbf{P}<0.05)$.
Table 5.34 shows chloride has significant difference at 1% level among sites since F -value is greater than F critical but insignificant among seasons since F - value is less than F -critical.

Table 5.34 Variations in chloride in different sites and seasons.

Seasons Chloride	S1	S2	S3	S4	S5	S6
\mathbf{W}	10.17	17.925	6.24	4.05	6.62	6.76
\mathbf{S}	13.715	30.165	7.68	3.79	9.64	7.95
\mathbf{R}	8.195	16.75	6.26	4.02	9.77	9.22
ANOVA						
	Source of Variation	F	P-value	F crit		
	Among Seasons	2.428096035	0.138185499	$4.102(\alpha=0.05)$	$7.559(\alpha=0.01)$	
	Among Sites	12.27768635^{*}	0.000525286	$3.325(\alpha=0.05)$	$5.636(\alpha=0.01)$	

*indicates significance at 1% level $(\mathbf{P}<0.01), \quad * *$ indicates significance at 5% level $(\mathbf{P}<0.05)$.

5.2. Studies on the fish affected with epizootic ulcerative syndrome

A total 444 naturally infected fishes (Table 5.35)showing lesions on the body; 60% (262) Cirrhinus mrigala, 30\% (130) Labeo rohita and Labeo bata, 8% (36) Catla catla, Channa spp., Puntius spp., Clarias batrachus, Heteropneustes fossilis, Mystus tengara and Lepidocephalichthys guntea (rarely) (Figs. 5.81a and b to 5.88a and b, 5.89,5.90, 5.91 and 5.92) were collected during winter months of the year 2008-2015 from different affected ponds in various locations of the Sunsari and Morang districts of eastern Nepal and were used for the isolation of fungi. The infected fish were brought to the laboratory alive for further detailed observations.

Table 5.35 shows EUS affected fishes collected during study period (Dec. 2008- Feb. 2015)

S.No.	Fish species	Collection date	No. of fish collected				
			S1	S2	S3	Total	
1.	Cirrhinus mrigala	25.12.2008	5	20	5	30	262
		18.2.2009	7	23	5	35	
		15.1.2010	5	25	5	35	
		9.3.2011	5	27	3	35	
		18.2.2012	5	30	5	40	
		23.3.2013	5	30	5	40	
		25.2.2014	2	25	3	30	
		26.2.2015	2	15	-	17	
2.	Labeo rohita	18.2.2009	1	3	1	5	43
		15.1.2010	2	3	-	5	
		23.3.2011	3	5		8	
		26.2.2012	3	6		9	
		14.12.2013	2	4		6	
		25.1.2014	2	3		5	
		10.3.2015	1	4		5	
3.	Catla catla	18.2.2009	-	2	-	2	17
		15.1.2010	1	1	-	2	
		23.3.2011	-	2	-	2	
		26.2.2012	1	3		4	
		23.3.2013		2		2	
		25.1.2014	1	2		3	
		20.2.2015		2		2	

4.	Labeo bata	18.2.2009	1	8	1	10	87
		15.1.2010	2	8	-	10	
		23.3.2011	1	9	-	10	
		26.2.2012	3	15	-	18	
		23.3.2013	2	12	-	14	
		25.1.2014	3	12	-	15	
		20.2.2015	2	8	-	10	
5.	Channa striatus	18.2.2009	1	1		2	9
		15.1.2010	1	1		2	
		23.3.2011	1	1		2	
		26.2.2012	-	2	-	2	
		23.3.2013		1		1	
6.	Puntius sp.	18.2.2009	1	1		2	10
		15.3.2010	1	1		2	
		23.3.2011	1	1		2	
		26.2.2012		2		2	
		15.2.2014	1	1		2	
7.	Mystus tengara	15.3.2010		1		1	4
		26.2.2012		2		2	
		15.2.2014	1			1	
8.	Clarias batrachus	25.2.2009			1	1	4
		15.3.2010		1		1	
		15.3.2012	1	1		2	
9.	Heteropneustes fossilis	25.2.2009	1			1	5
		26.2.2012	1	1		2	
		15.3.2013		1	1	2	
10.	Lepidocephalichthys guntea	26.2.2012	1			1	3
		9.6.2015	1	1		2	
	Grand Total		80	329	35		444

In the early stage of lesion the fish showed single or multiple red spots on the body surface (Fig. 5.90). Some fishes showed moderate type of ulcer with erosion of the epidermis (Figs.5.83, 5.89). In the advanced stage ulcer became deep and necrotic with occasional haemorrhages (Figs. 5.81a and b, 5.85a and b).

(a)

(b)

Fig. 5.81 a and b naturally EUS infected Cirrhinus mrigala

(a)

(b)

Fig. 5.82 a and b naturally EUS infected Labeo rohita

Fig.5.83. Naturally EUS infected Catla catla

(a)

(b)

Fig 5.84 a and b naturally EUS infected Labeo bata

Fig. 5.85 a and b naturally EUS infected Channa striata

(a)

(b)

Fig.5.86a and b naturally EUS infected Puntius sp.

Fig.5.87a and b naturally EUS infected Mystus tengara

(a)

(b)

Fig.5.88 a and b naturally EUS infected Clarias batrachus

Heteropneustes fossilis, Lepidocephalichthys guntea and affected fish in group were as follows:

Fig.5.91. Naturally EUS affected fish (in group) C. mrigala, C. striatus, L.bata, C. catla and M. tengara

Fig.5.92.Naturally EUS affected C. mrigala and Labeo bata (in group).

5.3. Other fish diseases

Infection in tilapia

Some tilapia fishes weighing 150-200 gm were seen affected and ultimately died in a cement tank at Tarahara (Figs.5.93 and 5.94). Fishes were swimming slowly near the surface of the water .Affected fish didn't feed at all. Eyes were protruded out with unusual red auses. Abdomen was swelled and after dissection, black ascitic fluid came out. Liver was pale in colour.

Fig. 5.93. Infected tilapia

Fig. 5.95. Infected Cyprinus carpio at Site 3

Fig.5.94. Infected tilapia in concrete tank

Fig.5.96. Infected Cyprinus carpio

Haemorrhagic septicaemia of carps

In the month of August 2010, five years old female common carp was affected (Fig.5.95). Scales on the sides of the body were slightly raised and hemorrhages were noticed on the body surface. The fish ultimately died. Some other carps were also affected (Fig. 5.96).

Abdominal Dropsy

It was found more commonly in Labeo rohita, Cirrhinus mrigala and Oreochromis mossambica. The infected fishes showed swollen abdomen (Fig. 5.97). After dissection, it was noticed that in one tilapia, intestine was filled with gas bubbles (Fig. 5.98).

Fig. 5.97. Dropsy in Labeo rohita

Fig. 5.98. Gas bubble filled in intestine of naturally dropsy infected tilapia.

Fin rot

Fraying and marked reduction of fins until destruction in tilapia was found in Tarahara and Baidya fish farms (Figs. 5.93 and 5.99). Leison on the body surface along with fin rot was observed in case of a Cirrhinus mrigala (Fig. 5.100).

Fig.5.99. Tilapia fin rot

Fig.5.100.Body lesion with fin rot in C. mrigala

5.4. Histopathological observation of EUS affected fishes

1. Cirrhinus mrigala

Ulcer

Initial stages of ulcer changed the normal architecture of the epidermis (Fig.5.81a and b). Histological section of advance lesions showed the complete loss of epidermis and the underlying musculature were replaced by granulomatous and inflammatory tissues. In some areas, myonecrosis and fungal hyphae, black stained with GMS, were often found. H-E stained section also showed presence of fungus (Fig. 5.101).

Liver

The histological section of liver showed degenerative changes and infiltration of blood capillaries.Necrotic changes, chord like arrangement with enlarged sinusoids and severely vacuolated hepatic cells were observed in some areas whereas no fungi were detected (Fig. 5.103).

Kidney

In histological section of kidney, necrotic changes and hemorrhages were seen in some areas of kidney. Tubular degeneration and vacuolation of tubular cells were seen but no evidence of the presence of fungi in the section of kidney was found (Fig. 5.105).

2. Labeo rohita

Ulcer

In the section of the early stages of lesions, deterioration of the normal structure of epidermis was observed. Advanced lesions showed complete loss of epidermis and the underlying musculature were replaced by granulomatous and inflammatory tissues. In some regions myonecrosis was also observed. Fungal hyphae were seen in section stained with H-E and GMS (Fig. 5.82a and b; Fig.5.102).

Liver

The stained section showed degenerative changes and infiltration of blood capillaries. Necrotic changes, chord like arrangement with enlarged sinusoids and severely vacuolated hepatic cells were observed in some areas. There was no evidence of presence of fungi (Fig. 5.104).

Kidney

Tubular breakage, tubular necrosis, vacuolation of tubular cells and haemorrhages in some areas of the section of the kidney of naturally infected Labeo rohita were observed. Fungi were not found in the section (Fig. 5.106).

3. Catla catla

Ulcer

In the section of early skin lesions epithelial necrosis with haemorrhage from the underlying dermis were observed. The epidermis at the margins of the ulcer was hyperplastic and thickened. In some regions myonecrosis was also developed. Some aseptate invasive fungal hyphae were distinctly visible in section stained with H-E and GMS (Fig.5.83; Figs.5.108, 5.118).

Liver

Fungal invasion was not observed in the liver tissues stained with Haematoxylene - Eosin and Grocott stain. Degenerative changes and infiltration of blood capillaries of liver were observed. Chord like arrangement with enlarged sinusoids and highly vacuolated hepatic cells were also observed (Fig.5.110).

Kidney

Renal tissues showed tubular and haematopoetic tissues degeneration along with the haemorrhages in some areas of the section (Fig.5.112).

4. Labeo bata

Ulcer

The section of deep ulcerated area displayed the complete loss of epidermis and the dermal layer lost its normal structural design and developed granulomas. Several non septate hyphae were observed in the dermis (Fig 5.84a and b; Fig. 5.107).

Liver

Section of liver showed vacuolation, enlarged sinusoids, arrangement of hepatocytes in chord like fashion and infiltration of blood capillaries in some areas in naturally infected Labeo bata (Fig. 5.109).

Kidney

Tubular breakage, tubular necrosis, vacuolation of tubular cells and haemorrhages in some areas of the section of the kidney of naturally infected Labeo bata were observed but no fungus (Fig. 5.111).

5. Channa striata

Ulcer tissue

The initial lesions in epidermis of naturally infected Channa striata showed loss of its normal structure. In case of advanced lesions, non-septate fungal hyphae were frequently observed in dermis and musculature. The noticeable important changes were formation of granuloma and myonecrosis (Fig.5.85a and b; Fig. 5.113 and 5.114).

Liver

In the section of liver of naturally infected Channa striata, mild focal degenerative changes of hepatic cells occurred. There were several haemorrhagic spots in the sections of the liver. Vacuolation of hepatocytes with necrotic changes in some areas and infiltration of blood capillaries were spotted. Fungi were not detected in the section of the liver (Fig. 5.115).

Kidney

Necrotic changes in specific haemopoetic areas, haemorrhages and tubular vacuolation in the section of kidney of naturally infected Channa striata were observed (Fig. 5.116).

6. Puntius sp.

Ulcer

The section of ulcerated area showed a complete loss of epidermis. The normal structure of the dermal layer was lost and replaced by granulomas. Several non septate fungal hyphae were observed in the dermis (Fig.5.86a and b; 5.117).

Liver

The section of liver of the naturally infected Puntius sp. showed vacuolation in the hepatocytes. Infiltration of blood capillaries were also seen in some regions (Fig.5.119).

Kidney

Haemorrhages were observed in some areas of the sections of the kidney of naturally infected Puntius sp. and no fungal hyphae was detected.Tubular breakage, tubular necrosis and vacuolation of tubular cells were observed in the section of the kidney (Fig.5.120).

7. Clarias batrachus

Ulcer

The section of early stages of lesions showed loss of the normal architechture of the epidermis and advanced lesions showed complete loss of epidermis and the underlying musculature were replaced by granulomatous and inflammatory tissues. In some regions, myonecrosis was also developed. Fungal hyphae were seen in section stained with H-E and GMS (Figs. 5.87a and b; 5.121).

Liver

The stained section showed degenerative changes and infiltration of blood capillaries. In some areas, hepatic cells were found to have necrotic changes, chord like arrangement with enlarged sinusoids and severe vacuolation. There was no evidence of presence of fungi (Fig.5.123).

Kidney

Tubular breakage, tubular necrosis, vacuolation of tubular cells and haemorrhages were observed in some areas of the section of the kidney of naturally infected Clarias batrachus. Besides these, haemopoietic tissue degeneration was also observed. Fungi were not found in the section (Fig. 5.125).

8. Mystus tengara

Ulcer

The section of ulcerated area showed a complete loss of epidermis. The normal structure of the dermal layer was lost and replaced by granulomas. Several non septate fungal hyphae were observed in the dermis.Granuloma formation and myonecrosis were prominent in the centre of the ulcer (Figs.5.88a and b; 5.122).

Liver

The section of liver of the naturally infected Mystus tengara showed vacuolation in the hepatocytes and in some regions the hepatocytes were arranged in a chord like arrangement with enlarged sinusoids. Infiltration of blood capillaries were also seen in some regions (Fig. 5.124).

Kidney

Haemorrhages were observed in some areas of the sections of the kidney of naturally infected Mystus tengara and no evidence of fungal hyphae. Tubular breakage, tubular necrosis and vacuolation of tubular cells were observed in the section of the kidney (Fig. 5.126).

Fig.5.101. Section of ulcer of naturally infected Cirrhinus mrigala showing Aphanomyces sp. (GMS, x 400).

Fig.5.103. Section of liver of naturally infected Cirrhinus mrigala (H-E x 400).

Fig.5.105. Section of kidney of naturally infected Cirrhinus mrigala (H-E x 400)

Fig. 5.102. Section of ulcer of naturally infected Labeo rohita showing Aphanomyces sp. (GMS x400).

Fig.5.104. Section of liver of naturally infected Labeo rohita (PAS x 400).

Fig.5.106. Section of kidney of naturally infected Labeo rohita (H-E, x 400).

Fig.5.107.Section of ulcer of naturally infected Labeo bata showing Aphanomyces (GMS, x 400).

Fig.5.109. Section of liver of naturally infected Labeo bata showing necrosis and vacuolation (GMS,x400).

Fig.5.111. Section of kidney of naturally infected Labeo bata showing necrotic changes, haemorrhages and tubular vaculation (H-E,x400)

Fig.5.108.Section of ulcer of naturally infected Catla catla showing fungus (Aphanomyces invadans) hyphae (GMS, x400).

Fig.5.110. Section of liver of naturally infected Catla catla showing vacuolation (GMS,x400).

Fig.5.112. Section of kidney of naturally infected Catla catla showing necrotic changes, haemorrhages and tubular vaculation (H-E, x400

Fig.5.113. Section of the ulcer of naturally infected Channa striatus showing the presence of fungal hyphae (GMS, x 400).

Fig.5.115.Section of liver of Channa striatus (H-E, x 400)

Fig.5.117. Section of muscle of infected Puntius sp. with Aphanomyces sp.(GMS, x 400)

Fig.5.114. Section of muscle of heavily infected Channa striatus (GMS, x 400)

Fig. 5.116. Section of kidney of Channa striatus (H-E, x 400)

Fig.5.118. Section of ulcer of naturally infected Catla catla (PAS,x 400)

Fig.5.119. Section of liver of Puntius sp. (PAS x400)

Fig. 5.121. Section of muscle of batrachus showing Aphanomyces GMS, x 400)

Fig.5.123. Section of liver of Clarias batrachus (GMS,x 400)

Fig.5.120. Section of kidney of infected Puntius sp. (H-E, x400)

Fig. 5.122. Section of muscle of naturally infected Mystus tengara showing granulomatous changes (PAS,x 400)

Fig.5.124. Section of liver of naturally infected Mystus tengara (PAS, x 400)

Fig. 5.125. Section of kidney of Clarias batrachus (H-E, x 400)

Fig.5.126.Section of kidney of Mystus tengara (H-E, x 400)

5.5. Isolation of Bacteria and their characterization

Four types of bacteria were isolated from ulcers of Cirrhinus mrigala (Table 5.36). Four types of bacteria were isolated from ulcers of Catla catla (Table 5.37). Three types of bacteria were isolated from ulcers of Channa striatus (Table 5.38). Four types of bacteria were isolated from ulcers of Puntius sp. (Table 5.39). Four types of bacteria were isolated from ulcers of Mystus tengara (Table 5.40). Four types of bacteria were isolated from ulcers of Labeo bata (Table 5.41).

Results of the morphological observations (Figs. 5.127, 5.128, 5.129, 5.130, 5.131, 5.132, 5.133 and 5.134) and biochemical test of the bacterial isolates from ulcers of different fishes are given in Tables 5.36, 5.37, 5.38, 5.39, 5.40 and 5.41.

Altogether twenty three bacteria were isolated from the ulcers of six infected fishes, out of which fourteen were Aeromonas hydrophila, three were A. caviae, one was A. veroni biovar sobria, two were Pseudomonas sp., two were Micrococcus sp. and one was Moraxella sp..

Out of fourteen A. hydrophila, two Cm_{1} and Cm_{3} from Cirrhinus mrigala, three $\left(\mathrm{Cc}_{1}, \mathrm{Cc}_{2}\right.$ and Cc_{3}) from Catla catla, one Cs_{1} from Channa striata, two $\left(\mathrm{P}_{1}\right.$ and $\left.\mathrm{P}_{3}\right)$ from Puntius sp., four ($\mathrm{Mt}_{1}, \mathrm{Mt}_{2}, \mathrm{Mt}_{3}$ and Mt_{4}) from Mystus tengara and two $\left(\mathrm{Lb}_{2}\right.$ and $\left.\mathrm{Lb}_{3}\right)$ from Labeo bata were isolated. Out of three Aeromonas caviae, one $\left(\mathrm{Cm}_{4}\right)$ from C. mrigala and two $\left(\mathrm{Cs}_{2}\right.$ and $\left.\mathrm{Cs}_{3}\right)$ from
C. striata were isolated. A. veroni biovar sobria, was isolated only from Labeo bata. Two Pseudomonas sp . $\left(\mathrm{Cc}_{4}\right.$ and $\left.\mathrm{Lb}_{1}\right)$ were isolated one each from Catla catla and Labeo bata. Two Micrococcus sp. were isolated one each from Cirrhinus mrigala $\left(\mathrm{Cm}_{2}\right)$ and Puntius sp. $\left(\mathrm{P}_{4}\right)$. One Moraxella sp. was isolated from Puntius sp. (P_{2}) (Table 5.42).

Table 5.36 Morphological and biochemical characteristics of bacteria isolated from the ulcers of Cirrhinus mrigala.

	Bacteria Isolates			
	Cm_{1}	Cm_{2}	Cm_{3}	Cm_{4}
Shape	rod	sphere	rod	rod
Occurance	single	single	single	single
	pairs	pairs		
		tetrads		
Size	$\begin{aligned} & \text { 2.8-3.2×0.75-0.8 } \\ & \mu \mathrm{m} \\ & \hline \end{aligned}$	$\begin{gathered} 1.2-1.6 \mu \mathrm{~m} \\ \text { diameter } \end{gathered}$	$\begin{gathered} 2.8-3.2 \times 0.75-0.8 \\ \mu \mathrm{~m} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2.8-3.2 \times 0.75- \\ & 0.8 \mu \mathrm{~m} \\ & \hline \end{aligned}$
Spores	-	-	-	-
Agar Colonies	circular	circular	circular	circular
	smooth	smooth	smooth	smooth
	convex	convex	convex	convex
Gram reaction	-	+	-	-
Motility	+	-	$+$	+
Growth at:				
$25^{\circ} \mathrm{C}$	g	m	g	g
30	g	g	g	g
37	m	g	m	m
42	n	n	n	n
Growth at 6\% NaCl	-	+	-	-
Indole Production	+	-	+	+
Resistance to Ch	-	-	-	+
VP	+	-	+	-
Nitrate	+	w	+	+
Gas from glucose	+	-	+	-
Oxidase	+	+	+	+
Catalase	+	+	+	+
O-F test	F	0	F	F
Acid from:				
Glucose	$+$	+	+	-
L-arabinose	+	-	+	+

Sucrose	+	+	+	+
Mannitol	+	+	+	+
Esculin hydrolysis	+	+	+	+
LDC	+	-	+	-
ODC	-	-	-	-
ADH	+	-	+	+
Pigment production	-	Bright yellow	-	-

+, positive; -, negative;0, neutral, g, good growth; m, moderate growth; n, no growth; Ch, cephalothin; VP, Voges-Proskauer reaction; O-F, Oxidation - Fermentation; LDC, lysine decarboxylase; ODC, ornithine decarboxylase; ADH, arginine dihydrolase; w, weak.

Table 5.37 Morphological and biochemical characteristics of bacteria isolated from the ulcers of Catla catla.

	Bacterial isolates			
	Cc_{1}	Cc_{2}	Cc_{3}	Cc_{4}
Shape	rod	rod	rod	rod
Occurance	single	single	single	single
				pairs
	chains	chains	chains	or chains
Size	$\begin{gathered} 2.8-3.2 \times 0.75- \\ 0.8 \mu \mathrm{~m} \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.8-3.2 \times 0.75- \\ 0.8 \mu \mathrm{~m} \\ \hline \end{gathered}$	$\begin{gathered} 2.8-3.2 \times 0.75- \\ 0.8 \mu \mathrm{~m} \end{gathered}$	$\begin{gathered} 2.2-0.3 \times 0.7-0.8 \\ \mu \mathrm{~m} \end{gathered}$
Spores	-	-	-	-
Agar Colonies	circular	circular	circular	circular
	smooth	smooth	smooth	smooth
	convex	convex	convex	slightly convex /flat
Gram reaction	-	-	-	-
Motility	$+$	+	+	$+$
Growth at:				
$25^{\circ} \mathrm{C}$	g	g	g	m
30°	g	g	g	g
37°	m	m	m	g
42°	n	n	n	n
Growth at 6\% NaCl	-	-	-	-
Indole Production	+	+	+	-

Resistance to Ch	-	-	-	-	
VP	+	+	+	-	
Itrate	+	+	+	+	
Gas from glucose	+	+	+	-	
Oxidase	+	+	+	+	
Catalase	+	+	+	+	
O-F test	F	F	F	0	
Acid from:					
Glucose	+	+	+	+	
L-arabinose	+	+	+	+	
Sucrose	+	+	+	+	
Mannitol	+	+	+	+	
Esculin hydrolysis	+	+	+	-	
LDC	+	+	+	-	
ODC	-	-	-	-	
ADH	+	+	+	+	
				Yellowish green in King's B Pigment production	

+, positive; -, negative; g, good growth; m, moderate growth; n, no growth; Ch, cephalothin; VP, Voges-Proskauer reaction; O-F, Oxidation - Fermentation; LDC, lysine decarboxylase; ODC, ornithine decarboxylase; ADH, arginine dihydrolase.

Table 5.38 Morphological and biochemical characteristics of bacteria isolated from the ulcers of Channa striata.

	Bacterial isolates		
	Cs_{1}	Cs_{2}	Cs_{3}
Shape	rod	rod	rod
Occurance	single	single	single
Size	$2.8-3.3 \times 0.7-$		
	$2.8-3.2 \times 0.75-0.8 \mu \mathrm{~m}$	$2.8-3.2 \times 0.75-0.8 \mu \mathrm{~m}$	
	-	-	-
Agar Colonies	circular	circular	circular
	smooth	smooth	smooth
	convex	convex	convex
	-	-	-
growth at:	+	+	+

$25^{\circ} \mathrm{C}$	g	g	g
30°	g	g	g
37°	m	m	m
42°	n	n	n
Growth at $6 \% \mathrm{NaCl}$	-	-	-
Indole Production	+	+	+
Resistance to Ch	-	+	+
VP	+	-	-
Nitrate	+	+	+
Gas from glucose	+	-	-
Oxidase	+	+	+
Catalase	+	+	+
O-F test	+	+	+
Acid from:	+	+	+
Glucose	+	+	+
L-arabinose	+	+	+
Sucrose	+	+	+
Mannitol	+	-	+
Esculin hydrolysis	+	-	+
LDC	-	+	+
ODC	+		+
ADH	-		+
Pigment production			+

+, positive; -, negative;0, neutral; g, good growth; m, moderate growth; n, no growth; Ch, cephalothin; VP, Voges-Proskauer reaction; O-F, Oxidation -Fermentation; LDC, lysine decarboxylase; ODC, ornithine decarboxylase; ADH, arginine dihydrolase.

Table 5.39 Morphological and biochemical characteristics of bacteria isolated from the ulcers of
Puntius sp.

	Bacterial isolates			
	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$	$\mathbf{P}_{\mathbf{4}}$
	rod	rod	rod	sphere
	single	single	single	single
	pairs		pairs	pairs
				chains
Size	chains		tetrads or irregular clusters	

Spores	-	-	-	-
Agar Colonies	circular	circular	circular	circular
	smooth	smooth	smooth	smooth
	convex	convex	convex	convex
Gram reaction	-	-	-	+
Motility	+	+	+	-
Growth at:				
$25^{\circ} \mathrm{C}$	g	m	g	m
30°	g	g	g	g
37°	m	g	m	g
42°	n	n	n	n
Growth at $6 \% \mathrm{NaCl}$	-	-	-	-
Indole Production	+	-	+	-
Resistance to Ch	-	-	-	-
VP	$+$	-	+	-
Nitrate	+	-	+	W
Gas from glucose	+	-	+	-
Oxidase	+	+	+	+
Catalase	+	+	+	+
O-F test	F	0	F	0
Acid from:				
Glucose	$+$	-	+	+
L-arabinose	+	-	+	-
Sucrose	+	-	+	+
Mannitol	+	-	+	+
Esculin hydrolysis	$+$	+	+	+
LDC	+	-	+	-
ODC	-	-	-	-
ADH	+	-	+	-
Pigment production	-	-	-	Bright yellow colonies

+, positive; -, negative; g, good growth; m, moderate growth; n, no growth; Ch, cephalothin; VP, Voges-Proskauer reaction; O-F, Oxidation -Fermentation; LDC, lysine decarboxylase; ODC, ornithine decarboxylase; ADH, arginine dihydrolase; w, weak.

Table 5.40 Morphological and biochemical characteristics of bacteria isolated from the ulcers of Mystus tengara.

	Bacterial isolates			
	$\mathbf{M t}_{\mathbf{1}}$	$\mathbf{M t}_{2}$	Mt_{3}	Mt_{4}
Shape	rod	rod	rod	rod
Occurance	single	single	single	single
	pairs	pairs	pairs	pairs
	chains		chains	chains
Size	$\begin{gathered} 2.8-3.2 \times 0.75- \\ 0.8 \mu \mathrm{~m} \end{gathered}$	$\begin{gathered} 2.8-3.2 \times 0.75- \\ 0.8 \mu \mathrm{~m} \\ \hline \end{gathered}$	$\begin{gathered} 2.8-3.2 \times 0.75- \\ 0.8 \mu \mathrm{~m} \end{gathered}$	$\begin{gathered} 2.8-3.2 \times 0.75- \\ 0.8 \mu \mathrm{~m} \\ \hline \end{gathered}$
Spores	-	-	-	-
Agar Colonies	circular	circular	circular	circular
	smooth	smooth	smooth	smooth
	convex	convex	convex	convex
Gram reaction	-	-	-	-
Motility	+	+	$+$	$+$
Growth at:				
$25^{\circ} \mathrm{C}$	g	g	g	g
$30^{\circ} \mathrm{C}$	g	g	g	g
$37^{\circ} \mathrm{C}$	m	m	m	m
$42^{\circ} \mathrm{C}$	n	n	n	n
Growth at 6\% NaCl	-	-	-	-
Indole Production	+	+	+	+
Resistance to Ch	-	-	-	-
VP	+	+	+	+
Nitrate	+	+	+	+
Gas from glucose	+	+	+	+
Oxidase	+	+	+	+
Catalase	+	+	+	+
O-F test	F	F	F	F
Acid from:				
Glucose	+	+	+	+
L-arabinose	+	+	+	$+$
Sucrose	+	+	+	+
Mannitol	+	+	+	+
Esculin hydrolysis	+	+	+	+
LDC	+	+	+	+
ODC	-	-	-	-

ADH	+	+	+	+
Pigment production	-			

+, positive; -, negative; g, good growth; m, moderate growth; n, no growth; Ch, cephalothin; VP, Voges-Proskauer reaction; O-F, Oxidation - Fermentation; LDC, lysine decarboxylase; ODC, ornithine decarboxylase; ADH, arginine dihydrolase.

Table 5.41 Morphological and biochemical characteristics of bacteria isolated from the ulcers of Labeo bata.

	Bacterial isolates			
	Lb_{1}	$\mathbf{L b}_{2}$	Lb_{3}	$\mathbf{L b}_{4}$
Shape	rod	rod	rod	rod
Occurance	single	single	single	single
	pairs		pairs	pairs
	chains		chains	chains
Size	$\begin{gathered} 2.2-0.3 \times 0.7- \\ 0.8 \mu \mathrm{~m} \end{gathered}$	$\begin{gathered} 2.8-3.2 \times 0.75- \\ 0.8 \mu \mathrm{~m} \\ \hline \end{gathered}$	$\begin{gathered} 2.8-3.2 \times 0.75- \\ 0.8 \mu \mathrm{~m} \end{gathered}$	$\begin{gathered} 2.5-3.0 \times 0.7- \\ 0.8 \mu \mathrm{~m} \end{gathered}$
Spores	-	-	-	-
Agar Colonies	circular	circular	circular	circular
	smooth	smooth	smooth	smooth
	convex	convex	convex	convex
Gram reaction	-	-	-	-
Motility	$+$	$+$	+	+
Growth at:				
$25^{\circ} \mathrm{C}$	m	g	g	g
30°	g	g	g	g
37°	g	m	m	m
42°	n	n	n	n
Growth at 6\% NaCl	-	-	-	
Indole Production	-	+	+	+
Resistance to Ch	-	-	-	+
VP	-	+	+	+
Nitrate	+	+	+	+
Gas from glucose	-	+	+	+

Oxidase	+	+	+	+	
Catalase	+	+	+	+	
O-F test	0	F	F	F	
Acid from:					
Glucose	+	+	+	+	
L-arabinose	+	+	+	+	
Sucrose	+	+	+	+	
Mannitol	+	+	+	+	
Esculin hydrolysis	+	+	+	+	
LDC	-	+	+	+	
ODC	-	-	-	-	
ADH	+	+	+	+	
Pigment production	Yellowish green in King's B medium		-		

+, positive; -, negative; g, good growth; m, moderate growth; n, no growth; Ch, cephalothin; VP, Voges-Proskauer reaction; O-F, Oxidation - Fermentation; LDC, lysine decarboxylase; ODC, ornithine decarboxylase; ADH, arginine dihydrolase.

Fig.5.127. Aeromonas caviae, $\mathrm{Cs}_{2}(\mathrm{X} 400)$

Fig.5.128. Micrococcus sp., $\mathrm{P}_{4}(\mathrm{x} 400)$

Fig.5.129. Pseudomonas sp. , Cc_{4} (X1000)

Fig.5.131. Pure culture of bacteria in agar slant

Fig.5.133. Bacterial culture after 48 hrs of incubation

Fig.5.130. Aeromonas hydrophila Cm_{1}, (x400)

Fig.5.132. Bacterial culture after 48 hrs of incubation

Fig.5.134. Aeromonas sp. Confirmatory test

5.6. Pathogenicity test of the isolated bacteria

Among 23 bacterial isolates (Table 5.42), 20 were found to be pathogenic (86.95\%) after intramuscular administration of these isolates to the healthy Heteropneustes fossilis fish. Two Micrococcus spp. (P_{4} and Cm_{2}) and one Moraxella sp. could not induce any ulcer at the site of injection in healthy fish. Methodology for inoculation of bacteria in healthy fish is discussed in details under materials and methods.

Moderate to severe ulcers were found at the injection site. Initially red patches appeared at the site of injection, it swelled gradually and after 72 hrs , the skin and underlying muscle layer eroded and it developed into ulcer (Figs.5.135, 5.136 and 5.137). In control set, the fish received only saline suspension. No disease sign was noticed. All fish, in which ulcers developed, however did not die. The moderate ulcers were healed in some fish. No notable change of the swimming behabiour was also observed.

Fig. 5.135. Heteropneutes fossilis showing manifestation of ulcer after 24 hrs of intramuscular injection with the culture of A. hydrophila, Cm_{1}.

Fig.5.136. H. fossilis showing manifestation of ulcer after 48 hrs of intramuscular injection with A. hydrophila, Cc_{4}

Fig. 5.137. H. fossilis showing manifestation of ulcer after 96 hrs of intramuscular injection with A. hydrophila, P2.

Table 5.42 Pathogenic and non-pathogenic bacteria isolated from EUS affected fish.

Bacteria	No. of isolates	Pathogenic	Non- Pathogenic
Aeromonas hydrophila $\left(\mathrm{Cm}_{1}, \mathrm{Cm}_{3}, \mathrm{Cc}_{1}, \mathrm{Cc}_{2}, \mathrm{Cc}_{3}, \mathrm{Cs}_{1}, \mathrm{P}_{1}, \mathrm{P}_{3}, \mathrm{Mt}_{1}, \mathrm{Mt}_{2}, \mathrm{Mt}_{3}\right.$, $\mathrm{Mt}_{4}, \mathrm{Lb}_{2}$ and $\left.\mathrm{Lb}_{3}\right)$	14	14	0
Aeromonas caviae $\left(\mathrm{Cm}_{4}, \mathrm{Cs}_{2}, \mathrm{Cs}_{3}\right)$	3	3	0
A. veronii biovar sobria $\left(\mathrm{Lb}_{4}\right)$	1	1	0
Pseudomonas sp. $\left(\mathrm{Cc}_{4}, \mathrm{Lb}_{1}\right)$	2	2	0
Micrococcus sp. $\left(\mathrm{Cm}_{2}, \mathrm{P}_{4}\right)$	2	0	2
Moraxella sp. $\left(\mathrm{P}_{2}\right)$	1	0	1
Total	$\mathbf{2 3}$	$\mathbf{2 0}$	$\mathbf{3}$

5.7. Fungus isolation and characterization

In the culture, newly formed hyphae were appeared after 6 hours of incubation at $23-25^{\circ} \mathrm{C}$ examined under inverted phase contrast microscope (CKII, Olympus). The growth of the hyphal tips was monitored routinely and next transfer was done after 24 hours. The pure culture was obtained after repeated transfer and finally transferred to GPA and GPYA for routine maintenance. The cotton blue stained ulcer tissue revealed the presence of branched, aseptate fungus mycelium observed through microscope in all samples. The mycelium of fungal isolate grown on GPA and GPYA were also branched, aseptate but narrower than those found in ulcer tissue. It also showed the presence of terminal zoosporangia having a single row of zoospores.

Identification of fungi was done by examining the asexual characteristics and particular characteristics of zoosporangia which were not wider than the hyphae. A single row of primary zoospores was found within the zoosporangia (Figs. 5.138, 5.139, 5.140 and 5.141 of $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ and A_{4} respectively).

Fig.5.138.Zoosporangia of Aphanomyces sp. from ulcer of naturally infected Cirrhinus mrigala. (A_{1})

Fig.5.139. Zoosporangia of Aphanomyces sp. from ulcer of naturally infected Catla catla $\left(\mathrm{A}_{2}\right)$

Fig.5.140. Zoosporangia of Aphanomyces sp. from naturally infected Labeo bata (A_{3})

Fig.5.141. Zoosporangia of Aphanomyces sp. from naturally infected Puntius sp. (A_{4})

The fungal isolates grew slowly in culture media from $25-30^{\circ} \mathrm{C}$ but did not grow at $37^{\circ} \mathrm{C}$. Aphanomyces spp.were isolated from ulcer tissues of Cirrhinus mrigala, Channa striatus, Labeo rohita, Labeo bata, Catla catla, Mystus sp., Puntius sp. and Clarias batrachus.

5.8. Pathogenicity test of isolated fungus Aphanomyces sp. in Heteropneustes fossilis.

Healthy fish showed the red spot at the site of injection after 48 hrs of inoculation.Then the red spot increased in size and ulcer developed after 72 hrs. Among treated fishes 43.33% mortality were recorded during 15 days observation. In control set of fish no ulcer formation and mortality were observed.

Fig.5.142. H. fossilis showing manifestation of ulcer after 48 hrs of intramuscular injection with Aphanomyces sp. zoospores.

Fig.5.143. H. fossilis showing manifestation of ulcer after 72 hrs of intramuscular injection with Aphanomyces sp. zoospores.

Table 5.43 shows percentage mortality and nature of ulcer formation in Heteropneustes fossilis injected intramuscularly with saline suspensions of Aphanomyces sp. zoospores from Cirrhinus mrigala (A_{1}).

	No. of fishes	No. of fishes dead	Nature of ulcer		Mortality
		Moderate (erosion in epidermis)	Advanced (necrotic)		
Control	30	0	0	0	0
Saline suspension of Aphanomyces zoospores $\left(\mathrm{A}_{1}\right)$	30	13	6	11	43.33%

5.9. Histopathology of experimentally infected fish Heteropneustes fossilis with isolated

 Zoospores of Aphanomyces sp. (A_{1}).
Ulcer

The epidermis and dermis of skin tissues of the ulcerated area were lost but severe myonecrosis and granuloma were seen when dermis was present.In some cases haemorrhages were observed. Aseptate fungal hyphae were stained black with Grocott metenamine stain in the dermis and underlying musculature (Fig.5.144).

Liver

Some areas of the liver hepatic cells, vacuolation and chord like arrangement with enlarged sinusoids were observed. No fungus was detected but haemorrhages were also observed in some areas (Fig.5.145).

Kidney

Necrotic changes were observed in some haematopoietic areas but no fungal hyphae were detected in kidney tissues (Fig.5.146).

The sections of muscle, liver and kidney of control fish (Heteropneustes fossilis) are shown in figs. 5.147, 5.148 and 5.149).

Fig.5.144. Section of ulcer of experimentally infected H. fossilis with Aphanomyces sp. zoospores (GMS, x 400)

Fig.5.145. Section of liver of experimentally infected H. fossilis (H-E, x 400)

Fig.5.146. Section of kidney of experimentally infected (H. fossilis)(H-E,x400)

Fig.5.148.Section of normal liver of H. fossilis (control)

Fig.5.147. Section of normal muscle of H. fossilis (control)

Fig.5.149.Section of normal kidney of H. fossilis (control)

[^0]: * Significant at 1% level ($\mathrm{P}<0.01$), ** significant at 5\% level ($\mathrm{P}<0.05$) and

[^1]: * Significant differences at 1% level, ${ }^{* *}$ Significant differences at 5\% level.

[^2]: * Significant differences at 1% level, ** Significant differences at 5\% level.

[^3]: * Significant differences at 1% level, ** Significant differences at 5\% level.

[^4]: * Significant differences at 1% level, ** Significant differences at 5\% level.

[^5]: * Significant differences at 1% level, ** Significant differences at 5\% level.

[^6]: *indicates significance at 1% level $(\mathbf{P}<0.01)$, ** indicates significance at 5\% level ($\mathbf{P}<\mathbf{0 . 0 5}$).

[^7]: *indicates significance at $\mathbf{1 \%}$ level ($\mathbf{P}<0.01$), ** indicates significance at 5\% level $(\mathbf{P}<0.05)$

[^8]: *indicates significance at $\mathbf{1 \%}$ level ($\mathbf{P}<\mathbf{0 . 0 1}$),
 ** indicates significance at 5\% level ($\mathbf{P}<0.05$)

