LIST OF FIGURES

Figure I.1.	Structure of Merrifield Resin	2
Figure I.2.	A schematic diagram of the apoferritin	6
Figure I.3.	A schematic presentation for the synthesis of metal-organic	8
	framework (MOF)	
Figure I.4.	Structures of poly(<i>N</i> -vinyl-2-pyrrolidone) (PVP) and	8
	poly(2,5–dimethylphenylene oxide) (PPO)	
Figure I.5.	Structure of Chitin and Chitosane	10
Figure I.6.	Structures of various ion-exchange resins	12
Figure II.1.	Schematic preparative steps of Pd/Fe–ARF–110 nanocomposites	22
Figure II.2.	Photographic images of six nanocomposites	22
Figure II.3.	FT–IR spectra of ARF, Fe–ARF and Pd/Fe–ARF bimetallic nanocomposites	23
Figure II.4.	The powder XRD patterns of six nanocomposites prepared under different conditions	25
Figure II.5.	The SEM images of (a) ARF: (b) Fe–ARF–110: (c) Pd/Fe–	27
800	ARF-80: (d) $Pd/Fe-ARF-110$: (e) $Pd/Fe-ARF-140$: (f)	
	Pd/Fe-ARF-110-OA and (g) Pd/Fe-ARF-110-NaOA	
	nanocomposites, respectively	
Figure II.6	TEM images: (a) of Fe–ARF–110 and (b) its average particle	28
0	size distribution histogram from (a): (c) of Pd/Fe–ARF–110	
	and (d) its average particle size distribution histogram from	
	(c); (e) of Pd/Fe–ARF–110–OA and (f) its average particle	
	size distribution histogram from (e); (g) of Pd/Fe–ARF–110–	
	NaOA and (h) its average particle size distribution histogram	
	from (g)	
Figure II.7.	(a) TEM-EDX spectrum of Pd/Fe-ARF-110	29
0	nanocomposites; (b) EDX elemental mapping image of	
	Pd/Fe ₂ O ₃ bimetallic nanocomposites, green dots, Pd; red dots,	
	Fe	
Figure II.8.	Recycling experiments using Pd/Fe-ARF-110 catalyst in	33
C	hydrodebromination of 9, 10–dibromoanthracene	
Figure III.A.1.	(a) Hydrated small hydrophobic aggregates, (b) hydrated	42
C	large hydrophobic aggregates	
Figure III.B.1.	The chemical structure of trityl losertan	48
Figure III.B.2.	Structures of some drugs and pharmaceuticals containing	49
5	biphenyl moiety	
Figure III.B.3.	Structures of some analgesic drugs synthesized by SM	49
	coupling reaction	

Figure III.B.4.	Biphenyls used in materials science	50
Figure III.C.1.	Vinyl sulfides used as synthetic intermediates.	71
Figure III.C.2.	Vinyl sulfides used as biologically active molecules	71
Figure III.C.3.	Structures of Ni–NHC complex and some NHCs	76
Figure IV.1	Structures of carbamic acid, thiocarbamic acid and	92
	dithiocarbamic acid and their esters	
Figure IV.2.	Examples of compounds of potential therapeutic value	93
	bearing S-alkyl carbodithioate esters function	
Figure IV.3.	HRMS of compound 4b	102
Figure V.1.	¹ H–NMR spectra of L1 [1,3–bis(4–fluorophenylthio)	123
	-propane] in d ₆ -DMSO	
Figure V.2.	¹ H–NMR spectra of complex 1 in d ₆ –DMSO	124
Figure V.3.	UV–Visible spectra of CuI, L1 and complex 1 were taken in	125
	MeCN	
Figure V.4.	Fluorescence spectrum of complex $1(5 \ \mu M \ solution)$ in	125
	MeCN solvent	
Figure V.5.	View of (a) the monomeric unit of the coordination polymer,	127
	(b) ORTEP picture of the complex 1 and (c) infinite 1–D	
	chain of complex 1 incorporating dinuclear $Cu(\mu_2-I)_2Cu$	
	motifs along 'b' axis	