LIST OF TABLES

<u>CHAPTERS</u>	TABLE CAPTIONS	PAGE NO.
Chapter-II	Table II.1. Comparison between organic solvents and ionic liquids.	46
	Table II.2. Properties of Ionic Liquids	49-50
Chapter-IV	Table IV.1: Density (ρ), viscosity (η) and relative permittivity (ε) of the different solvents dimethyl acitamide (DMA), tetrahydrofuran (THF) and methyl cellusolve (MC) at different temperatures.	224
	Table IV.2: The concentration (c) and molar conductance (Λ) of [bmmim][BF ₄] in Methyl Cellosolve, Dimethyl acetamamide and Tetrahydrofuran at 298.15, 303.15, 308.15 K respectively.	225-227
	Table IV.3: Limiting molar conductance (Λ_o), association constant (K_A), co-sphere diameter (R) and standard deviations of experimental Λ (δ) obtained from Fuoss conductance equation for 1-butyl-2,3-dimethylimidazoliun tetrafluoroborate in Methyl cellosolve and DMA at 298.15, 303.15, 308.15 K respectively.	228
	Table IV.4: walden product $(\Lambda_o \cdot \eta)$ and Gibb's energy change (ΔG°) of 1-butyl-2,3-dimethylimidazoliun tetrafluoroborate in Methyl cellosolve and DMA at 298.15 K, 303.15 K and 308.15 K respectively are given below.	229
	Table IV.5: Limiting Ionic Conductance (λ_0^{\pm}), Ionic WaldenProduct ($\lambda_0^{\pm}\eta$), Stokes' Radii (r_s), and CrystallographicRadii(r_c)Radii(r_c)tetrafluoroborate in Methyl cellosolve and DMA at 298.15 K,303.15 K and 308.15 K respectively are given below.	230-231
	Table IV.6: The calculated limiting molar conductance of ion-pair (Λ_0), limiting molar conductances of triple ion Λ_0^T , experimental slope and intercept obtained from Fuoss-Kraus Equation for 1-butyl-2,3-dimethylimidazoliun tetrafluoroborate in THF at 298.15 K, 303.15 K and 308.15 K respectively.	231

<u>CHAPTERS</u>	TABLE CAPTIONS	PAGE NO.
	Table IV.7: Salt concentration at the minimum conductivity (C_{min}) along with the ion-pair formation constant (K_P) , triple ion formation constant (K_T) for 1-butyl-2,3-dimethylimidazoliun tetrafluoroborate in THF at 298.15 K.	232
	Table IV.8: Salt concentration at the minimum conductivity (c_{min}) , the ion pair fraction (α) , triple ion fraction (α_T) , ion pair concentration (c_P) and triple-ion concentration (c_T) for 1-butyl-2,3-dimethylimidazoliun tetrafluoroborate in THF at 298.15 K, 303.15 K and 308.15 K respectively.	233
	Table IV.9: Concentration, c, density, ρ , apparent molar volume, ϕ_v , limiting apparent molar volume ϕ_v^0 and experimental slope for 1-butyl-2,3-dimethylimidazoliun tetrafluoroborate in Methyl Cellosolve, Dimethyl Acetamide and Tetrahydrofuran at 298.15 K, 303.15 K and 308.15 K respectively.	234-237
	Table IV.10: Values of empirical coefficients (<i>a</i> ₀ , <i>a</i> ₁ , and <i>a</i> ₂) of Equation 4 for IL in different solvents (MC, DMA, THF) at 298.15K to 308.15K respectively	237
	Table IV.11: Limiting apparent molal expansibilities (ϕ_E^0) for IL in different solvents (THF, DMA, THF) at 298.15K to 308.15K respectively	238
	Table IV.12: Concentration, c, viscosity, η , $\frac{(\eta_r - 1)}{\sqrt{c}}$, viscosity A and B coefficients for 1-butyl-2,3-dimethylimidazoliun iodide in Methyl Cellosolve, Dimethyl Formamide and Tetrahydrofuran at 298.15 K, 303.15 K and 308.15 K respectively.	239-240
	Table IV.13: Stretching frequencies of the functional groups present in the pure solvent and change of frequency after addition of 0.05(M) concentration of [bmmim][BF ₄] in THF, DMA and MC.	240
Chapter-V	Table V.1: Surface tension (γ) with corresponding concentration, and concentration ratio (ratio of inclusion IL: β -CD) at the first and second break point of 4-methyl-N- butylpyridinium chloride solution (0.001 M) in aqueous β - CD	252

List of Tables

<u>CHAPTERS</u>	TABLE CAPTIONS	PAGE NO.
	Table V.2: Conductance (Λ) with corresponding concentration, and concentration ratio (ratio of inclusion IL: β -CD) at the first and second break point of 4-methyl-N- butylpyridinium chloride solution (0.001 M) in aqueous β - CD	252
	Table V.3: Solvation number (S_n) , ionic apparent molar volume (ϕ_{\pm^o}) in deferent mass fractions of aqueous β -cyclodextrin mixtures	253
	Table V.S.1: Experimental values of density (ρ), viscosity (η), and refractive index (n_D) in deferent mass fraction of aqueous β -cyclodextrin mixtures	260
	Table V.S.2: Experimental values of densities (ρ) and viscosities (η) corresponding to concentration in different mass fractions of aq. β -cyclodextrin at different temperature	261-262
	Table V.S.3: Limiting apparent molar volume (ϕ_{v}^{ρ}) , experimental slope (S_{v}^{*}) , viscosity B and A-coefficient, Solvation number (S_{n}) , ionic apparent molar volume (ϕ_{\pm}^{0}) in deferent mass fractions of aqueous α and β -cyclodextrin mixtures	263
	TableV.S.4: Refractive index (n_D) , molar refraction (R_m) , and limiting molar refraction (R_m^0) for $[(bmPy)CI]$ in different mass fration of aquous β -CD at 298.15 K	264-265
Chapter VI	Table VI.1: Sample description	284
	Table VI.2: Values of density (ρ), viscosity (η) and relative permittivity (ε_r) at T = 298.15 K and pressure p = 101.325 kPa of studied pure solvents	284
	Table VI.3: Molar conductance (Λ) and the corresponding concentration (m) of [Bu ₄ PMS] at T = 298.15 K and pressure $p = 101.325$ kPa in different studied solvents	285-286
	Table VI.4: Limiting molar conductivity (Λ_0) , the association constant (K_A) , the distance of closest approach of ions (R), standard deviations δ of experimental Λ from equation 1, Walden product $(\Lambda_0\eta)$ and Gibb's energy change (ΔG^o) of [Bu ₄ PMS] in different studied solvents at T = 298.15 K	287

List of Tables

<u>CHAPTERS</u>	TABLE CAPTIONS	PAGE NO.
	Table VI.5: Limiting ionic conductance (λ_o^{\pm}) , ionic Walden product $(\lambda_o^{\pm}\eta)$, Stokes' radii (\mathbf{r}_s) and crystallographic radii (\mathbf{r}_c) of [Bu ₄ PMS] in different studied solvents at $T = 298.15$ K	287
	Table VI.6: Diffusion coefficient (D_{\pm}) and ionic mobility (i_{\pm}) of Bu_4P^+ and MS ⁻ in different studied solvents at 298.15K	288
	Table VI.7: Stretching frequencies of the functional groups present in the solvents and change of frequency after addition of IL, [Bu ₄ PMS] in the solvents.	289
Chapter VII	Table VII.1: The values of Density (ρ), Viscosity (η), Refractive index (n_D), and Speed of sound (u) in different mass fraction of 1-butylpyridinium bromide solution at 298.15K	305
	Table VII.2: Experimental values of Densities (ρ), Viscosities (η), Refractive Index (n_D) and Ultrasonic Speed (u)of L-Glycine, L-Alanine and L-Valine in different mass fraction of 1-butylpyridinium bromide at 298.15K	306-308
	Table VII.3: Molality, apparent molar volume $(\phi_{\rm v})$, $(\eta/\eta_0-1)/m^{1/2}$, molar refraction (<i>R</i>), adiabatic compressibility (β) and apparent molal adiabatic compressibility ($\phi_{\rm K}$) of L-Glycine,L- Alanine, and L-Valine in 1-butylpyridinium bromide at 298.15 K	308-311
	Table VII.4: Limiting apparent molar volumes (ϕ_v^0) , experimental slopes (S_v^*) , A, B coefficients, limiting partial adiabatic compressibility (ϕ_K^0) , and experimental slope (S_K^*) of L-Glycine, L-Alanine, and L-Valine in aqueous 1- butylpyridinium bromide at 298.15 K	311
Chapter VIII	Table VIII.1: Values of surface tension at the break point (γ) with corresponding concentration of IL in different mass fraction of aqueous β -cyclodextrin at 298.15K	324

List of Tables

<u>CHAPTERS</u>	TABLE CAPTIONS	PAGE NO.
	Table VIII.2: Values of Specific conductance at the break point (κ) with corresponding concentration of IL in different mass fraction of aqueous β -cyclodextrin at 298.15K ^a	324
	Table VIII.3: Change in chemical shifts (ppm) of the H3 and H5 protons of cyclodextrin host molecules when complexed with amino acid guest molecules in D ₂ O at 298.15Ka	325
Chapter IX	Table IX.1: Density (ρ), viscosity (η), refractive index (n_D) and relative permittivity (ε) of the different solvents Tetrahydrofuran, 1,4 Dioxane and Acetonitrile.	347
	Table IX.2: The concentration (c) and molar conductance(Λ) of [bupy]Br in 1,4 Dioxane, Tetrahydrofuran andAcetonitrile at 298.15 K.	348
	Table IX.3: Limiting molar conductance (Λ_o), association constant (K_A), co-sphere diameter (R) and standard deviations of experimental Λ (δ) obtained from Fuoss conductance equation for 1-butyl-pyridinium bromide in Acetonitrile at 298.15 K.	349
	Table IX.4: Walden product $(\Lambda_o \cdot \eta)$ and Gibb's energy change (ΔG°) of 1-butyl-pyridinium bromide in Acetonitrile at 298.15 K.	349
	Table IX.5: Limiting Ionic Conductance (λ_0^{\pm}), Ionic Walden Product ($\lambda_0^{\pm}\eta$), Stokes' Radii (r_s), and Crystallographic Radii (r_c) of [bupy]Br in ACN at 298.15 K.	349
	Table IX.6: The calculated limiting molar conductance of ion-pair (Λ_0), limiting molar conductances of triple ion Λ_0^T , experimental slope and intercept obtained from Fuoss-Kraus Equation for 1-butyl-puridinium bromide in 1,4 DO and THF at 298.15 K.	350
	Table IX.7: Salt concentration at the minimum conductivity (C_{min}) along with the ion-pair formation constant (K_P) , triple ion formation constant (K_T) for 1-butyl-puridinium bromide in 1,4 DO and THF at 298.15 K.	350
	Table IX.8: Salt concentration at the minimum conductivity (C_{min}), the ion pair fraction (α), triple ion fraction (α_T), ion pair concentration (c_P) and triple-ion concentration (c_T) for 1-butyl-puridinium bromide in 1,4 DO and THF at 298.15 K.	351
	Table IX.9: Density (ρ), viscosity (η) and refractive index (n_D) of 1-butyl-pyridinium bromide in different mass fraction of 1,4 DO, Tetrahydrofuran, and Acetonitrile at	351-354

List of Tables

CHAPTERS TABLE CAPTIONS PAGE NO. different temperatures. 354-357 Table IX.10: Apparent molar volume (ϕ_v), $\frac{(\eta_r - 1)}{\sqrt{2}}$ and molar refraction (R_m) for 1-butyl-pyridinium bromide in different mass fraction of 1,4 DO, Tetrahydrofuran, and Acetonitrile at different temperatures. 357-358 Table IX.11: Limiting apparent molar volume (ϕ_v^0) , experimental slope, viscosity -A and -B coefficient and limiting molar refraction (R^{0}_{M}) for 1-butyl-pyridinium bromide in 1,4 DO, Tetrahydrofuran, and Acetonitrile at different temperatures. Table IX.12: Values of empirical coefficients $(a_{0}, a_{1}, and a_{2})$ 358 of Equation 4 for IL in different solvents (1,4 DO, THF and ACN) at 298.15K to 308.15K respectively Table IX.13: Limiting apparent molal expansibilities ($\phi_{\rm F}^0$) 359 for IL in different solvents (1,4 DO, THF and ACN) at 298.15K to 308.15K respectively Table IX.14: Stretching frequencies of the functional groups 359 present in the pure solvents and {solvents+[bupy][Br]}