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2.1 INTRODUCTION 

 Liquid crystals have very interesting physical and optical properties which have been 

established by scientists around the world and various theoretical models have been developed 

over the years to explain their physical properties. A large variety of liquid crystalline materials 

have been synthesized and their properties have been determined to establish the relationship 

between the molecular structures and the macroscopic properties of the materials. A systematic 

study of the experimental techniques is required for measuring the physical, chemical, electro-

optical and dielectric parameters of the compounds. In this dissertation, various properties of 

selected mesogenic compounds have been studied using different experimental techniques. A 

brief theoretical background of these techniques along with the Maier-Saupe mean-field theories 

of nematic and smectic A phases have been described, since most of the materials possess these 

two phases. 

2.2 THEORIES OF LIQUID CRYSTALLINE PHASES 

 Liquid crystals are an important subclass of soft condensed matter self-assembled on 

nano scale level and can be broadly described as ordered fluids formed from geometrically 

anisotropic molecules. The main feature of a liquid crystal is that it is anisotropic in nature and 

this anisotropic behaviour complicates the analysis of these materials to a great extent. However 

there are a number of fairly simple theories that can at least predict the general behaviour of the 

liquid crystal systems. The first molecular field theory of the nematic phase was proposed by M. 

Born in 1916 [1] where he considered that the nematic medium is an assembly of permanent 

electric dipoles although it is now well established that the liquid crystalline molecules need not 

possess permanent dipole moment as a pre-requisite. Various molecular statistical theories have 

been developed over the years which have been dealt in the books - “The Physics of Liquid 

Crystals” by de Gennes [2], “Thermophysical Properties of Liquid Crystals” by Tsykalo [3], 

“Liquid Crystals” by Chandrasekhar [4], “The Physics of Ferroelectric and Antiferroelectric 

Liquid Crystals” by Musevic, Blinc and Zeks [5] and in books and monographs by various other 

authors. 

 Properties of the nematic phase of a liquid crystal can be studied extensively by the 

molecular field theory. The well known Maier-Saupe (MS) theory [6,7] which is based on the 

molecular field approximations, explains effectively the nematic isotropic (N-I) transition in 
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terms of the orientational order parameters. The first molecular statistical treatment of the 

smectic-nematic transitions was developed by Kobayashi [8], where he introduced an additional 

isotropic paired intermolecular interaction in Maier-Saupe (MS) model. A simple but elegant 

description of SmA phase was proposed by McMillan [9,10] in which he extended MS theory to 

include additional translational and mixed order parameters and characterized the layered 

structure of SmA phase. In the Kobayashi-McMillan approach the effects of short range order 

and fluctuation of the order parameters are neglected. The details of the McMillan, Wulf and de 

Gennes theories on SmC liquid crystals and the Meyer-McMillan theory on of SmC, SmB, and 

SmH liquid crystals are given in reference [11,12].        

2.2.1 Order Parameter 

 Order parameter is a quantity that measures the amount of order present in a system. In 

case of rod like liquid crystals, the long molecular axis tends to align in a preferred direction 

called the director n. The orientational order parameter, in nematic phase, is basically used to 

describe the degree to which the liquid crystal molecules are oriented along that director. It can 

be described by averaged second order Legendre polynomial and is denoted by  

                                                          )1cos3(
2

1 2  S                                                    (2.1) 

where  2cos  indicates a thermal average of all the molecules, θ being the angle between 

each molecule and the director. In crystalline state the molecules are perfectly oriented along the 

director and θ = 0 for each molecule, so S=1 for crystalline state. On the other hand in an 

isotropic liquid the molecules are randomly oriented and the thermal average results in S=0. 

Therefore, within liquid crystalline state S can vary between 0 and 1. The higher values of order 

parameters correspond to a more ordered phase, as temperature decreases the molecules becomes 

more ordered. In the absence of an external electric field the most common values of order 

parameters observed are from 0.3 and 0.9. Strictly speaking order parameter in nematic phase is 

described by a traceless symmetric tensor of rank two. In order to identify appropriate order 

parameters of the nematic liquid crystal, it is important to note that it is the probability 

distribution of the orientations of the constituent molecules that undergoes qualitative change due 

to change in the symmetry of the system.  
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 Nematic liquid crystals possess uniaxial symmetry, i.e., in a homogeneous medium a 

rotation around the director does not make a difference. The observed symmetry and structure of 

the nematic liquid has established that a single order parameter will be sufficient to describe the 

structure of the phase. In case of smectic liquid crystals, formation of layered structures 

decreases the symmetry of the medium with respect to the homogeneities of the density, and 

hence such order parameter should be obtained from probability distribution of the molecular 

positions in addition to orientational ordering within a plane. 

 

Maier-Saupe (M-S) Mean Field Theory of Nematic Phase 

 

 Maier-Saupe theory [6,13-16] is a molecular theory that may be considered with the 

behavior of one molecule in the field of other molecules. In nematic phase the individual 

molecule is affected by the anisotropic part of the dispersion interaction energy due to other 

neighboring molecules. Each molecule is assumed to be in an average orienting field due to its 

environment. A macroscopic sample contains a huge number of molecules and it is impossible to 

account for all possible interactions between them. W. Maier and A. Saupe [6] used the concept 

of orientational order in the nematic phase and approximated the electrostatic interaction by the 

first term of its multipole expansion. They considered that as far as long range nematic order is 

concerned, the influence of the permanent dipoles can be neglected and only the induced dipole-

dipole interactions need to be considered. They also considered that for a given molecule the 

distribution of the centers of mass of the remaining molecules may be assumed to be spherically 

symmetric and the molecules are rotationally symmetric with respect to their long molecular 

axes. 

 Thus Maier-Saupe theory is based on the concept of an average potential which is 

employed to all molecules since every molecule is embedded in a sea of many other molecules, 

the idea utilized in a thermodynamic system called mean-field theory. The degree of alignment 

of the molecules with respect to the director n is described by an orientational order parameter 

given by (2.1).  

 It is noted that the potential energy corresponding to the alignment of the molecules is 

minimum when they are parallel to the director and maximum when they are perpendicular to the 
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director. The single molecule potential energy Vi should, therefore, be proportional to the function of 

cos2θ and the degree of order < P2 > and can be represented as 

 

)(cos)(cos)(cos 22  PPVi   

                                                     )(coscos)(cos 22  PPvVi                                             (2.2) 

                                              i.e., )(cos)(cos)(cos 222
 PP

V

A
V

M

i                                     (2.3) 

 

where v is a factor represents the strength of intermolecular interaction, VM is the molar volume 

of the sample and A is taken to be a constant independent of pressure, volume and temperature. 

 Humphries, James and Luckhurst [17] developed a more comprehensive concept by 

including higher order terms in the mean field potential for cylindrically symmetric molecules. 

Thus potential energy V was taken as 

 

    
evenL

LLLii cosPcosPVcosV  )(                 (L0) 

 

where PL(cos θ ) is the Lth order Legendre polynomial. 

 

Orientational Distribution Function and Evaluation of Order Parameters 

 
 

 Once the potential energy of a single molecule in the nematic phase is derived, the 

orientational distribution function [f(cosθ)] which gives the probability of finding a molecule at 

some prescribed angle θ from the director, can be obtained. According to classical statistical 

mechanics the orientational distribution function can be represented as  

 

                                             







 

kT

V
Zf

)(cos
exp)(cos 1 

                                        (2.4) 

 

where k is the Boltzmann constant, T is temperature in absolute scale and Z being the partition 

function for a single molecule.  Z is given by 
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 The order parameter <P2> is the average value of the second order Legendre function for 

a given molecule and can be written as  
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       (2.5) 

This self-consistent equation can be solved numerically to find the temperature dependence of 

the order parameters. Out of several solutions, the equilibrium state is identified by the minimum 

value of free energy. For isotropic liquid <P2>=0, which is the disordered phase. For T < 

0.22284 v/k, equation 2.5 gives two other solutions. At absolute zero the upper branch tends to 

unity which represents nematic phase and the lower branch tends to 
2

1
  at absolute zero 

represents an unstable phase where the molecules attempt to orient themselves perpendicular to 

the director. From T = 0 to T = 0.22019 v/k the nematic phase is stable. Orientational order 

parameter varies from 1 at T=0 to 0.4289 at T=0.22019 v/k. Thus according to Maier-Saupe 

theory the nematic-isotropic transition is first order. 

 Exactly in a similar way one can find higher order orientational order parameter <P4> 

using the 4th order Legendre polynomial in equation (2.5). 

 

McMillan’s Theory of Smectic A Phase 

 
 The theory of smectic A liquid crystals have been investigated by a number of 

investigators. McMillan’s Theory [9] is an extension of the Maier-Saupe mean field model of 

nematics in which an additional order parameter characterizing the 1-D translational periodicity 

of the layered structure is included. Since the smectic A liquid crystals possess both orientational 

and translational order, the molecular distribution function must therefore describe both the 



39 

 

tendency of the molecules to orient along n and to form layers perpendicular to n. Thus the 

distribution function will be a function of both cosθ and z, and the normalised distribution 

function can be written as 

                                 )
2

cos()(cos)cos,( ,
d

nz
PAzf l

evenl n

nl


                                 (2.6)    

              with                                 1)(cos.)cos,(
0

1

1




 ddzzf

d

                                       (2.7) 

 

where d is the layer thickness.  

 The Kobayashi-McMillan (KM) description of the SmAN transition takes into account the 

effect of orientational order and an adhoc orientational interaction was introduced. In this theory 

the molecules are again assumed to be oriented along the z direction but the orientational 

ordering does not have to be ideal. With this concept McMillan developed [9] the theory of 

smectic A liquid crystals by assuming a model potential starting from the Kobayashi [18,19] 

form of potential. For simplicity, neglecting higher order terms, the mean field potential was 

expressed as  

                          





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where,  1cos3
2

1 2 S  is the orientational order parameter, 

           


 )
d

z2
cos(  is the translational order parameter, and 

            )
2

cos()(cos2
d

z
P


  is the mixed order parameter 

and v0 and  are constants characterising the strengths of the anisotropic and isotropic parts of the 

interaction respectively,  is a parameter which depends on the core length and the molecular 

length. The above potential function reduces to MS potential when the two adjustable parameters 

 and  become zero. 

 Here the distribution function can be expressed as  
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where the single molecular partition function Z is given by 
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The various order parameters are, shown to be, given by 
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These self-consistent equations can be solved numerically to find the temperature dependence of 

the three order parameters.  

 Out of several solutions, the equilibrium state is identified by the minimum value of free 

energy. In general we get the following three cases with S,  and: 

 

i)     S  0, no order characteristic of the isotropic liquid phase; 

ii)   0,   0, S  0, orientational order only, the theory reduces to the Maier-Saupe theory 

for the nematic phase; and  

iii)   0,   0, S  0, orientational and translational order characteristic of the smectic A 

phase. 

 

One can also predict the nature of the smectic to nematic phase transition observing McMillan 

ratio (TNA/TNI). If (TNA/TNI ) > 0.87 then the SmA – N transition is of first order and if (TNA/TNI ) 

< 0.87 then it is of the second order. Although the three quantities of equation 2.10 are sufficient 
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to parameterize simple mean field model, a good approximation to the true distribution function 

f(cosθ,z) requires many terms in equation 2.6. 

 

2.2.2 Mesophase Structure: X-Ray Diffraction 
  

 

 X-ray diffraction study provides one of the most definitive ways to determine the 

structure of different liquid crystalline phases. Structural investigations of the mesophases, 

identification of different mesophases and study of various microscopic physical quantities can 

be studied by this method. An X-ray diffraction experiment gives Fourier image of the electron 

density function and analysis of those scattering data yields information about the mutual 

arrangement of the molecules in a particular liquid crystalline phase as well as the specific 

features of the orientational and translational long range order. The details of this technique have 

been reviewed by many authors [20-23].   

 
Consider a basic scattering experimental technique as shown in Figure 2.1. Bragg 

visualized the scattering of X-rays by a crystal in terms of reflections from sets of lattice planes, 

as shown in Figure 2.2. 

  

 
 

Figure 2.1: Typical scattering geometry showing the incident and scattered wave vector 
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For elastic scattering, the magnitude of incident and scattered wave vectors must be 

equal, i.e., |Ks| = |Ki| = 2 / , where  is the wavelength of the incident radiation. The magnitude 

of the scattering wave vector is given by, 

 

Q = Ks – Ki,.       Q = Q= 4sin/, 

 

where 2 is the angle between Ks and Ki.  The scattering of incident radiation by a scattering 

centre at r is described (relative to the initial amplitude) by the scattering amplitude f exp(iQ.r), 

where f is the scattering power of the scattering centre. Generalised to N such scattering centres 

the scattering amplitude can be expressed as   

                                                  
N

1=j

j j ).exp(if)F( rQQ                                            (2.11)                              

 

where rj denotes the position of the jth scattering centre. For a continuous distribution of 

scattering centers characterized by the electron density function (r) one writes 

 

                                                F( ) ( )exp(i . )dQ r Q r r                                      (2.12)  

 

If the integration is carried over all space then F is Fourier transform of the electron density and 

provides the link between the real (r) and the reciprocal (Q) space. 
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Figure 2.2: Typical scattering geometry showing the incident (Ki) and scattered (Ks) wave vector 

              

For the case of isolated atom this assumes the form 

 

f( ) ( )exp(i . )dQ r Q r r  a    

 

which is called the atomic scattering amplitude. For a group of atoms, for which 

 

 ( ) ( )j - j

j=1

N

r r r
 

 

this leads to 

                                              F( ) f ( )exp(i . )j j

j=1

N

Q Q Q r                                    (2.13) 

     

This is almost identical to equation (2.11), but in this case the atoms are considered as extended 

object and the variation of the atomic scattering amplitude with Q has been considered, i.e., the 
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diffraction by a set of atoms may be treated in terms of diffraction by a set of points, provided the 

variation of the atomic scattering amplitude is accounted for. 

 So far only scattering amplitudes have been considered. To get absolute value and hence 

the experimentally relevant intensity, the amplitude of a wave scattered by a single point electron 

must be known. With the help of classical electrodynamics expressing all intensities in terms of 

the scattering intensity of an electron we get expression for intensity 

I(Q) = F(Q)2 

 

For molecular liquids it is convenient to separate the amplitude due to the molecular structure 

from the total scattering amplitude [13]. Accordingly equation 2.11 can be written as  

  

                                     
mk,

kmk km )]-.()exp[i(f)F( RrQQQ                            (2.14) 

 

where rk gives the position of the centre of mass of the molecule ‘k’, and Rkm is the position of 

the atom ‘m’ within that molecule, fkm is the atomic scattering factor of the atom ‘m’ in the 

molecule ‘k’. Using (2.14) the general scattering intensity from a set of molecules is 

 

        )R.(RQ)r.(rQ(Q))(Q)Q(
,,,

, kmlnjk

*

ln

mnlk

mk iexpiexpffI                   (2.15) 

 

where the brackets indicate statistical average over the constituent molecules of the liquid. The 

intensity given in equation 2.15 can be written as 

 

I(Q) = Im(Q) + D(Q) 

 

where Im(Q) is the molecular structure factor and D(Q) is called the interference function which 

are respectively given by 

 

        I f f im km kn
*

kn km
m, nk

Q Q Q Q R R  exp .
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 where rkl = rk – rl  

 

The term Im(Q) gives the scattered intensity which would be observed from a random 

distribution of identical molecules. D(Q) is the term containing information about correlation in 

both positional and orientation of different molecules. The parameters are (i) apparent molecular 

lengths in nematics, (ii) layer thickness in smectics, (iii) average lateral distance between the 

molecules, (iv) correlation lengths, (v) tilt angle, (vi) molecular packing, (vii) orientational 

distribution function, (viii) order parameters P2, P4 ... etc., (ix) bond orientational order 

parameter, (x) layer order parameters  and z2 in Sm-A and (xi) critical exponents. 

 

2.2.3 Identification of Mesophases and Transition Temperatures 

The existence of a liquid crystalline phase can be established by visual inspection of the 

compound while it is heated. The mesophase is distinguished from the isotropic liquid by its 

turbid appearance and from the crystalline solid by its flow properties. A liquid crystal may 

possess a variety of mesophases which is impossible to identify only by visual inspection. To 

study a liquid crystal it is very important to identify its phase behavior and the transition 

temperatures of each phase. In order to identify the liquid crystal phases and to determine the 

corresponding transition temperatures, several techniques can be used. We have used three 

techniques viz. (1) Optical polarization microscopy (OPM), (2) Differential scanning calorimetry 

(DSC), (3) X-ray diffraction method, which is described in subsequent sections. Other techniques 

used to find the nature of a mesophase include neutron scattering [24], nuclear magnetic 

resonance (NMR) [24-26], IR, Raman, UV-Visible spectroscopic studies  [27], Fabry-Perot 

Etalon method [28] etc.  
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Optical Polarization Microscopy (OPM) 

 The polarizing microscope (Figure 2.3) is a classical and very useful tool for the 

investigation of liquid crystalline phases. In an optical microscope one looks at the object image 

of a thin mesomorphic layer (thickness ~ 10-20 m) between two glass plates under polarised 

light. The patterns so observed through the microscope are called textures which are due almost 

entirely to the defect structure that occurs in the long-range molecular order of the liquid crystals. 

Depending on the boundary conditions and the type of phase, specific textures are observed, that 

provide a means of classifying the different phases. The temperature of the liquid crystalline 

material is controlled usually between room temperature and 300oC by inserting the glass slide in 

a hot stage and placed between the polarisers which are crossed at 90o to each other. In isotropic 

phase the field of view appears dark, but beautiful texture appears if the material form liquid 

crystal phase on cooling. Observed texture type depends on the alignment of the sample viz., 

whether homeotropic or homogeneous (planar) and the involved phase structure. 

 

Figure 2.3: Polarizing microscope  

 Usually texture changes occur at the transitions between the various phases. A number 

useful books with photographs of typical textures and explanations of their origins have been 

published by Demus and Richter (1978) [29], I. Dierking [30], Slaney et al.[31] and Bouligand 

[32]. The identification of the mesophases by this technique is often difficult because similar 

textures might be exhibited by different phases or sometimes very subtle change in textures occur 
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at transitions and hence requires the support of other techniques to finalize the phase type 

present. 

Differential Scanning Calorimetry (DSC) 

 Differential scanning calorimetry is the modern calorimetric method which is now very 

well-established tool for studying mesomorphic systems. The process reveals the transition 

temperatures of different phases by measuring the enthalpy change associated with a transition. 

The level of enthalpy change provides some indication of the types of phase involved. When a 

material melts, a change of state occurs from solid to liquid and this melting process requires 

energy (endothermic) from the surroundings. Converse is also true. Crystalline solid to liquid 

crystalline phase transition involves high enthalpy change (~30-40 kJmol-1). But transition 

between two mesophases and mesophase to isotropic liquid transition are accompanied by much 

smaller enthalpy changes (~1-2 kJmol-1). Mettler FP82 hot stage and FP84 thermosystem were 

used for texture and DSC studies. The DSC measurement setup is shown in Figure 2.4. A 

drawback of scanning calorimetric method is that the latent heat and the pretransitional increase 

in the specific heat near a phase transition are lumped together into one peak. In order to 

establish the nature of a phase transition the true latent heat must be measured. This can be done 

by adiabatic calorimetry, which is much more time consuming. 

 

 

Figure 2.4: Experimental setup for DSC measurement 
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Experimental Techniques for X-ray Diffraction Studies and Method of Data 

Analysis 

The basic experimental arrangement used for X-ray diffraction studies is shown in Figure 

2.5 and similar experimental setup was designed and fabricated in our laboratory earlier [33,34], 

which I have used for the measurements.  

 

 

Figure 2.5: X-ray diffraction experimental setup and diffraction photographs 

 
 

The x-ray diffraction photographs are taken using nickel filtered CuK radiation, in a flat plate 

camera. By capillary action the sample is filled in a thin walled (~0.05 mm) Lindemann glass 

capillary of 1 mm diameter and is aligned by slow cooling from the isotropic phase to the desired 

temperature. X-ray photographs were taken at different temperatures by using a temperature 

controller, Indotherm 401- (India) within an accuracy of 0.50C and by the Eurotherm controller 

(2216e) with an accuracy ±0.1°C. 

Various types of diffraction patterns are obtained depending upon the type of the 

mesophases [34-43]. For the discussion of the experimental results for X-ray scattering by 

nematic and smectic liquid crystals, typical diffraction photographs of magnetically oriented 

samples are shown in Figure 2.6. 
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Figure 2.6: Schematic representation of the X-ray diffraction pattern of an oriented (a) nematic 

and (b) smectic A phase. 

 

 

The diffraction pattern of nematic phase consists of a combination of meridional and equatorial 

maxima. However, an un-oriented nematic sample shows diffraction pattern as obtained from an 

isotropic liquid viz. two uniform halo, at low and high angles. This is due to the fact that, 

generally an un-oriented liquid crystal  sample  consists  of a  large  number  of  domains  and  

within  each  domain the molecules are aligned in a preferred direction, but there is no preferred 

direction for the sample as a whole and naturally, X-ray diffraction pattern will have a symmetry 

of revolution around the direction of X-ray beam. For an aligned nematic sample the outer 

circular halo is splitted into two crescents having maxima along the equatorial direction ( to n ) 

which are formed due to intermolecular scattering and the corresponding Bragg’s angle is a 

measure of the lateral intermolecular distance (D). Generally the intermolecular distance (D) lie 

between 3.5Å to 6.5Å, lateral dimensions of a typical mesogenic molecule and the average 

intermolecular distance is found to be around 5Å. Along the meridional direction (|| to n), the 

inner halo also has two crescents with maxima at much lower angle. This diffraction peak must 

arise from correlations in the molecular arrangement along the director n. So by measuring the 

corresponding diffraction angles one gets the value of the apparent molecular length (l) in the 

nematic phase and layer spacing in smectic phase. In case of smectic phases the inner pattern 

appears as sharp spots; sometimes second order spots are also found, translational order 

parameter can also be determined in such cases. 
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 The average lateral distance between the neighboring molecules (D) was calculated from 

the x-ray diffraction photographs by using the Bragg formula 

 

                                                        2D sinθ = k                                              (2.18) 

 

where θ is the Bragg angle for the equatorial diffraction,  is the wavelength of the x-ray beam 

and ‘k’ is a constant which comes from the cylindrical symmetry of the system. For perfectly 

ordered state k =1.117 as given by de Vries [44,45]. As the variation of ‘k’ with <P2> is very 

small, the value of k = 1.117 is used for all our calculations. The apparent molecular length or the 

layer thickness ‘d’ is calculated from the equation  

                                         

                                                         2d sin θ =                        (2.19) 

 

where θ is the Bragg angle for the meridional diffraction crescents for an aligned sample and 

inner halo for unaligned sample. 

 For the determination of the actual distance between the sample and the film, x-ray 

diffraction photograph of aluminium powder was taken. The Bragg’s angle θ′ corresponding to 

the (hkl) reflecting plane, is determined by using [46] 

 

                                                                    222 lkh
a2

sin 


 /                                                 (2.20)  

 

where a is the lattice constant. Measuring the diameter of the diffraction rings corresponding to 

(111) and (222) reflections, the actual distance between the sample and the film was found out 

from the relation 

                                                
2H

R
2tan /  

distance film  tosample

ring  theof radius                                                 (2.21) 

Using this sample to film distance the Bragg angle () for the peak corresponding to the 

parameters l,d and D of the liquid crystal sample were calculated using the above relation (2.21). 
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 For the above analysis the diffraction photographs were first digitized in 24 bit RGB 

colour format by using HP scan jet 2200c scanner. The digitized images were analyzed using the 

colour values of the pixels to obtain the radii of the inner and outer diffraction rings and from 

that the apparent molecular length (l) or the smectic layer spacing (d) and the average 

intermolecular spacing (D) were obtained. Two softwares Adobe Photoshop 7.0 and origin 7.0 

were used for analyzing the digital images. The uncertainties in calculated l and D values are ± 

0.1, ± 0.02 Å respectively. 

  

Synchrotron X-ray Diffraction 

 In Synchrotron X-Ray Powder Diffraction technique, X-rays are generated by a 

synchrotron facility and it is an extremely powerful source of X-rays. A synchrotron uses 

powerful magnets and radio frequency waves to accelerate charged particles. The powerful 

magnet and radio frequency waves accelerate negatively charged electron along a stainless steel 

tube, where they reach high speed.  As the magnets are turned on and off, electrons get pulled 

along the ring of tubes. Since the fast-moving electrons emit a continuous spectrum of light, with 

various wavelengths and strength, scientists can pick whatever wavelength they need for their 

experiments e.g. visible light, ultraviolet light or X-rays (soft or hard x-rays). The X-rays thus 

produced are at least 5 orders of magnitude more intense than the best X-ray laboratory sources. 

For studying the structures of different phases in the chiral compound (MPOBC), synchrotron 

radiation facility, PETRA III beamline at P07 Physics Hutch station at DESY, Hamburg was 

used (Figure 2.7). A sample was taken in a Lindemann glass capillary of diameter 1.0 mm and 

very slowly cooled down from isotropic phase to the desired temperature to get an aligned 

sample. 50 images of exposure time 0.2 s were grabbed and averaged to get one diffraction 

image and five such images were collected at a particular temperature. All the physical 

parameters were averaged over these five image data. A Perkin Elmer 2D detector of pixel size 

200 × 200 μm and total size 400 × 400 mm was used for image grabbing which was placed 3.3m 

away from the sample. QXRD program for PE Area Detectors (G Jennings, version 0.9.8, 64 bit) 

was used for data acquisition and also for analyzing the images. Images were integrated using a 

step size of 0.002 to get intensity versus wave vector (Q) distribution. 
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Figure 2.7: Synchrotron X-ray diffraction set up at DESY, Hamburg, Germany 

 

2.2.4 Optical Birefringence 

 
 Liquid crystals are found to be birefringent due to their anisotropic nature i.e., they 

demonstrate double refraction. This is because of light polarized parallel to the director has a 

different index of refraction than light polarized perpendicular to the director. So, a uniaxial 

(liquid) crystal has two principal refractive indices, no and ne. no is called the “ordinary” 

refractive index, associated with a light wave where the electric vector vibrates perpendicular to 

the optical axis. The “extraordinary” index ne is observed for a linearly polarized light wave 

where the electric vector is parallel to the optical axis. The optical anisotropy or birefringence of 

a material is characterized by the difference (Δn = ne‐no) in the indices of refraction for the 

ordinary and extraordinary rays, which depends on the wavelength of the light used and the 

thermal state of the compounds [47]. Birefringence is a property usually associated with 

transparent crystals with a non-centrosymmetrical lattice structure. Physical origin of the optical 

properties of liquid crystal has been detailed by Dunmur [48]. 

Optical birefringence (Δn) is responsible for the appearance of interference colors in 

LCDs operating with plane-polarized light [49]. Interference between the extraordinary ray and 

the ordinary ray, gives rise to the colored appearance of these thin films. For a wave at normal 

incidence, the phase difference in radians between the o-ray and e-rays caused by traversing a 

javascript:Glossary('anisotropic',400,175)
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birefringent film of thickness d and birefringence Δn is referred to as the optical retardation δ 

given by 






nd


2
 

where λ is the wavelength of light in vacuum.  

Measurement of Ordinary and Extraordinary Refractive Indices 

 The ordinary and extraordinary refractive indices (no, ne) have been measured by 

constructing a thin prism in our laboratory. Geometry of the experimental set up is shown in 

Figure 2.8. To construct the prism a set of glass plates were taken and washed by concentrated 

nitric acid and clean water. After drying, plates were washed with acetone to clean oily 

substances present. The plates were then treated with a dilute (~1% aquas) solution of polyvinyl 

alcohol (PVA) and then dried and rubbed several times on a tissue paper in the same direction to 

get a preferential direction on the substrates. A prism was then formed, by keeping the treated 

surfaces inside and the rubbing directions parallel to the refracting edge of the prism. The sides 

of the prism were then sealed by using a high temperature adhesive and it was baked for several 

hours. The angles of the prisms were kept less than 1º by using a thin glass spacer. The details of 

the preparation of the prism are already reported by Zeminder et al. [50]. The prism was filled 

with sample in isotropic phase from its top open side such that no air bubble was trapped inside. 

The system was heated to isotropic phase and cooled down slowly to the desired temperature so 

that liquid crystalline molecules were perfectly aligned with its optical axis parallel to the 

refracting edge of the prism. The prism was then placed inside a laboratory made thermostatic 

brass oven with a circular aperture. The temperature of the oven was controlled by a temperature 

controller (Eurotherm model 2216e with an accuracy of ±0.1oC). The refractive indices were 

measured by using a Laser source (Jain Lasertech Pvt. Ltd., India), a collimator and a transparent 

scale as screen placed at a large distance. By measuring the deviation produced by the ordinary 

ray and extraordinary ray, the corresponding refractive indices were measured. The ordinary 

refractive index (no) is temperature dependent, increasing slightly over the nematic range and 

then rapidly increases as the temperature nears the phase transition. Conversely, the 

extraordinary refractive index (ne) is particularly dependent on the molecular structure and can 
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vary in the visible region from 1.5 for saturated compounds up to 2.0 for highly conjugated 

compounds. At temperatures above the clearing point (Tc), liquid crystals become isotropic 

liquids and birefringence goes to zero as ne and no coincide at their mean. Measured refractive 

indices were accurate within ± 0.001. 

 

Figure 2.8: Schematic arrangement for the measurement of refractive indices 

 

Measurement of Density 

 The density of the liquid crystalline samples were measured at different temperatures 

during both heating and cooling using a borosillicate glass tube dilatometer of capillary type, a 

travelling microscope and temperature controller. A weighed sample of the liquid crystal was 

introduced inside the dilatometer in isotropic state and was placed in a thermostated silica oil 

bath. The bulb of the dilatometer was filled with mercury. Sufficient time was allowed to reach 

the equilibrium at the desired temperature before taking each reading. The length of the liquid 

crystal column was measured at different temperatures with a travelling microscope .The 

densities were calculated after correction of glass expansion. Average value of the data obtained 

during heating and cooling are presented which are accurate within 0.1%. 
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Calculation of Optical Polarizabilities from Refractive Index and Density 

Measurements 

 The molecular polarizability () of the molecules and order parameter control the optical 

anisotropy. The linear molecules having a long and rigid core exhibit high order parameter. 

Molecules that consist of high polarizability units (having π and delocalized electrons) such as 

aromatic rings in the core, tolane linking groups and terminal cyano groups have a high 

birefringence. Conversely, a low birefringence is exhibited by molecules that are deficient in 

these types of groups and usually consist of alicyclic groups and terminal alkyl chains. The 

molecular polarizability ‘’ can be determined if the value of internal field, i.e., the average field 

acting on an individual molecule is known. Lorenz-Lorentz field, commonly known internal field 

valid for isotropic phase, is not applicable for mesogenic systems. Therefore, more realistic 

internal field, proposed by the Vuks’ [51] and Neugebauer’s [52] are usually applied in liquid 

crystalline systems. 

Vuks’ Method 

 Considering the internal field independent of molecular interaction, Vuks’ derived the 

relations for polarizabilities associated with anisotropic molecules. In this case the effective 

molecular polarizabilities o and e, perpendicular and parallel to the direction of molecular 

axes, are related to no and ne by the following equations  
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where N is the number of molecules per unit volume obtained from measured density and n is 

the mean refractive index and is given by      
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Neugebauer’s Method   

 In this method internal field is calculated by representing the polarizability of a 

molecule by anisotropic point polarizability. Here the Lorenz-Lorentz equation for an isotropic 

system is extended to an anisotropic system. The relevant relations derived by Neugebauer are 

as follows: 
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where N is the number of molecules per unit volume and e and o are the respective internal 

field constants for extraordinary and ordinary rays. The equations necessary for calculating 

polarisabilities o and e obtained from the above equations are:   
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Principal polarizabilities can be obtained by solving the above two equations.  

Calculation of Orientational Order Parameter from Polarizability 

 The degree of order of the mesogenic molecule has been determined using 

polarizability values obtained from the above two methods. The principal polarizabilities, 

parallel and perpendicular to the direction of molecular axes, are related to the orientational 

order parameter [53-55] as  

S
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So,                                                        
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where     2 3o e , is the mean polarizability and =e-o is the polarizability 

anisotropy. Here, S is the macroscopic order parameter and || and  are the principal 

polarizabilities parallel and perpendicular to the long molecular axis in the perfectly ordered 

crystalline state where S=1. By using Haller’s extrapolation procedure [56] one can get the 

values of (||-) in the solid state. In this method a graph is drawn by plotting log (e – o) 

against log (Tc – T) which should be a straight line. This line is extrapolated up to log (Tc), 

giving the value of (e - o)T=0 = (|| - ), Tc being the N-I transition temperature. 

2.2.5 Dielectric Anisotropy 

 A material that does not conduct electricity but can essentially store the electric charges 

by means of polarization is called dielectric. The most common liquid crystal molecules are rod 

like and are axially symmetric about its long axis or the director n. The dielectric constant along 

the long molecular axis (||) and perpendicular axis () are different. The difference between 

this two is called the dielectric anisotropy (Δ = || - ). Dielectric anisotropy is very important 

parameter because the threshold voltage (Vth) and other operational parameters of liquid crystal 

displays depend on the anisotropy of the permittivities [57]. The value of Δε may be positive or 

negative depending on the angle between the permanent dipole moment and the molecular axis. 

The larger the dielectric anisotropy value is for a liquid crystal molecule, the weaker the electric 

field must be to reorient the dipole moment along the field direction. The dielectric anisotropy of 

liquid crystals is inversely proportional to temperature. As the temperature reaches the clearing 

point of a liquid crystal, the dielectric anisotropy abruptly approaches zero. Dielectric 

permittivities of nematic liquid crystals have extensively been studied both experimentally and 

theoretically [58-61].  

 

Maier and Meier Theory of Dielectrics for Liquid Crystals 

 W. Maier and G. Meier [62] extended the Onsager theory [63] of isotropic dielectrics to 

nematics to correlate the dielectric properties to molecular parameters. According to Maier and 
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Meier theory, nematics are composed of molecules with polarizabilities ||,  and permanent 

dipole moment  having components || = cosθ,  = sinθ  along and perpendicular to 

molecular long axis. The molecule is considered to be in a spherical cavity surrounded by a 

continuum with macroscopic properties of the dielectric. The dielectric permittivities   and  

along and perpendicular to the molecular long axis in a static field are then given by 
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For isotropic phase (order parameter S=0), the permittivity becomes 
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where N = the particle density = NA/M; =mass density, NA=Avogadro No., M=Molecular 

weight and  = mean polarizability given by 
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 = polarizability anisotropy =  - ; h and F are respectively the cavity field factor and the 

reaction field factor and are given by 
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The above equation 2.30 and 2.31 for  and  are used to find effective dipole moment of the 

molecules in nematic phase and its orientation with molecular long axis. Alternatively, one may 

find the order parameter S when all remaining quantities are known. Maier-Maier’s equations 

satisfactorily explain many essential features of the permittivity of liquid crystals consisting of 

polar molecules. 

Dipole-Dipole Correlation Factor 

 The Onsager–Kirkwood– Fröhlich (OKF) equation occupies a central place in the study 

of liquid crystals because it allows the estimation of dipole-dipole correlation factor (g) from 

measurable physical properties and thus to probe into the molecular organization of liquid 

crystals and their mixtures. In a liquid crystal constituted by polar molecules, the correlation 

factor expresses the deviation from randomness of the orientation of a dipole with respect to its 

neighbours. The ensemble averages of the parallel () and perpendicular () components of the 

molecular dipole moments are calculated following the procedure of Bata and Buka [64]. The 

dipole-dipole correlation factor (g) can be expressed as 
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where the subscript  refers to axes  and  to the nematic director.  

Although the short-range dipole-dipole interactions are not considered in Maier-Meier 

theory [63], the Kirkwood-Fröhlich theory for isotropic liquid dielectrics [60,65] provides a 

formula in which these short-range effects are considered. Bordewijk and de Jeu [66-69] 

extended this idea to anisotropic media with uniaxial symmetry and used it to find dipole-dipole 
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correlation factor for nematic liquid crystals. Their model was based on experimentally observed 

proportionality between the square of birefringence (n2) and the product of the density () and 

order parameter (S). Bata and Buka [64] later obtained the following relation between the low 

and high frequency dielectric permittivity components and the molecular parameters as 
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Here 
 is a factor which depends on the dielectric anisotropy of the system. For positive 

dielectric anisotropy [67] one has 
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For negative dielectric anisotropy 
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The average components of the effective dipole moment,  2
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 , appearing in 

equation (2.37) are evaluated as 
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where the cavity field factor was calculated taking into account the following shape factors ( sh

 ) 

of ellipsoidal molecules or prolate spheroid molecules with semi-long axis a and semi-short axis 

b.  
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Taking apparent molecular length (lap) obtained from X-ray study as the value of 2a, b is 

calculated using the relation 
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on the assumption that the volume occupied by a molecule in the liquid crystalline phase is equal 

to the geometrical volume of the molecule [69]. They also used   1.05 n2 to take into account 

the atomic polarization factor. Since, according to Kirkwood and Fröhlich theory, the effective 

value of molecular dipole moment is given by: 
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So, with the help of equation (2.37) we can rewrite equation (2.49) as 
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So that 
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Similarly for the perpendicular component we have:  
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and 
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where the factor 2 arises due to rotational symmetry. Equations 2.51 and 2.53 were used to 

calculate g and g. Further for a uniaxial liquid crystals de Jeu et al. [70,71] obtained the 

following equation for short range order parameter (T) 
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2.2.6 Frequency Domain Dielectric Spectroscopy  

 Dielectric spectroscopy occupies an important role among numerous modern methods 

used for physical and chemical analysis of materials. By studying dielectric spectroscopy one can 

investigate the relaxation processes of complex systems over an extremely wide range of 

characteristic times. I have already discussed about the dielectric permittivity in static fields. 

When the field is removed the orientational polarization decays exponentially with a 

characteristic time  called relaxation time. On reversing the field a definite time interval is 

required for reorientation of the permanent dipoles. In alternating fields this leads to a time lag 

between the average orientation of the dipole moments and fields. At much higher frequencies 

the orientation polarization can no longer follow the variation of the field and response of 

materials to alternating fields is characterized by a complex dielectric permittivity and is 

expressed as 

                                                               i*                                          (2.55) 

where  / () is the real part of dielectric permittivity, which is related to the stored energy within 

the medium, and // () is the imaginary part of the permittivity and is related to the dissipation 

(or loss) of energy within the medium. 

Debye and Cole-Cole Model  

According to Debye, complex dielectric permittivity can be described in terms of a single 

relaxation time  as follows:  
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This is known as Debye equation [72]. o and ∞ are the low and high frequency permittivities,  

is the angular frequency of the applied field and τ is the dielectric relaxation time related to the 

critical frequency (fc) by the formula 
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Debye equation (2.56) can be separated into real and imaginary parts: 
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where the first equation (2.58) describes the dispersion process and the second equation (2.59) 

describes the absorption process. '' reaches its maximum at critical frequency:  
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  = o - ∞, is called the dielectric increment or strength. If one plots both the components of 

the dielectric permittivity versus frequency on the logarithmic scale one obtains typical dielectric 

spectrum as shown in the Figure 2.9. The curve which relates the frequency dependence of ' is 

known as the dispersion curve whereas that of frequency dependence of '' is called the 

absorption curve. The frequency at which '' reaches its maximum is known as critical frequency 

(or relaxation frequency). Plot of '' against ' is known as Cole-Cole plot which for a Debye type 

liquid is a semi-circle.  

 

 

Figure 2.9: A typical dielectric sprectra for a Debye type liquid crystal 

  

In case of paraelectric, ferroelectric, ferrielectric and antiferroelectric liquid crystals, 

dielectric spectroscopy detects stochastic reorientation of molecular dipole moments and 
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collective fluctuations of spontaneous polarization [72]. The dielectric spectrum for liquids and 

solid rotator phases of organic polar compounds [73-75] usually shows Debye-type behaviour. 

However, some systems composed of flexible molecules [74,76-78], some disordered solid 

phases [79-81] and achiral and chiral liquid crystals [72,82] that exhibit broad dielectric spectra 

cannot be described by Debye equation. In order to describe those systems, which do not relax 

with a single relaxation time, Cole and Cole [83] have extended the Debye equation by 

introducing the relaxation distribution parameter  as follows: 
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which can be separated into two components: 

 

                                   
 

     


























12

0

1

0

1

0

2

1
sin21

2

1
sin1

                        (2.62)  

 

                                 
 

      012

0

1

0

1

0

2

1
sin21

2

1
cos1


























 




                      (2.63)  

 

Distribution parameter  varies from 0 to 1 which is responsible for symmetric distribution of the 

relaxation times.  = o - ∞ is the dielectric strength, 0 is in this case the most probable 

relaxation time related to the critical frequency (oo=1). o = 8.85 pFm-1 is the dielectric 

permittivity of the free space and  is the conductivity. Here conductivity is related to the motion 

of charge carriers and is added to classical Cole-Cole function. The maximum value of ''() 

depends on the parameter  according to the formula:  
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For small values of the  parameter ( < 0.1) above equation takes the form: 
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From the above relation it is clear that for the non-Debye dielectric relaxation processes the 

absorption peak is lower and broader as shown in the Figure 2.10. A more general function was 

proposed by Havriliak and Negami [74] which is more convenient to describe the relaxation of 

some disordered solids and also FLCs as well as AFLCs [84-90].  
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Figure 2.10: Cole-Cole plot for a Debye-type spectrum 

 

Different Relaxation Processes in Chiral and Achiral Liquid Crystal Phases 

 There are basically two different types of relaxation processes in both chiral and achiral 

liquid crtstalline phase; viz. non-collective (molecular) and collective process. However, 

detection of the collective processes in the achiral phases is beyond the scope of dielectric 

relaxation measurement technique.  
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Non-Collective Processes 

 Non-collective processes can be observed in achiral and chiral systems i.e, molecules 

possessing nematic and smectic phases or possessing chiral smectic phases. There are four non-

collective relaxation modes viz. 

I] Molecular rotation around short axis. 

II] Molecular rotation around long axis. 

III] Intramolecular rotation around single bond. 

IV] Motions of electrons relative to their nuclei. 

 In order to discuss the first two processes in nematic phase let us consider a molecule 

with a permanent dipole moment  which makes an angle β with the long axis of a molecule 

shown in Figure 2.11. For nematic liquid crystal the order parameter always less than one, 

therefore each of the components of dipole moment, longitudinal and transverse to the long axis 

(μl and μt), should have a non zero projection both parallel and perpendicular to the director n, 

resulting in four relaxations, two in each measurement geometry, E  n and E  n. But because 

of weak intensities of two absorptions related to μl and μt, we are left with two fundamental and 

characteristic absorptions of non-collective types in the chiral and achiral liquid crystal phases. 

The first one is observed in the homeotropic orientation and this molecular rotation is hindered 

by the nematic potential. The characteristic frequency is observed in the kHz and low MHz 

regime. The second process is observed in planar orientation and is not affected by the nematic 

potential and its characteristic frequency is observed in the high MHz and GHz regime as in 

normal liquids. 
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Figure 2.11: The molecular aspect of different dielectric absorption peaks 

Collective Processes 

 In case of chiral smectic phases there are two additional collective absorption processes 

connected with the director fluctuation. These are 

I] Soft mode (observed in SmA* phase and near SmC*- SmA* transition) 

II] Goldstone mode (observed in SmC* phase) 

The Goldstone mode (GM) and the soft mode (SM), has been examined by dielectric 

relaxation spectroscopy [91-94]. 

The Soft Mode 

 Soft mode relaxation arises due to the tilt angle fluctuation of the director. In SmA phase 

the molecules are aligned in the direction parallel to the layer normal and the stability of the 

structure is maintained by elastic constant. However due to thermal energy there may be some 

local instantaneous fluctuation of the tilt angle. Now if SmA phase is cooled down to SmA*-

SmC* transition, the elastic constant controlling the tilt fluctuation gets soft. Thus the fluctuation 

amplitude increases drastically and consequently the phase will lose its stability and the 
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molecules fluctuate collectively like a group of drunken people. When a weak electric field is 

applied in a direction perpendicular to the director it can easily perturb the tilt fluctuation 

depending on how near the system is to the transition temperature. Thus the permittivity diverges 

and the frequency of tilt fluctuation falls to zero when the temperature approaches the transition 

temperature. In case of non-chiral SmA phase the amount of induced dipole moment due to the 

applied electric field is too small to be detected but for chiral SmA*, the chirality enhances the 

value of induced dipole moment due to the electroclinic effect which permits the soft mode study 

by dielectric measurement. In case of SmC* phase there exist a spontaneous tilt angle which 

grows from zero at transition and increases with decreasing temperature. Here also the molecules 

fluctuate collectively around the equilibrium tilt angle. Thus soft mode is present both in SmC 

and SmA phase. The characteristic frequency corresponding to soft mode is observed usually in 

the kHz regime. 

 

Figure 2.12: Molecular arrangement of tilt angle fluctuation and phase fluctuation  

The Goldstone Mode 

 Beside tilt fluctuation, chiral SmC* phase possess phase fluctuation i.e, the molecules 

collectively oscillate around the smectic cone which gives rise to another collective relaxation, 

called the goldstone mode or phasor mode. The smectic C* phase has helical structure and 

molecular tilt. The director of smectic C* phase makes azimuthal angle φ with the smectic layer 

which changes from layer to layer resulting in a helical structure with helix axis parallel to the 
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smectic layer normal. Now if by thermal excitation the director in a certain layer fluctuate then 

that fluctuation will propagate along the helix axis which actually generates the phase 

fluctuation. The characteristic frequency corresponding to goldstone mode relaxation is observed 

normally in the frequency range between 10 Hz to 1 kHz. The GM dielectric increment (∆εG) is 

usually large compared to the SM increment (∆εS), so it is difficult to study the SM mode 

properties in the SmC* phase. Yet, this problem can be overcome by applying a DC bias field to 

the SmC* phase, the field should be strong enough to unwind the helical arrangement of the 

polarization vector. The SM can be studied almost separately by suppressing GM in this 

situation. 

Dielectric Measurement Technique 

 To measure dielectric constant of a liquid crystalline sample, the ratio of capacitances of 

the filled and empty cell is to be found. For measuring the capacitances we employed an 

impedance analyzer (HP 4192A / HIOKI 3532-50) equipped with data acquisition system 

through RS232 interface. The temperature was controlled with a mettler hot stage (Mettler 

Toledo FP90) with an accuracy of ±0.1oC. The dielectric spectra were measured over the 

frequency range from 40 Hz to 5 MHz. Commercial cells (EHC/AWAT), of thickness few μm, 

were used in the form of a parallel plate capacitors made of indium tin oxide (ITO) coated glass 

plates which were pre-rubbed by polymer for achieving homogeneous (HG) alignment of the 

molecules. Cells were filled by capillary action with samples in isotropic state and cooled down 

to desired temperature very slowly to get homogenously aligned sample.  By applying sufficient 

DC bias field homeotropic (HT) alignment of the molecules were achieved in the same cell. HG 

cell gives the  component when the measuring electric field was perpendicular to the nematic 

director and HT cell gives the || component, measuring field being parallel to the director. On the 

other hand, custom built gold cells of thickness few μm and effective area 1.3 x 0.7 sq. cm were 

used for frequency dependent complex dielectric permittivity measurements. By AC capacitance 

bridge technique [95,96], the real and imaginary parts of the complex dielectric permittivity are 

obtained as a function of frequency at temperatures of interest. The experimental setup for 

dielectric permittivity measurement is shown in Figure 2.13. 
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Figure 2.13: Schematic arrangement for the measurement of dielectric permittivity  

 

2.2.7 Elastic Constants 

  The performances of liquid crystal display devices depend on the elastic properties of the 

liquid crystal. Liquid crystal molecules exhibit an elastic restoring force due to which if a system 

experiences an external force that perturbs it from an equilibrium position a restoring torque 

returns the system to its initial state. If the liquid crystal is deformed by electrical or magnetic 

forces so as to result in a splay deformation, a reactive elastic force will tend to restore the initial 

configuration and the reactive forces is described by splay elastic constant (K11). The same 

phenomenon will occur for a twist deformation as well as for a bend deformation and the 

respective constants are called twist elastic constant (K22) and bend elastic constant (K33). The 

three types of director deformations are shown in Figure 2.14. As a liquid crystal medium prefers 

a uniform director distribution, a variation of the director in space induces an increase of the free 

energy. According to the elastic theory for liquid crystals, the distortion energy can be expressed 

as 
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This equation is known as the Oseen-Frank distortion energy [97]. For most liquid crystal 

compounds, the three elastic constants have the following relationship: K33>K11>K22. 
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Figure 2.14: Molecular configuration of Splay, Twist and Bend elastic constants 

 

Determination of Elastic Constants: Freedericksz Transition 

 The elastic constants are measured by the Freédericksz transition technique [98] where, 

an external electric or magnetic field is applied to deform the thin layer of surface aligned 

nematic liquid crystal having a uniform director (n) pattern. For a nematic liquid crystal with 

positive dielectric anisotropy (Δε > 0), the determination of the elastic constants by threshold 

measurements requires a liquid-crystal cell made of two conducting glass plates with the director 

oriented parallel to the surface before the application of the field. Below the critical field the 

molecules remains surface aligned and above it the molecules align along the direction of the 

field. This phenomenon is known as Freedericksz transition. From the geometry of arrangement, 

the splay, twist and bend elastic constants can be determined from Freedericksz transition in a 

magnetic field. After application of an external electric field the dielectric energy is decreased by 

a tilting of the director and the total bulk free energy per unit area of the cell is given by [99] 
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where Φ(z) is the tilt angle which is a function of the coordinate z along the cell thickness L. The 

first and second terms in the integrand are the elastic and dielectric energy densities and E and D 

are the electric and displacement fields respectively. The tilt angle is related to applied voltage V 

by [99] 
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is the Freédericksz threshold voltage, ε0 is the dielectric constant of vacuum. The maximum 

distorted angle at the centre is Φ (L/2) = Φm, where dΦ/dz = 0. For the twisted planar geometry 
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 Thus by measuring Freédericksz threshold voltage and dielectric anisotropy, it is possible 

to find splay elastic constant K11 using equation 2.69. As switching time is inversely related to 

the elastic constant, a smaller value would result in a system that takes a longer amount of time 

to return to its equilibrium state which suggests the proper balance between response time and 

driving voltage is necessary for a better display application.  
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2.2.8 Measurement of Tilt Angle 

 

 Tilt angle is considered as the primary order parameter of ferroelectric SmC* phase 

which reflects the angle between the direction of molecular long axis and the layer normal. There 

are two ways to measure the tilt, one is optical method and another one is x-ray method. In a 

ferroelectric liquid crystal sample, on application of an external field, molecular director is 

switched by an angle 2θ (θ being the tilt angle of the material) in the plane of the substrates in 

SSFLC geometry as discussed in chapter 1. To get the tilt angle θ, first a homogeneously aligned 

FLC cell is mounted on the polarizing microscope. The polarizer and analyzer of the microscope 

are set in a crossed position. An electric field in the form of a square wave of very low frequency 

0.1 Hz is applied to the sample so that molecules in the whole sample are aligned uniformly with 

a tilt θ away from the layer normal. The sample is rotated on a microscope table to get minima in 

optical transmission. When the field is reversed the molecules rotate along the tilt cone so that 

the final tilt becomes -θ from the layer normal. One has to rotate the sample stage until the 

previous minima (normally black) is obtained. The angle by which the microscope table was 

rotated from one minimum position to other minimum will be twice the tilt angle (2θ). One can 

measure it as a function of temperature. 

 Tilt angle can also be determined from X-ray study. To get the tilt angle one has to 

measure the layer spacing (d) by analyzing x-ray photographs and then by using the relation θ = 

cos-1 (d/L), tilt angle can be evaluated, where L is the most extended length of the molecule 

found by geometry optimization. Often layer spacing in smectic A (dA) phase is used instead of 

L. 

 

2.2.9 Spontaneous Polarization 

 

 Ferroelectric liquid crystals possess non-enantiomorphic polar symmetry in their 

structures giving rise to a polarization that exists within a material in the absence of the 

application of an external field which called spontaneous polarization (PS). In ferroelectric liquid 

crystals spontaneous polarization is treated as the secondary order parameter, since it is a result 

of the tilt of the molecules which is called the primary order parameter. The response time or 
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switching time () of an FLC device is the most significant parameter and it is related to the 

spontaneous polarization as given by [100] 

                                                                       
EPS


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sin
                                                      (2.71)    

 

where  is rotational viscosity, θ is tilt angle and E is the applied electric field. Thus to achieve 

faster switching speed,  should be as low as possible. For a portable device of low power 

consumption applied field E as well as viscosity  and tilt angle θ should be low and PS should be 

high. But a high value of PS causes a current flow through the cell, which is undesirable. So a 

moderate level of PS is required for a short switching time. 

 

Measurements of Spontaneous Polarization by Triangular Wave Method 

 

 There are number of methods to measure the magnitude of PS. One of the standard 

methods to know the ferroelectric behaviour is the Tower-Sawyer technique [101]. Other useful 

methods are reverse current method [102,103], reverse field method [104], electric-field 

dependent dielectric constant and pyroelectric method [105]. We have used the reverse current 

method using a triangular wave to calculate the spontaneous polarization (PS). The experimental 

set up for this purpose is shown in Figure 2.15. As depicted in the figure a high resistance R (10, 

100 or 1000 kΩ) is connected in series with the cell and output voltage across the standered 

resistance R is fed to the oscilloscope (Tektronix TDS 2012B). A 10 Hz, 20Vpp triangular signal 

was used from HP 34401A function generator, amplified by F20A Voltage amplifier for the 

purpose.  
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Figure 2.15: Experimental set up to measure the value of PS 

 

 

Current I(t) induced in the ferroelectric LC cell by applying a voltage V(t) can be written 

as a sum of the following three contributions: 
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where Ic is charge accumulation in the capacitor (displacement current), Ip is the polarization 

realignment current and Ii is the ionic current R/ is the effective resistance of the circuit. By 

selecting a suitable value of resistance R one can get suitable overall current profile to subtract 

the ionic and capacitive currents by drawing a baseline. The polarization current peaks appear on 

the oscilloscope due to polarization reversal and the area under the peaks gives direct estimate of 

Ps [106].  
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where R is the resistance used to record the V-t curve and A is the effective area of the cell used. 

Area under the curve was determined from the stored image after creating appropriate base line 

using Origin 7 software. 
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2.2.10 Measurement of Response Time: Electrical method 

 

 Response time is one of the most critical issues for nearly all liquid crystal (LC) devices 

involving dynamic switching. Response time in SSFLC depends on cell thickness, field strength, 

surface anchoring etc. as well as on material parameters like polarization, tilt angle and rotational 

viscosity [107]. Response time contains rise time and decay time. To quantify a display device, 

rise time and decay time is usually defined as intensity change between 10% and 90%. Response 

time can be measured either by monitoring electrical response to an applied square wave 

[108,109] or by using optical method [110]. 

 The response time was studied in a setup similar to that used for spontaneous polarization 

measurement. In this case, instead of a triangular wave, a square wave signal is applied to FLC 

sample in SSFLC geometry and the current response associated with switching process is 

monitored as voltage across a series resistance in storage oscilloscope [109]. Polarization bump 

occurs away on the time scale from square pulse edge of the applied voltage, delay in time is 

caused by the response time of the FLC sample. Thus the time delay on the occurrence of the 

polarization bump from the applied square pulse edge directly gives response time of FLC 

sample.  

 

2.2.11 Rotational Viscosity 

 

 Rotational viscosity (Φ), which is related to rotations of the molecular directors about the 

smectic C* cone, is another important parameters of the SmC* phase and strongly influences the 

switching time between the field-induced states of FLCs. So, rotational viscosity plays a critical 

role to LC dynamics. Both the rise time and decay time are linearly proportional to Φ. Thus, for 

most LC devices, low rotational viscosity material is favorable as evident from equation 2.71.  
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Measurement of Coefficient of Rotational Viscosity 

The rotational viscosity in Goldstone mode was determined using the following relation 

derived from generalized Landau model [111]: 
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where Goldstone mode dielectric strength (Δε) and relaxation frequency (fC) were obtained from 

dielectric relaxation study and tilt angle (θ) was obtained from optical or X-ray techniques. From 

the molecular standpoint, the rotational viscosity depends on the molecular constituents, 

dimensions, molecular interactions and moment of inertia. 

2.2.12 Theory of Crystal Structure Determination 

Since molecular order in liquid crystals is intermediate between that in liquid and 

crystalline state, molecular conformation and arrangement in the crystalline state often found to 

predetermine the molecular organization in the mesomorphic state. Bernal and Crowfoot [112] in 

the early 1930’s, made the first attempt to correlate the molecular arrangement in the 

mesomorphic state with the crystal structure of the mesogenic material. However, after that a 

very few studies had been made for many years in the crystal structure determination. In the late 

70’s, due to the introduction of computer programs for solving structures a large number of 

structures of liquid crystal forming compounds have been determined which are mostly 

nematogens [113-127]. A detailed review on mesophase structure-property relationship was first 

given by Bryan [128] in early eighties and later by Haase and Athanassopoulou [129] in 1999. 

Crystal structures of a number of mesogenic compounds had also been reported from our 

laboratory in order to investigate the structure-property relationship [113-121, 130-133].  

In a crystal the constituent atoms or molecules are arranged in a regular and periodic 

manner and they possess long range positional as well as orientational order. A unit cell of such 

arrangement can be constructed by three non coplanar vectors a, b, c along the three edges where 

, β, and  are the angles between the edges. When X-rays are scattered by the electrons of the 
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atoms the 2-D diffraction photographs so obtained contains features where intensity varies as a 

function of position. To locate the positions of the individual atoms in the unit cell, the intensity 

of the diffracted pattern must be measured and analyzed. If fj be the amplitude scattered by the j-

th atom at point rj and if there are N such atoms within the cell, then the amplitude of the 

radiation scattered from the array of planes represented by the Miller indices (hkl) is given by 

[134], 

                             



N

j

jjjjhkl lzkyhxifF
1

2exp                                             (2.75) 

where, fj is called atomic scattering factor or form factor, Fhkl is known as the structure factor for 

the reflection hkl. Fhkl is called the structure amplitude, a pure number- number of electrons. 

The above equation may also be written as 

                                                FH  



N

j

jj if
1

2exp H.r                               (2.76) 

where the reciprocal lattice vector has been replaced by H. As the atoms in the unit cell are at the 

positions of high electron density (r), so FH can be expressed as  

                                            FH  
V

dVrir ).2exp()(                                            (2.77) 

 where V is the volume of the unit cell. The electron density  (r) can be represented as a Fourier 

series in three dimensions with structure factors as the Fourier coefficients  

                                               
h k l

iF
V

H.rr H  2exp
1

                              (2.78) 

Now by Fourier summation with a large number of FH obtained from diffraction experiment, one 

can derive the crystal structure directly. However, from diffraction experiments one gets a set of 

diffraction intensities (IH) from different hkl planes which helps to get the magnitude of the 

structure factors FH , but not their phases H and this is the well-known Phase Problem in 

crystallography. To overcome this problem, we generally take help of four main methods viz., 

Patterson method, Direct methods, Isomorphous replacement technique and Anomalous 

scattering method. Only the direct methods [135] have been discussed briefly, since the structure 

of a liquid crystalline compound has been determined by this method. 
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Direct Methods 

  Direct methods try to evaluate the phases H directly from the observed intensities (Iobs) 

through probabilistic calculations. The direct methods are very efficient in solving crystal 

structures especially of low molecular weight organic compounds following the pioneering work 

of Herbert Hauptman and Jerome Karle for which they were awarded Novel prize in chemistry in 

1985. Different computer programs are now available for solving crystal structures by direct 

methods viz., MULTAN [136], SIMPEL [137], SHELX[138], XTAL [139], SIR 92 [140], 

NRCVAX [141], SAPI [142], MITHRIL [143] etc.  

A systematic account of the detail theory of direct methods is beyond the scope of this 

thesis. Only the basic principles and working formulae will be discussed here.  

Structure Invariant and Seminvariants 

A structure invariant is defined as a quantity that is independent of the shift of the origin 

of the unit cell. A simple example is that the intensities IH of reflections i.e. FH 2 are structure 

invariants. However the structure factor itself is not structure invariant, otherwise the phase 

problem would not have occured. This is because, for any shift in the origin by, say, r the phase 

of FH changes by - 2H.r radians while the amplitude remains invariant. However, although 

individual phases depend on the structure and choice of origin, some combinations of them is 

structure invariant. For example, if H1+H2+H3=0   then  H 1+ H 2+ H 3 is structure invariant for 

every space group. It follows directly from the fact that the product F–HFKFH–K is an invariant. 

Since the moduli of the structure factors are invariant themselves, the angular part of   F–HFKFH–K  

is also invariant i.e. – H + K + H – K = (H,K) = 3 is invariant. The value of a structure 

invariant is not, however, always known, even though it can only be a function of other structure 

invariants, e.g., intensities. 

The structure seminvariants are those linear combinations of the phases whose values are 

uniquely determined by the crystal structure i.e., they do not change value on transfer from one 

special origin to another. It originates from space group symmetry. For example in space group 

P1, the linear combination 2-H + 2H is a structure invariant for any reciprocal vector H.  For 

each space group they have to be derived separately. In any space group any structure invariant is 
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also a structure seminvariant, but reverse is always not true. A complete theory is given in a 

series of papers by Hauptman and Karle [144-146] and by Schenk [147]. 

Structure Determination Procedures 

In order to solve the crystal structure a set of intensity data is required which is collected 

from the single crystal by computer-controlled CAD4 X-ray diffractometer using usually 

CuK/MoK radiation. The intensity data are corrected for Lorentz polarization factors [148]. 

The intensities are converted into the structure factors on an absolute scale by determining the 

scale factor by the method introduced by A. J. C Wilson [149]. A temperature factor is also 

obtained during the process that takes into account the thermal vibrations of the real atoms. After 

that the following steps are taken:  

I] Estimation of normalised structure factors |E|’s from |Fobs| values 

II] Set up of phase relationships via structure invariants and seminvariants, starting phase 

determination, phase extension and refinement 

III] Calculation of figure of merit of different phase sets 

IV] Production of E-map by Fourier method and their interpretation 

V] Refinement of structures through Fourier synthesis, Difference Fourier synthesis and Least-

squares refinement techniques. 

I] Estimation of |E|’s from |Fobs| values 

In direct methods, since the phases of the structure factors are estimated directly from the 

structure amplitudes so it becomes necessary that the structure amplitudes be judged on their 

intrinsic merit where the decrease of the atomic scattering factor with increasing scattering angle 

has to be eliminated. As the amplitudes of the different structure factors, FH, cannot be compared 

directly, since the scattering factor decreases with increasing reflection angle , the observed |FH| 

is therefore modified so that they correspond to the hypothetical diffracted waves which would 

be obtained if atoms were stationary point atoms. The modified structure factor, called 

‘Normalised structure factor’ (EH), is defined as, 
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where  is an integer characteristic of the space group symmetry.  

II] Setting up of phase relationships, starting phase determination, phase 

extension and refinement 

 At the beginning, phases of strong reflections are determined. In practice 10 reflections 

per atom in the asymmetric unit seem quite satisfactory and in some cases as few as three to five 

per atom have served. If the crystal is triclinic or non-centrosymmetric; more reflections may be 

required. 

 The most commonly used phase relation is a three phase structure invariants based on the 

positivity of electron density criterion, as proposed by Karle and Karle [146]: 

                                                    H  K + H – K                                                     (2.79) 

which for centrosymmetric structure is expressed by signs as  

                                               S(H) S(K) S(H – K)                                                  (2.80) 

Relation (2.79) is used to generate phases H when the values of the phases on the right-hand 

side are known and it is used in a cyclic manner to propagate the phases to all the selected 

reflections. These relations are probability relations and the probability is high when the 

reflections have large |E| values in addition to satisfying the criterion H + K + L = 0. These are 

called 2 phase relations. Probability of the phase of H being equal to the sum of the phases of –

H and H-K is given by the following relations. In centrosymmetric case [150]: 
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In non-centrosymmetric case [151]: 
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where Io is a zero-order modified Bessel function of the first kind. 

 Now the question arises about deciding the phase of a particular reflection when there are 

several pairs of known phases, the estimate from each of which might be well different. The 

answer to this important problem was given by Karle and Hauptman [152] in 1956. They 

introduced the tangent formula 
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where                                   k E E EH K H K H K, 
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Zj being the atomic number of the jth atom in a unit cell containing a total of N atoms. For 

identical atoms   3 2

3
2
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2

 
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 In order to use the tangent formula to obtain a new phase, the values of some phases have 

to be known and put into the right -hand side of the tangent formula. The set of the known phases 

is called a starting set from which the tangent formula derives more and more new phases and 

refines them in a self-consistent manner. But in this way all phases cannot be determined with 

acceptable reliability. It is therefore useful at this stage to eliminate about 10% of these 

reflections whose phases are most poorly defined by the tangent formula (2.83). An estimate of 

the reliability of each phase is obtained from (H): 

                                                     H H H A B
2 2

1
2                                       (2.84) 

When the relation (2.84) contains only one term, as it may in the initial stages of the phase 

determination, then (H) = k(H,K). 
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 The larger the value of (H), the more the reliable is the phase estimate. The relation 

between (H) and the variance is given by Karle and Karle [146], in 1966, as  
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 From (2.88) it can be seen that (H) can only be calculated when the phases are known. 

However, an estimate of (H) can be obtained from the known distribution of three phase 

structure invariants [151]. The estimated (H) at the initial stage is given approximately by  

                                         
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                                 (2.85) 

 The first step in phase extension is to fix the origin and enantiomorphs as the tangent 

phasing process is usually initiated with a few ‘known’ phases. This is done by imposing the 

condition in terms of structure factor seminvariant phases. The selection of starting phases is 

critical to the success of the multisolution methods. To maximize the connection between starting 

phases, the generator reflections are sorted by a convergence-type process by Germain, Main and 

Woolfson [136]. At the end of the convergence procedure a number of reflections, sufficient to 

fix the origin and the enantiomorphs whose phases are known, are obtained. A few other 

reflections are also chosen to which different phase values are assigned (either numerically or 

symbolically) to create different starting points for phase extension through 2 relations. The 

strength of convergence procedure is that it ensures, as far as possible, that the initial phases will 

develop through strong and reliable phase relationships. For each starting phase set, phases of all 

the selected strong reflections are generated and refined as explained in earlier section. Thus we 

get a multiple phase sets. 

III] Calculation of figure of merit of the generated phase sets 

When a number of sets of phases have been developed, it is necessary to rank them 

according to some Figure-of-Merit (FOM), prior to computing a Fourier map (in this case E-

map). Combining all weights from various FOM viz., Absolute Figure-of-Merit (ABSFOM), 

Relative Figure-of-Merit (RFOM), R-factor Figure-of-Merit (RFAC), Psi (zero) Figure-of-Merit 

(PSIO) etc. Combined Figure-of-Merit (CFOM) is calculated for each set. The most likely 

correct sets of phases are those with the highest value of CFOMs. 
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IV] E-map calculation and interpretation 

 Using the best phase set, E-maps are calculated using equation 2.78 at a large number of 

grid points covering the entire unit cell. The complete interpretation of the maps is done in three 

stages: peak search, separation of peaks into potentially bonded clusters and application of 

simple stereochemical criteria to identify possible molecular fragments. The molecular fragments 

thus obtained can be compared with the expected molecular structure. The computer can thus 

present the user with a list of peaks and their interpretation in terms of the expected molecular 

structure quite automatically. It is also common practice to have an output of the picture of the 

molecule as an easy check on the structure the computer has found. 

V] Refinement of structures  

Generally we use following three methods, viz., 1) Fourier synthesis, 2) Difference 

Fourier synthesis and 3) Least squares refinement [153,154] for refinement of a model structure 

(partial or complete) obtained from E-map. The Fourier synthesis gives the refined co-ordinates 

of the atoms and also tends to reveal the position of any atom that is not included in computing 

the structure factors using equation (2.75). The Difference Fourier map is very useful for 

correcting the position of an atom used in structure factor calculation. This is also very useful in 

locating H-atoms towards the final stages of refinement procedure.  

 An analytical method of refinement of great power and generality is that based on the 

principle of least squares. In brief, least-squares refinement consists in using the squares of the 

differences between observed and calculated structure factors as a measure of their disagreement 

and adjusting the parameters so that the total disagreement is a minimum.  

 The degree of refinement is indicated by an agreement between the calculated structures 

factors Fc and those observed, Fo. The most common method of assessing the agreement is 

calculating the residual or reliability index of the form 
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the summation being over all the reflections. Evidently, the lower the value of R, the better is the 

agreement. Another form of the residual of common use is 
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where the frequently used weight is, 

 
w

Fo


1

2
 

Fo being the standard deviation of Fo. Using standard techniques, various parameters like 

bond lengths, bond angles, torsion angles, non bonded distance etc., are determined by 

determining the structure with a reasonably low R-value. 
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