LIST OF FIGURES

1.1 Typical structure of a rod-like liquid crystal molecule	5
1.2 Molecular arrangement in nematic phase	7
1.3 Molecular arrangement in SmA phase	9
1.4 Molecular arrangement in SmC phase, z is layer normal	10
1.5 Molecular arrangement in smectic B phase	11
1.6 Molecular arrangement of smectic I phase	12
1.7 Molecular arrangement of smectic F phase	12
1.8 Molecular arrangement in (a) crystal J and (b) crystal G phase	13
1.9 Molecular arrangement of cholesteric liquid crystal	14
1.10 Molecular arrangement of liquid crystal possessing blue phase	15
1.11 Basic structure of ferroelectric liquid crystal	16
1.12 Spiralling of the director in SmC* phase showing layer normal Z , tilt angle θ ,	
azimuthal angle Φ , molecular director n and dipole moment p_i	17
1.13 Molecular arrangement of antiferroelectric, ferrielectric and ferroelectric SmC*	
liquid crystal	18
1.14 The basic construction of the SSFLC display device showing (a) off state and (b) on	
state	19
1.15 Molecular arrangement of discotic liquid crystal	21
2.1 Typical scattering geometry showing the incident and scattered wave vector	41
2.2 Typical scattering geometry showing the incident (K_i) and scattered (K_s) wave	
vector	43
2.3 Polarizing microscope	46

2.4 Experimental setup for DSC measurement	47
2.5 X-ray diffraction experimental setup and diffraction photographs	48
2.6 Schematic representation of the X-ray diffraction pattern of an oriented (a) nematic	
and (b) smectic A phase	49
2.7 Synchrotron X-ray diffraction set up at DESY, Hamburg, Germany	52
2.8 Schematic arrangement for the measurement of refractive indices	54
2.9 A typical dielectric sprectra for a Debye type liquid crystal	64
2.10 Cole-Cole plot for a Debye-type spectrum	66
2.11 The molecular aspect of different dielectric absorption peaks	68
2.12 Molecular arrangement of tilt angle fluctuation and phase fluctuation	69
2.13 Schematic arrangement for the measurement of dielectric permittivity	71
2.14 Molecular configuration of Splay, Twist and Bend elastic constants	72
2.15 Experimental set up to measure the value of P_S	76
3.1 Selected textures observed in 2TP-3'F-4NCS	107
3.2 Optimized structure of the compounds (a) 2TP-3'F-4NCS, (b) 2TP-3',3F-4NCS and	
(c) 4TP-3',3F-4NCS	109
3.3 X-ray diffraction photographs in (a) SmA phase (110°C) and (b) nematic phase	
(125°C) of 2TP-3'F-4NCS	111
3.4 X-ray diffraction photographs in nematic phase (95°C) of 2TP-3',3F-4NCS	111
3.5 X-ray diffraction photographs in (a) SmA phase (60°C) and (b) nematic phase	
(100°C) of 4TP-3',3F-4NCS	111
3.6 Temperature dependence of average intermolecular distance (D), smectic layer	
spacing (d) and apparent molecular length (l) of 2TP-3'F-4NCS	113
3.7 Temperature dependence of average intermolecular distance (D) and apparent	
molecular length (<i>l</i>) of 2TP-3',3F-4NCS	113
3.8 Temperature dependence of average intermolecular distance (D), smectic layer	
spacing (d) and apparent molecular length (l) of 4TP-3',3F-4NCS	114

3.9 Real part of dielectric constant (ε') in nematic phase as a function of bias voltage at	
10 kHz in ITO cell for (a) 2TP-3' F-4NCS, (b) 2TP-3',3F-4NCS and (c) 4TP-	
3',3F-4NCS	116
3.10 Variation of static dielectric constants as a function temperature at 10 KHz in ITO	
cell in 2TP-3'F-4NCS	118
3.11 Variation of static dielectric constants as a function temperature at 10 KHz in ITO	
cell in 2TP-3',3F-4NCS	118
3.12 Variation of static dielectric constants as a function temperature at 10 KHz in ITO	
cell in 4TP-3',3F-4NCS	119
3.13 Temperature dependence of dielectric anisotropy of the compounds	119
3.14 Dispersion (a) and absorption (b) spectra at some selected temperatures in 2TP-3'F-4NCS. Solid curves in (b) represent curves fitted to modified Cole-Cole function as described in text	123
3.15 Dispersion (a) and absorption (b) spectra at some selected temperatures in 2TP-3',3F-4NCS. Solid curves in (b) represent curves fitted to modified Cole-Cole function as described in text	123
3.16 Dispersion (a) and absorption (b) spectra at some selected temperatures in 4TP-3',3F-4NCS. Solid curves in (b) represent curves fitted to modified Cole-Cole	
function as described in text 3.17 Cole-Cole plot in 2TP-3'F-4NCS	124 125
3.18 Cole-Cole in 2TP-3',3F-4NCS	125
3.19 Cole-Cole plot in 4TP-3',3F-4NCS	126
3.20 Temperature variation of relaxation frequency of compound 2TP-3'F-4NCS	127
3.21 Temperature variation of relaxation frequency of compound 2TP-3',3F-4NCS	127
3.22 Temperature variation of relaxation frequency of compound 4TP-3',3F-4NCS	128
3.23 Variation of lnτ against 1000/T showing Arrhenius behavior in 2TP-3'F-4NCS	128
3.24 Variation of lnτ against 1000/T showing Arrhenius behavior in 2TP-3',3F-4NCS	129
3.25 Variation of lnτ against 1000/T showing Arrhenius behavior in 4TP-3',3F-4NCS	129
3.26 Temperature variation of splay elastic constant (K_{11}) of the three compounds	131
3.27 Temperature dependence of refractive indices (n_e, n_o, n_{av}) of the three compounds	132
3.28 Temperature variation of Δn of 2TP-3'F-4NCS, 2TP-3',3F-4NCS and 4TP-3',3F-	
4NCS	133
3.29 Temperature variation of density of 2TP-3'F-4NCS, 2TP-3',3F-4NCS and 4TP-3',3F-4NCS	134

3.30 Temperature variation of order parameters of 2TP-3'F-4NCS, 2TP-3',3F-4NCS	
and 4TP-3',3F-4NCS	135
4.1 A perspective view of 5ccp-fff molecule with atom numbering scheme. Meaning of	
figures I-IV has been discussed in the text	153
4.2 Partial packing of 5ccp-fff molecule in the crystallographic unit cell	158
4.3 Crystal structure of 5ccp-fff projected along <i>a</i> -axis	158
4.4 Crystal structure of 5ccp-fff projected along c -axis	159
4.5 Different types of molecular associations observed in the crystal structure of 5ccp-	
fff	160
4.6 Real part of dielectric constant (ϵ') as a function of bias voltage at 10 kHz in 3ccp-f	163
4.7 Real part of dielectric constant (ϵ') as a function of bias voltage at 10 kHz in 3ccp-	
ff	163
4.8 Real part of dielectric constant (ϵ') as a function of bias voltage at 10 kHz in 3ccp-	
fff	164
4.9 Real part of dielectric constant (ϵ') as a function of bias voltage at 10 kHz in 5ccp-f	164
4.10 Real part of dielectric constant (ε') as a function of bias voltage at 10 kHz in 5ccp-	
ff	165
4.11 Real part of dielectric constant (ϵ') as a function of bias voltage at 10 kHz in 5ccp-	
fff	165
4.12 Temperature dependence of dielectric permittivity of compound 3ccp-f	166
4.13 Temperature dependence of dielectric permittivity of compound 3ccp-ff	167
4.14 Temperature dependence of dielectric permittivity of compound 3ccp-fff	167
4.15 Temperature dependence of dielectric permittivity of compound 5ccp-f	168
4.16 Temperature dependence of dielectric permittivity of compound 5ccp-ff	168
4.17 Temperature dependence of dielectric permittivity of compound 5ccp-fff	169
4.18 Temperature dependence of dielectric anisotropy ($\Delta \epsilon$) of the compounds	170
4.19 Temperature variation of splay elastic constant (K_{11}) of the compounds	171
4.20 Temperature variation of (a) real and (b) imaginary part of dielectric permittivity	
of 3ccp-f	173
4.21 Temperature variation of (a) real and (b) imaginary part of dielectric permittivity	
of 3ccp-ff	174
4.22 Temperature variation of (a) real and (b) imaginary part of dielectric permittivity	
of 3ccp-fff	174
4.23 Temperature variation of (a) real and (b) imaginary part of dielectric permittivity	
of 5ccp-f	175

4.24 Temperature variation of (a) real and (b) imaginary part of dielectric permittivity	
of 5ccp-ff	175
4.25 Temperature variation of (a) real and (b) imaginary part of dielectric permittivity	
of 5ccp-fff	176
4.26 Cole-cole plot of 3ccp-f	176
4.27 Cole-cole plot of 3ccp-ff	177
4.28 Cole-cole plot of 3ccp-fff	177
4.29 Cole-cole plot of 5ccp-f	178
4.30 Cole-cole plot of 5ccp-ff	178
4.31 Cole-cole plot of 5ccp-fff	179
5.1 Textures in different phases of compound 4F3R and 4F6R	196
5.2(a) Optimized geometry of 4F3R	198
5.2(b) Optimized geometry of 4F6R	198
5.3 X-ray diffraction photographs in different chiral smectic phases of 4F3R and	
4F6R	199
5.4 Variations of average intermolecular distance (D) and layer spacing (d) with	
temperature in 4F3R	200
5.5 Variations of average intermolecular distance (D) and layer spacing (d) with	
temperature in 4F6R	201
5.6 Temperature variation of X-ray and optical tilt of 4F3R	202
5.7 Temperature variation of X-ray and optical tilt of 4F6R	203
5.8 (a) Real (ϵ') and (b) imaginary part (ϵ'') of dielectric constant as function of	
frequency at selected temperatures of 4F3R	204
5.9 (a) Real (ϵ') and (b) imaginary part (ϵ'') of dielectric constant as function of	
frequency at selected temperatures of 4F6R	204
5.10 Fitted spectra in SmC* phase (106°C) of 4F3R along with observed data. GM,	
ITO and σ curves are also shown separately along with fitted parameters	205
5.11 Cole-Cole plot of 4F3R	205

5.12 Variation of (a) dielectric increment ($\Delta\epsilon$) and (b) Goldstone mode relaxation	
frequency (f_c) as a function of temperature for 4F3R	208
5.13 Variation of (a) dielectric increment ($\Delta\epsilon$) and (b) Goldstone mode relaxation	
frequency (f_c) as a function of temperature for 4F6R	208
5.14 Input and output signals captured in a digital oscilloscope for (a) 4F3R and (b)	
4F6R	210
5.15 Temperature dependence of P _S of 4F3R. Mean field fitted curve is also shown	211
5.16 Temperature dependence of P _S of 4F6R. Mean field fitted curve is also shown	211
5.17 Variation of rotational viscosity (γ_{Φ}) with temperature of 4F3R	213
5.18 Variation of rotational viscosity (γ_{Φ}) with temperature of 4F6R	214
5.19 Variation of response time with temperature of 4F3R	215
5.20 Variation of response time with temperature of 4F6R	215
6.1 Observed textures in MPOBC in different phases	232
6.2 Diffraction photographs in Crystal, SmG*, SmJ*, SmF*, SmI*, SmC*, SmA*, N*,	
BP* and isotropic phases	234
6.3 Profile of wide angle diffraction peak depicting ordering within smectic planes	
in hexatic phases at 55° C (SmG*), 64° C (SmJ*), 66° C (SmF*) and 68° C (SmI*)	234
6.4 Layer spacing in smectic phases and apparent molecular length in cholesteric,	
blue and isotropic phases	236
6.5 Temperature dependence of X-ray and optical tilt of MPOBC	237
6.6 Optimized structure of MPOBC	238
6.7 Temperature variation spontaneous polarization (P _S) and rotational viscosity	
γ_{Φ} in SmC [*] phase	239
6.8 Temperature variation of dielectric increment with and without bias field.	
Magnified views are shown in the inset for (a) in hexatic phases and (b) in	
cholesteric and blue phases (without bias)	240

6.9 Observed critical frequencies with and without bias field in different phases of	
MPOBC	242
6.10 Effect of bias voltage on GM critical frequency in SmC* phase (75°C)	243

XIII