LIST OF FIGURES

FIGURES	PAGE NO.
CHAPTER IV	
Figure 1. Job plot of DEPM-β- Cyd systems at 298.15K in neutral (pink, •) and alkaline (blue, •) medium.	94
Figure 2. Adsorption spectra of DEPM (2 x 10-4 M) in (a) pH=7.0±0.5	
	96
and (b) pH=9.2±0.5 at different concentration of β -Cyd (1) absence of	
β- Cyd, (2) 0.002M, (3) 0.004M, (4) 0.006M, (5) 0.008M, (6) 0.010M, (7)0.012M.	
Figure 3. Benesi-Hildebrand plot of 1/A-A _o vs. 1/ [β-CD] for DEPM in	
pH=7.0±0.5 and pH=7.0±0.5 at 298.15K.	98
Figure 4. 1HNMR spectra of (a) β- Cyd, (b) 1:1 molar ratio of β-	
CD:DEPM IC in D ₂ O and 1HNMR spectra of (c) DEPM in DMSO-D ₆ at	101
298.15 K.	
Figure 5. FT-IR spectra of (a) β- Cyd (in KBr), (b) DEPM and (c)	104
DEPM: β- Cyd (1:1 molar ratio) solid complex (in KBr).	
Figure 6. Powder X-ray diffraction pattern of (a) β-Cyd and (b) DEPM:	105
β-Cyd (1:1 molar ratio) inclusion complex.	100
Figure7. Scanning electron microscope (SEM) morphology of (a) β-	106
Cyd and (b) DEPM: β- Cyd (1:1 molar ratio) inclusion complex.	100
CHAPTER V	
Figure 1. Molar conductance vs mole ratio of [H]/[EMPyrr]+ of	44.1
18C6+IL at 293.15K (pink), 298.15K (blue) and 303.15K (orange).	114
Figure 2. Molar conductance Vs mole ratio of [H]/[EMPyrr]+ of	114
DB18C6+IL at 293.15K (green), 298.15K (red) and 303.15K (violet).	
Figure 3. logK _f Vs 1000/T for 18C6:IL (■) and DB18C6:IL (●)	117
complexation.	117

Figure 4. ¹ H NMR spectra of (a) 1-ethyl-1 methylpyrrolidinium	120
hexafluorophosphate and (b) 1:1 molar ratio of 18C6:[EMPyrr]+ in	
D ₂ O at 298.15K.	
Figure 5. ¹ H NMR spectra of (a) 1-ethyl-1 methylpyrrolidinium	120
hexafluorophosphate and (b) 1:1 molar ratio of DB18C6:[EMPyrr]+ in	,,,,
D ₂ O at 298.15K.	
Figure 6. Electrospray mass spectra of equimolecular mixture of IL	123
with (a) 18-crown-6 and (b) dibenzo 18-crown-6.	120
Figure 7. IR spectra of 18-crown-6 (blue) and the resulting complex I	124
(18C6:[EMPyrr]+)	121
(red).	
Figure 8. IR spectra of Dibenzo-18-crown-6 (blue) and the resulting	125
complex II (DB18C6:[EMPyrr]+) (violet).	120
CHAPTER VI	
CHAFTERVI	
Figure 1. Molar conductivity of (a) [BMIM][C ₈ SO4] in aqueous solution	133
with L-tyr and (b) [MOIM]Cl in aqueous solution with L-tyr at three	700
different tempetarures.	
Figure 2. Molar conductivity of (a) [BMIM][C ₈ SO4] in aqueous solution	133
with L-phe and (b) [MOIM]Cl in aqueous solution with L-phe at three	700
different tempetarures.	
Figure 3. Adsorption spectra of (a) [BMIM][C ₈ SO4] and (b) [MOIM]Cl at	136
different concentration of L-tyrosine (1) absence of L-tyrosine, (2)	130
0.0004 M, (3) 0.0008 M, (4) 0.0012 M, (5) 0.0016 M, (6) 0.0018 M,	
(7)0.002 M respectively.	
Pi A Administration of CO (DMM) (ICCO)	
Figure 4. Adsorption spectra of (a) [BMIM][C ₈ SO4] and (b)[MOIM]Cl at	136
different concentration of L-phenylalanine (1) absence of L-	
phenylalanine, (2) 0.0004 M, (3) 0.0008 M, (4) 0.0012 M, (5) 0.0016 M,	
(6) 0.0018 M, (7)0.002 M respectively.	
Figure 5. Fluorescence spectra of (a) [BMIM][C ₈ SO4] and (b) [MOIM]Cl	137
at different concentration of L-tyrosine (1) absence of L-tyrosine, (2)	

0.0003 M, (3) 0.0006 M, (4) 0.0009 M, (5) 0.0012 M, (6) 0.0015 M,	
(7)0.0018 M respectively.	
Figure 6. Fluorescence spectra of (a) [BMIM][C ₈ SO4] and (b) [MOIM]Cl	137
at different concentration of L-phenylalanine (1) absence of L-	137
phenylalanine, (2) 0.0003 M, (3) 0.0006 M, (4) 0.0009 M, (5) 0.0012 M,	
(6) 0.0015 M, (7)0.0018 M respectively.	
(-)	
Figure 7. Benesi-Hildebrand plot of 1/ΔA vs. 1/ [AA] in UV-vis	142
spectroscopy for (a) [BMIM][C ₈ SO4] and (b) MOIM]Cl in L-tyr and for	112
(c)[BMIM][C_8SO4] and (d) MOIM]Cl in L-phe at 298.15 K^a .	
Figure 8. Benesi-Hildebrand plot of $1/\Delta A$ vs. $1/[AA]$ in fluorescence	142
spectroscopy for (a) [BMIM][C_8SO4] and (b) MOIM]Cl in L-tyr and for	
(c)[BMIM][C_8SO4] and (d) MOIM]Cl in L-phe at 298.15 K^a .	
Eigene O 111 NMD and above of (a) IDMIMIC COAL (b) (IDMIMIC COAL). I	
Figure 9. ¹ H NMR spectra of (a) [BMIM][C ₈ SO4], (b) ([BMIM][C ₈ SO4]+ L-	144
tyr) system and (c) ([BMIM][C_8SO4] + L-phe) system in D_2O at 298.15K.	
Figure 10. ¹ H NMR spectra of (a) [MOIM]Cl, (b) ([MOIM]Cl+ L-tyr)	1/1/1
system and (c) ([MOIM]Cl + L-phe) system in D_2O at 298.15K.	144
CHAPTER VII	
Figure 1. Job plot of NTHCL/β- Cyd systems at 298.15K.	153
Figure 2. Fluorescence spectra of NTHCL in different β-Cyd	<i>155</i>
concentrations (µM): (1) 0, (2) 20, (3)30, (4) 40, (5) 50, (6) 60, (7) 70 and (8) 80.	
Figure 3. Benesi-Hildebrand double reciprocal plot of $1/l-l_0$ vs. $1/[\beta-$	150
Cyd] for NTHCL in (a) UV-absorption and (b) fluorescence at 298.15K.	158
Figure 4. 1HNMR spectra of (a) β- Cyd, (b) 1:1 molar ratio of	150
NTHCL/ β -Cyd inclusion complex and (c) NTHCL in D_2O at 298.15 K.	159
Eigene F 2D DOECV and the of call lead at a large larg	
Figure 5. 2D ROESY spectra of solid inclusion complex of NTHCL and	161
$β$ -CD in D_2O (correlation signals are marked by green circles).	

Figure 6. . ¹³ CNMR spectra of (a) β- Cyd, (b) 1:1 molar ratio of solid	162
NTHCL/ β -Cyd inclusion complex and (c) NTHCL in D ₂ O at 298.15 K.	
Figure 7. FT-IR spectra of (a) β- Cyd (in KBr), (b) NTHCL and (c)	164
NTHCL/β- Cyd (1:1 molar ratio) solid complex (in KBr).	
Figure 8. Powder X-ray diffraction pattern of (a) β-Cyd, (b) NTHCL	166
and (C) NTHCL/β-Cyd (1:1 molar ratio) inclusion complex.	700
CHAPTER VIII	
Figure 1. Job plot of (a) PMO/ α - CD and (b) PMO/ β -CD systems at	173
298.15K.	175
Figure 2: Benesi-Hildebrand double reciprocal plot for the effect of α -	177
Cyd on the absorbance of PMO (308 nm) at different temperatures.	1//
Figure 3: Benesi-Hildebrand double reciprocal plot for the effect of β-	177
Cyd on the absorbance of PMO (308 nm) at different temperatures.	177
Figure 4 . Plot of ln <i>Ka</i> vs. 1/T for the interaction of CDP with α-CD (\blacksquare)	178
and β-CD (■).	170
Figure 5. FTIR spectra of (a) PMO, (b) α-cyd and (c) PMO/α-cyd (1:1	179
molar ratio) solid inclusion complex in KBr.	
Figure 6. FTIR spectra of (a) PMO, (b) β-cyd and (c) PMO/β-cyd (1:1	181
molar ratio) solid inclusion complex in KBr.	101
Figure 7. ESI mass spectra of (a) PMO/ α -CD inclusion complex and (b)	182
PMO/β-CD inclusion complex.	102
Figure 8. Powder X-ray diffraction pattern of (a) α-CD, (b) PMO/α-CD	183
(1:1 molar ratio), (c) β -CD and (d) PMO/ β -CD (1:1 molar ratio)	100
inclusion complex.	
Figure 9. TGA profiles of (a) α-cyd; PMO/α-cyd and (b) β-cyd; PMO/β-	184
cyd inclusion complex systems.	10 1
CHAPTER IX	
Figure 1. Variation of surface tension of aqueous (A) L-Methionine	193
solution, (B) L-Proline solution, and (C) L-Glutamine solution	

respectively with increasing concentration of β -CD.	
Figure 2. Plot of limiting molar volume (ϕ_{v^o}) against mass fraction (w)	
of $\beta\text{-CD}$ for L-Methionine (blue), L-Proline (brown) and L-Glutamine	196
(green) respectively at 298.15 K ^a (a Standard uncertainties u is:	
u(T)=0.01 K).	
Figure 3. ¹ H NMR spectra of (a) β-CD, (b) L-Methionine and (c) 1:1	
molar ratio of $\beta\text{-CD}$ & L-Methionine in D_2O at 298.15 K^a (a Standard	205
uncertainties u is: u(T)=0.01 K).	
Figure 4. 1H NMRspectraof(a)β-CD, (b) L-Prolineand (c)1:1 M ratio of	
β-CD & L-Proline in D20 at 298.15 K² (a Standarduncertainties u is:	206
u(T) = 0.01 K.	
Figure 5. ¹ H NMR spectra of (a) β-CD, (b) L-Glutamine and (c) 1:1	207
molar ratio of $\beta\text{-CD}$ & L-Glutamine in D_2O at 298.15 K.	207
Figure 6. Powder X-ray diffraction pattern of (a) β-CD, (b) methionine	
(Met), (c) proline (Pro), (d) glutamine(Glu), (e) β -Cyd: Met, (f) β -CD:	209
Pro and (g) β-CD: Glu (1:1 molar ratio) inclusion complex.	