LIST OF TABLES

Table 2.1	Comparison of stomatal fractures of the seven mulberry genotypes.	42
Table 2.2	Different attributes of trichomes and idioblast of seven mulberry genotypes.	44
Table 2.3	Pre-cocoon and post-cocoon attributes of silkworm larvae under	49
	nourishment with seven different mulberry genotypes.	
Table 2.4	ANOVA (Two-way) analysis of micro-morphological (stomata) attributes	50
	of seven mulberry genotypes.	
Table 2.5	ANOVA (Two-way) analysis of micro-morphological (trichome and	50
	idioblast) attributes of seven mulberry genotypes.	
Table 2.6	ANOVA (Two-way) analysis of economical attributes of silkworm rearing	50
	under nourishment with seven mulberry genotypes.	
Table 3.1	Feeding response under nourishment with seven selected mulberry varieties	80
Table 3.2	Correlation between biochemical attributes of mulberry leaves and different	81
1 abic 5.2	economical attributes of silkworm rearing system.	01
Table 3.3	Two-way ANOVA analysis (with replication) of non-enzymatic antioxidant	82
Table 3.3	members of seven mulberry leaves with seasonal variation.	02
Table 3.4	Two-way ANOVA analysis (with replication) of pigment members of seven	92
1 able 5.4		82
Table 2.5	mulberry leaves with seasonal variation.	02
Table 3.5	Two-way ANOVA analysis (with replication) of ROS members of seven	83
T. 11. 2.6	mulberry leaves with seasonal variation.	0.2
Table 3.6	Two-way ANOVA analysis (with replication) of ROS members and	83
	compatible osmolyte of seven mulberry leaves with seasonal variation.	100
Table 4.1	Two-way ANOVA analysis of growth rate and economical attributes of	106
	silkworm rearing under peptide(s) treatment with seasonal variation.	
Table 4.2	Two-way ANOVA analysis of different economical attributes of silkworm	106
	larvae under peptides treatment with seasonal variation.	
Table 5.1	Two-way ANOVA analysis of antioxidant activity (ABTS scavenging	122
	activity) of peptides isolated from different mulberry genotypes at two	
	molecular weight ranges.	
Table 5.2	Two-way ANOVA analysis of antioxidant activity (DPPH scavenging and	123
	reducing power activity) of peptides isolated from different mulberry	
	genotypes at two molecular weight ranges.	
Table 5.3	Two-way ANOVA analysis of antioxidant activity (Nitric-oxide and super-	123
	oxide scavenging activity) of peptides isolated from different mulberry	
	genotypes at two molecular weight ranges.	
Table 5.4	Two-way ANOVA analysis of antioxidant enzymes (POD and PPO) of 5 th	130
	instar silkworm larval tissues after various peptide treatment.	
Table 5.5	Two-way ANOVA analysis of antioxidant enzymes (NOX and SOD) of 5 th	130
	instar silkworm larval tissues after various peptide treatment.	
Table 5.6	Two-way ANOVA analysis of antioxidant enzymes (CAT and APX) of 5 th	131
	instar silkworm larval tissues after various peptide treatment.	
Table 5.7	Two-way ANOVA analysis of antioxidant enzymes (GR and GPX) of 5 th	131
	instar silkworm larval tissues after various peptide treatment.	
Table 5.8	Two-way ANOVA analysis of antioxidant enzymes (GST) of 5 th instar	131
	silkworm larval tissues after various peptide treatment.	
	1 -F	

Table 6.1	Colours developed by amino acids on TLC plates with ninhydrin reagent and their Rf values in n-propanol-water solvent system.	153
Table 6.2	Mulberry peptides (isolated from S1 mature leaves) sequence similarity with other peptide or protein sequence (NCBI data base).	164
Table 7.1	Cocoon and post cocoon attributes of silkworm rearing system under peptide treatment.	176
Table 7.2	Correlation between different pre-cocoon and post cocoon parameters of silkworm rearing system.	176
Table 7.3	Post cocoon attributes of silkworm under peptide treatment as well as control.	177
Table 8.1	Effects of hormonal elicitation on cocoon and post cocoon attributes of silkworm rearing.	186
Table 8.2	Two-way ANOVA analysis of cocoon and post cocoon attributes of silkworm rearing under hormonal application.	194
Table 8.3(a)	Rank and Percentile analysis of hormone application on the basis of their effects on different cocoon (ERR%, WSC and WSS) attributes of silkworm rearing.	203
Table 8.3(b)	Rank and Percentile analysis of hormone application on the basis of their effects on different post cocoon attributes (SR%, AFL, FW) of silkworm rearing.	204
Table 8.3(c)	Rank and Percentile analysis of hormone application on the basis of their effects on different post cocoon attributes (FS, NBFL, Sericin and Fibroin) of silkworm rearing.	205
Table 8.4	Cocoon and post cocoon attributes of silkworm rearing after mulberry leaves elicited with polyamines.	212
Table 8.5	Two-way ANOVA analysis of cocoon and post cocoon attributes of silkworm rearing under polyamine elicitation.	194
Table 8.6(a)	Rank and Percentile analysis of polyamine application on the basis of their effects on different cocoon (WSC and WSS) attributes of silkworm rearing.	206
Table 8.6(b)	Rank and Percentile analysis of polyamine application on the basis of their effects on different post cocoon attributes (SR%, AFL, FW, FS) of silkworm rearing.	207
Table 8.6(c)	Rank and Percentile analysis of polyamine application on the basis of their effects on different post cocoon attributes (NBFL, Sericin and Fibroin) of silkworm rearing.	208
Table 8.7	Cocoon and post cocoon attributes of silkworm rearing after mulberry leaves elicited with non-enzymatic antioxidant.	213
Table 8.8	Two-way ANOVA analysis of cocoon and post cocoon attributes of silkworm rearing under non-enzymatic antioxidant application.	194
Table 8.9	Cocoon and post cocoon attributes of silkworm rearing after mulberry leaves elicited with osmolytes (Proline); SAR (Salicylic acid); and Folic acid.	214
Table 8.10	Two-way ANOVA analysis of cocoon and post cocoon attributes of silkworm rearing under osmolytes (Proline); SAR (salicylic acid); and Folic acid treatment.	195
Table 8.11	Cocoon and post cocoon attributes of silkworm rearing after mulberry leaves elicited with different inorganic salt.	215

Table 8.12	Two-way ANOVA analysis of cocoon and post cocoon attributes of silkworm rearing under osmolytes (Proline); SAR (salicylic acid); and Folic acid treatment.	195
Table 8.13(a)	Rank and Percentile analysis of different elicitors (non-enzymatic antioxidant, osmolytes, SAR, source of Salt and Vitamin) on the basis of their effects on different cocoon (ERR, WSC and WSS) attributes of silkworm rearing.	209
Table 8.13(b)	Rank and Percentile analysis of different elicitors (non-enzymatic antioxidant, osmolytes, SAR, source of Salt and Vitamin) on the basis of their effects on different cocoon (SR, AFL and FW) attributes of silkworm rearing.	210
Table 8.13(c)	Rank and Percentile analysis of different elicitors (non-enzymatic antioxidant, osmolytes, SAR, source of Salt and Vitamin) on the basis of their effects on different cocoon (SR, AFL and FW) attributes of silkworm rearing.	211
Table 8.14	Post cocoon attributes of silkworm rearing under Polyamine treatment	221
Table 8.15	Post cocoon attributes of silkworm rearing under hormonal treatment (ABA and GA).	222
Table 8.16	Post cocoon attributes of silkworm rearing under non-enzymatic antioxidant treatment (Ascorbic acid and Glutathione).	223

LIST OF FIGURES

Figure 1.1	Global scenario of sericulture	7
Figure 1.2	Major silk producing regions in India	8
Figure 1.3	Major silk producing regions in West Bengal	9
Figure 1.4	Different larval stage and overall life cycle of silkworm larvae	12
Figure 1.5	Schematic representation of literature survey on feeding preference related with leaf architecture	14
Figure 1.6	Oxidative stress response in herbivore insects and their host plant	23
Figure 2.1	Leaf yield (kg/ha/season) of seven mulberry varieties	39
Figure 2.2	Light microscopic photograph of seven mulberry genotypes showing the comparison of stomata present on the abaxial surface of mulberry leaf (Under 40× resolution)	39
Figure 2.3	Scanning electron microphotograph (SEM) of seven mulberry genotypes showing the comparison of stomata present on the abaxial surface of mulberry leaf	40
Figure 2.4	Camera Lucida drawing of stomata with epidermal cell of seven mulberry cultivars	41
Figure 2.5	Correlation matrix between morphological attributes of mulberry leaves with different economic parameters of silkworm rearing	43
Figure 2.6	Light microscopic photograph of seven mulberry genotypes showing the comparison of idioblast present on the adaxial surface of mulberry leaf (Under 40× resolution), (a): S1; (b): S1635; (c): V1; (d): K2; (e): Dudhiya; (f): Bombay local; (g): Kosen	45
Figure 2.7	Scanning electron microphotograph (SEM) of mulberry leaf showing the comparison of trichome density on the adaxial and abaxial surface	45
Figure 2.8	Light microscopic photograph of seven mulberry genotypes showing the comparison of trichome present on the leaf surface (Under 40× resolution); (a): S1; (b): S1635; (c): V1; (d): K2; (e): Dudhiya; (f): Bombay local; (g): Kosen	46
Figure 2.9	Scanning electron microphotograph (SEM) of seven mulberry genotypes showing the comparison of trichome present on the leaf surface; (a): S1; (b): S1635; (c): V1; (d): K2; (e): Dudhiya; (f): Bombay local; (g): Kosen	47
Figure 2.10	Dendrogram cluster analysis of seven mulberry varieties	51
Figure 2.11	Heat map of seven mulberry cultivars on the basis of their micro-morphological and economical attributes	51
Figure 2.12	PCA analysis of seven mulberry genotypes on the basis of biochemical attributes of leaves and their performance on economical parameters of silkworm rearing	52
Figure 2.13	PCA analysis of morphological attributes of seven mulberry genotypes and economical parameters of silkworm rearing	53
Figure 3.1a	Range of hydrogen peroxide (H ₂ O ₂) accumulation at different seasons in V1 mulberry variety	61
Figure 3.1b	Range of hydrogen peroxide (H ₂ O ₂) accumulation at different seasons in S1 mulberry variety	61
Figure 3.1c	Range of hydrogen peroxide (H2O2) accumulation at different seasons in Dudhiya mulberry varietyscavenging activity of fenugreek sprouts	61
Figure 3.1d	Range of hydrogen peroxide (H2O2) accumulation at different seasons in S1635 mulberry variety	62
Figure 3.1e	Range of hydrogen peroxide (H2O2) accumulation at different seasons in K2 mulberry variety	62
Figure 3.1f	Range of hydrogen peroxide (H2O2) accumulation at different seasons in Bombay local mulberry cultivar	62
Figure 3.1g	Range of hydrogen peroxide (H2O2) accumulation at different seasons in Kosen	63

	mulberry variety	
Figure 3.1h	Range of hydrogen peroxide (H2O2) accumulation at different seasons in all seven	63
-	mulberry varieties: a comparative account	
Figure 3.2a	Range of superoxide anion accumulation at different seasons in V1 mulberry variety	64
Figure 3.2b	Range of superoxide anion accumulation at different seasons in S1 mulberry variety	64
Figure 3.2c	Range of superoxide anion accumulation at different seasons in Dudhiya mulberry	64
	variety	
Figure 3.2d	Range of superoxide anion accumulation at different seasons in S1635 mulberry	65
-	variety	
Figure 3.2e	Range of superoxide anion accumulation at different seasons in K2 mulberry variety	65
Figure 3.2f	Range of superoxide anion accumulation at different seasons in Bombay local	65
-	mulberry cultivar	
Figure 3.2g	Range of superoxide anion accumulation at different seasons in K2 mulberry variety	65
Figure 3.2h	Range of superoxide anion accumulation at different seasons in seven mulberry	65
_	cultivars: a comparative account	
Figure 3.3a	Range of MDA accumulation at different seasons in V1 mulberry variety	67
Figure 3.3b	Range of MDA accumulation at different seasons in S1 mulberry variety stage of	67
	germination	
Figure 3.3c	Range of MDA accumulation at different seasons in Dudhiya mulberry variety	67
Figure 3.3d	Range of MDA accumulation at different seasons in S1635 mulberry variety	68
Figure 3.3e	Range of MDA accumulation at different seasons in K2 mulberry variety	68
Figure 3.3f	Range of MDA accumulation at different seasons in Bombay local mulberry	68
	cultivars	
Figure 3.3g	Range of MDA accumulation at different seasons in Kosen mulberry variety	69
Figure 3.3h	Range of MDA accumulation at different seasons in seven mulberry leaves: A	69
	comparative account	
Figure 3.4	Ascorbic acid accumulation at different seasons in seven mulberry variety	70
Figure 3.5	Glutathione accumulation at different seasons in seven mulberry variety	70
Figure 3.6	Proline content of seven mulberry varieties at different maturity stages	71
Figure 3.7a	Range of proline accumulation at different seasons in V1 mulberry variety	72
Figure 3.7b	Range of proline accumulation at different seasons in S1 mulberry variety	72
Figure 3.7c	Range of proline accumulation at different seasons in Dudhiya mulberry variety	72
Figure 3.7d	Range of proline accumulation at different seasons in S1635 mulberry variety	73
Figure 3.7e	Range of proline accumulation at different seasons in K2 mulberry variety	73
Figure 3.7f	Range of proline accumulation at different seasons in Bombay local mulberry	73
	cultivar	
Figure 3.7g	Range of proline accumulation at different seasons in Kosen mulberry variety	74
Figure 3.7h	Range of proline accumulation at different seasons in seven mulberry leaves: a	74
	comparative account	
Figure 3.8	Chlorophyll (photoassimilates) accumulation at different seasons in seven mulberry	75
	variety	
Figure 3.9	Effect of different priming agents on the total alkaloid and trigonelline contents of	75
	fenugreek sprouts	
Figure 3.10	Total protein content of seven mulberry leaves at different maturity stages	78
Figure 3.11	Total chlorophyll content of seven mulberry leaves at different maturity stages	78
Figure 3.12	Total soluble sugar content of seven mulberry leaves at different maturity stages	79
Figure 3.13	Total reducing sugar content of seven mulberry leaves at different maturity stages	79
Figure 3.14	Heat map of seven mulberry cultivars on the basis of their biochemical attributes and	84
	economical features of silkworm rearing	
Figure 3.15	PCA analysis of free radical scavengers (FRS): Non-antioxidant member (green	85

	ROS: lipid peroxidation member (red dot), biochemical attributes of mature mulberry leaves (purple dot) and economical attributes of rearing system (yellow dot)	
Figure 4.1	Larval growth rate after feeding S1 leaves, elicited by 0.5-3 kDa peptide isolated at different maturity stages of leaves (S1) and in control (without peptide elicitation)	93
Figure 4.2	Larval growth rate after feeding S1 leaves, elicited by 3-10 kDa peptide isolated at different maturity stages of leaves (S1) and in control (without peptide elicitation)different elicitors under salinity stress	93
Figure 4.3	Larval growth rate after feeding S1 leaves, elicited by 0.5-3 kDa peptide isolated at different maturity stages of leaves (S1635) and in control (without peptide elicitation)	94
Figure 4.4	Larval growth rate after feeding S1 leaves, elicited by 3-10 kDa peptide isolated at different maturity stages of leaves (S1635) and in control (without peptide elicitation)	94
Figure 4.5	Larval growth rate after feeding S1 leaves, elicited by 0.5-3 kDa peptide isolated at different maturity stages of leaves (V1) and in control (without peptide elicitation)	95
Figure 4.6	Larval growth rate after feeding S1 leaves, elicited by 3-10 kDa peptide isolated at different maturity stages of leaves (V1) and in control (without peptide elicitation)	95
Figure 4.7	Larval growth rate after feeding S1 leaves, elicited by 0.5-3 kDa peptide isolated at different maturity stages of leaves (Dudhiya) and in control (without peptide elicitation)	96
Figure 4.8	Larval growth rate after feeding S1 leaves, elicited by 3-10 kDa peptide isolated at different maturity stages of leaves (Dudhiya) and in control (without peptide elicitation)	96
Figure 4.9	Increase or decrease (%) of weight of single cocoon (WSC) over control under peptides treatment	97
Figure 4.10	Weight of single cocoon under S1 peptide treatment and respective control set	99
Figure 4.11	Weight of single cocoon under V1 peptide treatment and respective control set	99
Figure 4.12	Weight of single cocoon under S1635 peptide treatment and respective control set	99
Figure 4.13	Weight of single cocoon under Dudhiya peptide treatment and respective control set	100
Figure 4.14	Increase or decrease (%) of weight of single cocoon (WSC) over control under peptides treatment	100
Figure 4.15	Weight of single shell under S1 peptide treatment and respective control set	101
Figure 4.16	Weight of single shell under V1 peptide treatment and respective control set	101
Figure 4.17	Weight of single shell under S1635 peptide treatment and respective control set	101
Figure 4.18 Figure 4.19	Weight of single shell under Dudhiya peptide treatment and respective control set Increase or decrease (%) of weight of single shell (WSS) over control under peptides treatment	102 102
Figure 4.20	Shell ratio under S1 peptide treatment and respective control set	103
Figure 4.21	Shell ratio under V1 peptide treatment and respective control set	103
Figure 4.22	Shell ratio under S1635 peptide treatment and respective control set	103
Figure 4.23	Shell ratio under Dudhiya peptide treatment and respective control set	104
Figure 4.24	Increase or decrease (%) of shell ratio over control under peptides treatment	104
Figure 4.25	Effective Rearing Rate (%) under S1 peptides treatment and respective control	105
Figure 4.26	Effective Rearing Rate (%) under V1 peptides treatment and respective control	105
Figure 4.27	Effective Rearing Rate (%) under S1635 peptides treatment and respective control	105
Figure 4.28	Effective Rearing Rate (%) under Dudhiya peptides treatment and respective control	105
Figure 5.1	Dissected 5 th instar silkworm larvae. SG: silk gland; FB: fat body; GT/DG: gut tissue/digestive gland	114

Figure 5.2	5" instar silkworm larval tissue protein isolated from different parts of the larval	114
	body	
Figure 5.3	DPPH scavenging activity of peptides isolated from different mulberry genotypes at	118
	two molecular weight ranges	
Figure 5.4	ABTS+ scavenging activity of peptides isolated from different mulberry genotypes	118
	at two molecular weight ranges	
Figure 5.5	Nitric-oxide scavenging activity of peptides isolated from different mulberry	121
C	genotypes at two molecular weight ranges	
Figure 5.6	Super-oxide scavenging activity of peptides isolated from different mulberry	121
8	genotypes at two molecular weight ranges	
Figure 5.7	Reducing power activity of peptides isolated from different mulberry genotypes at	122
1 1gui C 5.7	two molecular weight ranges	122
Figure 5.8	Peroxidase (POD) enzyme activity of silk protein (SP), gut protein (GP), fat protein	126
rigure 5.6	(FP) and haemolymph protein (HP) isolated from 5 th instar silkworm larvae after	120
F: 5.0	nourishment with peptide treated and untreated control (CON) mulberry leaves	100
Figure 5.9	Activity of the polyphenol oxidase (PPO) of silk protein (SP), gut protein (GP), fat	126
	protein (FP) and haemolymph protein (HP) isolated from 5 th instar silkworm larvae	
	after nourishment with peptide treated and untreated control (CON) mulberry leaves	
Figure 5.10	Activity of superoxide dismutase (SOD) of silk protein (SP), gut protein (GP), fat	127
	protein (FP) and haemolymph protein (HP) isolated from 5 th instar silkworm larvae	
	after nourishment with peptide treated and untreated control (CON) mulberry leaves	
Figure 5.11	Activity of NADPH oxidase (NOX) of silk protein (SP), gut protein (GP), fat protein	127
	(FP) and haemolymph protein (HP) isolated from 5th instar silkworm larvae after	
	nourishment with peptide treated and untreated control (CON) mulberry leaves	
Figure 5.12	Catalase activity (CAT) of silk protein (SP), gut protein (GP), fat protein (FP) and	128
	haemolymph protein (HP) isolated from 5 th instar silkworm larvae after nourishment	
	with peptide treated and untreated control (CON) mulberry leaves	
Figure 5.13	Activity of ascorbate peroxidase (APX) of silk protein (SP), gut protein (GP), fat	128
	protein (FP) and haemolymph protein (HP) isolated from 5 th instar silkworm larvae	
	after nourishment with peptide treated and untreated control (CON) mulberry leaves	
Figure 5.14	Activity of glutathione reductase of silk protein (SP), gut protein (GP), fat protein	129
G	(FP) and haemolymph protein (HP) isolated from 5 th instar silkworm larvae after	
	nourishment with peptide treated and untreated control (CON) mulberry leaves	
Figure 5.15	Activity of glutathione peroxidase of silk protein (SP), gut protein (GP), fat protein	129
11gure 5.15	(FP) and haemolymph protein (HP) isolated from 5 th instar silkworm larvae after	127
	nourishment with peptide treated and untreated control (CON) mulberry leaves	
Figure 5.16	Activity of glutathione S-transferase of silk protein (SP), gut protein (GP), fat	129
rigure 5.10	protein (FP) and haemolymph protein (HP) isolated from 5 th instar silkworm larvae	145
E: 5 17	after nourishment with peptide treated and untreated control (CON) mulberry leaves	122
Figure 5.17	On gel analysis of POD isoform activity in silk (a) and gut (b) protein of silkworm	132
F: 7.10	larvae under different peptides treatment	100
Figure 5.18	Chromatogram depicting the relative density of POD isoforms in silk protein of	132
	silkworm larvae under different peptides treatment	
Figure 5.19	Chromatogram depicting the relative density of POD isoforms in gut protein of	132
	silkworm larvae under different peptides treatment	
Figure 5.20	On gel analysis of POD isoform activity in fat body (c) and haemolymph (d) protein	133
	of silkworm larvae under different peptides treatment	
Figure 5.21	Chromatogram depicting the relative density of POD isoforms in fat body protein of	133
	silkworm larvae under different peptides treatment	
Figure 5.22	Chromatogram depicting the relative density of POD isoform in haemolymph	133

Figure 5.23	On gel analysis of NOX isoform activity in silk (a) and gut (b) protein of silkworm larvae under different peptides treatment	134
Figure 5.24	Chromatogram depicting the relative density of NOX isoforms in silk protein of silkworm larvae under different peptides treatment	134
Figure 5.25	Chromatogram depicting the relative density of NOX isoforms in gut protein of silkworm larvae under different peptides treatment	134
Figure 5.26	On gel analysis of NOX isoform activity in fat body (c) and haemolymph (d) protein of silkworm larvae under different peptides treatment	135
Figure 5.27	Chromatogram depicting the relative density of NOX isoforms in fat body protein of silkworm larvae under different peptides treatment	135
Figure 5.28	Chromatogram depicting the relative density of NOX isoforms in haemolymph protein of silkworm larvae under different peptides treatment	135
Figure 5.29	On gel analysis of SOD isoform activity in silk (a) and gut (b) protein of silkworm larvae under different peptides treatment	136
Figure 5.30	Chromatogram depicting the relative density of SOD isoform in silk protein of silkworm larvae under different peptides treatment	136
Figure 5.31	Chromatogram depicting the relative density of SOD isoform in gut protein of silkworm larvae under different peptides treatment	136
Figure 5.32	On gel analysis of SOD isoform activity in fat body (c) and haemolymph (d) protein of silkworm larvae under different peptides treatment	137
Figure 5.33	Chromatogram depicting the relative density of SOD isoforms in fat body protein of silkworm larvae under different peptides treatment	137
Figure 5.34	Chromatogram depicting the relative density of SOD isoforms in haemolymph protein of silkworm larvae under different peptides treatment	137
Figure 6.1	(A): Digital image of oligopeptide separation on TLC plate [peptide isolated from young (A-i), mature (A-ii), and senescence (A-iii) S1 mulberry leaves] and auto generated chromatogram (Image lab: Bio Red) of peptides separation on TLC plate [A-i(x), A-ii(x) and A-iii(x) for peptides isolated from young, mature and senescence S1 mulberry leaves respectively). (B): Chromatogram depicting the relative density of peptides on TLC plates.	146
Figure 6.2	(A): Digital image of oligopeptide separation on TLC plate (peptide isolated from young (A-i), mature (A-ii), and senescence (A-iii) S1635 mulberry leaves and auto generated chromatogram (Image lab: Bio Red) of peptides separation on TLC plate [A-i(x), A-ii(x) and A-iii(x) for peptides isolated from young, mature and senescence S1635 mulberry leaves respectively). (B): Chromatogram depicting the relative density of peptides on TLC plates.	147
Figure 6.3	(A): Digital image of oligopeptide separation on TLC plate (peptide isolated from young (A-i), mature (A-ii), and senescence (A-iii) V1 mulberry leaves and auto generated chromatogram (Image lab: Bio Red) of peptides separation on TLC plate [A-i(x), A-ii(x) and A-iii(x) for peptides isolated from young, mature and senescence V1 mulberry leaves respectively). (B): Chromatogram depicting the relative density of peptides on TLC plates.	148
Figure 6.4	(A): Digital image of oligopeptide separation on TLC plate (peptide isolated from young (A-i), mature (A-ii), and senescence (A-iii) Dudhiya mulberry leaves and auto generated chromatogram (Image lab: Bio Red) of peptides separation on TLC plate [A-i(x), A-ii(x) and A-iii(x) for peptides isolated from young, mature and senescence Dudhiya mulberry leaves respectively). (B): Chromatogram depicting the relative density of peptides on TLC plates.	149
Figure 6.5	(A): A comparative study of oligopeptide separation on TLC plate (peptide isolated	150

protein of silkworm larvae under different peptides treatment

	Chromatogram depicting the relative density of peptides on TLC plates.	
Figure 6.6	(A): A comparative study of oligopeptide separation on TLC plate (peptide isolated from mature leaves of S1, S1635, V1 and Dudhiya mulberry leaves). (B): Chromatogram depicting the relative density of peptides on TLC plates.	151
Figure 6.7	(A): A comparative study of oligopeptide separation on TLC plate (peptide isolated from senescence leaves of S1, S1635, V1 and Dudhiya mulberry leaves). (B): Chromatogram depicting the relative density of peptides on TLC plates.	152
Figure 6.8	HPLC generated auto-scaled chromatogram of peptide mixture (as a standard peptide).	154
Figure 6.9	HPLC generated auto-scaled chromatogram of peptide(s) isolated from S1 young leaves	154
Figure 6.10	HPLC generated auto-scaled chromatogram of peptide(s) isolated from S1 mature leaves	154
Figure 6.11	HPLC generated auto-scaled chromatogram of peptide(s) isolated from S1 senescence leaves	155
Figure 6.12	Comparative peptide profile: Mature vs. senescence leaf of S1 mulberry variety	155
Figure 6.13	HPLC generated auto-scaled chromatogram of peptide(s) isolated from Dudhiya young leaves	156
Figure 6.14	HPLC generated auto-scaled chromatogram of peptide(s) isolated from Dudhiya mature leaves	156
Figure 6.15	HPLC generated auto-scaled chromatogram of peptide(s) isolated from Dudhiya senescence leaves	157
Figure 6.16	Comparative peptide profile: Mature vs. senescence leaf of Dudhiya mulberry variety	157
Figure 6.17	HPLC generated auto-scaled chromatogram of peptide(s) isolated from S1635 mature leaves	158
Figure 6.18	HPLC generated auto-scaled chromatogram of peptide(s) isolated from V1 mature leaves	158
Figure 6.19	HPLC generated auto-scaled peak area of low molecular weight (0.5-3 kDa) peptides isolated from young leaves of S1 mulberry cultivars with amino acid sequence of fraction number 3	159
Figure 6.20	HPLC generated auto-scaled peak area of low molecular weight (0.5-3 kDa) peptides isolated from mature leaves of S1 mulberry leaves	160
Figure 6.21	HPLC generated auto-scaled peak height of low molecular weight (0.5-3 kDa) peptides isolated from mature leaves of S1 mulberry leaves	160
Figure 6.22	HPLC generated auto-scaled peak area of low molecular weight (0.5-3 kDa) peptides isolated from mature leaves of Dudhiya mulberry leaves	161
Figure 6.23	HPLC generated auto-scaled peak height of low molecular weight (0.5-3 kDa) peptides isolated from mature leaves of Dudhiya mulberry leaves	161
Figure 6.24	HPLC generated auto-scaled peak area of low molecular weight (0.5-3 kDa) peptides isolated from mature leaves of S1635 mulberry leaves	162
Figure 6.25	HPLC generated auto-scaled peak height of low molecular weight (0.5-3 kDa) peptides isolated from mature leaves of S1635 mulberry leaves	162
Figure 6.26	HPLC generated auto-scaled peak area of low molecular weight (0.5-3 kDa) peptides isolated from mature leaves of V1 mulberry leaves	163
Figure 6.27	HPLC generated auto-scaled peak height of low molecular weight (0.5-3 kDa) peptides isolated from mature leaves of V1 mulberry leaves	163
Figure 7.1	Outline of rearing room for large scale silkworm rearing	171
Figure 7.2	Representation of Scanning Electron Photomicrograph (SEM) of silk fibers obtained	172

	leaves as control; whereas (d), (e) and (f) demonstrated the SEM analysis of silk	
	fibers acquired after treatment with peptide (0.5-3 kDa) isolated from S1 young, mature and senescence leaves respectively.	
Figure 7.3	(a) and (b): Representation of Scanning Electron Photomicrograph (SEM) of side view of silk fiber of fracture point after forcefully detached. (c): Showing the surface of silk fiber after peptide treatment.	172
Figure 7.4	Silkworm rearing bed (a); large scale silkworm rearing after peptides treatment with the help of local farmers	173
Figure 7.5	Silkworm rearing after peptides treatment at the rearing house	173
Figure 7.6	Cocoon harvested within chandraki	174
Figure 7.7	Cocoon obtained from silkworm rearing under peptides (isolated from S1 mulberry leaves) treatment as well as control set.	174
Figure 7.8	Cocoon obtained after large scale rearing under peptides treatment in the farmer rearing house.	175
Figure 7.9	Silk fibre obtained from cocoon under peptide treatment and control set	175
Figure 7.10	Nature of silk filament defects. A(a and b): Loop; B: Hairiness; C: Split ends; D: Nibs	178
Figure 8.1	Larval growth rate after feeding S1 leaves, elicited by ABA at different concentration	184
Figure 8.2	Larval growth rate after feeding S1 leaves, elicited by Gibberellic acid (GA) at different concentration	184
Figure 8.3	Larval growth rate after feeding S1 leaves, elicited by Kinetin at different concentrations	185
Figure 8.4	Larval growth rate after feeding S1 leaves, elicited by IAA at different concentration.	185
Figure 8.5	Larval growth rate after feeding S1 leaves, elicited by Putrescine at different concentration	189
Figure 8.6	Larval growth rate after feeding S1 leaves, elicited by Spermidine at different concentration	189
Figure 8.7	Larval growth rate after feeding S1 leaves, elicited by Spermine at different concentration	189
Figure 8.8	Larval growth rate after feeding S1 leaves, elicited by Ascorbic Acid (AA) at different concentration	191
Figure 8.9	Larval growth rate after feeding S1 leaves, elicited by Glutathione (reduced) at different concentration	191
Figure 8.10	Larval growth rate after feeding S1 leaves, elicited by Salicylic Acid (SA) at different concentration	191
Figure 8.11	Larval growth rate after feeding S1 leaves, elicited by Folic Acid at different concentrations	192
Figure 8.12	Larval growth rate after feeding S1 leaves, elicited by Proline at different concentration	192
Figure 8.13	Larval growth rate after feeding S1 leaves, elicited by NiCl ₂ at different concentrations	193
Figure 8.14	Larval growth rate after feeding S1 leaves, elicited by NaCl at different concentration	193
Figure 8.15	Increase or decrease (%) of Effective Rearing Rate (ERR%) over control under mulberry leaves elicitation with hormones	196
Figure 8.16	Increase or decrease (%) of Weight of Single Cocoon (WSC) over control under	196

	mulderly leaves enchation with normones.	
Figure 8.17	Increase or decrease (%) of Weight of Single Shell (WSS) over control under	196
	mulberry leaves elicitation with hormones	
Figure 8.18	Increase or decrease (%) of Shell Ratio (SR) over control under mulberry leaves	197
Figure 8.19	elicitation with hormones Increase or decrease (%) of Average Filament Length (AFL) over control under	197
rigure 6.19	mulberry leaves elicitation with hormones.	197
Figure 8.20	Increase or decrease (%) of Non-breakable Filament Length (NBFL) over control	197
8	under mulberry leaves elicitation with hormones.	
Figure 8.21	Increase or decrease (%) of Filament Weight (FW) over control under mulberry	198
	leaves elicitation with hormones.	
Figure 8.22	Increase or decrease (%) of Filament Size (FS) over control under mulberry leaves	198
	elicitation with hormones.	
Figure 8.23	Increase or decrease (%) of Sericin over control under mulberry leaves elicitation	199
	with hormones.	
Figure 8.24	Increase or decrease (%) of Fibroin over control under mulberry leaves elicitation	199
E' 0.25	with hormones.	200
Figure 8.25	Average rank and percentile analysis of hormone application on the basis of their effects on different cocoon and post cocoon attributes	206
Figure	Increase or decrease (%) of (a)-Weight of Single Cocoon (WSC); (b)-Weight of	200
8.26a-c	Single Shell (WSS); (c)- Shell Ratio (SR) over control under mulberry leaves	200
6.20a-c	elicitation with three polyamines.	
Figure 8.27	Increase or decrease (%) of Average Filament Length (AFL) over control under	201
11gure 0.27	mulberry leaves elicitation with polyamines	201
Figure 8.28	Increase or decrease (%) of Non-breakable Filament Length (NBFL) over control	201
E	under mulberry leaves elicitation with polyamines.	
Figure 8.29	Increase or decrease (%) of Filament Weight (FW) over control under mulberry	201
	leaves elicitation with polyamines	
Figure 8.30	Increase or decrease (%) of Filament Size (FS) over control under mulberry leaves	202
	elicitation with polyamines.	
Figure 8.31	Increase or decrease (%) of Sericin over control under mulberry leaves elicitation	202
	with polyamines.	
Figure 8.32	Increase or decrease (%) of Fibroin over control under mulberry leaves elicitation	202
F: 0.22	with polyamines	200
Figure 8.33	Average rank and percentile analysis of polyamine application on the basis of their	209
Eigung 9 24	effects on different cocoon and post cocoon attributes	216
Figure 8.34	Increase or decrease (%) of Effective Rearing Rate (EER%) over control under mulberry leaves elicitation with non-enzymatic antioxidant (Ascorbic acid,	216
	Glutathione, Salicylic acid); Osmolytes (Proline); Salt (NiCl2, NaCl) and Folic acid	
Figure 8.35	Increase or decrease (%) of Weight of Single Cocoon (WSC) over control under	216
118010 0.55	mulberry leaves elicitation with non-enzymatic antioxidant (Ascorbic acid,	210
	Glutathione, Salicylic acid); Osmolytes (Proline); Salt (NiCl2, NaCl) and Folic acid	
Figure 8.36	Increase or decrease (%) of Weight of Single Shell (WSS) over control under	216
	mulberry leaves elicitation with non-enzymatic antioxidant (Ascorbic acid,	
	Glutathione, Salicylic acid); Osmolytes (Proline); Salt (NiCl2, NaCl) and Folic acid	
Figure 8.37	Increase or decrease (%) of Shell Ratio (SR%) over control under mulberry leaves	217
	elicitation with non-enzymatic antioxidant (Ascorbic acid, Glutathione, Salicylic	
	acid); Osmolytes (Proline); Salt (NiCl2, NaCl) and Folic acid	
Figure 8.38	Increase or decrease (%) of Average Filament Length (AFL) over control under	217
	mulberry leaves elicitation with non-enzymatic antioxidant (Ascorbic acid,	

Figure 8.39	Increase or decrease (%) of Non-breakable Filament Length (NBFL) over control	217
	under mulberry leaves elicitation with non-enzymatic antioxidant (Ascorbic acid, Glutathione, Salicylic acid); Osmolytes (Proline); Salt (NiCl2, NaCl) and Folic acid	
Figure 8.40	Increase or decrease (%) of Filament Weight (FW) over control under mulberry	218
	leaves elicitation with non-enzymatic antioxidant (Ascorbic acid, Glutathione,	
	Salicylic acid); Osmolytes (Proline); Salt (NiCl2, NaCl) and Folic acid	
Figure 8.41	Increase or decrease (%) of Filament Size (FS) over control under mulberry leaves	218
	elicitation with non-enzymatic antioxidant (Ascorbic acid, Glutathione, Salicylic	
	acid); Osmolytes (Proline); Salt (NiCl2, NaCl) and Folic acid.	
Figure 8.42	Increase or decrease (%) of Sericin over control under mulberry leaves elicitation	219
	with non-enzymatic antioxidant (Ascorbic acid, Glutathione, Salicylic acid);	
	Osmolytes (Proline); Salt (NiCl2, NaCl) and Folic acid	
Figure 8.43	Increase or decrease (%) of Fibroin over control under mulberry leaves elicitation	219
	with non-enzymatic antioxidant (Ascorbic acid, Glutathione, Salicylic acid);	
E' 0.44	Osmolytes (Proline); Salt (NiCl2, NaCl) and Folic acid	220
Figure 8.44	Connection of proline metabolism to other pathways. Exogenous prolines (·)	220
Fig. 9.45	controlled regulation of genes and enzymes involved in internal proline metabolism	210
Figure 8.45	Average rank and percentile analysis of different elicitors on the basis of their	210
Figure 9.1	effects on different cocoon and post cocoon attributes General mechanism found in an organism after elicitation acuity. (Baenas <i>et al.</i> ,	233
rigure 9.1	2014; Ferrari, 2010; Smetanska, 2005; Zhao <i>et al.</i> , 2005).	233
Figure 9.2	Accumulation of hydrogen peroxide, superoxide and MDA in mulberry leaves under	234
rigure 7.2	PGRs elicitation	237
Figure 9.3	Glutathione accumulation in mulberry leaves (S1 cultivars) under elicitation with	234
8	different PGRs (AA: Ascorbic acid; ABA: Abscisic acid; GA: Gibberellic acid; Spd:	
	Spermidine)	
Figure 9.4	Ascorbic acid accumulation in mulberry leaves (S1 cultivars) under elicitation with	235
	different PGRs (AA: Ascorbic acid; ABA: Abscisic acid; GA: Gibberellic acid; Spd:	
	Spermidine).	
Figure 9.5	Proline accumulation in mulberry leaves (S1 cultivars) under elicitation with	235
	different PGRs (AA: Ascorbic acid; ABA: Abscisic acid; GA: Gibberellic acid; Spd:	
	Spermidine)	
Figure 9.6	Carotenoid content in mulberry leaves (S1 cultivars) under elicitation with different	235
	PGRs (AA: Ascorbic acid; ABA: Abscisic acid; GA: Gibberellic acid; Spd:	
	Spermidine)	
Figure 9.7	Chlorophyll-a content in mulberry leaves (S1 cultivars) under elicitation with	236
	different PGRs (AA: Ascorbic acid; ABA: Abscisic acid; GA: Gibberellic acid; Spd:	
	Spermidine)	
Figure 9.8	Chlorophyll-b content in mulberry leaves (S1 cultivars) under elicitation with	236
	different PGRs (AA: Ascorbic acid; ABA: Abscisic acid; GA: Gibberellic acid; Spd:	
F: 0.0	Spermidine)	224
Figure 9.9	Total chlorophyll content in mulberry leaves (S1 cultivars) under elicitation with	236
	different PGRs (AA: Ascorbic acid; ABA: Abscisic acid; GA: Gibberellic acid; Spd:	
Figure 0.10	Spermidine) Total protein content in mulherry leaves (\$1 cultivers) under elicitation with	227
Figure 9.10	Total protein content in mulberry leaves (S1 cultivars) under elicitation with	237
	different PGRs (AA: Ascorbic acid; ABA: Abscisic acid; GA: Gibberellic acid; Spd: Spermidine)	
Figure 9.11	Total soluble sugar content in mulberry leaves (S1 cultivars) under elicitation with	237
115010 7.11	different PGRs (AA: Ascorbic acid; ABA: Abscisic acid; GA: Gibberellic acid; Spd:	201
	and the second s	

Figure 9.12	Spermidine) Total reducing sugar content in mulberry leaves (S1 cultivars) under elicitation with different PGRs (AA: Ascorbic acid; ABA: Abscisic acid; GA: Gibberellic acid; Spd: Spermidine)	237
Figure 9.13	Different enzyme activities of mulberry leaves after elicitation with PGRs (ABA: Abscisic acid; GA: Gibberellic acid; AA: Ascorbic acid; Spd: Spermidine) and control (CON)	238
Figure 9.14	Different enzyme activities of mulberry leaves after elicitation with PGRs (ABA: Abscisic acid; GA: Gibberellic acid; AA: Ascorbic acid; Spd: Spermidine) and control (CON)	238
Figure 9.15	Total protein content in different 5 th instar larval tissues under PGRs (AA: Ascorbic acid; ABA: Abscisic acid; GA: Gibberellic acid; Spd: Spermidine) elicitation and control (CON)	240
Figure 9.16	Alteration in Peroxidase (a); polyphenol oxidase (b); catalase (c) enzyme activity of silk and gut protein isolated from 5 th instar silkworm larvae after nourishment with PGRs (ABA: Abscisic acid; GA: Gibberellic acid; AA: Ascorbic acid; Spd: Spermidine) treated and untreated control (CON) mulberry leaves	241
Figure 9.17	Alteration in NADPH oxidase (a); superoxide dismutase (b); ascorbate peroxidase (c) enzyme activity of silk and gut protein isolated from 5 th instar silkworm larvae after nourishment with PGRs (ABA: Abscisic acid; GA: Gibberellic acid; AA: Ascorbic acid; Spd: Spermidine) treated and untreated control (CON) mulberry leaves	242
Figure 9.18	Alteration in Glutathione S-transferase (a); glutathione reductase (b); glutathione peroxidase (c) enzyme activity of silk and gut protein isolated from 5 th instar silkworm larvae after nourishment with PGRs (ABA: Abscisic acid; GA: Gibberellic acid; AA: Ascorbic acid; Spd: Spermidine) treated and untreated control (CON) mulberry leaves	243
Figure 9.19	Peroxidase (POD) enzyme activity of fat protein (FP) and haemolymph protein (HP) isolated from 5 th instar silkworm larvae after nourishment with PGRs (ABA: Abscisic acid; GA: Gibberellic acid; AA: Ascorbic acid; Spd: Spermidine) treated	244
Figure 9.20	and untreated control (CON) mulberry leaves Activity of the polyphenol oxidase (PPO) of fat protein (FP) and haemolymph protein (HP) isolated from 5 th instar silkworm larvae after nourishment with PGRs (ABA: Abscisic acid; GA: Gibberellic acid; AA: Ascorbic acid; Spd: Spermidine)	244
Figure 9.21	treated and untreated control (CON) mulberry leaves Catalase activity of the fat protein (FP) and haemolymph protein (HP) isolated from 5 th instar silkworm larvae after nourishment with PGRs (ABA: Abscisic acid; GA: Gibberellic acid; AA: Ascorbic acid; Spd: Spermidine) treated and untreated control	245
Figure 9.22	(CON) mulberry leaves Activity of NADPH oxidase (NOX) of the fat protein (FP) and haemolymph protein (HP) isolated from 5 th instar silkworm larvae after nourishment with PGRs (ABA: Abscisic acid; GA: Gibberellic acid; AA: Ascorbic acid; Spd: Spermidine) treated	245
Figure 9.23	and untreated control (CON) mulberry leaves Activity of superoxide dismutase (SOD) of the fat protein (FP) and haemolymph protein (HP) isolated from 5 th instar silkworm larvae after nourishment with PGRs (ABA: Abscisic acid; GA: Gibberellic acid; AA: Ascorbic acid; Spd: Spermidine)	246
Figure 9.24	treated and untreated control (CON) mulberry leaves Activity of ascorbate peroxidase (APX) of the fat protein (FP) and haemolymph protein (HP) isolated from 5 th instar silkworm larvae after nourishment with PGRs (ABA: Abscisic acid: GA: Gibberellic acid: AA: Ascorbic acid: Spd: Spermidine)	246

	treated and untreated control (CON) mulberry leaves	
Figure 9.25	Activity of glutathione S-transferase (GST) of the fat protein (FP) and haemolymph	247
	protein (HP) isolated from 5th instar silkworm larvae after nourishment with PGRs	
	(ABA: Abscisic acid; GA: Gibberellic acid; AA: Ascorbic acid; Spd: Spermidine)	
	treated and untreated control (CON) mulberry leaves respectively	
Figure 9.26	Activity of glutathione reductase (GR) of the fat protein (FP) and haemolymph	247
	protein (HP) isolated from 5 th instar silkworm larvae after nourishment with PGRs	
	(ABA: Abscisic acid; GA: Gibberellic acid; AA: Ascorbic acid; Spd: Spermidine)	
	treated and untreated control (CON) mulberry leaves respectively	
Figure 9.27	Activity of glutathione peroxidase (GPX) of the fat protein (FP) and haemolymph	247
	protein (HP) isolated from 5 th instar silkworm larvae after nourishment with PGRs	
	(ABA: Abscisic acid; GA: Gibberellic acid; AA: Ascorbic acid; Spd: Spermidine)	
	treated and untreated control (CON) mulberry leaves respectively	
Figure 9.28	(A): Silk protein, (B): Gut protein separation through SDS gel electrophoresis after	248
C	hormone elicitation (ABA: abscisic acid and GA: gibberellic acid).	
Figure 9.29	Chromatogram depicting the relative density of Silk protein (A-i), and gut protein	248
C	(B-i) isolated from 5 th instar silkworm larvae after nourishment with hormone	
	(ABA: abscisic acid and GA: gibberellic acid) treated mulberry leaves.	
Figure 9.30	(C): Fat protein, (D): Haemolymph protein separation through SDS gel	249
1180111111	electrophoresis after hormone elicitation (ABA: abscisic acid and GA: gibberellic	,
	acid).	
Figure 9.31	Chromatogram depicting the relative density of Fat protein (C-i), and Haemolymph	249
8	protein (D-i) isolated from 5 th instar silkworm larvae after nourishment with	
	hormone (ABA: abscisic acid and GA: gibberellic acid) treated mulberry leaves.	
Figure 9.32	(E): Silk protein, (F): Gut protein separation through SDS gel electrophoresis after	250
118010 > 102	elicitation with spermidine (Spd) and ascorbic acid (AA).	
Figure 9.33	Chromatogram depicting the relative density of Silk protein (E-i), and Gut protein	250
118410 7.55	(F-i) isolated from 5 th instar silkworm larvae after nourishment with spermidine	200
	(Spd), ascorbic acid (AA) treated mulberry leaves.	
Figure 9.34	(G): Fat protein, (H): Haemolymph protein separation through SDS gel	251
118010 > 10 1	electrophoresis after elicitation with spermidine (Spd) and ascorbic acid (AA).	
Figure 9.35	Chromatogram depicting the relative density of Fat protein (G-i), and Haemolymph	251
118010 >100	protein (H-i) isolated from 5 th instar silkworm larvae after nourishment with	
	spermidine (Spd), ascorbic acid (AA) treated mulberry leaves.	
Figure 9.36a	On gel analysis of SOD isoform activity in silk (A) and gut (B) protein of silkworm	252
118416 >1504	larvae after nourishment with hormone treated mulberry leaves (ABA: abscisic acid;	
	GA: gibberellic acid)	
Figure	Chromatogram depicting the relative density of SOD isoforms in silk protein (9.36b)	252
9.36b-9.36c	and gut protein (9.36c) of silkworm larvae after nourishment with hormone treated	202
7.500 7.50 c	mulberry leaves (ABA: abscisic acid; GA: gibberellic acid)	
Figure 9.37a	On gel analysis of SOD isoform activity in fat body (C) and haemolymph (D)	253
118410 3.374	protein of silkworm larvae after nourishment with hormone treated mulberry leaves	200
	(ABA: abscisic acid; GA: gibberellic acid)	
Figure	Chromatogram depicting the relative density of SOD isoforms in fat protein (9.37b)	253
9.37b-9.37c	and haemolymph protein (9.37c) of silkworm larvae after nourishment with	200
7.510 J.51C	hormone treated mulberry leaves (ABA: abscisic acid; GA: gibberellic acid)	
Figure 9.38a	On gel analysis of SOD isoform activity in silk (A) and gut (B) protein of silkworm	254
115010 7.300	larvae after nourishment with ascorbic acid (AA) and spermidine (Spd) treated	237
	mulberry leaves	
Figure	Chromatogram depicting the relative density of SOD isoforms in silk protein (9.38b)	254
1 15010	chromatogram depicting the relative density of bob isotorms in sink protein (2.300)	257

9.38b-9.38c	and gut protein (9.38c) of silkworm larvae after nourishment with ascorbic acid (AA) and spermidine (Spd) treated mulberry leaves	
Figure 9.39a	On gel analysis of SOD isoform activity in fat (C) and haemolymph (D) protein of	255
Tigure 9.39a	silkworm larvae after nourishment with ascorbic acid (AA) and spermidine (Spd) treated mulberry leaves	233
Figure	Chromatogram depicting the relative density of SOD isoforms in fat protein (9.39b)	255
9.39b-9.39c	and haemolymph protein (9.39c) of silkworm larvae after nourishment with ascorbic	233
9.390-9.390	and haemorymph protein (9.59c) of showorm far vae after nourishment with ascorbic acid (AA) and spermidine (Spd) treated mulberry leaves	
Figure 0.40a		256
Figure 9.40a	On gel analysis of NOX isoform activity in silk (A) and gut (B) protein of silkworm	230
	larvae after nourishment with hormone treated mulberry leaves (ABA: abscisic acid;	
Figure	GA: gibberellic acid) Chromatogram depicting the relative density of NOX isoforms in silk protein	256
9.40b-9.40c	(9.40b)and gut protein (9.40c) of silkworm larvae after nourishment with hormone	230
9.400-9.400	treated mulberry leaves (ABA: abscisic acid; GA: gibberellic acid)	
Figure 0.41a	On gel analysis of NOX isoform activity in fat (C) and haemolymph (D) protein of	257
Figure 9.41a	silkworm larvae after nourishment with hormone treated mulberry leaves (ABA:	231
	abscisic acid; GA: gibberellic acid)	
Figure	Chromatogram depicting the relative density of NOX isoforms in fat protein (9.41b)	257
9.41b-9.41c	and haemolymph protein (9.41c) of silkworm larvae after nourishment with	231
9.410-9.410	hormone treated mulberry leaves (ABA: abscisic acid; GA: gibberellic acid)	
Figure 9.42a	On gel analysis of NOX isoform activity in silk (A) and gut (B) protein of silkworm	258
11guic 9.42a	larvae after nourishment with ascorbic acid (AA) and spermidine (Spd) treated	230
	mulberry leaves	
Figure	Chromatogram depicting the relative density of NOX isoforms in silk protein	258
9.42b-9.42c	(9.42b) and gut protein (9.42c) of silkworm larvae after nourishment with ascorbic	230
).420 J.42C	acid (AA) and spermidine (Spd) treated mulberry leaves	
Figure 9.43a	On gel analysis of NOX isoform activity in fat (C) and haemolymph (D) protein of	259
1 1guic 7.43a	silkworm larvae after nourishment with ascorbic acid (AA) and spermidine (Spd)	237
	treated mulberry leaves	
Figure	Chromatogram depicting the relative density of NOX isoforms in fat protein (9.43b)	259
9.43b-9.43c	and haemolymph protein (9.43c) of silkworm larvae after nourishment with ascorbic	207
).130).13 c	acid (AA) and spermidine (Spd) treated mulberry leaves	
Figure 9.44a	On gel analysis of POD isoform activity in silk (A) and gut (B) protein of silkworm	260
11gui 0 > 1 1 1 1 1	larvae after nourishment with hormone treated mulberry leaves (ABA: abscisic acid;	-00
	GA: gibberellic acid)	
Figure	Chromatogram depicting the relative density of POD isoform in silk protein (9.44b)	260
9.44b-9.44c	and gut (9.44c) protein of silkworm larvae after nourishment with hormone treated	
	mulberry leaves (ABA: abscisic acid; GA: gibberellic acid)	
Figure 9.45a	On gel analysis of POD isoform activity in fat (C) and haemolymph (D) protein of	261
C	silkworm larvae after nourishment with hormone treated mulberry leaves (ABA:	
	abscisic acid; GA: gibberellic acid)	
Figure	Chromatogram depicting the relative density of POD isoform in fat protein (9.45b)	261
9.45b-9.45c	and haemolymph (9.45c) protein of silkworm larvae after nourishment with	
	hormone treated mulberry leaves (ABA: abscisic acid; GA: gibberellic acid)	
Figure 9.46a	On gel analysis of POD isoform activity in silk (A) and gut (B) protein of silkworm	262
6	larvae after nourishment with ascorbic acid (AA) and spermidine (Spd) treated	-
	mulberry leaves	
Figure	Chromatogram depicting the relative density of POD isoform in silk protein (9.46b)	262
9.46b-9.46c	and gut protein (9.46c) of silkworm larvae after nourishment with ascorbic acid	
	(AA) and spermidine (Spd) treated mulberry leaves	

Figure 9.47a	On gel analysis of POD isoform activity in fat (C) and haemolymph (D) protein of	263
	silkworm larvae after nourishment with ascorbic acid (AA) and spermidine (Spd)	
	treated mulberry leaves	
Figure	Chromatogram depicting the relative density of POD isoform in fat protein (9.47b)	263
9.47b-9.47c	and haemolymph protein (9.47c) of silkworm larvae after nourishment with ascorbic	
	acid (AA) and spermidine (Spd) treated mulberry leaves	
Figure 9.48	Mode of actions of abscisic acid (ABA) and gibberellic acid (GA) on silkworm rearing through mulberry leaf elicitation	264
Figure 9.49	Correlation matrix between biochemical attributes of mulberry leaves with different economic parameters of silkworm rearing system after PGRs elicitation	265
Figure 9.50	PCA analysis of Free Radical Scavenger: Non-enzymatic antioxidant member (yellow), Pigment member and biochemical attributes of mulberry leaves (green dot), ROS: lipid peroxidation member (orange dot), and economical attributes of rearing system (sky blue dot), antioxidant enzyme activities of mulberry leaves after PGRs elicitation (blue dot), antioxidant enzyme activity of 5 th instar larvae (red dot)	266
	FORS enchanon (once dot), annoxidam enzyme activity of 3 mstar farvae (red dot)	

LIST OF APPENDIX

APPENDIX-A	List of chemicals used	300-302
APPENDIX-B	Abbreviation and symbols used	303-304
APPENDIX-C	List of publications from this thesis	305-306
APPENDIX-D	Front page of full length research article	307-313