LIST OF TABLES

<u>CHAPTERS</u>	TABLE CAPTIONS	PAGE NO.
Chapter-II	Table II.1. Characteristics of Cyclodextrin.	39
Chapter-IV	Table IV.1: Molar Conductance (Λ) and Surface tension (γ) values with corresponding concentration at the CMC and saturation point of inclusion; and concentration ratio (ratio of inclusion IL: β -CD) at the break point of the surfactants solution (0.01 M) in aqueous β -CD Table IV.2: Free energy of micellization (ΔG_{mic}) and free energy of change (ΔG) obtained from degree of micelle ionization (α) and association constant (K_a) of the solution (β -CD+ionic liquid) at 25°C evaluated from the conductance	141 142
Chapter-V	and surface tension measurement respectively Table V.1: Values of observed molar conductivities (A) at various mole ratios for the system Amantadine-18C6 at different temperature	157-158
	Table V.2: Values of formation constant, enthalpy, entropy and free energy change of amantadine-18C6 complex in methanol solution	160
	Table V.3: Experimental values of surface tension (γ) corresponding to concentration of 18C6 in methanolic solution	161
	Table V.4: Values of surface tension (γ) at the break point with corresponding to concentration of 18C6 in methanolic solution at 298.15 K	163
	Table V.5: Experimental values of density (ρ) in different mass fraction of methanolic solution of 18C6	164
	Table V.6: Experimental values of densities (ρ) corresponding to concentration in different mass fractions of methanolic solution of 18C6 at different temperature	165

	Table V.7: Limiting apparent molar volume (ϕ_{v^0}) and experimental slope (S_v^*) in different mass fractions of methanolic solution of 18-crown-6	165-166
	Table V.8: Limiting apparent molar expansibilities (ϕ_E^{θ}) for amantadine hydrochloride in different mass fraction of 18C6 in methanol solution (w_1) at 298.15K to 308.15K respectively	168
	Table VI.1: Density (ρ) , viscosity (η) and relative permittivity (ε) of the different solvents Acetonitrile, Tetrahydrofuran and Dichloromethane	174
	Table VI.2: The concentration (m) and molal conductance (Λ) of [bmim][Cl] in Acetonitrile, Dichloromethane and Tetrahydrofuran at 298.15 K, 303.15K and 308.15K respectively	175-176
	Table VI.3: Limiting molar conductance (Λ_o) , association constant (K_A) , co-sphere diameter (R) and standard deviations of experimental Λ (δ) obtained from Fuoss conductance equation of [bmim][Cl] in Acetonitrile at 298.15 K, 303.15 K and 308.15 K respectively	178
Chapter VI	Table VI.4: Walden product ($\Lambda_0 \cdot \eta$) and Gibb's energy change (ΔG°) of [bmim][Cl] in Acetonitrile at 298.15 K, 303.15 K and 308.15 K respectively	179
	Table VI.5: Limiting Ionic Conductance (λ_0^{\pm}), Ionic Walden Product ($\lambda_0^{\pm}\eta$, Stokes' Radii (r_s), and Crystallographic Radii (r_c) of [bmim][Cl] in Acetonitrile at 298.15 K, 303.15 K and 308.15 K respectively K and 308.15 K respectively	179
	Table VI.6: Thermodynamic parameters for [bmim][Cl] in ACN	180
	Table VI.7: The calculated limiting molar conductance of ion-pair (Λ_0), limiting molar conductances of triple ion Λ_0^T , experimental slope and intercept obtained from Fuoss-Kraus Equation for [bmim][Cl] in DCM and THF at 298.15 K, 303.15 K and 308.15 K respectively	183

Table VI.8: Salt concentration at the minimum conductivity	
(C_{min}) along with the ion-pair formation constant (K_P), triple	104
ion formation constant (K_T) for [bmim][Cl] in DCM and THF	104
at 298.15 K, 303.15 K and 308.15 K respectively	
Table VI.9: Salt concentration at the minimum conductivity	
(c_{min}), the ion pair fraction ($lpha$), triple ion fraction ($lpha_T$), ion	
pair concentration (c_P) and triple-ion concentration (c_T) for	186
[bmim][Cl] in DCM and THF at 298.15 K, 303.15 K and 308.15	
K respectively	
Table VI.10: Density (ρ) and viscosity (η) of 1-butyl-3-	
methylimidazolium chloride in different mass fraction of	107 100
Acetonitrile, Dichloromethane and Tetrahydrofuran at	187-188
different temperatures	
(n-1)	
Table VI.11: Apparent molal volume (ϕ_V) and $\frac{(\eta_r - 1)}{\sqrt{m}}$ for 1-	
hutvl-3-methylimidazolium Chloride ([hmim1[C11) in different	189
mass fraction of Acetonitrile. Dichloromethane and	
Tetrahydrofuran at different temperatures	
Table VI.12: Limiting apparent molar volume $(\phi_{\rm V}^0)$,	
*	
experimental slope (S_V), viscosity B-and viscosity A- coefficient	190
for [bmim[Cl] in ACN, DCM and THF at T= (298.15 to 308.15) K	
respectively	
Table VI.13: Values of empirical coefficients $(a_0, a_1, and a_2)$	192
of Equation 26 of the [bmim][CI] in ACN, DCM and THF	
Table VI.14: Limiting apparent molal expansibilities (ϕ_{r}^{0}) of	
[hmim][C]] in ACN DCM and THE at T= (208 15 to 208 15) K	193
[bining[bi] in Abiy, bow and 111 at 1 - [220.15 to 500.15] K	
Table VI.15: Stretching frequencies of the functional groups	
present in the pure solvent and change of frequency after	195
addition of [bmim][Cl] in the solvents	

	Table VII.1: Data for the Job plot performed by UV-Vis spectroscopy for SA-DC18C6 system	201
	Table VII.2: Data for the Job plot performed by UV-Vis spectroscopy for SA-18C6 system	201
	Table VII.3: Data for the Job plot performed by UV-Vis spectroscopy for SA-DB18C6 system	202
	Table VII.4: Comparison between the Frequencies change(cm ⁻¹) of different functional group of free compound andtheir complexes	205
	Table VII.5: Experimental values of density (ρ) and viscosity (η) of sulfa drug in different mass fraction of DC18C6 (w_1), 18C6 (w_2) and DB18C6 (w_3) in ACN at T= (293.15 to 308.15) K	209-211
Chapter VII	Table VII.6: Limiting apparent molar volume (ϕ_V^0) and viscosity B-coefficient of sulfa drug in different mass fraction of different crown ethers in ACN at T= (293.15 to 308.15) K	213-214
	Table VII.7: Values of empirical coefficients $(a_0, a_1, and a_2)$ of Equation 14 of sulfa drug in different mass fraction of DC18C6 (w_1) , 18C6 (w_2) and DB18C6 (w_3) in ACN at T= (293.15 to 308.15) K	215
	Table VII.8: Limiting apparent molal expansibilities (ϕ_E^0) of sulfa drug in different mass fraction of DC18C6 (w_1), 18C6 (w_2) and DB18C6 (w_3) in ACN at T= (293.15 to 308.15) K	216
	Table VII.9: Values of dB/dT of sulfa drug in different mass fraction of DC18C6 (w_1), 18C6 (w_2) and DB18C6 (w_3) in ACN at T= (293.15 to 308.15) K respectively	219

	Table VII.10: Values of Refractive Index (n_D) and Molar	
	Refraction (R_M) of sulfa drug in different mass fraction of	221-222
	$DC18C6 (w_1), 18C6 (w_2)$ and $DB18C6 (w_3)$ in ACN at $T=$	
	Table VII.11: Limiting molar refractions (R_M^o) values of	222
	sulfa arug in all een t mass fraction of DC18C6 (W_1), 18C6 (W_2) and DB18C6 (W_2) in ACN at T= 298 15 K respectively	223
	(w_2) and $DB1000$ (w_3) in ACN at $1-290.15$ K respectively	
	Table VII.12: Values of Association constant (K_a) and free energy change (ΔG^o) of the three SA-CEs complexes	225
	Table VII.13: Data for the Benesi-Hildebrand double	
	reciprocal plot performed by UV-Vis spectroscopy for SA- DC18C6 system	227
	Table WI 14. Data for the Densei Hildshuand deuble	
	resinressed plot performed by UV Vis spectroscopy for SA	227
	18C6 system	227
	Table 10147 Data for the Dense Utbeland double	
	raciprocal plot performed by IW-Vis spectroscopy for SA-	227
	DB18C6 system	227
	Table VIII.1: Data for the Job plot performed by UV-Vis	224
	spectroscopy for aqueous MP: $lpha$ -CD system at 298.15K a	234
	Table VIII.2: Data for the Job plot performed by UV-Vis	235
	spectroscopy for aqueous MP:β-CD system at 298.15K ^a	200
	Table VIII.3: Data for surface tension and conductivity study	237
	of aqueous MP: α -CD system at 298.15K ^a	
Chapter VIII	Table VIII.4: Data for surface tension and conductivity study	238
	<i>b)</i> aqueous MP:p-cD system at 290.15K ^a	
	with corresponding concentrations of MP and CD at 298 15	239
	K ^a	207
	Table VIII.6: Values of conductivity (κ) at the break point	
	with corresponding concentrations of MP and CD at 298.15	240
	Ka	

	Table VIII.7: Data for the Benesi-Hildebrand double	
	reciprocal plot performed by UV-Vis spectroscopy for MP: α -	241
	CD system	
	Table VIII.8: Data for the Benesi-Hildebrand double	
	reciprocal plot performed by UV-Vis spectroscopy for MP: β -	243
	CD system	
	Table VIII.9: Data for the Benesi-Hildebrand double	
	reciprocal plot performed by fluorescence spectroscopy for	244
	MP:α-CD system	
	Table VIII.10: Data for the Benesi-Hildebrand double	
	reciprocal plot performed by fluorescence spectroscopy for	245
	MP:β-CD system	
	Table VIII.11: Values of Association constants (K _a) obtained	
	by Benesi–Hildebrand method both from UV-vis spectroscopy	
	and Fluorescence spectroscopy and corresponding free	246
	energy change ($\Delta G^{ m 0}$) of the MP:CD inclusion complexes at	
	298.15K ^a	
	Table VIII.12: Comparison between the Frequencies change	
	(cm ⁻¹) of different functional group of free compound and	252-253
	their solid complexes	
	Table IX.1: Values of observed molar conductivities, A, at	
	various mole ratios for the system IL-18C6 (complex 1) and	258
	IL-DB186 (complex 2) at different temperature	
	Table IX.2: Values of formation constant, enthalpy, entropy	
Chapter IX	and free energy change of different crown ethers complexes	260
	in ACN solution	
	Table IX.3: Comparison between the Frequencies change	
	(cm ⁻¹) of different functional group of free compound and	266
	their complexes	

LIST OF FIGURES

<u>CHAPTERS</u>	FIGURE CAPTIONS	PAGE NO.
	Figure II.1: Schematic representation for host-guest complexation by Cyclodextrin	35
	<i>Figure II. 2:</i> Schematic representation of various interactions involved in host-guest chemistry	36
	Figure II. 3: From molecular to supramolecular chemistry	36
	Figure II. 4: Structures of the α -, β - and γ -cyclodextrin	38
	Figure II. 5: General structure of cyclodextrin molecule with interior and exterior protons ($n = 6$, 7 for α -CD and β -CD respectively)	39
Chapter-II	<i>Figure II.6: Different stoichiometries of host-guest inclusion complexes</i>	41
	Figure 11.7: Schematic drawing of cation- π interactions showing the contact of K^{+} ion and benzene	43
	Figure II.8: Several example of crown ethers	44
	Figure II.9: Pedersen's reaction	45
	<i>Figure II.10:</i> Growth rate of ionic liquid publications, 1986-2006	54
	<i>Figure II.11:</i> Annual growth of ionic liquid patents, 1996-2006	55
	Figure II.12: A diagram for the explanation of molal volume.	64
	Figure IV.1: Plot of surface tension (γ) with corresponding conc. (M) of ionic liquids	140
	Figure IV.2: Plot of molar conductance (Λ) with corresponding conc. (M) of ionic liquids	142
Chapter-IV	Figure IV.3: Plot of surface tension (γ) of ionic liquids (0.01M) with corresponding conc.(M) of β -CD	143
	Figure IV.4: Plot of molar conductance (Λ) of ionic liquids (0.01M) with corresponding conc. (M) of β -CD	144
	Figure IV.5: Plot of surface tension (γ) with corresponding conc. of ionic liquids in absence (solid fill) and in presence (no fill) of β -CD	145

	Figure IV.6: (a) Stereo-chemical configuration, (b) truncated	
	conical structure of β -cyclodextrin with interior and exterior	148
	protons	
	Figure IV.7: ¹ H NMR spectra of (a) β-CD, (b)[(C ₆ H ₅ CH ₂)N(CH ₃) ₃]Cl,	140
	and (c) inclusion complex	148
	Figure IV.8: ¹ H NMR spectra of (a) β-CD, (b) [(C ₆ H ₅ CH ₂)N(C ₂ H ₅) ₃]Cl,	149
	and (c) inclusion complex	117
	Figure IV.9: ¹ H NMR spectra of (a) β-CD, (b) [(C ₆ H ₅ CH ₂)N(C ₄ H ₉) ₃]Cl,	149
	and (c) inclusion complex.	117
	Figure IV.10: Relationship between (S ₀ -S) and (S ₀ /S)-1 for solution	150
	of ionic liquids along and mixed with β -CD	150
	Figure V.1: A space filling model of 18-crown-6 showing the open	
	space at the center of the crown and electron pairs present on the	155
	exposed oxygen atoms (in pink)	
	Figure V.2: Molar conductance vs [18C6]/[amantadine ion] at	157
	298.15 K (▲) , 303.15 K (🛛), 308.15 K (●)	157
	<i>Figure V.3:</i> The linear relationship of $logK_f$ vs 1/T for the interaction	150
	between amantadine hydrochloride with 18C6	157
Chapter-V	Figure V.4: Variation of surface tension of amantadine with	162
	increasing concentration of 18C6 at 298.15 K	102
	Figure V.5: FTIR spectra of pure amantadine hydrochloride (black),	163
	18-crown-6 (blue) and complex (red)	105
	Figure V.6: Plot of limiting apparent molar volume ($arphi_v$) of	
	amantadine against different temperature (298.15 K,303.15	166
	K,308.15 K) in mass fractions w_1 =0.001 (\blacksquare), w_1 =0.004 (\blacksquare), w_1 =0.007	100
	(■) mass fractions of 18C6 in methanol solution	
Chapter VI	Figure VI.1: Plot of molar conductance (Λ) versus \sqrt{m} of	175
	[bmim][Cl] in ACN at 298.15 K (♦), 303.15 K (●) and 308.15 K (▲)	175
	Figure VI.2: The linear relationships of lnK_a vs. 1/T for the ion pair	1,9,1
	formation in ACN	101

	Figure VI.3: Plot of molar conductance (Λ) versus \sqrt{m} for	
	[bmim][Cl] in DCM at 298.15 K (♦), 303.15 K (●) and 308.15 K (▲)	182
	and in THF at 298.15 K (◊), 303.15 K (੦) and 308.15 K (Δ)	
	Figure VI.4: Plot of limiting apparent molal volume ($\phi_{ m V}^0$) versus	
	temperature for [bmim][Cl] in ACN (yellow), DCM (green) and THF	191
	(blue)	
	Figure VI.5: Plot of viscosity B-coefficient versus temperature for	194
	[bmim][Cl] in ACN (blue), DCM (red) and THF (green)	174
	Figure VII.1: Job plot of (a) SA-DC18C6 system, (b) SA-18C6 system,	200
	(c) SA-DB18C6 system at T= 298.15 K	200
	Figure VII.2: FTIR spectra of free DC18C6 (Black), SA (Blue) and	203
	complex 1 (Red)	205
	Figure VII.3: FTIR spectra of free 18C6 (Black), SA (Blue) and	203
	complex 2 (Red)	205
	Figure VII.4: FTIR spectra of free DB18C6 (Black), SA (Blue) and	204
	complex 3 (Red)	201
	<i>Figure VII.5:</i> The ¹ H NMR spectra of complex 1 (SA-DC18C6)	
Chapter VII	(upper), uncomplexed SA and DC18C6 (lower) recorded at 300 MHz	206
•	in CD ₃ CN at 298.15 K	
	Figure VII.6: The ¹ H NMR spectra of complex 2 (SA-18C6)	
	(upper), uncomplexed SA and 18C6 (lower) recorded at 300 MHz in	207
	CD ₃ CN at 298.15 K	
	<i>Figure VII.7:</i> The ¹ H NMR spectra of complex 3 (SA-DB18C6)	
	(upper), uncomplexed SA and DB18C6 (lower) recorded at 300 MHz	207
	in CD3CN at 298.15 K	
	Figure VII.8: Plot of limiting apparent molar volume (ϕ_V^0) of SA in	
	mass fractions (a) 0.001, (b) 0.003, (c) 0.005 (w) of different CEs in	212
	ACN at T= (293.15 to 308.15)K respectively	

	<i>Figure VII.9:</i> Plot of viscosity B-coefficient of SA in mass fractions	
	(a) 0.001, (b) 0.003, (c) 0.005 (w) of different CEs in ACN at T=	218
	(293.15 to 308.15)K respectively	
	<i>Figure VII.10:</i> Plot of limiting molar refraction (R_{M^0}) of SA in	
	different mass fractions (w) of different CEs in ACN at T= 298.15 K	220
	respectively	
	Figure VII.11: Benesi-Hildebrand double reciprocal plot for the	
	effect of (a) DC18C6, (b) 18C6, (c) DB18C6 on the absorbance of	226
	Sulfa drug	
	Figure VIII.1: Job plots of (a) MP:α-CD system and (b) MP:β-CD	
	system at $λ_{max}$ = 272 nm at 298.15 K. R = [SS]/([MP] + [CD]), ΔA =	234
	absorbance difference of MP with and without CD	
	Figure VIII.2: Variation of surface tension of aqueous MP with	
	increasing concentration of (a) α -CD and (b) β -CD solution	236
	respectively at 298.15 K.	
	Figure VIII.3: Variation of surface tension of aqueous MP with	
	increasing concentration of (a) α -CD and (b) β -CD solution	239
	respectively at 298.15 K.	
	Figure VIII.4: (a) Absorption spectra of MP (50 μ M) in different α -	
Chapter VIII	CD concentrations (μ M): 1) without $lpha$ -CD, 2) 30 μ M , 3) 40 μ M, 4) 50	741
	μ M, 5) 60 μ M, 6) 70 μ M. (b) Benesi–Hildebrand plot of 1/A–A $_0$ vs.	241
	$1/[\alpha$ -CD] for 1:1 complexation of MP with α -CD	
	Figure VIII.5: (a) Absorption spectra of MP (50 μ M) in different β -	
	CD concentrations (μ M): 1) without β -CD, 2) 30 μ M , 3) 40 μ M, 4) 50	212
	μ M, 5) 60 μ M, 6) 70 μ M. (b) Benesi–Hildebrand plot of 1/A–A ₀ vs.	242
	$1/[\beta$ -CD] for 1:1 complexation of MP with β -CD.	
	Figure VIII.6: (a) Fluorescence emission spectra of MP (5 μ M) in	
	different $lpha$ -CD concentrations (μ M): 1) without $lpha$ -CD, 2) 10 μ M , 3)	244
	20 μΜ, 4) 30 μΜ, 5) 40 μΜ, 6) 50 μΜ. (b) Benesi–Hildebrand plot of	<i>∠44</i>
	$1/I-I_0$ vs. $1/[\alpha$ -CD] for 1:1 complexation of MP with α -CD.	

	Figure VIII.7: (a) Fluorescence emission spectra of MP (5 µM) in	
	different β -CD concentrations (μ M): 1) without β -CD, 2) 10 μ M , 3)	
	20 μΜ, 4) 30 μΜ, 5) 40 μΜ, 6) 50 μΜ. (b) Benesi–Hildebrand plot of	245
	1/I–I ₀ vs. 1/[β-CD] for 1:1 complexation of MP with β-CD	
	Figure VIII.8: ¹ H NMR spectra of (a) α -CD, (b) MP and (c) 1:1 M	247
	ratio of α -CD & MP in D ₂ O at 298.15 K.	247
	Figure VIII.9: ¹ H NMR spectra of (a) β -CD, (b) MP and (c) 1:1 M	247
	ratio of β -CD & MP in D ₂ O at 298.15 K	247
	Figure VIII.10: FTIR spectra of free α -CD, MP and their 1:1 inclusion	251
	complex (MP:α-CD)	251
	Figure VIII.11: FTIR spectra of free β -CD, MP and their 1:1 inclusion	251
	complex (MP:β-CD)	251
	Figure IX.1: Molar conductance vs [18C6]/[cation] at 298.15 K (▲),	261
	303.15 K (■), 308.15 K (●)	201
	<i>Figure IX.2:</i> Molar conductance vs [DB18C6]/[cation] at 298.15 K	261
	(Δ) , 303.15 K (□), 308.15 K (○)	201
	<i>Figure IX.3:</i> The linear relationship of log K_f vs. 1/T for the	263
	interaction of IL with 18C6 ($ullet$) and DB18C6 (\blacksquare).	200
	Figure IX.4: FTIR spectra of free IL (Black), 18-crown-6 (Blue) and	265
Chapton IV	complex (Red)	200
Chapter IX	Figure IX.5: FTIR spectra of free IL (Black), Dibenzo-18-crown-6	265
	(Blue) and complex (Red).	
	<i>Figure IX.6:</i> The ¹ H NMR spectra of complex 1 (18C6.IL) (upper) and	
	uncomplexed imidazolium cation (lower)recorded at 300 MHz in	268
	CD ₃ CN at 298.15 K	
	Figure IX.7: The ¹ H NMR spectra of complex 2 (DB18C6.IL) (upper)	
	and uncomplexed imidazolium cation (lower) recorded at 300 MHz	268
	in CD ₃ CN at 298.15 K	

LIST OF SCHEMES

	<u>SCHEME CAF HONS</u>	<u>PAGE NO.</u>
	Scheme IV.1: Molecular structure of cationic surfactant and β -cyclodextrin	138
	Scheme IV.2: Schematic illustration of plausible micelle (2a), distraction of micelle (2b) and plausible inclusion formation (2c).	145
Chapter-IV	Scheme IV.3: Schematic representation of mechanism of formation of inclusion complexes of cationic ionic liquids with β -cyclodextrin	146
	Scheme IV.4: Schematic representation of inclusion complexes of cationic ionic liquids with β -cyclodextrin	147
	<i>Scheme V.1:</i> Molecular structure of Amantadine hydrochloride and 18C6	154
Chapter-V	Scheme V.2: Schematic presentation of complexation between amantadine ion and 18C6 and corresponding energy minimized structure of the complex	162
	Scheme VI.1: Molecular structures of the IL and the solvents	172
Chapter-VI	Scheme VI.2: Pictorial representation of ion-pair and triple-ion formation for the electrolyte in diverse solvent systems	185
	Scheme VI.3: Extent of ion-solvent interaction of IL in various solvent systems	191
	Scheme VII.1: Molecular structure of crown ethers and SA	198
Chapter-VII	Scheme VII.2a: Schematic presentation of complex formation between SA and DC18C6 and corresponding energy minimized structure of the complex Scheme VII.2b: Schematic presentation of complex formation between SA and 18C6 and corresponding energy minimized structure of the complex Scheme VII.2c: Schematic presentation of complex formation between SA and DB18C6 and corresponding energy minimized	223-224

<u>CHAPTERS</u>	SCHEME CAPTIONS	PAGE NO.
Chapter-VIII	Scheme VIII.1: Molecular structures of (a) metoclopramide hydrochloride and (b) cyclodextrin molecule with interior and exterior protons ($n = 6$, 7 for α -CD and β -CD respectively)	231
	Scheme VIII.2: Plausible schematic presentation of mechanism for formation of 1:1 inclusion complex between metoclopramide hydrochloride and cyclodextrin	248
Chapter-IX	Scheme IX.1: Molecular structure of crown ethers and IL	256
	Scheme IX.2: Plausible schematic presentation of complex formation between imidazolium cation and crown ethers	259

LIST OF APPENDICES

✓ Appendix A: List of Publications/Communications

_ _ _ _ _ _ _ _ _ _

✓ Appendix B: List of Seminars / Symposiums/
 Conferences Attended

✓ Appendix C: List of abbreviation and symbol

APPENDIX-A

LIST OF RESEARCH PUBLICATION(S)

[1] NMR, Surface tension and Conductance Study to Investigate Host-guest Inclusion Complexes of Three Sequential Ionic Liquids with β-cyclodextrin in Aqueous Media

Chemical Physics Letters 658 (2016) 43–50.

(Included in the Thesis)

[2] Investigation Probing Inclusion Complex Formation of Amantadine Hydrochloride with 18-Crown-6 in Methanol by Physicochemical Approach

List of Publications

Page/16

Appendíx-A

[3] Investigation on Solvation Behavior of an Ionic Liquid (1-butyl-3-methylimidazolium chloride) with the Manifestation of Ion Association Prevailing in Different Pure Solvent Systems

Indian Journal of Advances in Chemical Science 5 (2017) 1-16.

(Included in the Thesis)

[4] Interactions of an Antifungal Sulfa Drug with Diverse Macrocyclic Polyethers Explaining Mechanism, Performance and Physiognomies Leading to Formation of Stable Complexes

Communicated

(Included in the Thesis)

[5] Subsistence of Host-Guest Inclusion Complexes of Metoclopramide Hydrochloride with α- and β-Cyclodextrin Molecules Probed by Physicochemical Investigation

Communicated

(Included in the Thesis)

Appendíx-A

[6] Hollow Circular Compound-Based Inclusion Complexes of an Ionic Liquid

RSC Advances 6 (2016) 76381-76389.

(Included in the Thesis)

[7] Self Assembly Inclusion of Ionic Liquid into Hollow Cylinder Oligosaccharides

List of Publications

Page/17

Page/18

Appendíx-A

[8] Study on Diverse Interactions of Vitamin Molecules Insight into H₂O + [Epy]BF₄ Systems by Physicochemical Contrivance

Indian Journal of Advances in Chemical Science 3 (2015) 204-218.

[9] Exploration of Inclusion Complexes of Neurotransmitters with β-Cyclodextrin by Physicochemical Techniques

Chemical Physics Letters 655-656 (2016), 43-50.

[10] Host-guest Inclusion Complexes of RNA Nucleosides inside aqueous Cyclodextrins Explored by Physicochemical and Spectroscopic Methods

RSC Advances 6 (2016) 8881-8891.

APPENDIX-B

LIST OF SEMINARS/ SYMPOSIUMS/ CONFERENCES ATTENDED

- 1. National Seminar on Frontiers in Chemistry 2014 Sponsored by University Grants Commission (SAP-DRS-III), New Delhi, organized by Department of Chemistry, University of North Bengal on March 11th & 12th, 2014.
- 2. Science Academies' Lecture Workshop on "Spectroscopy of Emerging Materials" organised by the Department of Chemistry, University of North Bengal on November 26th & 27th, 2014.
- 3. National Seminar on Frontiers in Chemistry 2015 Funded by University Grants Commission and SAP (DRS-III) New Delhi, organized by the Department of Chemistry, University of North Bengal on February 17th & 18th, 2015.
- 4. **22nd West Bengal State Science & Technology Congress-2015** Organized by Department of Science and Technology, Govt. of West Bengal, West Bengal State Council of Science and Technology and University of North Bengal, Raja Rammohanpur, Darjeeling-734013 on February 28th & March 1st, 2015.
- 5. **Recent Trends on Chemistry and Biology Interface-2015** Organized by Chemical Research Society of India, NBU-Local Chapter, Department of Chemistry, University of North Bengal (Darjeeling) on August 28, 2015.
- 6. **19th CRSI National Symposium in Chemistry-2016** Organized by Department of Chemistry, University of North Bengal, Raja Rammohanpur, Darjeeling-734013 on July 14th to 16th, 2016.
- 7. **20th CRSI National Symposium in Chemistry-2017** Organized by Department of Chemistry, Gauhati University, Guwahati on February 3rd to 5th, 2017.
- 8. **Current Trends in University- Industries Linkages-2017** Funded by University Grants Commission and Organized by Department of Chemistry, University of North Bengal, Darjeeling-734013, W.B, India on 24th March, **2017**.

APPENDIX: C

LIST OF ABBREVIATION

ACN	Acetonitrile
ADH	Amantadine Hydrochloride
[bmim][Cl]	1-butyl-3-methylimidazolium Chloride
СМС	Critical Micellar Concentration
CH₃OH	Methanol
CD	Cyclodextrin
α-CD	α-cyclodextrin
β-CD	β-cyclodextrin
CEs	Crown Ethers
18C6	18-crown-6
DB18C6	Dibenzo-18-crown-6
DC18C6	Dicyclohexyl-18-crown-6
0C	Degree Celcius
DCM	Dichloromethane
FTIR	Fourier Transform Infra-red Spectroscopy
ILs	Ionic liquids
М	Molarity
mL	Milli Litre
mM	Milli Molar
mPa	Milli Pascal
MP	Metoclopramide hydrochloride
¹ H-NMR	Proton-Nuclear Magnetic Resonance
RI	Refractive Index
Str.	Stretching
SA	Sulfanilamide
THF	Tetrahydrofuran
UV	Ultra Violet

LIST OF SYMBOL

ρ	Density	
$\phi_{_V}$	Apparent molar volume	
$\pmb{\phi}_V^0$	Limiting apparent molar volume	
Sv*	Experimental slopes	
ϕ_E^0	Limiting apparent molar expansibilities	
η	Viscosity of the solution	
ηο	Viscosity of the solvent	
ηr=η/η₀	Relative viscosity	
Λ	Molar conductance	
Λο	Limiting molar conductance	
8	Relative permittivity of the solvent	
Λοη	Walden product	
$\lambda_o{}^{\pm}$	Ionic limiting molar conductances	
$\lambda_o t\eta$	Limiting ionic Walden product	
rs	Stokes' radii	
r _c	Crystallographic Radii	
KA	Association constant	
R	Distance of closest approach	
$a = (r_+ + r)$	Sum of the crystallographic radii of the cation (r_+) and anion (r)	
d	Average distance corresponding to the side of a cell occupied by a	
	solvent molecule	
$\lambda_o^{\pm}\eta$	The limiting ionic Walden product	
Ea	Activation energy	
Т	Absolute temperature	
Kp	Ion-pair formation constant	
Кт	Triple-ion formation constant	
Ср	Ion-pair concentrations	
Ст	Triple-ion concentrations	
α	Fraction of ion-pairs present in the solutions	
α_{T}	Fraction of triple-ions present in the solutions.	