List of tables

Chapter II

Entry	Table No.	Title of tables	Page No.
1	Table.II.B.1.	Epoxidation of steroids on silica under solvent free	28
		condition	
2	Table.II.B.2.	Chemicals used for the present investigation	28

Chapter III

Entry	Table No.	Title of tables	Page No.
1	Table.III.B.1.	Selective synthesis of mono and dioxime from 1, 2	63
		dicarbonyl system	
2	Table.III.B.2.	Synthesis of oxime from aromatic monocarbonyl	64
		system	
3	Table.III.B.3.	Synthesis of alicyclic and steroidal oximes	65
4	Table.III.B.4.	Chemicals used for the present investigation	66
5	Table.III.B.5.	Melting point comparison of known prepared	70
		oximes with authentic samples	

Chapter IV

Entry	Table No.	Title of tables	Page No.
1	Table.IV.B.1.	Selection of iron salts	102
2	Table.IV.B.2.	FeCl ₃ -mediated transformation of aldehydes to	103
		nitriles	
3	Table.IV.B.3.	Chemicals used for the present investigation	104

Chapter V

Entry	Table No.	Title of tables	Page No.
1	Table.V.B.1.	Optimization of temperature	136
2	Table.V.B.2.	Optimization of catalyst at 60 °C	137
3	Table.V.B.3.	Optimization of temperature in the presence of 10	137
		mol % catalyst	
4	Table.V.B.4	Screening of solvent	138
5	Table.V.B.5	MgCl ₂ .6H ₂ O catalyzed synthesis of 2-substituted	139
		benzimidazole	
6	Table.V.B.6	Chemicals used for the present investigation	140

Chapter VI

Entry	Table No.	Title of tables	Page No.
1	Table.VI.B.1.	Model reaction on pure silica	171
2	Table.VI.B.2.	Optimization of temperature	172
3	Table.VI.B.3.	Screening of catalyst recycling	172
4	Table.VI.B.4	Comparative profile of the atom compositions	179
		according to EDX measurements	
5	Table.VI.B.5	Synthesis of 2, 4, 5-trisubstituted immidazole	182
6	Table.VI.B.6	Synthesis of 1, 2, 4, 5-tetrasubstituted imidazole	183
7	Table.VI.B.7	Chemicals used for the present investigation	184