TABLE OF CONTENTS

<u>Chapter</u> 1. Aromaticity and magnetism in metal based systems	1 - 15
1.1. Aromaticity	1
1.1.1. History and Key Advances	2
1.1.2. Aromaticity in metal based systems	6
1.2. Magnetism: History and Key Advancements	6
1.2.1. Dimensionality and Magnetic Properties	8
1.2.2. Discrete Molecules	9
1.2.3. The importance of spin-nano magnets	9
1.2.4. The single molecule magnet and the potential of quantum storage	10
1.2.5. The role of theory in developing new magnetic molecules	11
1.3. Objectives of the Thesis	11
1.4. References	12
<u><i>Chapter</i></u> 2. Theoretical methods to quantify aromaticity and magnetism	16 - 29
2.1. Quantification of Aromaticity	16
2.1.1. Aromaticity Indices	17
2.2. Estimation of Magnetic Exchange Coupling Constant (J)	20
2.2.1. Broken Symmetry Approach	21
2.2.2. Spin-flip DFT Approach	23
2.3. Quantification of Magnetic Anisotropy	24
2.3.1. Pederson-Khanna (PK) method	24
2.3.2. The Neese technique	26
2.4. References	27
<u>Chapter</u> 3. Concurrent loss of aromaticity and onset of superexchange in Mg an increasing Na–Mg ₃ distance	₃ Na ₂ with 30 - 47
3.1. Introduction	30
3.2. Theoretical background and computational details	31
3.3. Results and Discussion	33
3.4. Conclusion	41
3.5. References	42
<u>Chapter</u> 4. Effect of charge transfer and periodicity on the magnetism of	
[Cr(Cp*) ₂][ETCE]	48 - 69
4.1. Introduction	48
4.2. Theoretical framework	50
4.3. Computational details	53

4.4. Results and discussion	55
4.4.1. Competition between exchange mechanisms	59
4.4.2. Effect of periodicity	61
4.5. Conclusion	63
4.6. References	64

<u>*Chapter*</u> 5. Ligand Effects toward the Modulation of Magnetic Anisotropy and Design of Magnetic Systems with Desired Anisotropy Characteristics 70 - 91

70
72
73
74
74
78
81
84
85
86

<u>Chapter</u> 6. On the control of magnetic anisotropy through an external electric field

	92 - 103
6.1 Introduction	92
6.2 Theoretical Background and Method	93
6.3 Results and Discussions	95
6.4 Conclusion	100
6.5 References	101
<u>Chapter</u> 7. Conclusions	104 – 107
Bibliography	108 – 129
Index	130 - 131