LIST OF FIGURES

CHAPTER I

Figure I.A.1. Few examples of biologically important heterocycles	2
Figure I.B.1. Procedure for the formation of silanol groups on the silica surface	9
Figure I.B.2. Different types of silanol groups, siloxane bridges and internal -OH	groups
present on amorphous silica surface	10
Figure I.B.3. Synthesis of silica triflate	14
Figure I.B.4. Synthesis of silica-supported dichlorotriazine (Si-DCT) scavenger	15
Figure I.B.5. Preparation of solid silica-sulfonic acid	15
Figure I.B.6. Structure of TsDPEN@SiO2	19
Figure I.B.7. Synthesis of silica sulfuric acid (SSA)	19
Figure I.C.1. Commonly accepted schematic representation of GO according to	b Lerf-
Klinowski model	25

CHAPTER II

Figure II.A.1. Different types of imidazopyridine derivatives	31
Figure II.A.2. Representative examples of imidazo[1,2-a]pyridine-based drugs	32
Figure II.B.3. Schematic representation of the synthesis of imidazo[1,2-a]pyridines	from
variety of starting materials with 2-aminopyridine	33
Figure II.A.4. Schematic presentation of graphene oxide (GO)	39
Figure II.C.5. Comparative FT-IR spectra of GO before use (black), after 1st (blue) an	id 2 nd
run (red)	45

CHAPTER III

Figure III.B.1. Different way of addition reaction					
Figure III.E.4.2. The FT-IR Spectra of GO	67				

CHAPTER IV

Figure	IV.A.1.	Iridium	and	self-assembled	copper	metal	complex	of	Chiral
dithioethers									75

- Figure IV.A.2. An optically active complexes of titanium bearing a cyclohexanediylbis(thio) core 75
- Figure IV.B.3. Application of iridium complex of chiral dithioethers in asymmetric hydrogenation 76

CHAPTER V

Figure V.A.1. Schematic representation of thioamide group98Figure V.A.2. Thioamide-based phosphorescent pincer Pt(II) complexes100Figure V.C.3. Single-crystal X-ray structures for thiobenzamides 4a and 4d. Possible contacts
or bonding for compounds 4a and 4d Ellipsoids set at 50% probability; all H-
atoms are shown107

CHAPTER VI

Figure VI.A.1. Core structure of some biologically active heterocyclic compounds117Figure VI.B.2. Different functionalized scaffolds with their activity120