Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td>xii</td>
</tr>
<tr>
<td>List of figures</td>
<td>xiv</td>
</tr>
<tr>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Management practices in tea</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1. Soil management</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2. Water management (Irrigation & Drainage)</td>
<td>9</td>
</tr>
<tr>
<td>1.2.3. Human resource management</td>
<td>10</td>
</tr>
<tr>
<td>1.2.4. Pruning management</td>
<td>10</td>
</tr>
<tr>
<td>1.2.5. Shade management</td>
<td>11</td>
</tr>
<tr>
<td>1.2.6. Insect pest management</td>
<td>11</td>
</tr>
<tr>
<td>1.2.7. Disease management</td>
<td>12</td>
</tr>
<tr>
<td>1.3. Usage and benefits</td>
<td>13</td>
</tr>
<tr>
<td>1.3.1. Levels of usage of a technical artifact</td>
<td>14</td>
</tr>
<tr>
<td>1.3.2. Usage of expert systems</td>
<td>14</td>
</tr>
<tr>
<td>1.3.3. Benefits</td>
<td>16</td>
</tr>
<tr>
<td>1.4. Aim of the work</td>
<td>19</td>
</tr>
<tr>
<td>1.5. Summary of the work</td>
<td>20</td>
</tr>
<tr>
<td>References</td>
<td>21</td>
</tr>
<tr>
<td>Chapter 2</td>
<td></td>
</tr>
<tr>
<td>Tea Insect Pests and Diseases</td>
<td>23</td>
</tr>
<tr>
<td>2.1. Introduction</td>
<td>23</td>
</tr>
<tr>
<td>2.2. Major insect pests of tea</td>
<td>24</td>
</tr>
<tr>
<td>2.2.1. Mites</td>
<td>25</td>
</tr>
<tr>
<td>2.2.2. Sap sucking insects</td>
<td>28</td>
</tr>
<tr>
<td>2.2.3. Leaf eaters</td>
<td>30</td>
</tr>
<tr>
<td>2.2.4. Stem insects</td>
<td>32</td>
</tr>
<tr>
<td>2.2.5. Other pests</td>
<td>34</td>
</tr>
<tr>
<td>2.3. Diseases of tea</td>
<td>36</td>
</tr>
</tbody>
</table>
Chapter 3

Artificial Intelligence, Expert Systems and the Domain 57

3.1. Introduction 57
3.2. Expert systems technology 58
 3.2.1. Categories and application areas of expert systems 58
 3.2.2. Expert systems in agriculture 64
 3.2.3. Typical features of an expert system 71
 3.2.4. Life cycle of an expert system 72
 3.2.5. Components of an expert system 74
 3.2.6. Classifications of expert systems 76
 3.2.6.1. Based on reasoning 76
 3.2.6.2. Based on other technical issues 78
3.3. Why it is an expert system domain 82
3.4. What requirements the domain lays on an expert system 83
3.5. Discussions 85
References 86
Chapter 4

Knowledge Engineering

4.1. Introduction 98
4.2. Levels of knowledge 99
4.3. Knowledge categories 99
	4.3.1. Declarative knowledge 99
	4.3.2. Procedural knowledge 99
	4.3.3. Semantic knowledge 99
	4.3.4. Episodic knowledge 100
	4.3.5. Meta-knowledge 100
4.4. Knowledge acquisition 100
	4.4.1. Sources of knowledge 100
		4.4.1.1. Classical sources 100
		4.4.1.2. Web-based sources 101
4.5. Methods of knowledge acquisition 101
	4.5.1. Manual methods 101
		4.5.1.1. Interviewing 101
			4.5.1.1.1. Structured interview 101
			4.5.1.1.2. Unstructured interview 102
			4.5.1.1.3. Semi-structured interview 102
		4.5.1.2. Tracking the reasoning process 102
	4.5.1.3. Observations 102
4.5.2. Semi-automatic methods 103
4.5.3. Automatic methods 103
4.6. Problems in knowledge acquisition 103
4.7. Knowledge acquisition in the context of present work 104
4.8. Knowledge representation methods 105
	4.8.1. Knowledge representation using logic 105
	4.8.2. Knowledge representation using semantic networks 108
	4.8.3. Knowledge representation using rules 109
	4.8.4. Knowledge representation using frames 112
	4.8.5. Knowledge representation using scripts 114
	4.8.6. Object-attribute-value triplets as KR scheme 114
	4.8.7. Object-Oriented approach 115
		4.8.7.1. Classes 115
		4.8.7.2. Instance objects 116
		4.8.7.3. Attributes and methods / operations 116
		4.8.7.4. Inheritance 116
4.9. AI, expert systems and O-O technology 118
4.10. Analysing relative suitability 120
4.11. Some ES and ES development tools using different KR-schemes 122
4.12. Object-oriented knowledge schemes for tea pests and diseases 124
4.13. Discussions 124
References 125

Chapter 5
Selection of an appropriate tool 128

5.1. Introduction 128
5.2. Points to ponder 128
 5.2.1. No general purpose tool 129
 5.2.2. Single or multiple tools 129
 5.2.3. In search of a bird after constructing a case 130
 5.2.4. Exaggerated claims from vendors / agents 130
 5.2.5. Non-standard terminologies 131
 5.2.6. Miscellaneous issues: Price, training and documentation support 131
 5.2.7. Language, shell or toolkit 131
 5.2.8. Left no stone unturned - Is it practically feasible? 135
 5.2.9. Potentially active research field 135
 5.2.10. Any unique framework? 135
5.3. ES-building tools' capabilities 136
5.4. Level5 Object 137
 5.4.1. What is Level5 Object? 137
 5.4.2. What kinds of problems are best solved with Level5 Object? 138
 5.4.3. Capabilities of Level5 Object 139
5.5. Requirements vs. capabilities 143
5.6. Conclusions and discussion 145
References 145
Chapter 6
Managing uncertainty

6.1. Introduction 147
6.2. Sources and nature of inexact information 147
6.3. Methods for managing inexact information 151
 6.3.1. Bayesian probability theory 151
 6.3.2. Dempster / Shafer theory of evidence 152
 6.3.3. Stanford certainty factor model 154
 6.3.4. Fuzzy set theory 155
 6.3.5. Non-monotonic reasoning 156
 6.3.6. Case-based approach 156
6.4. Suitability analysis 157
 6.4.1. Bayesian probability theory 157
 6.4.2. Dempster / Shafer theory of evidence 157
 6.4.3. Stanford certainty factor model 158
 6.4.4. Fuzzy set theory 158
 6.4.5. Non-monotonic reasoning 159
 6.4.6. Case-based approach 159
6.5. Conclusions and discussions 160
References 160

Chapter 7
TEAPEST: A rule based object-oriented expert system for insect pest management in tea

7.1. Introduction 163
7.2. Major insect pests of tea 164
7.3. Problems of current practices 165
7.4. Knowledge engineering 166
7.5. Graphical User Interface 167
7.6. System design 168
7.7. Implementation 173
7.8. A case illustration 173
7.9. Performance evaluation 176
7.10. Conclusion 176
References 176
Chapter 8

TEADISEASE: A rule based object-oriented expert system for disease management in tea

8.1. Introduction 180
8.2. Major diseases of tea 181
8.3. Current practices and their lacunae 182
8.4. Knowledge engineering 183
8.5. System architecture 184
8.6. Implementation 189
8.7. A case illustration 189
8.8. Performance evaluation 191
8.9. Discussion and conclusion 191
References 191

Chapter 9

Web-Based pest and disease management in tea 194

9.1. Introduction 194
9.2. Benefits of using expert systems through the Internet 195
9.3. Expert systems on the net 196
9.4. The Web (WWW) 197
9.5. Connecting ES to Web-Site 198
9.5.1. Solution alternatives 198
9.5.2. Technology requirement in transference 199
9.5.2.1. Web connectivity 199
9.5.2.2. Database connectivity 199
9.5.2.3. Image processing and GUI 199
9.5.2.4. Knowledge processing and inference 200
9.5.2.5. Procedural 200
9.5.2.6. Hardware and setup 200
9.6. Tools and languages available 200
9.7. Perl 201
9.8. Perl, CGI and the Web 203
9.9. Web based version of TEAPEST and TEADISEASE 203
9.9.1. Insect pests of tea considered in TEAPEST/WWW 204
9.9.2. Diseases considered for TEADISEASE/WWW 204
9.9.3. Knowledge engineering 204
9.9.4. Architecture of TEAPEST/WWW 205
9.9.5. Architecture of TEADISEASE/WWW 207
Chapter 10

A model for Case-Based Learning

10.1. Introduction 214
10.2. Methodology 215
 10.2.1. Definitions 215
 10.2.2. System Architecture 216
 10.2.3. Reasoning aspects 217
10.3. Validating the model 218
 10.3.1. Case study for Red spider attack diagnosis 221
 10.3.2. Case study for Helopeltis attack diagnosis 225
 10.3.3. Identified significant features with RFW 228
10.4. Discussions 230
References 231

Chapter 11

Design and implementation of a Case-Based Classifier Approach 233

11.1. Introduction 233
11.2. Theoretical foundation 235
11.3. System architecture 238
11.4. Case illustration 240
11.5. Concluding remarks 249
References 249
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>252</td>
</tr>
<tr>
<td>B</td>
<td>260</td>
</tr>
<tr>
<td>C</td>
<td>269</td>
</tr>
<tr>
<td>D</td>
<td>276</td>
</tr>
<tr>
<td>E</td>
<td>282</td>
</tr>
<tr>
<td>F</td>
<td>291</td>
</tr>
<tr>
<td>G</td>
<td>300</td>
</tr>
</tbody>
</table>

Knowledge structure of **TEAPEST**

Knowledge structure of **TEADISEASE**

Case illustration of **TEAPEST**

Case illustration of **TEADISEASE**

Performance evaluation of **TEAPEST**

Performance evaluation of **TEADISEASE**

Publications of Indrajit Ghosh