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2.1 Introduction, Definitions and Notations.

We denote by C the set of all finite complex numbers. Let f be a meromorphic
function and g be an entire function defined on C. In the sequel we use the
following two notations:

Iog[k] T = log (log[k_ll w) for k=1,2,3,--+ and log[ol T=g

and expl z = exp (exp[""ll a:) for k=1,2,3,--. and expllz = z.
We recall the following definitions:

Definition 2.1.1 The order py and lower order A\s of a meromorphic func-
tion f is defined as

logT T
op = limsup- L") g3, = liming 28 L)
00 logr r—00 logr
If f is entire, one can easily verify that,
. log@ M, f) . ogP M (r, f)
Py = hf,ri, SOI:p Tog T and Ay = ].l:{ll (1)£1f Tog :

The results of this chapter have been published in Archivum Mathematicum(BRNQO), see [10].
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Definition 2.1.2 The hyper order p; and hyper lower order Xf of a mero-
morphic function f is defined as follows:

log@ T (2]
ps = limsup o8 T(rf) and s = lim inf log™ T f).
r—s00 logr r—o0 logr

If f is entire, then

log® A1 _ 8]
ps = limsup o (r, f) and Ay = lim inflog M i, f).
r—00 logr r—o0 logr

Definition 2.1.3 The type oy of a meromorphic function f is defined as :

T (r,
o = limsup E_pff), 0 < py < 00.
When f is entire, then
log M (r,
oy = lim supog—(rf), 0 < py <o0.
r—00 TPt

Definition 2.1.4 A function A (r) is called a lower prozimate order of a
meromorphic function f of finite lower order Ay if

(i) As(r) is non negative and continuous for r > ry , say,

(13) Ag(r) is differentiable for r > ry except possibly at isolated points at
which N (1 +0) and A} (r —0) exists,
(i7) lim Ay (r) = Ayp,

r—0o0

(iv) limrX; (r)logr =0 and

r—00

(v) lim mf%} =

Definition 2.1.5 Let a be a complex number, finite or infinite. The Nevan-
linna deficiency and Valiron deficiency of ‘a’ with respect to a meromorphic
function f is defined as

0(a; f)=1- liiitleT—%%l = liﬂ&lf% and

) - G N(T,(L;f)_ ; m(-r,a;f)
Ala; f)=1- hﬂéglf——-T R hITILS;}p—T )
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From the second fundamental theorem it follows that the set of values of
a € CU{oo} for which d (a; f) > 0 is countable and 3 d (a; f)+6 (o0; f) < 2

a#00

(cf.[17,p43]) . If in particular > 8 (a; f) + 6 (o0; f) = 2, we say that f has
G700
the mazimum deficiency sum.

Definition 2.1.6 A meromorphic function a = a(z) is called small with
respect to f if T (r,a) =S (r, f).

Definition 2.1.7 Leta;,aq, - ,ax be linearly independent meromorphic func-
tions and small with respect to f. We denote by L (f) = W (a3,ag,--- ,ax, f)
the wronskian determinant of a1, a9, -+ ,ax, f i.e.,

ap ag - ax f

a ay - @ f

L (f) = E . . . :
K (k k
ag) ag) agc) £

Since the natural extension of a derivative is a differential polynomial,
in this chapter we prove our results for a special type of linear differential
polynomials wviz., the wronskians. In the chapter we prove some new re-
sults depending on the comparative growth properties of composite entire or
meromorphic functions and wronskians generated by one of the factors which
improve some earlier theorems.

2.2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.2.1 ([1]) If f is meromorphic and g is entire then for all suffi-
ciently large values of r

T(f09) < (140} pr s T (M (9). ).

Lemma 2.2.2 ([2]) Let f be meromorphic and g be entire and suppose that
0 < p < py < 0. Then for a sequence of values of T tending to infinity,

T(r,fog)>T(exp(r"), f).
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Lemma 2.2.3 ([25]) Let f be a transcendental meromorphic function hav-
ing mazimum deficiency sum. Then

i L L ()

Lemma 2.2.4 If f be a transcendental meromorphic function with the maz-
imum deficiency sum, then the order and lower order of L(f) are same as
those of f also the type of L (f) is {1l +k — kd (o0; f)} times that of f when
[ is of finite positive order.

Proof. By Lemma 2.2.3, we have

T L(f) |

lim =1+k—ké(oo; f) =A (say)

e T, )

i.e., limsup T—————g’(f ;‘I)c))

So for given £ (0 < & < 1) we get for all large values of r that

T(r,L(f))
T(r, f)
i.e., logT (r,L(f)) <log(A+e)+1logT (r,f)
log T (r, L (f)) log (A +¢€)
e Tlog T f) = logT ()
i.e., Hﬂiﬁlp lolgoﬂg’g,(f%)) <1

Again for given £ (0 < € < 1) we get for a sequence of values of r tending to
infinity that

=A.

<A+e¢

T L(f)

T(r’{)»

) . IogT(‘I‘,L f
ve. BOsUp = e )

> A+¢

>1.

Hence
roco logT (r, f) '
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Similarly
liminf (BT L)) _
o logT(r, f)
Thus it follows from above that
i e L)

rooo log T (1, f)

So
. logT'(r, f) .. logT(r,L(f))
—1 .1 ’
PEN = TP ogr rew log T (1, f)
=psl =ps.
Also
.. ogT(r,f) .. logT(r,L(f))
A =1 f 1 2
L =1 logr oo log T (r, f)
=Apl=)g.
Again

r(,L(f)

rPL)
. T('f',f) . T(?",L(f))
= limsup— ==, lim. T(r, )
=gr{l+k—ké(oo; f)}.

Ii(p) = limsup

This proves the lemma. =

Lemma 2.2.5 Let f be a transcendental meromorphic function with the maz-
imum deficiency sum. Then the hyper order and (hyper lower order) of L (f)
and f are equal.

Proof. By Lemma, 2.2.3, we have

L T L)

L\LEA)) - A=A
by 1+k—ké(o0; f) (say)

i.e., limsup %%;—?2 =A.
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Hence for given ¢ (0 < € < 1) we get for all large values of r that

T (r,L(f))
T(rf)
i.e., logT (r,L(f)) <log(A+¢€)+1logT(r,f)
— log T (r, f) {1 + ——Ei 51:4(:;;}
ie., g T (r,L(f)) <log® T (r, f) +log {1 +0(1)}

< A+e¢

log” T(r,L(f)) _,  log{l+o(1)}
U gfT () T lgPT(r, f)
2
i.e., limsup log”" T'(r, L.(f)) =1,

F—00 IOg[2] T (’T' ) f)
Again for given € (0 < e < 1) we get for a sequence of values of r tending to
infinity that
T(r,L(f))
T(r, f)

(2]
i.e., limsup log {g; (r, L (/) >1
r—oo  log T (7, f)

>A+e

Hence 2
fmoup PET LYY
r—00 10g T (T, f)

Similarly

Thus it follows from above that
2 L
o 108 [Z]" (r, L(f))
> logA T (r, )

So

log T (r, f) - log? T (v, L (f))
logr  r~o logf T (7, f)

Pr(s) = limsup

=ps-l=0y .
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Also

X 2 g
Ar(r) = liminf log™ T'(r, f) im log' T' (v, L (f))
r—00 logr T—00 log[2] T (’f‘, f)
=Ar.l=As.
This proves the lemma. m

Lemma 2.2.6 For a meromorphic function f of finite lower order, lower
proximate order exists.

The lemma can be proved in the line of Theorem 1{21] and so the proof is
omitted.

Lemma 2.2.7 Let f be a meromorphic function of finite lower order Ays.
Then for & (> 0) the function v +5=2() s ultimately an increasing function

of r.

Proof. Since

LAt = (048 = 2 (1) = 1, () logr} PN 5 g

for all sufficiently large values of r, the lemma follows. m

Lemma 2.2.8 ([20]) Let f be an entire function of finite lower order. If
there erists entire functions a; (i =1,2,-++ ,n;n < oo) satisfying T (r,a;) =

o{T (r,f)} and 3.0 (ai; f) = 1, then lim oTpfls = 1
i=1 T—00 )

2.3 Theorems.

In this section we present the main results of the chapter.

Theorem 2.3.1 Let f be a meromorphic function and g be a transcendental
entire function satisfying

(1) Ag, Ag are both finite and
() > d(a;9) +6(c0;g) =2, then

GF00
.. JdogT (r,fog) 3_pf.2)\g
< .
hﬂgf T(r,L(g)) ~ 1+k—ké(o0;9)
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Proof. If p; = oo, the theorem is obvious. So we suppose that py < co. Since

T(r,g) < log™ M (r,9), in view of Lemma 2.2.1, we get for all sufficiently
large values of r,

T(fog)<{l+o(1)}T(M(r,g),f).

i.e., logT(r,fog) <log{l+o0(1)}+logT (M (r,g),f)
<o(1)+(pf+¢€)logM (r,g)
logT'(r, f o g) gM(r,g)

lo
i.e., liminf < (pf+e)liminf
R T Teg SRR

Since £ (> 0) is arbitrary, it follows that
og M (r,9)

lim inflogT (r,/o9) < pylim inf1

r—e0 T(r,g) rooo T'(r,g) (23.1)

As lim inf ﬂ,\% =1, so for given £ (0 < £ < 1) we get for a sequence of values

r—=o0 T

of r tending to infinity,

T (r,g) < (1+¢)rt (2.3.2)
and for all sufficiently large values of r,

T (r,g) > (1 —¢)r, (2.3.3)

Since log M (r,g) < 3T (2r, g), we have by (2.3.2),for a sequence of values of
r tending to infinity,

log M (r,9) < 3T (2r,9) <3(1+¢) (2r) @) (2.3.4)

Combining (2.3.3) and (2.3.4) we obtain for a sequence of values of r tending
to infinity,

logM (r,g) _3(1+¢) (27‘))\”(2")
< . .
Tirg) = (l=e) 0
Now for any d (> 0), for a sequence of values of  tending to infinity,

log M (r,g) _3(L+e) @ 1
T(r,g) ~— (1-—¢ °(2T)Ag+f5—)\g(2r)‘r)\g(r)




24

log M (r,g) _ 3(1+2) . 1s
Trg = Q¢ -

because r s(") is ultimately an increasing function of r by Lemma 2.2.7.
Since € (> 0) and ¢ (> 0) are arbitrary, it follows from (2.3.5) that

lim inf 28 M (.9)
e T g

Thus from (2.3.1)and (2.3.6) we obtain that

i.e.,

(2.3.5)

Ag+6—A

< 3.2%. (2.3.6)

i inf 28T (r,fog)

< 3.p5.2%. 2.3.7
R T(r,g) Pr (23.7)

Now in view of Lemma 2.2.3 and (2.3.7) we get

.. JogT(r,fog) .. . logT(r,fog). T(rg)
lim inf = lim inf .lim d
r—oo T (r,L(g)) roo0  T(r,g) T (r,L(g))
3.pf.2’\9
“14+k—ké(o0;9)

This proves the theorem. m

Theorem 2.3.2 Let f be meromorphic and g be transcendental entire such
that p; < 00, Ay < 00 and Y d(a;g)+ 6 (o0; g) = 2. Then

a#oo

. JogAT(r,foyg)
lim inf ’ < 1.
r-oo logT'(r,L(g)) ~

Proof. Since T (r,g) < log* M (r,g), in view of Lemma 2.2.1, we get for all
sufficiently large values of 7,

logT'(r, fog) <log{l+o(1)} +1logT (M(r,9), f)
<o(1)+ (py+¢)log M (r,g)
i.e., lpg[2] T(r,fog) < logm M(r,g)+0(Q). (2.3.8)

It is well known that for any entire function g, log M (r,g) < 3T (2r,g)
{cf.[17]}. Then for 0 < € < 1 and ¢ (> 0), for a sequence of values of 7
tending to infinity it follows from (2.3.5) that

log® M (r,9) <logT (r,9) + O(1). (2.3.9)
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Now combining (2.3.8) and (2.3.9) we obtain for a sequence of values of r
tending to infinity,
log T (r, f o g) <log T (r,g) + O (1)
log” T (r,f o g)
i.e.,
logT'(r, )

As by Lemma 2.2.3, }l‘&ﬁ% exists and is equal to 1, from (2.3.10) we
obtain that

<1 (2.3.10)

. JogPiT(r,foyg) log? T (r, f o g) log T (r, g)
lim inf d = lim inf ’ .lim .
r—oo  logT (r,L(g)) r—oo  logT (r,g) Tr—oologT (r,L(g))
<11=1

Thus the theorem is established. m

Remark 2.3.1 The inequalily sign in Theorem 2.3.2 is best possible in the
sense that ‘<’ cannot be replaced by ‘<’ only which is evident from the fol-
lowing example.

Example 2.3.1 Let f = g =expz and L(g) = a9

! !
a g

Taking a; = 1 we see that L (g) = expz .
Then ps =1, Ay=1 and ) 6(a;g) + (oo g) = 2.
a#o0
e’ _r

Also T (r,fog) PRy and T (r,L (g)) = L.
Hence o v, fog)

.. Jdog T (r,fog

1 =

S e T, L (o))
Remark 2.3.2 The condition py < co is essential in Theorem 2.3.2 as we
see in the following example.

1.

a g

Example 2.3.2 Let f = exp¥ 2, g =expz and L (g) = o
1

Taking a1 = 1 we see that L(g) = expz .
Then py =00, A\g =1 and ) 6(a;g)+ d(o0;g) = 2.

a#oo

Since T'(r, f} < logt M (r, f), we have
T (T: fo g) =T (T; eXp[3] Z) <logM (fr, exp[3] z) — eXp[2] "
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Now in view of the inequality

T(r,f)<logM(r,f) <3T(2r,f) (cf p.18,[17)

we have
3T (2r, f 0 g) > log M (r, f o g)
ie, T(r,fog) > %logM (%,fog)
1 T
e, T > - [3]
i.e, T(r,fog) > 3logM(z,exp z)
1 T 1 T
> Bl ZY = Zexpl@ 2
i, T(r,fog) > 3log(exp 2) 3exp 5
ie., log?T(r,fog)> g+0(1) .
Also
logT (r,L(g)) =logr+0O(1) .
Hence

log T(r,fog) _

lim inf
r—co logT (r, L (g))

which is contrary to Theorem 2.3.2.

Theorem 2.3.3 Let f and g be two transcendental entire functions such that
Ar >0, pg < Ap < ps<oo,and Y d(a;f)+d(co;f) =2= 3. 6(a;g) +

a#00 a0

d (00; g). Also there exist entire functions b; (i = 1,2,--- ,n;n < o0) with
(i) T(r,b;) =0{T (r,9)} asrT — o0 fori=1,2,-- ,n and
(i) 336 (bisg) = 1. Then
i=1

i {log T (r, f o g)}* —0
r—oT(r, L(M T L(g)
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Proof. In view of the inequality T (r,g) < log™ M (r,g) and Lemma 2.2.1
we obtain for all sufficiently large values of 7,

T(fog)<{l+o()}T(M(r,9),f)
i.e.,, logT(r,fog) <log{l+o(1)}+1logT (M (r,g), f)
<o(l)+ (ps+e)logM (r,g)
<o)+ (ps+e)riste . (2.3.11)

Again in view of Lemma 2.2.4, we get for all sufficiently large values of ,
log T (r, L (f)) > (Ar¢p) —€) logr
i.e., logT (r,L(f)) > (Af—¢)logr
ie, T(r,L(f))>r™M. (2.3.12)

Now combining (2.3.11) and (2.3.12) it follows for all sufficiently large values

of r,
logT'(r,fog) _ o(1)+ (ps +e)rhete

T L) — A€ (2.3.13)
Since p, < Ay, we can choose € (> 0) in such a way that
pg+e<Af—e. (2.3.14)
So in view of (2.3.13) and (2.3.14) it follows that
log T
lim 2L fo9) o (2.3.15)

r—oo T'(r, L (f))

Again from Lemma 2.2.4 and Lemma 2.2.8 we get for all sufficiently large
values of r,
logT (7, fog) < o(1) + (ps +¢€)log M (r, g)
T(r,L(g)) ~ T (r,L(g))
. log T'(r, f o g) . log M (r, 9)
i.e., limsup < (psr+e¢)limsup—r—=
RSP L) O (16)
. logM (r,9) ..  T(rg)
< (pf+e€)limsup .lim
TP L) S TP T g AT L (g)
logT (r, f o g) 1
< . .
< lps+e)m 1+k—kd(o0;9)

i T AP)
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Since ¢ (> 0) is arbitrary it follows from above that

: log T (r, f o g) 1
i < pr.
ST L(g) T 1 k—ki(ooig)

(2.3.16)

Combining (2.3.15) and (2.3.16) we obtain that

{logT(r,fog)}* _ | logT(rfog),  logT(rfoyg)

R TELITELE) o THLD) v’ THLE)
<0. il =0
= 1+k—kd(c0;g)
i e lim {logT(T‘,fog)}2 =0.

=T (r L) T (r, L(9))

This proves the theorem. m

Theorem 2.3.4 If f and g be two entire functions with f to be transcendental
satisfying the following conditions:
(i) As > 0, (i8) By < 00, (i88)0 < Ay < pg and (iv) D3 (a; f) +0(00; f) =2,
az#oo
then
[2]
limsuplog2 T(r,fo9) > max {—9, f_g} .
roo 1og® T (r, L(f)) As Py

Proof. We know that for r > 0 (cf.[28]) and for all sufficiently large values
of r,
r

T('r,fog)Z%logM{éM (4,g)+0(1),f}. (2.3.17)

Since As and )\, are the lower orders of f and g respectively then for given
e (> 0) and for large values of r we obtain that
log M (r, f) > ¢ and log M (r,g) > 7€ where 0 < € < min {\s, A\,}. So
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from (2.3.17) we have for all sufficiently large values of r,
11 rr Are
Sy ey Vo

Ar—e
ie., T(r,fog)> % {%M (g,g)}
i.e., 1gT(r,fog) 2 O(1)+ (s —e)log M (7,9)

Ag—e
i.e., logT (r,fog)201)+ (Af—¢) (Z)
ie., log? T (r,fog)>0(Q1)+ (Ag —€)logr. (2.3.18)
Again in view of Lemma 2.2.5, we get for a sequence of values of 7 tending
to infinity,
logm T(r,L(f)) < (Arp +¢€) logr
i.e., logBT(r,L(f)) < (As+e)logr. (2.3.19)

Combining (2.3.18)and (2.3.19), it follows for a sequence of values of r tending
to infinity
log? T (r, f o g) O(1)+ (A, —¢€)logr
log? T (r, L (f )) N (As+¢€)logr '
Since ¢ (> 0) is arbitrary, we obtain that
logl T
fmenp 2T 6100
T ogB T (r, ()~
Again from (2.3.17) we get for a sequence of values of r tending to infinity,

logT'(r,fog) >0O(1)+ ()\f —£) (t)pg—s

(2.3.20)

4
ie., log® T (r, fog)>O0@1)+(p, —¢)logr. (2.3.21)
Also in view of Lemma 2.2.5, for all sufficiently large values of r, we have
logP T (r, L () < (EL(f) + ¢} logr = (p; +¢€) logr. (2.3.22)

Now from (2.3.21) and (2.3.22) it follows for a sequence of values of r tending
to infinity that

log? T(r, fog) _ O(1) +(py —€)logr

g T (r,L(f) ~  (Fr+e)losr
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As € (0 < € < p,) is arbitrary, we obtain from above that

2
limsup-0&_L(S09) o Py (2.3.23)

rco logA T (r,L(f)) ~ Py

Therefore from (2.3.20) and (2.3.23) we get that

log” T'(r,fog) _ { Ay pg}

lim sup =, =
As Py

roo 1og® T (r, L(f))

Thus the theorem is established. =

Theorem 2.3.5 Let f be transcendental meromorphic and g be entire such
that (1)0 < Ay < Py, (i) p; < oo, (iii)pr < oo and () Y. 6(a; f) +

aFoo
6 (00; f) =2. Then

2)
li:rninflog2 T(r,foyg) < min {ﬁ,f—g} )
r~ logA T (r, L(f)) Ar’ Py

Proof. In view of Lemma 2.2.1 and the inequality T (r,g) < logt M (r, g),
we obtain for all sufficiently large values of r

logT (r,fog) <o(1l)+(ps+e)logM(rg). (2.3.24)
Also for a sequence of values of r tending 1;0 infinity,
log M (r,g) < rete, (2.3.25)

Combining (2.3.24) and (2.3.25) it follows for a sequence of values of 7 tending
to infinity,

logT (1, fog) < 0(1) + (ps +e)re*
i.e., logT (r,fog) < {(ps+e)+o(1)}ri
ie., log@T(r,fog) <O@)+ (A +¢)logr. (2.3.26)

Again in view of Lemma 2.2.5, we have for all sufficiently large values of 7,

og? T'(r,L(f)) > (Prp) — &) logr = (3f — &) log - (2.3.27)
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Now from (2.3.26) and (2.3.27) we get for a sequence of values of r tending
to infinity,

log® T (r, f o g) O(l) + (Ag +¢) logr

log? T (r, L(f)) (A —¢€)logr

As (> 0) is arbitrary, it follows that

log” T (r,fog) _

lim inf < == 2.3.28
o 1o T (1, L(f) Af (2:3:2)

In view of Lemma 2.2.1. we get for all sufficiently large values of 7,
log? T (r, f o g) < O (1) + (p, + €) log . (2.3.29)

Also for a sequence of values of r tending to infinity,

log™ T (r, L(f)) > (pr(s) — €) logr = (p; — €) log (2.3.30)

Combining (2.3.29) and (2.3.30) we have for a sequence of values of r tending
to infinity,

logl T (r, f o g) < O) + (py +e)logr

og@ T (rL(f)~  (p;—¢)logr

Since € (> 0) is arbitrary, it follows from above that

2
lim nflog2 T(rfog)
r—~oo log T (r, L(f))

(2.3.31)

Now from (2.3.28) and (2.3.29) we get that

2]
limi flog2 Tr,fog) min{ﬁ,gi}.
e logPI T L() A Pr

This proves the theorem. =
The following theorem is a natural consequence of Theorem 2.3.4 and
Theorem 2.3.5.

Theorem 2.3.6 Let f be a transcendental entire function and g be an entire
function such that (i)0 < Af < Py < 00, (#)0 < Ay < py < 00, (#44) 0 < Ag <
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pg < 0o and (i) >, 6 (a; f)+ 6 (c0; f) = 2. Then

astoo

(2]
limi flog2 T'(r,fog) < min{ﬁ,?}
r=oo loglI T (r, L(f)) As Ps
ogl?]
Af pf r—00 Iog[2]T(T L(f))

Theorem 2.3.7 Let f be transcendental meromorphic and g be entire such
that 0 < Ay < py < oo and Y- 6 (a; f)+6(o0; f) = 2. Then for0 < p < p, <

aFo0

m)
2] Pg
monp 87T (0 (%), fo0) _
r—oo" logl? T (exp (r#), L (f))

Proof. Let 0 < ¢/ < p,;. Then in view of Lemma 2.2.2 we get for a sequence
of values of r tending to infinity,

logT (r,fog) >1logT (exp (r“r) ,f)
> (Af —¢€)log (exp (r“’))

> (A —e)r¥
e., log[le(r,f og)>0(1) + y'logr.

So for a sequence of values of r tending to infinity,
log? T (exp (%), f 0 g) > O (1) + 44/ log (exp (r’s))
e., log? T (exp (r7), f o g) > O (1) + 'rPs. (2.3.32)
Again in view of Lemma 2.2.4, we have for all sufficiently large values of r,
log T (exp (r*) , L (f)) < (pr(s) + €) log (exp (r#))
i.e., logT (exp (r*),L(f)) < (ps + )"
i.e., log® T (exp (r*),L(f)) < O(1) + ulogr. (2.3.33)
Now combining (2.3.32) and (2.3.33) we obtain for a sequence of values of r
tending to infinity,
log? T (exp (%), fog) | O (1) + p'res
log® T (exp (r#) , L (f)) ~ O(1) + plogr’
from which the theorem follows. m




