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PROPERTIES OF WRONSKIANS 

2.1 Introduction, Definitions and Notations. 

We denote by C the set of all finite complex numbers. Let f be a meromorphic 
function and g be an entire function defined on C. In the sequel we use the 
following two notations: 

loglkJ x =log (loglk-1] x) fork= 1, 2, 3, · · · and log1°l x = x 

and explk] x = exp ( explk-1] x) for k = 1, 2, 3, · · · and expl0l x = x. 
We recall the following definitions: 

Definition 2.1.1 The order PJ and lower order AJ of a meromorphic func­
tion f is defined as 

1
. log T (r, f) d , 

1
. . flog T (r, f) 

PJ = 1msup 
1 

an Af = rmm 
1 

. 
r--->00 og r r--->oo og r 

If f is entire, one can easily verify that, 

1
. logl2l M (r, f) d , 

1
. . flogl2l M (r, f) 

PJ = rmsup 
1 

an Af = rmm 
1 

. 
r-->oo og r r-->oo og r 

--:T=h-e-res-u-:-lt_s_of:-t-:-h,:-.s--:ch:-a-pt-er--:h:-a-ve--:b:-ee-n_p_u-:-blished in Archivum Mathematicum(BRNO), see (10]. 
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D efinit ion 2.1.2 The hyper order p1 and hyper lower order AJ of a mero­
m orphic function f is defined as f ollows: 

- l' logl2] T (r, f) d \ 1' . f logi2J T (r, f) 
p1 = 1m sup 

1 
an AJ= 1mm . 

r -+ og r r-+ log r 

If f is entire, then 

_ 
1
. logl3l M (r, f ) d \ 

1
. . f logl3l M (r, f) 

PJ = 1m sup--
1

----'---=-- an Af = 1mm . 
r-+ og r r-+oo log r 

D efinition 2.1.3 The type a f of a meromorphic function f is defined as : 

1 
T (r, f) 

OJ= 1m sup , 0 <p1 <oo. 
r-+oo rPJ 

When f is entire, then 

1
. log !11 (r, f) 

Oj = 1m sup , 0 < PJ < oo. 
1·-. rP! 

D efinition 2.1.4 A function AJ (r ) is called a lower proxim ate order of a 
merom orphic function f of finite lower order AJ if 

(i) AJ (r) is non negative and continuous for r > r0 , say, 

( ii) AJ (r) is differentiable fo r r > ro except possibly at isolated points at 
which ).. j (r + 0) and )..j (r - 0) exists, 

(iii) lim AJ (r) = AJ, 
r -+ 

(iv) lim r -A j (r) logr = 0 and 
r-+ 

The Nevan-

,., 3 ") 5 l ._c. ..) j 

74 APR 2U1U 
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Prom the second fundamental theorem it follows that the set of values of 
a E CU{oo} for which 6 (a; f) > 0 is countable and L 6 (a; f)+6 (oo; f) < 2 

ai'oo 

( cf.[ 17, p.43]) . If in particular L 6 (a; f) + 6 ( oo; f) = 2 , we say that f has 
ai'oo 

the maximum deficiency sum. 

Definition 2.1.6 A meromorphic function a = a (z) is called small with 
respect to f ifT (r, a)= S (r, f). 

Definition 2.1. 7 Let a1, a2, · · · , ak be linearly independent meromorphic func­
tions and small with respect to f. We denote by L (f) = W (a1, a2, · · · , ak, f) 
the wronskian determinant of a1, a2, · · · , ak, f i.e., 

a1 a2 ak f 
a~ a~ a' f' 

L(f) = 
k 

(k) 
al 

(k) 
a2 

(k) 
ak f(k) 

Since the natural extension of a derivative is a differential polynomial, 
in this chapter we prove our results for a special type of linear differential 
polynomials viz., the wronskians. In the chapter we _prove some new re­
sults depending on the comparative growth properties of composite entire or 
meromorphic functions and wronskians generated by one of the factors which 
improve some earlier theorems. 

2.2 Lemmas. 

In this section we present some lemmas which will be needed in the sequel. 

Lemma 2.2.1 ([1]) Iff is meromorphic and g is entire then for all suffi­
ciently large values of r 

T(fog) < {l+o(1)}
1 

T}:;'t) ?(M(r,g),f). 
og r,g 

Lemma 2.2.2 ([2]) Let f be meromorphic and g be entire and suppose that 
0 < f-t < p9 < oo. Then for a sequence of values of r tending to infinity, 

T(r,Jog) >T(exp(ri.L),f). 
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Lemma 2.2.3 ([25]) Let f be a transcendental meromorphic function hav­
ing maximum deficiency sum. Then 

. T(r,L(f)) 
}!_,~ T (r,f) = 1 + k- ko (oo; f). 

Lemma 2.2.4 If f be a transcendental meromorphic function with the max­
imum deficiency sum, then the order and lower order of L (f) are same as 
those off also the type of L (f) is {1 + k - ko ( oo; f)} times that off when 
f is of finite positive order. 

Proof. By Lemma 2.2.3, we have 

lim T ( r' L (f)) = 1 + k - ko ( oo ;!) = A (say) 
r-->oo T (r, f) 

. . T(r,L(f)) 
z.e., hmsup T ( f) =A. 

r---+oo r, 

So for given c (0 < c < 1) we get for all large values of r that 

T(r,L(f)) < A+c 
T(r,j) -

i.e., logT (r, L (f))< log (A+ c)+ logT (r, f) 

z.e., logT(r,L(f)) < 1 log(A+c) 
logT(r,f) - + logT(r,f) 

l
. · log·T (r, L (f)) < 

1 z.e., rm sup . 
r-->oo log T (r, f) -

Again for given c (0 < c < 1) we get for a sequence of values of r tending to 
infinity that 

Hence 

T(r,L(f)) > A+c 
T(r,j) -

l' logT (r, L (f)) > 1 i.e., r~~p logT (r, f) - . 

limsup logT(r,L(f)) = 1. 
r-->oo log T (r, f) 
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Similarly 

l 
.. f logT(r,L(f)) 
rmm = 1 0 

r->oo log T (r, f) 
Thus it follows from above that 

lim logT (r, L (!)) = 1 
r->oo log T ( r, f) · 

So 

l
. log T (r, f) 

1
. log T (r, L (f)) 

PL(f) = rm sup . rm ---=-------'---'c----'.:_'--'-
r->oo log r r->oo log T ( r, f) 

= PJ·1 = P!. 

Also 

>. r . f logT(r,f) r logT(r,L(f)) 
L(f) = 1~~ log r · r2..~ -----0'-lo-g--:::T::--(,--r-, f:::-).:....:.. 

= >.1.1 = AJ. 

Again 

. T(r,L(f)) 
CJ L(f) = lim sup --'----'c----'-'--''--'-

r->oo rPL(f) 

l
. T (r, f) 

1
. T (r, L (!)) 

= rmsup . rm 
T-->00 rPJ r->oo T (r, f) 

= CJ/{1 + k- ko (oo; f)}. 

This proves the lemma. • 

Lemma 2. 2. 5 Let f be a transcendental meromorphic function with the max­
imum deficiency sum. Then the hyper order and (hyper lower order) of L (f) 
and f are equal. 

Proof. By Lemma 2.2.3, we have 

T (r, L (!)) 
lim T ( f) = 1 + k- ko (oo; f) =A (say) 

r-+oo r, 

. . T(r,L(f)) 
~.e., hmsup T ( f) =A . 

r--+00 r, 
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Hence for given E: (0 < r:: < 1) we get for all large values of r that 

T(r,L(f)) A 
T(r,f) < +r:: 

z.e., logT(r,L(f)) < log(A+r::) +logT(r,f) 

= logT (r, f) {1 +log (A+ r::)} 
logT (r, f) 

z.e., logl2l T (r, L (f)) < logl2l T (r, f)+ log {1 + o (1)} 

. logi21T(r,L(f)) log{1+o(1)} 
z. e. , 121 < 1 + _..::::.-;;!2"] ---'---'-<-

log T (r, f) - log T (r, f) 

. logl21 T (r, L (f)) 
z.e., h~~p logi2J T (r, f) = 1. 

Again for given E: (0 < E: < 1) we get for a sequence of values of r tending to 
infinity that 

T(r,L(f)) > A+r:: 
T(r,f) -

. logl2l T (r, L (f)) 
i.e., hmsup 121 > 1 . 

r--->oo log T (r, f) -

Hence 
. logl2l T (r, L (f)) 

hmsup 121 = 1 . 
r--->oo log T (r, f) 

Similarly 

liminf logl
2
l T (r, L (f)) = 1 . 

r--->oo logi2J T (r, f) 

Thus it follows from above that 

. logl2l T (r, L (f)) 
hm = 1. 

r--->oo logi2J T ( r' f) 

So 

_ . logl21 T (r, f) . logl2l T (r, L (f)) 
p L(f) = hm sup . hm __..::::.-=[ ]---'---'------'::....:...:.. 

r--->oo log r r--->oo log 2 T ( r, f) 

= .. fiJ-1 = -p1 . 
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Also 

, 
1
. . f logl21 T (r, f) 

1
. logl21 T (r, L (!)) 

/\£(!) = 1mm . 1m I I 
r--+oo log r r--+oo log 2 T ( r, f) 

= A1.1 = X1 . 

This proves the lemma. • 

Lemma 2.2.6 For a meromorphic function f of finite lower order, lower 
proximate order exists. 

The lemma can be proved in the line of Theorem 1 [21] and so the proof is 
omitted. 

Lemma 2.2. 7 Let f be a meromorphic function of finite lower order A 1. 
Then for§(> 0) the function r;..t+<l-At(r) is ultimately an increasing function 

ofr. 

Proof. Since 

.!!:_r;..t+d-At(r) = { AJ + §- AJ (r)- rX
1 

(r) logr} r)..t+d-At(r)-! > 0 
dr 

for all sufficiently large values of r, the lemma follows. • 

Lemma 2.2.8 ([20]) Let f be an entire function of finite lower order. If 
there exists entire functions a; ( i = 1, 2, · · · , n; n < oo) satisfying T (r, a;) = 

n 
o{T(r,f)} and L,6(a;;f) = 1, then lim 1o~Z·frln = ~-

i=l T-+00 1 

2.3 Theorems. 

In this section we present the main results of the chapter. 

Theorem 2.3.1 Let f be a meromorphic function and g be a transcendental 
entire function satisfying 

( i) A f, Ag are both finite and 

(ii) L,6(a;g)+6(oo;g) =2, then 
af.oo 

l 
.. flogT(r,fog) < 3.p1.2;..• 
lffilll 0 

r--+oo T(r,L(g)) -1+k-k§(oo;g) 
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Proof. If P! = oo, the theorem is obvious. So we suppose that P! < oo. Since 
T(r,g) <log+ M(r,g), in view of Lemma 2.2.1, we get for all sufficiently 
large values of r, 

T(fog) < {1+o(1)}T(M(r,g),f). 

z.e., logT(r,f o g)< log{1 + o (1)} + logT(M (r,g) ,f) 

< o (1) + (P! + c:) log M (r, g) 

. . . logT(r,fog) .. logM(r,g) 
z.e., hmmf T( ) < (Pt+c:)hmmf T( ) 

r-->oo r, g r-->oo r, g 

Since c: (> 0) is arbitrary, it follows that 

I 
.. flogT(r,Jog) < 

1 
.. flogM(r,g) 

1mm T() _p,.Imm T( ) . 
T-->00 T, g T-->00 T, g 

(2.3.1) 

As liminfri,r(!/ = 1, so for given c: (0 < c: < 1) we get for a sequence of values 
r-+oo r 

of r tending to infinity, 

T (r, g) < (1 + c:) r>.g(r) (2.3.2) 

and for all sufficiently large values of r, 

(2.3.3) 

Since logM (r,g) < 3T (2r,g), we have by (2.3.2),for a sequence of values of 
r tending to infinity, 

log M (r, g) < 3T (2r, g) < 3 (1 + c:) (2r).\•(2r). (2.3.4) 

Combining (2.3.3) and (2.3.4) we obtain for a sequence of values of r tending 
to infinity, 

log M (r, g) 3 (1 + c:) (2r ).\•(2r) 
T (r, g) < (1- c:) · r>..(r) 

Now for any 6 (> 0), for a sequence of values of r tending to infinity, 

logM(r,g) 3(1+c:) (2rl•+8 1 
T (r, g) < (1- c:) . (2r/•+J-.\.(2r). r>.g(r) 
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. logM(r,g) < 3(1+c:) 
2

;.9+& 
2.e., T ( ) _ ( ) . r,g 1- c: (2.3.5) 

because r>.g+&->.g(r) is ultimately an increasing function of r by Lemma 2.2.7. 
Since c: (> 0) and li (> 0) are arbitrary, it follows from (2.3.5) that 

l . . flogM(r,g)<32>.g () 
rmm T( ) _ . . 2.3.6 
r-+oo r, g 

Thus from (2.3.1)and (2.3.6) we obtain that 

liminflogT(r,Jog) < 3.p .2>.9. 
r-+oo T(r,g) - f 

Now in view of Lemma 2.2.3 and (2.3.7) we get 

l 
.. flogT(r,Jog) 

1 
.. flogT(r,fog) 

1
. T(r,g) 

Im Ill = Im Ill . Im =-:---'--:'--'7'-:-;-
r-+oo T (r, L (g)) r->oo T (r, g) r->ooT (r, L (g)) 

3.pf.2>.g 
< ( . - 1 + k- kli oo; g) 

This proves the theorem. • 

(2.3.7) 

Theorem 2.3.2 Let f be meromorphic and g be transcendental entire such 
that P! < oo, >.9 < oo and 2::: li (a; g)+ li (oo; g) = 2. Then 

a#oo 

l
. . flog[2

] T (r, fog) < 
1 rmm . 

r->oo logT(r,L(g))-

Proof. Since T (r, g) <log+ M (r, g), in view of Lemma 2.2.1, we get for all 
sufficiently large values of r, 

logT (r,J o g) <log {1 + o (1)} + logT (M (r, g), f) 
< o (1) + (PJ + c:) logM (r,g) 

i.e., log[2l T (r, fog)< log[2] M (r,g) + 0 (1). (2.3.8) 

It is well known that for any entire function g, logM(r,g) < 3T(2r,g) 
{cf.[17]}. Then for 0 < c: < 1 and li(> 0), for a sequence of values of r 
tending to infinity it follows from (2.3.5) that 

log[2
] M (r, g) < logT (r, g)+ 0 (1). (2.3.9) 
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Now combining (2.3.8) and (2.3.9) we obtain for a sequence of values of r 
tending to infinity, 

logl2l T (r, fog)< logT (r,g) + 0 (1) 

. logl2l T (r, fog) 
~.e., 1 T ( ) < 1. og r,g 

(2.3.10) 

As by Lemma 2.2.3, }.!.,~Io~~fr~if;J) exists and is equal to 1, from (2.3.10) we 
obtain that 

1
. . flogl2l T (r, fog) 

1
. . flogl2l T (r, fog) 

1
. log T (r, g) 

1m m = 1m m . 1m ::---:::-..,....0.-::'-':-'-,-;-
r->oo logT (r, L (g)) r->oo logT (r, g) r->oologT (r, L (g)) 

<1.1=1. 

Thus the theorem is established. • 

Remark 2.3.1 The inequality sign in Theorem 2.3.2 is best possible in the 
sense that '< ' cannot be replaced by '< ' only which is evident from the fol­
lowing example. 

· a1 g 
Example 2.3.1 Let f = g = exp z and L (g) = 1 1 

al g 
Taking a1 = 1 we see that L (g) = exp z . 
Thenp1 =1, Ay=1 and 2:o(a;g)+o(oo;g)=2. 

a#oo 
Also T (r, fog)"' er ; and T (r, L (g))=;. 

(27T3r) 
Hence 

. . logl2l T (r,J o g) 
hrnmf = 1 . 

r->oo logT (r, L (g)) 

Remark 2.3.2 The condition P! < oo is essential in Theorem 2.3.2 as we 
see in the following example. 

Example 2.3.2 Let f = expl2l z, g = exp z and L (g) = a1 gg1 ai 
Taking a 1 = 1 we see that L(g) = expz. 
Thenp1 =oo, Ay=1 and 2:o(a;g)+o(oo;g) =2. 

aoJoo 
Since T (r,J) <log+ M (r, f), we have 

T (r, fog) = T (r, expl3l z) <log M (r, expl3l z) = expl2l r . 



Now in view of the inequality 

we have 

Also 

Hence 

T (r, f) < log M (r, f) < 3T (2r, f) ( cf. p. 18, [ 1?]) 

3T(2r,fog) > logM(r,Jog) 

i.e., T(r,J o g)> ~logM G,J o g) 

i.e., T(r,Jog) > ~logM G,expl3lz) 
i.e., T (r, fog) > ~log ( expl3l ~) = ~ expl2l ~ 

~.e., logl2l T (r, fog) > ~ + 0 (1) . 

logT (r, L (g)) = logr + 0 (1) 

. . logl21 T (r, fog) 
hmmf = oo, 

r-+oo logT (r, L (g)) 

which is contrary to Theorem 2.3.2. 
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Theorem 2.3.3 Let f and g be two transcendental entire functions such that 
>.1 > o, pg < >.1 < Pt < oo, and L-o(a;f) +o(oo;f) = 2 = L-o(a;g) + 

ai'oo ai'oo 
o ( oo; g). Also there exist entire functions b; ( i = 1, 2, · · · , n; n < oo) with 

(i) T(r,b;)=o{T(r,g)} asr--->oofori=1,2,··· ,nand 

n 

(ii) L-o(b;;g) = 1. Then 
i=l 

lim {logT(r,fog)}
2 

=O. 
r-+ooT (r, L (f)) T (r, L (g)) 
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Proof. In view of the inequality T(r,g) <log+ M(r,g) and Lemma 2.2.1 
we obtain for all sufficiently large values of r, 

T(fog) < {1+o(1)}T(M(r,g),f) 
z.e., logT (r, fog) <log {1 + o (1)} + logT (M (r,g), f) 

< o(1) + (PJ +c)logM(r,g) 

< o (1) + (PJ +c) rP•+e . (2.3.11) 

Again in view of Lemma 2.2.4, we get for all sufficiently large values of r, 

logT (r, L (!)) > (>.L(J)- c) logr 

i.e., logT (r, L (!)) > (AJ- c) logr 

i.e., T (r, L (!)) > r>.,-e . (2.3.12) 

Now combining (2.3.11) and (2.3.12) it follows for all sufficiently large values 
ofr, 

logT (r, fog) < o (1) + (PJ +c) rP•+e 
T (r, L (!)) - r>.,-e 

Since p9 < AJ> we can choose c (> 0) in such a way that 

p9 +c < AJ- c. 

So in view of (2.3.13) and (2.3.14) it follows that 

lim logT(r,fog) = 0 . 
r~oo T (r, L (f)) 

(2.3.13) 

(2.3.14) 

(2.3.15) 

Again from Lemma 2.2.4 and Lemma 2.2.8 we get for all sufficiently large 
values of r, 

logT(r,fog) < o(1)+(PJ+c)logM(r,g) 
T(r,L(g)) - T(r,L(g)) 

. logT(r,fog) < ( . logM(r,g) 
i.e., h~~p T (r, L (g)) - PJ +c) h~~p T (r, L (g)) 

z.e., 
. logT(r,fog) . logM(r,g) . T(r,g) 

limsup ( ()) <(pJ+c)limsup T( ) .J:_mT( L()) r~oo T r,L g r~oo r,g r oo r, g 

i.e., 
. logT(r,fog) 1 
lir~!up T(r,L(g)) < (PJ+c).7r.1+k-ko(ao;g) 
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Since € (> 0) is arbitrary it follows from above that 

li 
logT (r,J o g) 1 

msup < PJ-1r. . 
r->oo T (r, L (g)) 1 + k- ko (oo;g) 

(2.3.16) 

Combining (2.3.15) and (2.3.16) we obtain that 

r {logT (r, f o g)}2 r logT (r, fog) r logT (r,J o g) 
1r:_.~pT (r, L (f)) T (r, L (g)) = r!..~ T (r, L (f)) . 1 r:_.~P---=r=-(.,-r,'-=L-':-(g...,..,))::...:.. 

< 0. 1rPJ = 0 
- 1 + k - kO ( oo; g) 

.. {logT(r,Jog)}2 

~.e., rl:.~T (r, L (f)) T (r, L (g)) = O . 

This proves the theorem. • 

Theorem 2.3.4 Iff and g be two entire functions with f to be transcendental 
satisfying the following conditions: 
(i)>.J > 0, (ii)p1 < oo, (iii) 0 < >.9 < p9 and (iv) ~ o (a; f)+ o (oo; f)= 2, 

a#oo 

then 

1
. logl21 T (r, fog) { >.9 p9 } 
1m sup >max =-,- . 

r->oo logi21T(r,L(f))- AJ Pt 

Proof. We know that for r > 0 (cf.[28]) and for all sufficiently large values 
ofr, 

(2.3.17) 

Since AJ and >.9 are the lower orders off and g respectively then for given 
c (> 0) and for large values of r we obtain that 
log M (r, f) > r>.re and log M (r,g) > r>..-e where 0 < € <min {Af, >.9}. So 



from (2.3.17) we have for all sufficiently large values of r, 

T(r,fog) > ~ {~M G,g) +o(1) rf-o 
. 1{1 r }>.J-o ~.e.,T(r,fog)>"3 9M(4,g) 

i.e., logT (r,J o g) > 0 (1) +(.\!-c) logM G, g) 

i.e., logT (r, fog) > 0 (1) + (>.1 - c) G) >.g-o 
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i.e., logl2l T (r, fog) > 0 (1) + (.\g- c) logr. (2.3.18) 

Again in view of Lemma 2.2.5, we get for a sequence of values of r tending 
to infinity, 

logl2l T (r, L (f)) < (XL(!)+ c) logr 

i.e., logl2l T (r, L (f)) < (>.1 +c) logr. (2.3.19) 

Combining (2.3.18)and (2.3.19), it follows for a sequence of values of r tending 
to infinity 

logl2l T (r, fog) > 0 (1) + (>.g- c) logr 

logl2lT(r,L(f))- (X1 +c)logr 

Since c (> 0) -is arbitrary, we obtain that 

. logl2l T (r, fog) Ag 
hmsup [2] > =-· 

r->oo log T(r,L(f))- AJ 
(2.3.20) 

Again from (2.3.17) we get for a sequence of values of r tending to infinity, 

logT (r, f 0 g)> 0 (1) +(.\!-c) Grg-o 
~.e., logl2l T (r, fog) > 0 (1) + (pg- c) logr. (2.3.21) 

Also in view of Lemma 2.2.5, for all sufficiently large values of r, we have 

logl2l T (r, L (f)) < (hen +c) log r = (p1 +c) log r. (2.3.22) 

Now from (2.3.21) and (2.3.22) it follows for a sequence of values of r tending 
to infinity that 

logl2l T (r, fog) > 0 (1) + (pg- c) logr 

logl2l T (r, L (f)) - (p1 +c) logr 
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As c (0 < c < p0 ) is arbitrary, we obtain from above that 

. log[2] T (r,J o g) p
0 hmsup [2] > -. 

r-->oo log T (r, L (f)) - Pt 
(2.3.23) 

Therefore from (2.3.20) and (2.3.23) we get that 

r log[
2
1T(r,fog) > {>.0 Po} 

1~~plog[21T(r,L(f))- max >-/fit · 

Thus the theorem is established. • 

Theorem 2.3.5 Let f be transcendental meromorphic and g be entire such 
that (i) 0 < AJ < p1, (ii) p0 < oo, (iii) P! < oo and (iv) ~ c5 (a; f) + 

aofoo 

c5 (oo; f) = 2. Then 

I .. flog[
2
1T(r,fog) . {A0 Po} 

lmm [2] < mln =-,- . 
r->oo log T(r,L(f))- AJ P! 

Proof. In view of Lemma 2.2.1 and the inequality T(r,g) <log+ M(r,g), 
we obtain for all sufficiently large values of r 

logT (r, fog) < o (1) + (PJ +c) log M (r, g). (2.3.24)' 

Also for a sequence of values of r tending to infinity, 

(2.3.25) 

Combining (2.3.24) and (2.3.25) it follows for a sequence of values ofr tending 
to infinity, 

logT (r, fog) < o (1) + (PJ +c) r.Xy+c 

i.e., logT(r,Jog) < {(PJ+c)+o(1)}r.Xy+c 

i.e., log[2
] T (r, fog) < 0 (1) + (>.0 +c) logr. (2.3.26) 

Again in view of Lemma 2.2.5, we have for all sufficiently large values of r, 

log[21 T (r, L (f)) > (>.L(f)- c) logr = (>.!-c) logr. (2.3.27) 
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Now from (2.3.26) and (2.3.27) we get for a sequence of values of r tending 
to infinity, 

logl21 T (r, fog) < 0 (1) + (i\9 + c:) logr 

logl21 T (r, L (!)) - (.A.t- c:) logr 

As c: (> 0) is arbitrary, it follows that 

l
. . flogl21 T (r, fog) )..9 
lffilll (2) < =-· 
r~oo log T (r, L (!)) - AJ 

(2.3.28) 

In view of Lemma 2.2.1. we get for all sufficiently large values of r, 

logl21 T (r, fog) < 0 (1) + (p9 + c:) logr. (2.3.29) 

Also for a sequence of values of r tending to infinity, 

logl21 T (r, L (!)) > (PL(f)- c:) logr = (p1 - c:) logr. (2.3.30) 

Combining (2.3.29) and (2.3.30) we have for a sequence of values of r tending 
to infinity, 

logl21 T (r, fog) < 0 (1) + (p9 + c:) logr 

logl21 T (r, L (!)) - (p1 - c:) logr 

Since c: (> 0) is arbitrary, it follows from above that 

l
. "nf logl21 T (r, fog) < p9 
lffil -. 
r~oo logi2IT(r,L(f))- Pt 

Now from (2.3.28) and (2.3.29) we get that 

r . flogi
2
1T(r,fog) < . {;..9 p9 } 

1~~ logl21 T (r, L (!)) -rom .A./ Pt . 

This proves the theorem. • 

(2.3.31) 

The following theorem is a natural consequence of Theorem 2.3.4 and 
Theorem 2.3.5. 

Theorem 2.3.6 Let f be a transcendental entire function and g be an entire 
function such that (i) 0 < AJ < Pt < oo, (ii) 0 < Af <Pi < oo, (iii) 0 < i\9 < 



p9 < oo and (iv) 2: 6 (a; f)+ 6 (oo; f)= 2. Then 
af.oo 

l .. flogl2lT(r,jog) < . {)..9 p9 } 
1mm mm =- -
r->oo logl2lT(r,L(f))- >./75! 

< max _ 9 __!!_ < lim sup ' { 
>. p } logl2l T (r f o g) 

- >./ P! - r->oo logl2l T (r, L (f))· 
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Theorem 2.3. 7 Let f be transcendental meromorphic and g be entire such 
thatO < AJ < P! < oo and 2: 6(a;f)+6(oo;f) = 2. Then forO< J1 < p9 < 

af.oo 
oo, 

. logl2l T (exp (rP•), fog) 
hmsup = oo. 

r->oo logl2l T ( exp (r~-') , L (f)) 

Proof. Let 0 < 11' < p9 • Then in view of Lemma 2.2.2 we get for a sequence 
of values of r tending to infinity, 

logT(r,Jog) > logT (exp (r~-'') ,J) 

> (>.1 - c) log (exp (r~-'')) 
> (>.!-c) r~-'' 

z.e., logl2l T (r, fog) > 0 (1) + J11 logr. 

So for a sequence of values of r tending to infinity, 

logl2l T (exp (rP•), fog) > 0 (1) + 11'log (exp (rP•)) 

i.e., logl2l T (exp (rP•), fog)> 0 (1) + 11'rP•. (2.3.32) 

Again in view of Lemma 2.2.4, we have for all sufficiently large values of r, 

logT ( exp (r~-'), L (!)) < (PL(f) +c) log (exp (r~-')) 

i.e., logT(exp(r~-'),L(f)) < (PJ+c)r~-' 
i.e., logl2l T ( exp (r~-') , L (f)) < 0 (1) + fJ,log r. (2.3.33) 

Now combining (2.3.32) and (2.3.33) we obtain for a sequence of values of r 
tending to infinity, 

logl2l T (exp (rP•), fog) > 0 (1) + 11'rP• 
logl2l T (exp (r~-'), L (!)) - 0 (1) + fJ,logr' 

from which the theorem follows. • 


